You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

955 lines
33KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "libavutil/attributes.h"
  35. #include "avcodec.h"
  36. #include "internal.h"
  37. #include "wma.h"
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_floats(WMACodecContext *s, const char *name,
  45. int prec, const float *tab, int n)
  46. {
  47. int i;
  48. ff_tlog(s->avctx, "%s[%d]:\n", name, n);
  49. for (i = 0; i < n; i++) {
  50. if ((i & 7) == 0)
  51. ff_tlog(s->avctx, "%4d: ", i);
  52. ff_tlog(s->avctx, " %8.*f", prec, tab[i]);
  53. if ((i & 7) == 7)
  54. ff_tlog(s->avctx, "\n");
  55. }
  56. if ((i & 7) != 0)
  57. ff_tlog(s->avctx, "\n");
  58. }
  59. #endif /* TRACE */
  60. static av_cold int wma_decode_init(AVCodecContext *avctx)
  61. {
  62. WMACodecContext *s = avctx->priv_data;
  63. int i, flags2;
  64. uint8_t *extradata;
  65. if (!avctx->block_align) {
  66. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  67. return AVERROR(EINVAL);
  68. }
  69. s->avctx = avctx;
  70. /* extract flag info */
  71. flags2 = 0;
  72. extradata = avctx->extradata;
  73. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4)
  74. flags2 = AV_RL16(extradata + 2);
  75. else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6)
  76. flags2 = AV_RL16(extradata + 4);
  77. s->use_exp_vlc = flags2 & 0x0001;
  78. s->use_bit_reservoir = flags2 & 0x0002;
  79. s->use_variable_block_len = flags2 & 0x0004;
  80. if (ff_wma_init(avctx, flags2) < 0)
  81. return -1;
  82. /* init MDCT */
  83. for (i = 0; i < s->nb_block_sizes; i++)
  84. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  85. if (s->use_noise_coding) {
  86. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  87. ff_wma_hgain_huffbits, 1, 1,
  88. ff_wma_hgain_huffcodes, 2, 2, 0);
  89. }
  90. if (s->use_exp_vlc)
  91. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), // FIXME move out of context
  92. ff_aac_scalefactor_bits, 1, 1,
  93. ff_aac_scalefactor_code, 4, 4, 0);
  94. else
  95. wma_lsp_to_curve_init(s, s->frame_len);
  96. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  97. return 0;
  98. }
  99. /**
  100. * compute x^-0.25 with an exponent and mantissa table. We use linear
  101. * interpolation to reduce the mantissa table size at a small speed
  102. * expense (linear interpolation approximately doubles the number of
  103. * bits of precision).
  104. */
  105. static inline float pow_m1_4(WMACodecContext *s, float x)
  106. {
  107. union {
  108. float f;
  109. unsigned int v;
  110. } u, t;
  111. unsigned int e, m;
  112. float a, b;
  113. u.f = x;
  114. e = u.v >> 23;
  115. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  116. /* build interpolation scale: 1 <= t < 2. */
  117. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  118. a = s->lsp_pow_m_table1[m];
  119. b = s->lsp_pow_m_table2[m];
  120. return s->lsp_pow_e_table[e] * (a + b * t.f);
  121. }
  122. static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  123. {
  124. float wdel, a, b;
  125. int i, e, m;
  126. wdel = M_PI / frame_len;
  127. for (i = 0; i < frame_len; i++)
  128. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  129. /* tables for x^-0.25 computation */
  130. for (i = 0; i < 256; i++) {
  131. e = i - 126;
  132. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  133. }
  134. /* NOTE: these two tables are needed to avoid two operations in
  135. * pow_m1_4 */
  136. b = 1.0;
  137. for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
  138. m = (1 << LSP_POW_BITS) + i;
  139. a = (float) m * (0.5 / (1 << LSP_POW_BITS));
  140. a = pow(a, -0.25);
  141. s->lsp_pow_m_table1[i] = 2 * a - b;
  142. s->lsp_pow_m_table2[i] = b - a;
  143. b = a;
  144. }
  145. }
  146. /**
  147. * NOTE: We use the same code as Vorbis here
  148. * @todo optimize it further with SSE/3Dnow
  149. */
  150. static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr,
  151. int n, float *lsp)
  152. {
  153. int i, j;
  154. float p, q, w, v, val_max;
  155. val_max = 0;
  156. for (i = 0; i < n; i++) {
  157. p = 0.5f;
  158. q = 0.5f;
  159. w = s->lsp_cos_table[i];
  160. for (j = 1; j < NB_LSP_COEFS; j += 2) {
  161. q *= w - lsp[j - 1];
  162. p *= w - lsp[j];
  163. }
  164. p *= p * (2.0f - w);
  165. q *= q * (2.0f + w);
  166. v = p + q;
  167. v = pow_m1_4(s, v);
  168. if (v > val_max)
  169. val_max = v;
  170. out[i] = v;
  171. }
  172. *val_max_ptr = val_max;
  173. }
  174. /**
  175. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  176. */
  177. static void decode_exp_lsp(WMACodecContext *s, int ch)
  178. {
  179. float lsp_coefs[NB_LSP_COEFS];
  180. int val, i;
  181. for (i = 0; i < NB_LSP_COEFS; i++) {
  182. if (i == 0 || i >= 8)
  183. val = get_bits(&s->gb, 3);
  184. else
  185. val = get_bits(&s->gb, 4);
  186. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  187. }
  188. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  189. s->block_len, lsp_coefs);
  190. }
  191. /** pow(10, i / 16.0) for i in -60..95 */
  192. static const float pow_tab[] = {
  193. 1.7782794100389e-04, 2.0535250264571e-04,
  194. 2.3713737056617e-04, 2.7384196342644e-04,
  195. 3.1622776601684e-04, 3.6517412725484e-04,
  196. 4.2169650342858e-04, 4.8696752516586e-04,
  197. 5.6234132519035e-04, 6.4938163157621e-04,
  198. 7.4989420933246e-04, 8.6596432336006e-04,
  199. 1.0000000000000e-03, 1.1547819846895e-03,
  200. 1.3335214321633e-03, 1.5399265260595e-03,
  201. 1.7782794100389e-03, 2.0535250264571e-03,
  202. 2.3713737056617e-03, 2.7384196342644e-03,
  203. 3.1622776601684e-03, 3.6517412725484e-03,
  204. 4.2169650342858e-03, 4.8696752516586e-03,
  205. 5.6234132519035e-03, 6.4938163157621e-03,
  206. 7.4989420933246e-03, 8.6596432336006e-03,
  207. 1.0000000000000e-02, 1.1547819846895e-02,
  208. 1.3335214321633e-02, 1.5399265260595e-02,
  209. 1.7782794100389e-02, 2.0535250264571e-02,
  210. 2.3713737056617e-02, 2.7384196342644e-02,
  211. 3.1622776601684e-02, 3.6517412725484e-02,
  212. 4.2169650342858e-02, 4.8696752516586e-02,
  213. 5.6234132519035e-02, 6.4938163157621e-02,
  214. 7.4989420933246e-02, 8.6596432336007e-02,
  215. 1.0000000000000e-01, 1.1547819846895e-01,
  216. 1.3335214321633e-01, 1.5399265260595e-01,
  217. 1.7782794100389e-01, 2.0535250264571e-01,
  218. 2.3713737056617e-01, 2.7384196342644e-01,
  219. 3.1622776601684e-01, 3.6517412725484e-01,
  220. 4.2169650342858e-01, 4.8696752516586e-01,
  221. 5.6234132519035e-01, 6.4938163157621e-01,
  222. 7.4989420933246e-01, 8.6596432336007e-01,
  223. 1.0000000000000e+00, 1.1547819846895e+00,
  224. 1.3335214321633e+00, 1.5399265260595e+00,
  225. 1.7782794100389e+00, 2.0535250264571e+00,
  226. 2.3713737056617e+00, 2.7384196342644e+00,
  227. 3.1622776601684e+00, 3.6517412725484e+00,
  228. 4.2169650342858e+00, 4.8696752516586e+00,
  229. 5.6234132519035e+00, 6.4938163157621e+00,
  230. 7.4989420933246e+00, 8.6596432336007e+00,
  231. 1.0000000000000e+01, 1.1547819846895e+01,
  232. 1.3335214321633e+01, 1.5399265260595e+01,
  233. 1.7782794100389e+01, 2.0535250264571e+01,
  234. 2.3713737056617e+01, 2.7384196342644e+01,
  235. 3.1622776601684e+01, 3.6517412725484e+01,
  236. 4.2169650342858e+01, 4.8696752516586e+01,
  237. 5.6234132519035e+01, 6.4938163157621e+01,
  238. 7.4989420933246e+01, 8.6596432336007e+01,
  239. 1.0000000000000e+02, 1.1547819846895e+02,
  240. 1.3335214321633e+02, 1.5399265260595e+02,
  241. 1.7782794100389e+02, 2.0535250264571e+02,
  242. 2.3713737056617e+02, 2.7384196342644e+02,
  243. 3.1622776601684e+02, 3.6517412725484e+02,
  244. 4.2169650342858e+02, 4.8696752516586e+02,
  245. 5.6234132519035e+02, 6.4938163157621e+02,
  246. 7.4989420933246e+02, 8.6596432336007e+02,
  247. 1.0000000000000e+03, 1.1547819846895e+03,
  248. 1.3335214321633e+03, 1.5399265260595e+03,
  249. 1.7782794100389e+03, 2.0535250264571e+03,
  250. 2.3713737056617e+03, 2.7384196342644e+03,
  251. 3.1622776601684e+03, 3.6517412725484e+03,
  252. 4.2169650342858e+03, 4.8696752516586e+03,
  253. 5.6234132519035e+03, 6.4938163157621e+03,
  254. 7.4989420933246e+03, 8.6596432336007e+03,
  255. 1.0000000000000e+04, 1.1547819846895e+04,
  256. 1.3335214321633e+04, 1.5399265260595e+04,
  257. 1.7782794100389e+04, 2.0535250264571e+04,
  258. 2.3713737056617e+04, 2.7384196342644e+04,
  259. 3.1622776601684e+04, 3.6517412725484e+04,
  260. 4.2169650342858e+04, 4.8696752516586e+04,
  261. 5.6234132519035e+04, 6.4938163157621e+04,
  262. 7.4989420933246e+04, 8.6596432336007e+04,
  263. 1.0000000000000e+05, 1.1547819846895e+05,
  264. 1.3335214321633e+05, 1.5399265260595e+05,
  265. 1.7782794100389e+05, 2.0535250264571e+05,
  266. 2.3713737056617e+05, 2.7384196342644e+05,
  267. 3.1622776601684e+05, 3.6517412725484e+05,
  268. 4.2169650342858e+05, 4.8696752516586e+05,
  269. 5.6234132519035e+05, 6.4938163157621e+05,
  270. 7.4989420933246e+05, 8.6596432336007e+05,
  271. };
  272. /**
  273. * decode exponents coded with VLC codes
  274. */
  275. static int decode_exp_vlc(WMACodecContext *s, int ch)
  276. {
  277. int last_exp, n, code;
  278. const uint16_t *ptr;
  279. float v, max_scale;
  280. uint32_t *q, *q_end, iv;
  281. const float *ptab = pow_tab + 60;
  282. const uint32_t *iptab = (const uint32_t *) ptab;
  283. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  284. q = (uint32_t *) s->exponents[ch];
  285. q_end = q + s->block_len;
  286. max_scale = 0;
  287. if (s->version == 1) {
  288. last_exp = get_bits(&s->gb, 5) + 10;
  289. v = ptab[last_exp];
  290. iv = iptab[last_exp];
  291. max_scale = v;
  292. n = *ptr++;
  293. switch (n & 3) do {
  294. case 0: *q++ = iv;
  295. case 3: *q++ = iv;
  296. case 2: *q++ = iv;
  297. case 1: *q++ = iv;
  298. } while ((n -= 4) > 0);
  299. } else
  300. last_exp = 36;
  301. while (q < q_end) {
  302. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  303. if (code < 0) {
  304. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  305. return -1;
  306. }
  307. /* NOTE: this offset is the same as MPEG-4 AAC! */
  308. last_exp += code - 60;
  309. if ((unsigned) last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  310. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  311. last_exp);
  312. return -1;
  313. }
  314. v = ptab[last_exp];
  315. iv = iptab[last_exp];
  316. if (v > max_scale)
  317. max_scale = v;
  318. n = *ptr++;
  319. switch (n & 3) do {
  320. case 0: *q++ = iv;
  321. case 3: *q++ = iv;
  322. case 2: *q++ = iv;
  323. case 1: *q++ = iv;
  324. } while ((n -= 4) > 0);
  325. }
  326. s->max_exponent[ch] = max_scale;
  327. return 0;
  328. }
  329. /**
  330. * Apply MDCT window and add into output.
  331. *
  332. * We ensure that when the windows overlap their squared sum
  333. * is always 1 (MDCT reconstruction rule).
  334. */
  335. static void wma_window(WMACodecContext *s, float *out)
  336. {
  337. float *in = s->output;
  338. int block_len, bsize, n;
  339. /* left part */
  340. if (s->block_len_bits <= s->prev_block_len_bits) {
  341. block_len = s->block_len;
  342. bsize = s->frame_len_bits - s->block_len_bits;
  343. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  344. out, block_len);
  345. } else {
  346. block_len = 1 << s->prev_block_len_bits;
  347. n = (s->block_len - block_len) / 2;
  348. bsize = s->frame_len_bits - s->prev_block_len_bits;
  349. s->fdsp.vector_fmul_add(out + n, in + n, s->windows[bsize],
  350. out + n, block_len);
  351. memcpy(out + n + block_len, in + n + block_len, n * sizeof(float));
  352. }
  353. out += s->block_len;
  354. in += s->block_len;
  355. /* right part */
  356. if (s->block_len_bits <= s->next_block_len_bits) {
  357. block_len = s->block_len;
  358. bsize = s->frame_len_bits - s->block_len_bits;
  359. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  360. } else {
  361. block_len = 1 << s->next_block_len_bits;
  362. n = (s->block_len - block_len) / 2;
  363. bsize = s->frame_len_bits - s->next_block_len_bits;
  364. memcpy(out, in, n * sizeof(float));
  365. s->fdsp.vector_fmul_reverse(out + n, in + n, s->windows[bsize],
  366. block_len);
  367. memset(out + n + block_len, 0, n * sizeof(float));
  368. }
  369. }
  370. /**
  371. * @return 0 if OK. 1 if last block of frame. return -1 if
  372. * unrecoverable error.
  373. */
  374. static int wma_decode_block(WMACodecContext *s)
  375. {
  376. int n, v, a, ch, bsize;
  377. int coef_nb_bits, total_gain;
  378. int nb_coefs[MAX_CHANNELS];
  379. float mdct_norm;
  380. FFTContext *mdct;
  381. #ifdef TRACE
  382. ff_tlog(s->avctx, "***decode_block: %d:%d\n",
  383. s->frame_count - 1, s->block_num);
  384. #endif /* TRACE */
  385. /* compute current block length */
  386. if (s->use_variable_block_len) {
  387. n = av_log2(s->nb_block_sizes - 1) + 1;
  388. if (s->reset_block_lengths) {
  389. s->reset_block_lengths = 0;
  390. v = get_bits(&s->gb, n);
  391. if (v >= s->nb_block_sizes) {
  392. av_log(s->avctx, AV_LOG_ERROR,
  393. "prev_block_len_bits %d out of range\n",
  394. s->frame_len_bits - v);
  395. return -1;
  396. }
  397. s->prev_block_len_bits = s->frame_len_bits - v;
  398. v = get_bits(&s->gb, n);
  399. if (v >= s->nb_block_sizes) {
  400. av_log(s->avctx, AV_LOG_ERROR,
  401. "block_len_bits %d out of range\n",
  402. s->frame_len_bits - v);
  403. return -1;
  404. }
  405. s->block_len_bits = s->frame_len_bits - v;
  406. } else {
  407. /* update block lengths */
  408. s->prev_block_len_bits = s->block_len_bits;
  409. s->block_len_bits = s->next_block_len_bits;
  410. }
  411. v = get_bits(&s->gb, n);
  412. if (v >= s->nb_block_sizes) {
  413. av_log(s->avctx, AV_LOG_ERROR,
  414. "next_block_len_bits %d out of range\n",
  415. s->frame_len_bits - v);
  416. return -1;
  417. }
  418. s->next_block_len_bits = s->frame_len_bits - v;
  419. } else {
  420. /* fixed block len */
  421. s->next_block_len_bits = s->frame_len_bits;
  422. s->prev_block_len_bits = s->frame_len_bits;
  423. s->block_len_bits = s->frame_len_bits;
  424. }
  425. /* now check if the block length is coherent with the frame length */
  426. s->block_len = 1 << s->block_len_bits;
  427. if ((s->block_pos + s->block_len) > s->frame_len) {
  428. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  429. return -1;
  430. }
  431. if (s->avctx->channels == 2)
  432. s->ms_stereo = get_bits1(&s->gb);
  433. v = 0;
  434. for (ch = 0; ch < s->avctx->channels; ch++) {
  435. a = get_bits1(&s->gb);
  436. s->channel_coded[ch] = a;
  437. v |= a;
  438. }
  439. bsize = s->frame_len_bits - s->block_len_bits;
  440. /* if no channel coded, no need to go further */
  441. /* XXX: fix potential framing problems */
  442. if (!v)
  443. goto next;
  444. /* read total gain and extract corresponding number of bits for
  445. * coef escape coding */
  446. total_gain = 1;
  447. for (;;) {
  448. a = get_bits(&s->gb, 7);
  449. total_gain += a;
  450. if (a != 127)
  451. break;
  452. }
  453. coef_nb_bits = ff_wma_total_gain_to_bits(total_gain);
  454. /* compute number of coefficients */
  455. n = s->coefs_end[bsize] - s->coefs_start;
  456. for (ch = 0; ch < s->avctx->channels; ch++)
  457. nb_coefs[ch] = n;
  458. /* complex coding */
  459. if (s->use_noise_coding) {
  460. for (ch = 0; ch < s->avctx->channels; ch++) {
  461. if (s->channel_coded[ch]) {
  462. int i, n, a;
  463. n = s->exponent_high_sizes[bsize];
  464. for (i = 0; i < n; i++) {
  465. a = get_bits1(&s->gb);
  466. s->high_band_coded[ch][i] = a;
  467. /* if noise coding, the coefficients are not transmitted */
  468. if (a)
  469. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  470. }
  471. }
  472. }
  473. for (ch = 0; ch < s->avctx->channels; ch++) {
  474. if (s->channel_coded[ch]) {
  475. int i, n, val, code;
  476. n = s->exponent_high_sizes[bsize];
  477. val = (int) 0x80000000;
  478. for (i = 0; i < n; i++) {
  479. if (s->high_band_coded[ch][i]) {
  480. if (val == (int) 0x80000000) {
  481. val = get_bits(&s->gb, 7) - 19;
  482. } else {
  483. code = get_vlc2(&s->gb, s->hgain_vlc.table,
  484. HGAINVLCBITS, HGAINMAX);
  485. if (code < 0) {
  486. av_log(s->avctx, AV_LOG_ERROR,
  487. "hgain vlc invalid\n");
  488. return -1;
  489. }
  490. val += code - 18;
  491. }
  492. s->high_band_values[ch][i] = val;
  493. }
  494. }
  495. }
  496. }
  497. }
  498. /* exponents can be reused in short blocks. */
  499. if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
  500. for (ch = 0; ch < s->avctx->channels; ch++) {
  501. if (s->channel_coded[ch]) {
  502. if (s->use_exp_vlc) {
  503. if (decode_exp_vlc(s, ch) < 0)
  504. return -1;
  505. } else {
  506. decode_exp_lsp(s, ch);
  507. }
  508. s->exponents_bsize[ch] = bsize;
  509. }
  510. }
  511. }
  512. /* parse spectral coefficients : just RLE encoding */
  513. for (ch = 0; ch < s->avctx->channels; ch++) {
  514. if (s->channel_coded[ch]) {
  515. int tindex;
  516. WMACoef *ptr = &s->coefs1[ch][0];
  517. /* special VLC tables are used for ms stereo because
  518. * there is potentially less energy there */
  519. tindex = (ch == 1 && s->ms_stereo);
  520. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  521. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  522. s->level_table[tindex], s->run_table[tindex],
  523. 0, ptr, 0, nb_coefs[ch],
  524. s->block_len, s->frame_len_bits, coef_nb_bits);
  525. }
  526. if (s->version == 1 && s->avctx->channels >= 2)
  527. align_get_bits(&s->gb);
  528. }
  529. /* normalize */
  530. {
  531. int n4 = s->block_len / 2;
  532. mdct_norm = 1.0 / (float) n4;
  533. if (s->version == 1)
  534. mdct_norm *= sqrt(n4);
  535. }
  536. /* finally compute the MDCT coefficients */
  537. for (ch = 0; ch < s->avctx->channels; ch++) {
  538. if (s->channel_coded[ch]) {
  539. WMACoef *coefs1;
  540. float *coefs, *exponents, mult, mult1, noise;
  541. int i, j, n, n1, last_high_band, esize;
  542. float exp_power[HIGH_BAND_MAX_SIZE];
  543. coefs1 = s->coefs1[ch];
  544. exponents = s->exponents[ch];
  545. esize = s->exponents_bsize[ch];
  546. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  547. mult *= mdct_norm;
  548. coefs = s->coefs[ch];
  549. if (s->use_noise_coding) {
  550. mult1 = mult;
  551. /* very low freqs : noise */
  552. for (i = 0; i < s->coefs_start; i++) {
  553. *coefs++ = s->noise_table[s->noise_index] *
  554. exponents[i << bsize >> esize] * mult1;
  555. s->noise_index = (s->noise_index + 1) &
  556. (NOISE_TAB_SIZE - 1);
  557. }
  558. n1 = s->exponent_high_sizes[bsize];
  559. /* compute power of high bands */
  560. exponents = s->exponents[ch] +
  561. (s->high_band_start[bsize] << bsize >> esize);
  562. last_high_band = 0; /* avoid warning */
  563. for (j = 0; j < n1; j++) {
  564. n = s->exponent_high_bands[s->frame_len_bits -
  565. s->block_len_bits][j];
  566. if (s->high_band_coded[ch][j]) {
  567. float e2, v;
  568. e2 = 0;
  569. for (i = 0; i < n; i++) {
  570. v = exponents[i << bsize >> esize];
  571. e2 += v * v;
  572. }
  573. exp_power[j] = e2 / n;
  574. last_high_band = j;
  575. ff_tlog(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  576. }
  577. exponents += n << bsize >> esize;
  578. }
  579. /* main freqs and high freqs */
  580. exponents = s->exponents[ch] + (s->coefs_start << bsize >> esize);
  581. for (j = -1; j < n1; j++) {
  582. if (j < 0)
  583. n = s->high_band_start[bsize] - s->coefs_start;
  584. else
  585. n = s->exponent_high_bands[s->frame_len_bits -
  586. s->block_len_bits][j];
  587. if (j >= 0 && s->high_band_coded[ch][j]) {
  588. /* use noise with specified power */
  589. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  590. /* XXX: use a table */
  591. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  592. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  593. mult1 *= mdct_norm;
  594. for (i = 0; i < n; i++) {
  595. noise = s->noise_table[s->noise_index];
  596. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  597. *coefs++ = noise * exponents[i << bsize >> esize] * mult1;
  598. }
  599. exponents += n << bsize >> esize;
  600. } else {
  601. /* coded values + small noise */
  602. for (i = 0; i < n; i++) {
  603. noise = s->noise_table[s->noise_index];
  604. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  605. *coefs++ = ((*coefs1++) + noise) *
  606. exponents[i << bsize >> esize] * mult;
  607. }
  608. exponents += n << bsize >> esize;
  609. }
  610. }
  611. /* very high freqs : noise */
  612. n = s->block_len - s->coefs_end[bsize];
  613. mult1 = mult * exponents[((-1 << bsize)) >> esize];
  614. for (i = 0; i < n; i++) {
  615. *coefs++ = s->noise_table[s->noise_index] * mult1;
  616. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  617. }
  618. } else {
  619. /* XXX: optimize more */
  620. for (i = 0; i < s->coefs_start; i++)
  621. *coefs++ = 0.0;
  622. n = nb_coefs[ch];
  623. for (i = 0; i < n; i++)
  624. *coefs++ = coefs1[i] * exponents[i << bsize >> esize] * mult;
  625. n = s->block_len - s->coefs_end[bsize];
  626. for (i = 0; i < n; i++)
  627. *coefs++ = 0.0;
  628. }
  629. }
  630. }
  631. #ifdef TRACE
  632. for (ch = 0; ch < s->avctx->channels; ch++) {
  633. if (s->channel_coded[ch]) {
  634. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  635. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  636. }
  637. }
  638. #endif /* TRACE */
  639. if (s->ms_stereo && s->channel_coded[1]) {
  640. /* nominal case for ms stereo: we do it before mdct */
  641. /* no need to optimize this case because it should almost
  642. * never happen */
  643. if (!s->channel_coded[0]) {
  644. ff_tlog(s->avctx, "rare ms-stereo case happened\n");
  645. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  646. s->channel_coded[0] = 1;
  647. }
  648. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  649. }
  650. next:
  651. mdct = &s->mdct_ctx[bsize];
  652. for (ch = 0; ch < s->avctx->channels; ch++) {
  653. int n4, index;
  654. n4 = s->block_len / 2;
  655. if (s->channel_coded[ch])
  656. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  657. else if (!(s->ms_stereo && ch == 1))
  658. memset(s->output, 0, sizeof(s->output));
  659. /* multiply by the window and add in the frame */
  660. index = (s->frame_len / 2) + s->block_pos - n4;
  661. wma_window(s, &s->frame_out[ch][index]);
  662. }
  663. /* update block number */
  664. s->block_num++;
  665. s->block_pos += s->block_len;
  666. if (s->block_pos >= s->frame_len)
  667. return 1;
  668. else
  669. return 0;
  670. }
  671. /* decode a frame of frame_len samples */
  672. static int wma_decode_frame(WMACodecContext *s, float **samples,
  673. int samples_offset)
  674. {
  675. int ret, ch;
  676. #ifdef TRACE
  677. ff_tlog(s->avctx, "***decode_frame: %d size=%d\n",
  678. s->frame_count++, s->frame_len);
  679. #endif /* TRACE */
  680. /* read each block */
  681. s->block_num = 0;
  682. s->block_pos = 0;
  683. for (;;) {
  684. ret = wma_decode_block(s);
  685. if (ret < 0)
  686. return -1;
  687. if (ret)
  688. break;
  689. }
  690. for (ch = 0; ch < s->avctx->channels; ch++) {
  691. /* copy current block to output */
  692. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  693. s->frame_len * sizeof(*s->frame_out[ch]));
  694. /* prepare for next block */
  695. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  696. s->frame_len * sizeof(*s->frame_out[ch]));
  697. #ifdef TRACE
  698. dump_floats(s, "samples", 6, samples[ch] + samples_offset,
  699. s->frame_len);
  700. #endif /* TRACE */
  701. }
  702. return 0;
  703. }
  704. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  705. int *got_frame_ptr, AVPacket *avpkt)
  706. {
  707. AVFrame *frame = data;
  708. const uint8_t *buf = avpkt->data;
  709. int buf_size = avpkt->size;
  710. WMACodecContext *s = avctx->priv_data;
  711. int nb_frames, bit_offset, i, pos, len, ret;
  712. uint8_t *q;
  713. float **samples;
  714. int samples_offset;
  715. ff_tlog(avctx, "***decode_superframe:\n");
  716. if (buf_size == 0) {
  717. s->last_superframe_len = 0;
  718. return 0;
  719. }
  720. if (buf_size < avctx->block_align) {
  721. av_log(avctx, AV_LOG_ERROR,
  722. "Input packet size too small (%d < %d)\n",
  723. buf_size, avctx->block_align);
  724. return AVERROR_INVALIDDATA;
  725. }
  726. buf_size = avctx->block_align;
  727. init_get_bits(&s->gb, buf, buf_size * 8);
  728. if (s->use_bit_reservoir) {
  729. /* read super frame header */
  730. skip_bits(&s->gb, 4); /* super frame index */
  731. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  732. } else
  733. nb_frames = 1;
  734. /* get output buffer */
  735. frame->nb_samples = nb_frames * s->frame_len;
  736. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  737. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  738. return ret;
  739. }
  740. samples = (float **) frame->extended_data;
  741. samples_offset = 0;
  742. if (s->use_bit_reservoir) {
  743. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  744. if (bit_offset > get_bits_left(&s->gb)) {
  745. av_log(avctx, AV_LOG_ERROR,
  746. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  747. bit_offset, get_bits_left(&s->gb), buf_size);
  748. goto fail;
  749. }
  750. if (s->last_superframe_len > 0) {
  751. /* add bit_offset bits to last frame */
  752. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  753. MAX_CODED_SUPERFRAME_SIZE)
  754. goto fail;
  755. q = s->last_superframe + s->last_superframe_len;
  756. len = bit_offset;
  757. while (len > 7) {
  758. *q++ = (get_bits) (&s->gb, 8);
  759. len -= 8;
  760. }
  761. if (len > 0)
  762. *q++ = (get_bits) (&s->gb, len) << (8 - len);
  763. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  764. /* XXX: bit_offset bits into last frame */
  765. init_get_bits(&s->gb, s->last_superframe,
  766. s->last_superframe_len * 8 + bit_offset);
  767. /* skip unused bits */
  768. if (s->last_bitoffset > 0)
  769. skip_bits(&s->gb, s->last_bitoffset);
  770. /* this frame is stored in the last superframe and in the
  771. * current one */
  772. if (wma_decode_frame(s, samples, samples_offset) < 0)
  773. goto fail;
  774. samples_offset += s->frame_len;
  775. nb_frames--;
  776. }
  777. /* read each frame starting from bit_offset */
  778. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  779. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  780. return AVERROR_INVALIDDATA;
  781. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3)) * 8);
  782. len = pos & 7;
  783. if (len > 0)
  784. skip_bits(&s->gb, len);
  785. s->reset_block_lengths = 1;
  786. for (i = 0; i < nb_frames; i++) {
  787. if (wma_decode_frame(s, samples, samples_offset) < 0)
  788. goto fail;
  789. samples_offset += s->frame_len;
  790. }
  791. /* we copy the end of the frame in the last frame buffer */
  792. pos = get_bits_count(&s->gb) +
  793. ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  794. s->last_bitoffset = pos & 7;
  795. pos >>= 3;
  796. len = buf_size - pos;
  797. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  798. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  799. goto fail;
  800. }
  801. s->last_superframe_len = len;
  802. memcpy(s->last_superframe, buf + pos, len);
  803. } else {
  804. /* single frame decode */
  805. if (wma_decode_frame(s, samples, samples_offset) < 0)
  806. goto fail;
  807. samples_offset += s->frame_len;
  808. }
  809. ff_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  810. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  811. (int8_t *) samples - (int8_t *) data, avctx->block_align);
  812. *got_frame_ptr = 1;
  813. return avctx->block_align;
  814. fail:
  815. /* when error, we reset the bit reservoir */
  816. s->last_superframe_len = 0;
  817. return -1;
  818. }
  819. static av_cold void flush(AVCodecContext *avctx)
  820. {
  821. WMACodecContext *s = avctx->priv_data;
  822. s->last_bitoffset =
  823. s->last_superframe_len = 0;
  824. }
  825. AVCodec ff_wmav1_decoder = {
  826. .name = "wmav1",
  827. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  828. .type = AVMEDIA_TYPE_AUDIO,
  829. .id = AV_CODEC_ID_WMAV1,
  830. .priv_data_size = sizeof(WMACodecContext),
  831. .init = wma_decode_init,
  832. .close = ff_wma_end,
  833. .decode = wma_decode_superframe,
  834. .flush = flush,
  835. .capabilities = AV_CODEC_CAP_DR1,
  836. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  837. AV_SAMPLE_FMT_NONE },
  838. };
  839. AVCodec ff_wmav2_decoder = {
  840. .name = "wmav2",
  841. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  842. .type = AVMEDIA_TYPE_AUDIO,
  843. .id = AV_CODEC_ID_WMAV2,
  844. .priv_data_size = sizeof(WMACodecContext),
  845. .init = wma_decode_init,
  846. .close = ff_wma_end,
  847. .decode = wma_decode_superframe,
  848. .flush = flush,
  849. .capabilities = AV_CODEC_CAP_DR1,
  850. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  851. AV_SAMPLE_FMT_NONE },
  852. };