|
- /*
- * Real Audio 1.0 (14.4K) encoder
- * Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * Real Audio 1.0 (14.4K) encoder
- * @author Francesco Lavra <francescolavra@interfree.it>
- */
-
- #include <float.h>
-
- #include "avcodec.h"
- #include "audio_frame_queue.h"
- #include "celp_filters.h"
- #include "internal.h"
- #include "mathops.h"
- #include "put_bits.h"
- #include "ra144.h"
-
-
- static av_cold int ra144_encode_close(AVCodecContext *avctx)
- {
- RA144Context *ractx = avctx->priv_data;
- ff_lpc_end(&ractx->lpc_ctx);
- ff_af_queue_close(&ractx->afq);
- return 0;
- }
-
-
- static av_cold int ra144_encode_init(AVCodecContext * avctx)
- {
- RA144Context *ractx;
- int ret;
-
- if (avctx->channels != 1) {
- av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
- avctx->channels);
- return -1;
- }
- avctx->frame_size = NBLOCKS * BLOCKSIZE;
- avctx->initial_padding = avctx->frame_size;
- avctx->bit_rate = 8000;
- ractx = avctx->priv_data;
- ractx->lpc_coef[0] = ractx->lpc_tables[0];
- ractx->lpc_coef[1] = ractx->lpc_tables[1];
- ractx->avctx = avctx;
- ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
- FF_LPC_TYPE_LEVINSON);
- if (ret < 0)
- goto error;
-
- ff_af_queue_init(avctx, &ractx->afq);
-
- return 0;
- error:
- ra144_encode_close(avctx);
- return ret;
- }
-
-
- /**
- * Quantize a value by searching a sorted table for the element with the
- * nearest value
- *
- * @param value value to quantize
- * @param table array containing the quantization table
- * @param size size of the quantization table
- * @return index of the quantization table corresponding to the element with the
- * nearest value
- */
- static int quantize(int value, const int16_t *table, unsigned int size)
- {
- unsigned int low = 0, high = size - 1;
-
- while (1) {
- int index = (low + high) >> 1;
- int error = table[index] - value;
-
- if (index == low)
- return table[high] + error > value ? low : high;
- if (error > 0) {
- high = index;
- } else {
- low = index;
- }
- }
- }
-
-
- /**
- * Orthogonalize a vector to another vector
- *
- * @param v vector to orthogonalize
- * @param u vector against which orthogonalization is performed
- */
- static void orthogonalize(float *v, const float *u)
- {
- int i;
- float num = 0, den = 0;
-
- for (i = 0; i < BLOCKSIZE; i++) {
- num += v[i] * u[i];
- den += u[i] * u[i];
- }
- num /= den;
- for (i = 0; i < BLOCKSIZE; i++)
- v[i] -= num * u[i];
- }
-
-
- /**
- * Calculate match score and gain of an LPC-filtered vector with respect to
- * input data, possibly orthogonalizing it to up to two other vectors.
- *
- * @param work array used to calculate the filtered vector
- * @param coefs coefficients of the LPC filter
- * @param vect original vector
- * @param ortho1 first vector against which orthogonalization is performed
- * @param ortho2 second vector against which orthogonalization is performed
- * @param data input data
- * @param score pointer to variable where match score is returned
- * @param gain pointer to variable where gain is returned
- */
- static void get_match_score(float *work, const float *coefs, float *vect,
- const float *ortho1, const float *ortho2,
- const float *data, float *score, float *gain)
- {
- float c, g;
- int i;
-
- ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
- if (ortho1)
- orthogonalize(work, ortho1);
- if (ortho2)
- orthogonalize(work, ortho2);
- c = g = 0;
- for (i = 0; i < BLOCKSIZE; i++) {
- g += work[i] * work[i];
- c += data[i] * work[i];
- }
- if (c <= 0) {
- *score = 0;
- return;
- }
- *gain = c / g;
- *score = *gain * c;
- }
-
-
- /**
- * Create a vector from the adaptive codebook at a given lag value
- *
- * @param vect array where vector is stored
- * @param cb adaptive codebook
- * @param lag lag value
- */
- static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
- {
- int i;
-
- cb += BUFFERSIZE - lag;
- for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
- vect[i] = cb[i];
- if (lag < BLOCKSIZE)
- for (i = 0; i < BLOCKSIZE - lag; i++)
- vect[lag + i] = cb[i];
- }
-
-
- /**
- * Search the adaptive codebook for the best entry and gain and remove its
- * contribution from input data
- *
- * @param adapt_cb array from which the adaptive codebook is extracted
- * @param work array used to calculate LPC-filtered vectors
- * @param coefs coefficients of the LPC filter
- * @param data input data
- * @return index of the best entry of the adaptive codebook
- */
- static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
- const float *coefs, float *data)
- {
- int i, best_vect;
- float score, gain, best_score, best_gain;
- float exc[BLOCKSIZE];
-
- gain = best_score = 0;
- for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
- create_adapt_vect(exc, adapt_cb, i);
- get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
- if (score > best_score) {
- best_score = score;
- best_vect = i;
- best_gain = gain;
- }
- }
- if (!best_score)
- return 0;
-
- /**
- * Re-calculate the filtered vector from the vector with maximum match score
- * and remove its contribution from input data.
- */
- create_adapt_vect(exc, adapt_cb, best_vect);
- ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
- for (i = 0; i < BLOCKSIZE; i++)
- data[i] -= best_gain * work[i];
- return best_vect - BLOCKSIZE / 2 + 1;
- }
-
-
- /**
- * Find the best vector of a fixed codebook by applying an LPC filter to
- * codebook entries, possibly orthogonalizing them to up to two other vectors
- * and matching the results with input data.
- *
- * @param work array used to calculate the filtered vectors
- * @param coefs coefficients of the LPC filter
- * @param cb fixed codebook
- * @param ortho1 first vector against which orthogonalization is performed
- * @param ortho2 second vector against which orthogonalization is performed
- * @param data input data
- * @param idx pointer to variable where the index of the best codebook entry is
- * returned
- * @param gain pointer to variable where the gain of the best codebook entry is
- * returned
- */
- static void find_best_vect(float *work, const float *coefs,
- const int8_t cb[][BLOCKSIZE], const float *ortho1,
- const float *ortho2, float *data, int *idx,
- float *gain)
- {
- int i, j;
- float g, score, best_score;
- float vect[BLOCKSIZE];
-
- *idx = *gain = best_score = 0;
- for (i = 0; i < FIXED_CB_SIZE; i++) {
- for (j = 0; j < BLOCKSIZE; j++)
- vect[j] = cb[i][j];
- get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
- if (score > best_score) {
- best_score = score;
- *idx = i;
- *gain = g;
- }
- }
- }
-
-
- /**
- * Search the two fixed codebooks for the best entry and gain
- *
- * @param work array used to calculate LPC-filtered vectors
- * @param coefs coefficients of the LPC filter
- * @param data input data
- * @param cba_idx index of the best entry of the adaptive codebook
- * @param cb1_idx pointer to variable where the index of the best entry of the
- * first fixed codebook is returned
- * @param cb2_idx pointer to variable where the index of the best entry of the
- * second fixed codebook is returned
- */
- static void fixed_cb_search(float *work, const float *coefs, float *data,
- int cba_idx, int *cb1_idx, int *cb2_idx)
- {
- int i, ortho_cb1;
- float gain;
- float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
- float vect[BLOCKSIZE];
-
- /**
- * The filtered vector from the adaptive codebook can be retrieved from
- * work, because this function is called just after adaptive_cb_search().
- */
- if (cba_idx)
- memcpy(cba_vect, work, sizeof(cba_vect));
-
- find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
- data, cb1_idx, &gain);
-
- /**
- * Re-calculate the filtered vector from the vector with maximum match score
- * and remove its contribution from input data.
- */
- if (gain) {
- for (i = 0; i < BLOCKSIZE; i++)
- vect[i] = ff_cb1_vects[*cb1_idx][i];
- ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
- if (cba_idx)
- orthogonalize(work, cba_vect);
- for (i = 0; i < BLOCKSIZE; i++)
- data[i] -= gain * work[i];
- memcpy(cb1_vect, work, sizeof(cb1_vect));
- ortho_cb1 = 1;
- } else
- ortho_cb1 = 0;
-
- find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
- ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
- }
-
-
- /**
- * Encode a subblock of the current frame
- *
- * @param ractx encoder context
- * @param sblock_data input data of the subblock
- * @param lpc_coefs coefficients of the LPC filter
- * @param rms RMS of the reflection coefficients
- * @param pb pointer to PutBitContext of the current frame
- */
- static void ra144_encode_subblock(RA144Context *ractx,
- const int16_t *sblock_data,
- const int16_t *lpc_coefs, unsigned int rms,
- PutBitContext *pb)
- {
- float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE];
- float coefs[LPC_ORDER];
- float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
- int16_t cba_vect[BLOCKSIZE];
- int cba_idx, cb1_idx, cb2_idx, gain;
- int i, n, m[3];
- float g[3];
- float error, best_error;
-
- for (i = 0; i < LPC_ORDER; i++) {
- work[i] = ractx->curr_sblock[BLOCKSIZE + i];
- coefs[i] = lpc_coefs[i] * (1/4096.0);
- }
-
- /**
- * Calculate the zero-input response of the LPC filter and subtract it from
- * input data.
- */
- ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
- LPC_ORDER);
- for (i = 0; i < BLOCKSIZE; i++) {
- zero[i] = work[LPC_ORDER + i];
- data[i] = sblock_data[i] - zero[i];
- }
-
- /**
- * Codebook search is performed without taking into account the contribution
- * of the previous subblock, since it has been just subtracted from input
- * data.
- */
- memset(work, 0, LPC_ORDER * sizeof(*work));
-
- cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
- data);
- if (cba_idx) {
- /**
- * The filtered vector from the adaptive codebook can be retrieved from
- * work, see implementation of adaptive_cb_search().
- */
- memcpy(cba, work + LPC_ORDER, sizeof(cba));
-
- ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
- m[0] = (ff_irms(cba_vect) * rms) >> 12;
- }
- fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
- for (i = 0; i < BLOCKSIZE; i++) {
- cb1[i] = ff_cb1_vects[cb1_idx][i];
- cb2[i] = ff_cb2_vects[cb2_idx][i];
- }
- ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
- LPC_ORDER);
- memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
- m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
- ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
- LPC_ORDER);
- memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
- m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
- best_error = FLT_MAX;
- gain = 0;
- for (n = 0; n < 256; n++) {
- g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
- (1/4096.0);
- g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
- (1/4096.0);
- error = 0;
- if (cba_idx) {
- g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
- (1/4096.0);
- for (i = 0; i < BLOCKSIZE; i++) {
- data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
- g[2] * cb2[i];
- error += (data[i] - sblock_data[i]) *
- (data[i] - sblock_data[i]);
- }
- } else {
- for (i = 0; i < BLOCKSIZE; i++) {
- data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
- error += (data[i] - sblock_data[i]) *
- (data[i] - sblock_data[i]);
- }
- }
- if (error < best_error) {
- best_error = error;
- gain = n;
- }
- }
- put_bits(pb, 7, cba_idx);
- put_bits(pb, 8, gain);
- put_bits(pb, 7, cb1_idx);
- put_bits(pb, 7, cb2_idx);
- ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
- gain);
- }
-
-
- static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
- const AVFrame *frame, int *got_packet_ptr)
- {
- static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
- static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
- RA144Context *ractx = avctx->priv_data;
- PutBitContext pb;
- int32_t lpc_data[NBLOCKS * BLOCKSIZE];
- int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
- int shift[LPC_ORDER];
- int16_t block_coefs[NBLOCKS][LPC_ORDER];
- int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */
- unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
- const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL;
- int energy = 0;
- int i, idx, ret;
-
- if (ractx->last_frame)
- return 0;
-
- if ((ret = ff_alloc_packet(avpkt, FRAMESIZE))) {
- av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
- return ret;
- }
-
- /**
- * Since the LPC coefficients are calculated on a frame centered over the
- * fourth subframe, to encode a given frame, data from the next frame is
- * needed. In each call to this function, the previous frame (whose data are
- * saved in the encoder context) is encoded, and data from the current frame
- * are saved in the encoder context to be used in the next function call.
- */
- for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
- lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
- energy += (lpc_data[i] * lpc_data[i]) >> 4;
- }
- if (frame) {
- int j;
- for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) {
- lpc_data[i] = samples[j] >> 2;
- energy += (lpc_data[i] * lpc_data[i]) >> 4;
- }
- }
- if (i < NBLOCKS * BLOCKSIZE)
- memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
- energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
- 32)];
-
- ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
- LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
- 0, ORDER_METHOD_EST, 12, 0);
- for (i = 0; i < LPC_ORDER; i++)
- block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] <<
- (12 - shift[LPC_ORDER - 1]));
-
- /**
- * TODO: apply perceptual weighting of the input speech through bandwidth
- * expansion of the LPC filter.
- */
-
- if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
- /**
- * The filter is unstable: use the coefficients of the previous frame.
- */
- ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
- if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
- /* the filter is still unstable. set reflection coeffs to zero. */
- memset(lpc_refl, 0, sizeof(lpc_refl));
- }
- }
- init_put_bits(&pb, avpkt->data, avpkt->size);
- for (i = 0; i < LPC_ORDER; i++) {
- idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
- put_bits(&pb, bit_sizes[i], idx);
- lpc_refl[i] = ff_lpc_refl_cb[i][idx];
- }
- ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
- ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
- refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
- refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
- energy <= ractx->old_energy,
- ff_t_sqrt(energy * ractx->old_energy) >> 12);
- refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
- refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
- ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
- put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
- for (i = 0; i < NBLOCKS; i++)
- ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
- block_coefs[i], refl_rms[i], &pb);
- flush_put_bits(&pb);
- ractx->old_energy = energy;
- ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
- FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
-
- /* copy input samples to current block for processing in next call */
- i = 0;
- if (frame) {
- for (; i < frame->nb_samples; i++)
- ractx->curr_block[i] = samples[i] >> 2;
-
- if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0)
- return ret;
- } else
- ractx->last_frame = 1;
- memset(&ractx->curr_block[i], 0,
- (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
-
- /* Get the next frame pts/duration */
- ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts,
- &avpkt->duration);
-
- avpkt->size = FRAMESIZE;
- *got_packet_ptr = 1;
- return 0;
- }
-
-
- AVCodec ff_ra_144_encoder = {
- .name = "real_144",
- .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
- .type = AVMEDIA_TYPE_AUDIO,
- .id = AV_CODEC_ID_RA_144,
- .priv_data_size = sizeof(RA144Context),
- .init = ra144_encode_init,
- .encode2 = ra144_encode_frame,
- .close = ra144_encode_close,
- .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SMALL_LAST_FRAME,
- .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
- AV_SAMPLE_FMT_NONE },
- };
|