You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1024 lines
42KB

  1. /*
  2. * On2 Audio for Video Codec decoder
  3. *
  4. * Copyright (c) 2013 Konstantin Shishkov
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/channel_layout.h"
  23. #include "libavutil/float_dsp.h"
  24. #include "avcodec.h"
  25. #include "bytestream.h"
  26. #include "fft.h"
  27. #include "get_bits.h"
  28. #include "internal.h"
  29. #include "on2avcdata.h"
  30. #define ON2AVC_SUBFRAME_SIZE 1024
  31. enum WindowTypes {
  32. WINDOW_TYPE_LONG = 0,
  33. WINDOW_TYPE_LONG_STOP,
  34. WINDOW_TYPE_LONG_START,
  35. WINDOW_TYPE_8SHORT = 3,
  36. WINDOW_TYPE_EXT4,
  37. WINDOW_TYPE_EXT5,
  38. WINDOW_TYPE_EXT6,
  39. WINDOW_TYPE_EXT7,
  40. };
  41. typedef struct On2AVCContext {
  42. AVCodecContext *avctx;
  43. AVFloatDSPContext fdsp;
  44. FFTContext mdct, mdct_half, mdct_small;
  45. FFTContext fft128, fft256, fft512, fft1024;
  46. void (*wtf)(struct On2AVCContext *ctx, float *out, float *in, int size);
  47. int is_av500;
  48. const On2AVCMode *modes;
  49. int window_type, prev_window_type;
  50. int num_windows, num_bands;
  51. int bits_per_section;
  52. const int *band_start;
  53. int grouping[8];
  54. int ms_present;
  55. int ms_info[ON2AVC_MAX_BANDS];
  56. int is_long;
  57. uint8_t band_type[ON2AVC_MAX_BANDS];
  58. uint8_t band_run_end[ON2AVC_MAX_BANDS];
  59. int num_sections;
  60. float band_scales[ON2AVC_MAX_BANDS];
  61. VLC scale_diff;
  62. VLC cb_vlc[16];
  63. float scale_tab[128];
  64. DECLARE_ALIGNED(32, float, coeffs)[2][ON2AVC_SUBFRAME_SIZE];
  65. DECLARE_ALIGNED(32, float, delay) [2][ON2AVC_SUBFRAME_SIZE];
  66. DECLARE_ALIGNED(32, float, temp) [ON2AVC_SUBFRAME_SIZE * 2];
  67. DECLARE_ALIGNED(32, float, mdct_buf) [ON2AVC_SUBFRAME_SIZE];
  68. DECLARE_ALIGNED(32, float, long_win) [ON2AVC_SUBFRAME_SIZE];
  69. DECLARE_ALIGNED(32, float, short_win)[ON2AVC_SUBFRAME_SIZE / 8];
  70. } On2AVCContext;
  71. static void on2avc_read_ms_info(On2AVCContext *c, GetBitContext *gb)
  72. {
  73. int w, b, band_off = 0;
  74. c->ms_present = get_bits1(gb);
  75. if (!c->ms_present)
  76. return;
  77. for (w = 0; w < c->num_windows; w++) {
  78. if (!c->grouping[w]) {
  79. memcpy(c->ms_info + band_off,
  80. c->ms_info + band_off - c->num_bands,
  81. c->num_bands * sizeof(*c->ms_info));
  82. band_off += c->num_bands;
  83. continue;
  84. }
  85. for (b = 0; b < c->num_bands; b++)
  86. c->ms_info[band_off++] = get_bits1(gb);
  87. }
  88. }
  89. // do not see Table 17 in ISO/IEC 13818-7
  90. static int on2avc_decode_band_types(On2AVCContext *c, GetBitContext *gb)
  91. {
  92. int bits_per_sect = c->is_long ? 5 : 3;
  93. int esc_val = (1 << bits_per_sect) - 1;
  94. int num_bands = c->num_bands * c->num_windows;
  95. int band = 0, i, band_type, run_len, run;
  96. while (band < num_bands) {
  97. band_type = get_bits(gb, 4);
  98. run_len = 1;
  99. do {
  100. run = get_bits(gb, bits_per_sect);
  101. run_len += run;
  102. } while (run == esc_val);
  103. if (band + run_len > num_bands) {
  104. av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n");
  105. return AVERROR_INVALIDDATA;
  106. }
  107. for (i = band; i < band + run_len; i++) {
  108. c->band_type[i] = band_type;
  109. c->band_run_end[i] = band + run_len;
  110. }
  111. band += run_len;
  112. }
  113. return 0;
  114. }
  115. // completely not like Table 18 in ISO/IEC 13818-7
  116. // (no intensity stereo, different coding for the first coefficient)
  117. static int on2avc_decode_band_scales(On2AVCContext *c, GetBitContext *gb)
  118. {
  119. int w, w2, b, scale, first = 1;
  120. int band_off = 0;
  121. for (w = 0; w < c->num_windows; w++) {
  122. if (!c->grouping[w]) {
  123. memcpy(c->band_scales + band_off,
  124. c->band_scales + band_off - c->num_bands,
  125. c->num_bands * sizeof(*c->band_scales));
  126. band_off += c->num_bands;
  127. continue;
  128. }
  129. for (b = 0; b < c->num_bands; b++) {
  130. if (!c->band_type[band_off]) {
  131. int all_zero = 1;
  132. for (w2 = w + 1; w2 < c->num_windows; w2++) {
  133. if (c->grouping[w2])
  134. break;
  135. if (c->band_type[w2 * c->num_bands + b]) {
  136. all_zero = 0;
  137. break;
  138. }
  139. }
  140. if (all_zero) {
  141. c->band_scales[band_off++] = 0;
  142. continue;
  143. }
  144. }
  145. if (first) {
  146. scale = get_bits(gb, 7);
  147. first = 0;
  148. } else {
  149. scale += get_vlc2(gb, c->scale_diff.table, 9, 3) - 60;
  150. }
  151. if (scale < 0 || scale > 127) {
  152. av_log(c->avctx, AV_LOG_ERROR, "Invalid scale value %d\n",
  153. scale);
  154. return AVERROR_INVALIDDATA;
  155. }
  156. c->band_scales[band_off++] = c->scale_tab[scale];
  157. }
  158. }
  159. return 0;
  160. }
  161. static inline float on2avc_scale(int v, float scale)
  162. {
  163. return v * sqrtf(abs(v)) * scale;
  164. }
  165. // spectral data is coded completely differently - there are no unsigned codebooks
  166. static int on2avc_decode_quads(On2AVCContext *c, GetBitContext *gb, float *dst,
  167. int dst_size, int type, float band_scale)
  168. {
  169. int i, j, val, val1;
  170. for (i = 0; i < dst_size; i += 4) {
  171. val = get_vlc2(gb, c->cb_vlc[type].table, 9, 3);
  172. for (j = 0; j < 4; j++) {
  173. val1 = sign_extend((val >> (12 - j * 4)) & 0xF, 4);
  174. *dst++ = on2avc_scale(val1, band_scale);
  175. }
  176. }
  177. return 0;
  178. }
  179. static inline int get_egolomb(GetBitContext *gb)
  180. {
  181. int v = 4;
  182. while (get_bits1(gb)) {
  183. v++;
  184. if (v > 30) {
  185. av_log(NULL, AV_LOG_WARNING, "Too large golomb code in get_egolomb.\n");
  186. v = 30;
  187. break;
  188. }
  189. }
  190. return (1 << v) + get_bits_long(gb, v);
  191. }
  192. static int on2avc_decode_pairs(On2AVCContext *c, GetBitContext *gb, float *dst,
  193. int dst_size, int type, float band_scale)
  194. {
  195. int i, val, val1, val2, sign;
  196. for (i = 0; i < dst_size; i += 2) {
  197. val = get_vlc2(gb, c->cb_vlc[type].table, 9, 3);
  198. val1 = sign_extend(val >> 8, 8);
  199. val2 = sign_extend(val & 0xFF, 8);
  200. if (type == ON2AVC_ESC_CB) {
  201. if (val1 <= -16 || val1 >= 16) {
  202. sign = 1 - (val1 < 0) * 2;
  203. val1 = sign * get_egolomb(gb);
  204. }
  205. if (val2 <= -16 || val2 >= 16) {
  206. sign = 1 - (val2 < 0) * 2;
  207. val2 = sign * get_egolomb(gb);
  208. }
  209. }
  210. *dst++ = on2avc_scale(val1, band_scale);
  211. *dst++ = on2avc_scale(val2, band_scale);
  212. }
  213. return 0;
  214. }
  215. static int on2avc_read_channel_data(On2AVCContext *c, GetBitContext *gb, int ch)
  216. {
  217. int ret;
  218. int w, b, band_idx;
  219. float *coeff_ptr;
  220. if ((ret = on2avc_decode_band_types(c, gb)) < 0)
  221. return ret;
  222. if ((ret = on2avc_decode_band_scales(c, gb)) < 0)
  223. return ret;
  224. coeff_ptr = c->coeffs[ch];
  225. band_idx = 0;
  226. memset(coeff_ptr, 0, ON2AVC_SUBFRAME_SIZE * sizeof(*coeff_ptr));
  227. for (w = 0; w < c->num_windows; w++) {
  228. for (b = 0; b < c->num_bands; b++) {
  229. int band_size = c->band_start[b + 1] - c->band_start[b];
  230. int band_type = c->band_type[band_idx + b];
  231. if (!band_type) {
  232. coeff_ptr += band_size;
  233. continue;
  234. }
  235. if (band_type < 9)
  236. on2avc_decode_quads(c, gb, coeff_ptr, band_size, band_type,
  237. c->band_scales[band_idx + b]);
  238. else
  239. on2avc_decode_pairs(c, gb, coeff_ptr, band_size, band_type,
  240. c->band_scales[band_idx + b]);
  241. coeff_ptr += band_size;
  242. }
  243. band_idx += c->num_bands;
  244. }
  245. return 0;
  246. }
  247. static int on2avc_apply_ms(On2AVCContext *c)
  248. {
  249. int w, b, i;
  250. int band_off = 0;
  251. float *ch0 = c->coeffs[0];
  252. float *ch1 = c->coeffs[1];
  253. for (w = 0; w < c->num_windows; w++) {
  254. for (b = 0; b < c->num_bands; b++) {
  255. if (c->ms_info[band_off + b]) {
  256. for (i = c->band_start[b]; i < c->band_start[b + 1]; i++) {
  257. float l = *ch0, r = *ch1;
  258. *ch0++ = l + r;
  259. *ch1++ = l - r;
  260. }
  261. } else {
  262. ch0 += c->band_start[b + 1] - c->band_start[b];
  263. ch1 += c->band_start[b + 1] - c->band_start[b];
  264. }
  265. }
  266. band_off += c->num_bands;
  267. }
  268. return 0;
  269. }
  270. static void zero_head_and_tail(float *src, int len, int order0, int order1)
  271. {
  272. memset(src, 0, sizeof(*src) * order0);
  273. memset(src + len - order1, 0, sizeof(*src) * order1);
  274. }
  275. static void pretwiddle(float *src, float *dst, int dst_len, int tab_step,
  276. int step, int order0, int order1, const double **tabs)
  277. {
  278. float *src2, *out;
  279. const double *tab;
  280. int i, j;
  281. out = dst;
  282. tab = tabs[0];
  283. for (i = 0; i < tab_step; i++) {
  284. double sum = 0;
  285. for (j = 0; j < order0; j++)
  286. sum += src[j] * tab[j * tab_step + i];
  287. out[i] += sum;
  288. }
  289. out = dst + dst_len - tab_step;
  290. tab = tabs[order0];
  291. src2 = src + (dst_len - tab_step) / step + 1 + order0;
  292. for (i = 0; i < tab_step; i++) {
  293. double sum = 0;
  294. for (j = 0; j < order1; j++)
  295. sum += src2[j] * tab[j * tab_step + i];
  296. out[i] += sum;
  297. }
  298. }
  299. static void twiddle(float *src1, float *src2, int src2_len,
  300. const double *tab, int tab_len, int step,
  301. int order0, int order1, const double **tabs)
  302. {
  303. int steps;
  304. int mask;
  305. int i, j;
  306. steps = (src2_len - tab_len) / step + 1;
  307. pretwiddle(src1, src2, src2_len, tab_len, step, order0, order1, tabs);
  308. mask = tab_len - 1;
  309. for (i = 0; i < steps; i++) {
  310. float in0 = src1[order0 + i];
  311. int pos = (src2_len - 1) & mask;
  312. if (pos < tab_len) {
  313. const double *t = tab;
  314. for (j = pos; j >= 0; j--)
  315. src2[j] += in0 * *t++;
  316. for (j = 0; j < tab_len - pos - 1; j++)
  317. src2[src2_len - j - 1] += in0 * tab[pos + 1 + j];
  318. } else {
  319. for (j = 0; j < tab_len; j++)
  320. src2[pos - j] += in0 * tab[j];
  321. }
  322. mask = pos + step;
  323. }
  324. }
  325. #define CMUL1_R(s, t, is, it) \
  326. s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1]
  327. #define CMUL1_I(s, t, is, it) \
  328. s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0]
  329. #define CMUL2_R(s, t, is, it) \
  330. s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1]
  331. #define CMUL2_I(s, t, is, it) \
  332. s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0]
  333. #define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
  334. dst[id] = s0[is] * t0[it] + s1[is] * t1[it] \
  335. + s2[is] * t2[it] + s3[is] * t3[it]; \
  336. dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1] \
  337. + s2[is] * t2[it + 1] + s3[is] * t3[it + 1];
  338. #define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
  339. *dst++ = CMUL1_R(s0, t0, is, it) \
  340. + CMUL1_R(s1, t1, is, it) \
  341. + CMUL1_R(s2, t2, is, it) \
  342. + CMUL1_R(s3, t3, is, it); \
  343. *dst++ = CMUL1_I(s0, t0, is, it) \
  344. + CMUL1_I(s1, t1, is, it) \
  345. + CMUL1_I(s2, t2, is, it) \
  346. + CMUL1_I(s3, t3, is, it);
  347. #define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
  348. *dst++ = CMUL2_R(s0, t0, is, it) \
  349. + CMUL2_R(s1, t1, is, it) \
  350. + CMUL2_R(s2, t2, is, it) \
  351. + CMUL2_R(s3, t3, is, it); \
  352. *dst++ = CMUL2_I(s0, t0, is, it) \
  353. + CMUL2_I(s1, t1, is, it) \
  354. + CMUL2_I(s2, t2, is, it) \
  355. + CMUL2_I(s3, t3, is, it);
  356. static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst,
  357. const float *t0, const float *t1,
  358. const float *t2, const float *t3, int len, int step)
  359. {
  360. const float *h0, *h1, *h2, *h3;
  361. float *d1, *d2;
  362. int tmp, half;
  363. int len2 = len >> 1, len4 = len >> 2;
  364. int hoff;
  365. int i, j, k;
  366. tmp = step;
  367. for (half = len2; tmp > 1; half <<= 1, tmp >>= 1);
  368. h0 = t0 + half;
  369. h1 = t1 + half;
  370. h2 = t2 + half;
  371. h3 = t3 + half;
  372. CMUL0(dst, 0, s0, s1, s2, s3, t0, t1, t2, t3, 0, 0);
  373. hoff = 2 * step * (len4 >> 1);
  374. j = 2;
  375. k = 2 * step;
  376. d1 = dst + 2;
  377. d2 = dst + 2 + (len >> 1);
  378. for (i = 0; i < (len4 - 1) >> 1; i++) {
  379. CMUL1(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
  380. CMUL1(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
  381. j += 2;
  382. k += 2 * step;
  383. }
  384. CMUL0(dst, len4, s0, s1, s2, s3, t0, t1, t2, t3, 1, hoff);
  385. CMUL0(dst, len4 + len2, s0, s1, s2, s3, h0, h1, h2, h3, 1, hoff);
  386. j = len4;
  387. k = hoff + 2 * step * len4;
  388. d1 = dst + len4 + 2;
  389. d2 = dst + len4 + 2 + len2;
  390. for (i = 0; i < (len4 - 2) >> 1; i++) {
  391. CMUL2(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
  392. CMUL2(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
  393. j -= 2;
  394. k += 2 * step;
  395. }
  396. CMUL0(dst, len2 + 4, s0, s1, s2, s3, t0, t1, t2, t3, 0, k);
  397. }
  398. static void wtf_end_512(On2AVCContext *c, float *out, float *src,
  399. float *tmp0, float *tmp1)
  400. {
  401. memcpy(src, tmp0, 384 * sizeof(*tmp0));
  402. memcpy(tmp0 + 384, src + 384, 128 * sizeof(*tmp0));
  403. zero_head_and_tail(src, 128, 16, 4);
  404. zero_head_and_tail(src + 128, 128, 16, 4);
  405. zero_head_and_tail(src + 256, 128, 13, 7);
  406. zero_head_and_tail(src + 384, 128, 15, 5);
  407. c->fft128.fft_permute(&c->fft128, (FFTComplex*)src);
  408. c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 128));
  409. c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 256));
  410. c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 384));
  411. c->fft128.fft_calc(&c->fft128, (FFTComplex*)src);
  412. c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 128));
  413. c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 256));
  414. c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 384));
  415. combine_fft(src, src + 128, src + 256, src + 384, tmp1,
  416. ff_on2avc_ctab_1, ff_on2avc_ctab_2,
  417. ff_on2avc_ctab_3, ff_on2avc_ctab_4, 512, 2);
  418. c->fft512.fft_permute(&c->fft512, (FFTComplex*)tmp1);
  419. c->fft512.fft_calc(&c->fft512, (FFTComplex*)tmp1);
  420. pretwiddle(&tmp0[ 0], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  421. pretwiddle(&tmp0[128], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  422. pretwiddle(&tmp0[256], tmp1, 512, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  423. pretwiddle(&tmp0[384], tmp1, 512, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  424. memcpy(src, tmp1, 512 * sizeof(float));
  425. }
  426. static void wtf_end_1024(On2AVCContext *c, float *out, float *src,
  427. float *tmp0, float *tmp1)
  428. {
  429. memcpy(src, tmp0, 768 * sizeof(*tmp0));
  430. memcpy(tmp0 + 768, src + 768, 256 * sizeof(*tmp0));
  431. zero_head_and_tail(src, 256, 16, 4);
  432. zero_head_and_tail(src + 256, 256, 16, 4);
  433. zero_head_and_tail(src + 512, 256, 13, 7);
  434. zero_head_and_tail(src + 768, 256, 15, 5);
  435. c->fft256.fft_permute(&c->fft256, (FFTComplex*)src);
  436. c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 256));
  437. c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 512));
  438. c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 768));
  439. c->fft256.fft_calc(&c->fft256, (FFTComplex*)src);
  440. c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 256));
  441. c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 512));
  442. c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 768));
  443. combine_fft(src, src + 256, src + 512, src + 768, tmp1,
  444. ff_on2avc_ctab_1, ff_on2avc_ctab_2,
  445. ff_on2avc_ctab_3, ff_on2avc_ctab_4, 1024, 1);
  446. c->fft1024.fft_permute(&c->fft1024, (FFTComplex*)tmp1);
  447. c->fft1024.fft_calc(&c->fft1024, (FFTComplex*)tmp1);
  448. pretwiddle(&tmp0[ 0], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  449. pretwiddle(&tmp0[256], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  450. pretwiddle(&tmp0[512], tmp1, 1024, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  451. pretwiddle(&tmp0[768], tmp1, 1024, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  452. memcpy(src, tmp1, 1024 * sizeof(float));
  453. }
  454. static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
  455. {
  456. float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
  457. memset(tmp0, 0, sizeof(*tmp0) * 1024);
  458. memset(tmp1, 0, sizeof(*tmp1) * 1024);
  459. if (size == 512) {
  460. twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  461. twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  462. twiddle(src + 16, &tmp0[ 16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  463. twiddle(src + 24, &tmp0[ 16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  464. twiddle(src + 32, &tmp0[ 32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  465. twiddle(src + 40, &tmp0[ 32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  466. twiddle(src + 48, &tmp0[ 48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  467. twiddle(src + 56, &tmp0[ 48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  468. twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  469. twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  470. twiddle(&tmp0[32], &tmp1[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  471. twiddle(&tmp0[48], &tmp1[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  472. twiddle(src + 64, &tmp1[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  473. twiddle(src + 80, &tmp1[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  474. twiddle(src + 96, &tmp1[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  475. twiddle(src + 112, &tmp1[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  476. twiddle(src + 128, &tmp1[128], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  477. twiddle(src + 144, &tmp1[128], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  478. twiddle(src + 160, &tmp1[160], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  479. twiddle(src + 176, &tmp1[160], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  480. memset(tmp0, 0, 64 * sizeof(*tmp0));
  481. twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  482. twiddle(&tmp1[ 32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  483. twiddle(&tmp1[ 64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  484. twiddle(&tmp1[ 96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  485. twiddle(&tmp1[128], &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  486. twiddle(&tmp1[160], &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  487. twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  488. twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  489. twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  490. twiddle(src + 288, &tmp0[256], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  491. twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  492. twiddle(src + 352, &tmp0[256], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  493. wtf_end_512(c, out, src, tmp0, tmp1);
  494. } else {
  495. twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  496. twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  497. twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  498. twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  499. twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  500. twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  501. twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  502. twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  503. twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  504. twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  505. twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  506. twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  507. twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  508. twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  509. twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  510. twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  511. twiddle(src + 256, &tmp1[256], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  512. twiddle(src + 288, &tmp1[256], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  513. twiddle(src + 320, &tmp1[320], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  514. twiddle(src + 352, &tmp1[320], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  515. memset(tmp0, 0, 128 * sizeof(*tmp0));
  516. twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  517. twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  518. twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  519. twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  520. twiddle(&tmp1[256], &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  521. twiddle(&tmp1[320], &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  522. twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  523. twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  524. twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  525. twiddle(src + 576, &tmp0[512], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  526. twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  527. twiddle(src + 704, &tmp0[512], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  528. wtf_end_1024(c, out, src, tmp0, tmp1);
  529. }
  530. }
  531. static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
  532. {
  533. float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
  534. memset(tmp0, 0, sizeof(*tmp0) * 1024);
  535. memset(tmp1, 0, sizeof(*tmp1) * 1024);
  536. if (size == 512) {
  537. twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  538. twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  539. twiddle(src + 16, &tmp0[16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  540. twiddle(src + 24, &tmp0[16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  541. twiddle(src + 32, &tmp0[32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  542. twiddle(src + 40, &tmp0[32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  543. twiddle(src + 48, &tmp0[48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  544. twiddle(src + 56, &tmp0[48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  545. twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  546. twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  547. twiddle(&tmp0[32], &tmp1[32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  548. twiddle(&tmp0[48], &tmp1[32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  549. twiddle(src + 64, &tmp1[64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  550. twiddle(src + 80, &tmp1[64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  551. twiddle(src + 96, &tmp1[96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  552. twiddle(src + 112, &tmp1[96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  553. memset(tmp0, 0, 64 * sizeof(*tmp0));
  554. twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  555. twiddle(&tmp1[32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  556. twiddle(&tmp1[64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  557. twiddle(&tmp1[96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  558. twiddle(src + 128, &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  559. twiddle(src + 160, &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  560. twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  561. twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  562. twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  563. twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  564. wtf_end_512(c, out, src, tmp0, tmp1);
  565. } else {
  566. twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  567. twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  568. twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  569. twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  570. twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  571. twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  572. twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  573. twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  574. twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  575. twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  576. twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  577. twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  578. twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  579. twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  580. twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  581. twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  582. memset(tmp0, 0, 128 * sizeof(*tmp0));
  583. twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  584. twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  585. twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  586. twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  587. twiddle(src + 256, &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  588. twiddle(src + 320, &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  589. twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  590. twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  591. twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  592. twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  593. wtf_end_1024(c, out, src, tmp0, tmp1);
  594. }
  595. }
  596. static int on2avc_reconstruct_stereo(On2AVCContext *c, AVFrame *dst, int offset)
  597. {
  598. int ch, i;
  599. for (ch = 0; ch < 2; ch++) {
  600. float *out = (float*)dst->extended_data[ch] + offset;
  601. float *in = c->coeffs[ch];
  602. float *saved = c->delay[ch];
  603. float *buf = c->mdct_buf;
  604. float *wout = out + 448;
  605. switch (c->window_type) {
  606. case WINDOW_TYPE_EXT7:
  607. c->mdct.imdct_half(&c->mdct, buf, in);
  608. break;
  609. case WINDOW_TYPE_EXT4:
  610. c->wtf(c, buf, in, 1024);
  611. break;
  612. case WINDOW_TYPE_EXT5:
  613. c->wtf(c, buf, in, 512);
  614. c->mdct.imdct_half(&c->mdct_half, buf + 512, in + 512);
  615. for (i = 0; i < 256; i++) {
  616. FFSWAP(float, buf[i + 512], buf[1023 - i]);
  617. }
  618. break;
  619. case WINDOW_TYPE_EXT6:
  620. c->mdct.imdct_half(&c->mdct_half, buf, in);
  621. for (i = 0; i < 256; i++) {
  622. FFSWAP(float, buf[i], buf[511 - i]);
  623. }
  624. c->wtf(c, buf + 512, in + 512, 512);
  625. break;
  626. }
  627. memcpy(out, saved, 448 * sizeof(float));
  628. c->fdsp.vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
  629. memcpy(wout + 128, buf + 64, 448 * sizeof(float));
  630. memcpy(saved, buf + 512, 448 * sizeof(float));
  631. memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  632. }
  633. return 0;
  634. }
  635. // not borrowed from aacdec.c - the codec has original design after all
  636. static int on2avc_reconstruct_channel(On2AVCContext *c, int channel,
  637. AVFrame *dst, int offset)
  638. {
  639. int i;
  640. float *out = (float*)dst->extended_data[channel] + offset;
  641. float *in = c->coeffs[channel];
  642. float *saved = c->delay[channel];
  643. float *buf = c->mdct_buf;
  644. float *temp = c->temp;
  645. switch (c->window_type) {
  646. case WINDOW_TYPE_LONG_START:
  647. case WINDOW_TYPE_LONG_STOP:
  648. case WINDOW_TYPE_LONG:
  649. c->mdct.imdct_half(&c->mdct, buf, in);
  650. break;
  651. case WINDOW_TYPE_8SHORT:
  652. for (i = 0; i < ON2AVC_SUBFRAME_SIZE; i += ON2AVC_SUBFRAME_SIZE / 8)
  653. c->mdct_small.imdct_half(&c->mdct_small, buf + i, in + i);
  654. break;
  655. }
  656. if ((c->prev_window_type == WINDOW_TYPE_LONG ||
  657. c->prev_window_type == WINDOW_TYPE_LONG_STOP) &&
  658. (c->window_type == WINDOW_TYPE_LONG ||
  659. c->window_type == WINDOW_TYPE_LONG_START)) {
  660. c->fdsp.vector_fmul_window(out, saved, buf, c->long_win, 512);
  661. } else {
  662. float *wout = out + 448;
  663. memcpy(out, saved, 448 * sizeof(float));
  664. if (c->window_type == WINDOW_TYPE_8SHORT) {
  665. c->fdsp.vector_fmul_window(wout + 0*128, saved + 448, buf + 0*128, c->short_win, 64);
  666. c->fdsp.vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128, c->short_win, 64);
  667. c->fdsp.vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128, c->short_win, 64);
  668. c->fdsp.vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128, c->short_win, 64);
  669. c->fdsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, c->short_win, 64);
  670. memcpy(wout + 4*128, temp, 64 * sizeof(float));
  671. } else {
  672. c->fdsp.vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
  673. memcpy(wout + 128, buf + 64, 448 * sizeof(float));
  674. }
  675. }
  676. // buffer update
  677. switch (c->window_type) {
  678. case WINDOW_TYPE_8SHORT:
  679. memcpy(saved, temp + 64, 64 * sizeof(float));
  680. c->fdsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, c->short_win, 64);
  681. c->fdsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, c->short_win, 64);
  682. c->fdsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, c->short_win, 64);
  683. memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  684. break;
  685. case WINDOW_TYPE_LONG_START:
  686. memcpy(saved, buf + 512, 448 * sizeof(float));
  687. memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  688. break;
  689. case WINDOW_TYPE_LONG_STOP:
  690. case WINDOW_TYPE_LONG:
  691. memcpy(saved, buf + 512, 512 * sizeof(float));
  692. break;
  693. }
  694. return 0;
  695. }
  696. static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf,
  697. int buf_size, AVFrame *dst, int offset)
  698. {
  699. GetBitContext gb;
  700. int i, ret;
  701. init_get_bits(&gb, buf, buf_size * 8);
  702. if (get_bits1(&gb)) {
  703. av_log(c->avctx, AV_LOG_ERROR, "enh bit set\n");
  704. return AVERROR_INVALIDDATA;
  705. }
  706. c->prev_window_type = c->window_type;
  707. c->window_type = get_bits(&gb, 3);
  708. if (c->window_type >= WINDOW_TYPE_EXT4 && c->avctx->channels == 1) {
  709. av_log(c->avctx, AV_LOG_ERROR, "stereo mode window for mono audio\n");
  710. return AVERROR_INVALIDDATA;
  711. }
  712. c->band_start = c->modes[c->window_type].band_start;
  713. c->num_windows = c->modes[c->window_type].num_windows;
  714. c->num_bands = c->modes[c->window_type].num_bands;
  715. c->is_long = (c->window_type != WINDOW_TYPE_8SHORT);
  716. c->grouping[0] = 1;
  717. for (i = 1; i < c->num_windows; i++)
  718. c->grouping[i] = !get_bits1(&gb);
  719. on2avc_read_ms_info(c, &gb);
  720. for (i = 0; i < c->avctx->channels; i++)
  721. if ((ret = on2avc_read_channel_data(c, &gb, i)) < 0)
  722. return AVERROR_INVALIDDATA;
  723. if (c->avctx->channels == 2 && c->ms_present)
  724. on2avc_apply_ms(c);
  725. if (c->window_type < WINDOW_TYPE_EXT4) {
  726. for (i = 0; i < c->avctx->channels; i++)
  727. on2avc_reconstruct_channel(c, i, dst, offset);
  728. } else {
  729. on2avc_reconstruct_stereo(c, dst, offset);
  730. }
  731. return 0;
  732. }
  733. static int on2avc_decode_frame(AVCodecContext * avctx, void *data,
  734. int *got_frame_ptr, AVPacket *avpkt)
  735. {
  736. AVFrame *frame = data;
  737. const uint8_t *buf = avpkt->data;
  738. int buf_size = avpkt->size;
  739. On2AVCContext *c = avctx->priv_data;
  740. GetByteContext gb;
  741. int num_frames = 0, frame_size, audio_off;
  742. int ret;
  743. if (c->is_av500) {
  744. /* get output buffer */
  745. frame->nb_samples = ON2AVC_SUBFRAME_SIZE;
  746. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  747. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  748. return ret;
  749. }
  750. if ((ret = on2avc_decode_subframe(c, buf, buf_size, frame, 0)) < 0)
  751. return ret;
  752. } else {
  753. bytestream2_init(&gb, buf, buf_size);
  754. while (bytestream2_get_bytes_left(&gb) > 2) {
  755. frame_size = bytestream2_get_le16(&gb);
  756. if (!frame_size || frame_size > bytestream2_get_bytes_left(&gb)) {
  757. av_log(avctx, AV_LOG_ERROR, "Invalid subframe size %d\n",
  758. frame_size);
  759. return AVERROR_INVALIDDATA;
  760. }
  761. num_frames++;
  762. bytestream2_skip(&gb, frame_size);
  763. }
  764. if (!num_frames) {
  765. av_log(avctx, AV_LOG_ERROR, "No subframes present\n");
  766. return AVERROR_INVALIDDATA;
  767. }
  768. /* get output buffer */
  769. frame->nb_samples = ON2AVC_SUBFRAME_SIZE * num_frames;
  770. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  771. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  772. return ret;
  773. }
  774. audio_off = 0;
  775. bytestream2_init(&gb, buf, buf_size);
  776. while (bytestream2_get_bytes_left(&gb) > 2) {
  777. frame_size = bytestream2_get_le16(&gb);
  778. if ((ret = on2avc_decode_subframe(c, gb.buffer, frame_size,
  779. frame, audio_off)) < 0)
  780. return ret;
  781. audio_off += ON2AVC_SUBFRAME_SIZE;
  782. bytestream2_skip(&gb, frame_size);
  783. }
  784. }
  785. *got_frame_ptr = 1;
  786. return buf_size;
  787. }
  788. static av_cold void on2avc_free_vlcs(On2AVCContext *c)
  789. {
  790. int i;
  791. ff_free_vlc(&c->scale_diff);
  792. for (i = 1; i < 16; i++)
  793. ff_free_vlc(&c->cb_vlc[i]);
  794. }
  795. static av_cold int on2avc_decode_init(AVCodecContext *avctx)
  796. {
  797. On2AVCContext *c = avctx->priv_data;
  798. int i;
  799. c->avctx = avctx;
  800. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  801. avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO
  802. : AV_CH_LAYOUT_MONO;
  803. c->is_av500 = (avctx->codec_tag == 0x500);
  804. if (c->is_av500 && avctx->channels == 2) {
  805. av_log(avctx, AV_LOG_ERROR, "0x500 version should be mono\n");
  806. return AVERROR_INVALIDDATA;
  807. }
  808. if (avctx->channels > 2) {
  809. av_log(avctx, AV_LOG_ERROR, "Only 1 or 2 channels are supported.\n");
  810. return AVERROR(EINVAL);
  811. }
  812. if (avctx->channels == 2)
  813. av_log(avctx, AV_LOG_WARNING,
  814. "Stereo mode support is not good, patch is welcome\n");
  815. for (i = 0; i < 20; i++)
  816. c->scale_tab[i] = ceil(pow(10.0, i * 0.1) * 16) / 32;
  817. for (; i < 128; i++)
  818. c->scale_tab[i] = ceil(pow(10.0, i * 0.1) * 0.5);
  819. if (avctx->sample_rate < 32000 || avctx->channels == 1)
  820. memcpy(c->long_win, ff_on2avc_window_long_24000,
  821. 1024 * sizeof(*c->long_win));
  822. else
  823. memcpy(c->long_win, ff_on2avc_window_long_32000,
  824. 1024 * sizeof(*c->long_win));
  825. memcpy(c->short_win, ff_on2avc_window_short, 128 * sizeof(*c->short_win));
  826. c->modes = (avctx->sample_rate <= 40000) ? ff_on2avc_modes_40
  827. : ff_on2avc_modes_44;
  828. c->wtf = (avctx->sample_rate <= 40000) ? wtf_40
  829. : wtf_44;
  830. ff_mdct_init(&c->mdct, 11, 1, 1.0 / (32768.0 * 1024.0));
  831. ff_mdct_init(&c->mdct_half, 10, 1, 1.0 / (32768.0 * 512.0));
  832. ff_mdct_init(&c->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0));
  833. ff_fft_init(&c->fft128, 6, 0);
  834. ff_fft_init(&c->fft256, 7, 0);
  835. ff_fft_init(&c->fft512, 8, 1);
  836. ff_fft_init(&c->fft1024, 9, 1);
  837. avpriv_float_dsp_init(&c->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
  838. if (init_vlc(&c->scale_diff, 9, ON2AVC_SCALE_DIFFS,
  839. ff_on2avc_scale_diff_bits, 1, 1,
  840. ff_on2avc_scale_diff_codes, 4, 4, 0)) {
  841. av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
  842. return AVERROR(ENOMEM);
  843. }
  844. for (i = 1; i < 9; i++) {
  845. int idx = i - 1;
  846. if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_quad_cb_elems[idx],
  847. ff_on2avc_quad_cb_bits[idx], 1, 1,
  848. ff_on2avc_quad_cb_codes[idx], 4, 4,
  849. ff_on2avc_quad_cb_syms[idx], 2, 2, 0)) {
  850. av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
  851. on2avc_free_vlcs(c);
  852. return AVERROR(ENOMEM);
  853. }
  854. }
  855. for (i = 9; i < 16; i++) {
  856. int idx = i - 9;
  857. if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_pair_cb_elems[idx],
  858. ff_on2avc_pair_cb_bits[idx], 1, 1,
  859. ff_on2avc_pair_cb_codes[idx], 2, 2,
  860. ff_on2avc_pair_cb_syms[idx], 2, 2, 0)) {
  861. av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
  862. on2avc_free_vlcs(c);
  863. return AVERROR(ENOMEM);
  864. }
  865. }
  866. return 0;
  867. }
  868. static av_cold int on2avc_decode_close(AVCodecContext *avctx)
  869. {
  870. On2AVCContext *c = avctx->priv_data;
  871. ff_mdct_end(&c->mdct);
  872. ff_mdct_end(&c->mdct_half);
  873. ff_mdct_end(&c->mdct_small);
  874. ff_fft_end(&c->fft128);
  875. ff_fft_end(&c->fft256);
  876. ff_fft_end(&c->fft512);
  877. ff_fft_end(&c->fft1024);
  878. on2avc_free_vlcs(c);
  879. return 0;
  880. }
  881. AVCodec ff_on2avc_decoder = {
  882. .name = "on2avc",
  883. .long_name = NULL_IF_CONFIG_SMALL("On2 Audio for Video Codec"),
  884. .type = AVMEDIA_TYPE_AUDIO,
  885. .id = AV_CODEC_ID_ON2AVC,
  886. .priv_data_size = sizeof(On2AVCContext),
  887. .init = on2avc_decode_init,
  888. .decode = on2avc_decode_frame,
  889. .close = on2avc_decode_close,
  890. .capabilities = AV_CODEC_CAP_DR1,
  891. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  892. AV_SAMPLE_FMT_NONE },
  893. };