|
- /*
- * MDCT/IMDCT transforms
- * Copyright (c) 2002 Fabrice Bellard
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include <stdlib.h>
- #include <string.h>
- #include "libavutil/common.h"
- #include "libavutil/mathematics.h"
- #include "fft.h"
- #include "fft-internal.h"
-
- /**
- * @file
- * MDCT/IMDCT transforms.
- */
-
- #if FFT_FLOAT
- # define RSCALE(x) (x)
- #else
- # define RSCALE(x) ((x) >> 1)
- #endif
-
- /**
- * init MDCT or IMDCT computation.
- */
- av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
- {
- int n, n4, i;
- double alpha, theta;
- int tstep;
-
- memset(s, 0, sizeof(*s));
- n = 1 << nbits;
- s->mdct_bits = nbits;
- s->mdct_size = n;
- n4 = n >> 2;
- s->mdct_permutation = FF_MDCT_PERM_NONE;
-
- if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
- goto fail;
-
- s->imdct_calc = ff_imdct_calc_c;
- s->imdct_half = ff_imdct_half_c;
- s->mdct_calc = ff_mdct_calc_c;
-
- #if FFT_FLOAT
- if (ARCH_AARCH64)
- ff_mdct_init_aarch64(s);
- if (ARCH_ARM)
- ff_mdct_init_arm(s);
- if (ARCH_PPC)
- ff_mdct_init_ppc(s);
- if (ARCH_X86)
- ff_mdct_init_x86(s);
- s->mdct_calcw = s->mdct_calc;
- #else
- s->mdct_calcw = ff_mdct_calcw_c;
- if (ARCH_ARM)
- ff_mdct_fixed_init_arm(s);
- #endif
-
- s->tcos = av_malloc(n/2 * sizeof(FFTSample));
- if (!s->tcos)
- goto fail;
-
- switch (s->mdct_permutation) {
- case FF_MDCT_PERM_NONE:
- s->tsin = s->tcos + n4;
- tstep = 1;
- break;
- case FF_MDCT_PERM_INTERLEAVE:
- s->tsin = s->tcos + 1;
- tstep = 2;
- break;
- default:
- goto fail;
- }
-
- theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
- scale = sqrt(fabs(scale));
- for(i=0;i<n4;i++) {
- alpha = 2 * M_PI * (i + theta) / n;
- s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
- s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
- }
- return 0;
- fail:
- ff_mdct_end(s);
- return -1;
- }
-
- /**
- * Compute the middle half of the inverse MDCT of size N = 2^nbits,
- * thus excluding the parts that can be derived by symmetry
- * @param output N/2 samples
- * @param input N/2 samples
- */
- void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
- {
- int k, n8, n4, n2, n, j;
- const uint16_t *revtab = s->revtab;
- const FFTSample *tcos = s->tcos;
- const FFTSample *tsin = s->tsin;
- const FFTSample *in1, *in2;
- FFTComplex *z = (FFTComplex *)output;
-
- n = 1 << s->mdct_bits;
- n2 = n >> 1;
- n4 = n >> 2;
- n8 = n >> 3;
-
- /* pre rotation */
- in1 = input;
- in2 = input + n2 - 1;
- for(k = 0; k < n4; k++) {
- j=revtab[k];
- CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
- in1 += 2;
- in2 -= 2;
- }
- s->fft_calc(s, z);
-
- /* post rotation + reordering */
- for(k = 0; k < n8; k++) {
- FFTSample r0, i0, r1, i1;
- CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
- CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
- z[n8-k-1].re = r0;
- z[n8-k-1].im = i0;
- z[n8+k ].re = r1;
- z[n8+k ].im = i1;
- }
- }
-
- /**
- * Compute inverse MDCT of size N = 2^nbits
- * @param output N samples
- * @param input N/2 samples
- */
- void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
- {
- int k;
- int n = 1 << s->mdct_bits;
- int n2 = n >> 1;
- int n4 = n >> 2;
-
- ff_imdct_half_c(s, output+n4, input);
-
- for(k = 0; k < n4; k++) {
- output[k] = -output[n2-k-1];
- output[n-k-1] = output[n2+k];
- }
- }
-
- /**
- * Compute MDCT of size N = 2^nbits
- * @param input N samples
- * @param out N/2 samples
- */
- void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
- {
- int i, j, n, n8, n4, n2, n3;
- FFTDouble re, im;
- const uint16_t *revtab = s->revtab;
- const FFTSample *tcos = s->tcos;
- const FFTSample *tsin = s->tsin;
- FFTComplex *x = (FFTComplex *)out;
-
- n = 1 << s->mdct_bits;
- n2 = n >> 1;
- n4 = n >> 2;
- n8 = n >> 3;
- n3 = 3 * n4;
-
- /* pre rotation */
- for(i=0;i<n8;i++) {
- re = RSCALE(-input[2*i+n3] - input[n3-1-2*i]);
- im = RSCALE(-input[n4+2*i] + input[n4-1-2*i]);
- j = revtab[i];
- CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
-
- re = RSCALE( input[2*i] - input[n2-1-2*i]);
- im = RSCALE(-input[n2+2*i] - input[ n-1-2*i]);
- j = revtab[n8 + i];
- CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
- }
-
- s->fft_calc(s, x);
-
- /* post rotation */
- for(i=0;i<n8;i++) {
- FFTSample r0, i0, r1, i1;
- CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
- CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
- x[n8-i-1].re = r0;
- x[n8-i-1].im = i0;
- x[n8+i ].re = r1;
- x[n8+i ].im = i1;
- }
- }
-
- av_cold void ff_mdct_end(FFTContext *s)
- {
- av_freep(&s->tcos);
- ff_fft_end(s);
- }
|