You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

228 lines
6.6KB

  1. /*
  2. * LSP routines for ACELP-based codecs
  3. *
  4. * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5. * Copyright (c) 2008 Vladimir Voroshilov
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <inttypes.h>
  24. #include "avcodec.h"
  25. #define FRAC_BITS 14
  26. #include "mathops.h"
  27. #include "lsp.h"
  28. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  29. {
  30. int i, j;
  31. /* sort lsfq in ascending order. float bubble algorithm,
  32. O(n) if data already sorted, O(n^2) - otherwise */
  33. for(i=0; i<lp_order-1; i++)
  34. for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  35. FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  36. for(i=0; i<lp_order; i++)
  37. {
  38. lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  39. lsfq_min = lsfq[i] + lsfq_min_distance;
  40. }
  41. lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  42. }
  43. void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
  44. {
  45. int i;
  46. float prev = 0.0;
  47. for (i = 0; i < size; i++)
  48. prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
  49. }
  50. /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
  51. static const int16_t tab_cos[65] =
  52. {
  53. 32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860,
  54. 30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285,
  55. 23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014,
  56. 12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609,
  57. 1, -1607, -3211, -4808, -6393, -7962, -9513, -11040,
  58. -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
  59. -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
  60. -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
  61. };
  62. static int16_t ff_cos(uint16_t arg)
  63. {
  64. uint8_t offset= arg;
  65. uint8_t ind = arg >> 8;
  66. assert(arg <= 0x3fff);
  67. return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
  68. }
  69. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  70. {
  71. int i;
  72. /* Convert LSF to LSP, lsp=cos(lsf) */
  73. for(i=0; i<lp_order; i++)
  74. // 20861 = 2.0 / PI in (0.15)
  75. lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  76. }
  77. void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
  78. {
  79. int i;
  80. for(i = 0; i < lp_order; i++)
  81. lsp[i] = cos(2.0 * M_PI * lsf[i]);
  82. }
  83. /**
  84. * @brief decodes polynomial coefficients from LSP
  85. * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  86. * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  87. */
  88. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  89. {
  90. int i, j;
  91. f[0] = 0x400000; // 1.0 in (3.22)
  92. f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
  93. for(i=2; i<=lp_half_order; i++)
  94. {
  95. f[i] = f[i-2];
  96. for(j=i; j>1; j--)
  97. f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  98. f[1] -= lsp[2*i-2] << 8;
  99. }
  100. }
  101. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  102. {
  103. int i;
  104. int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
  105. int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
  106. lsp2poly(f1, lsp , lp_half_order);
  107. lsp2poly(f2, lsp+1, lp_half_order);
  108. /* 3.2.6 of G.729, Equations 25 and 26*/
  109. lp[0] = 4096;
  110. for(i=1; i<lp_half_order+1; i++)
  111. {
  112. int ff1 = f1[i] + f1[i-1]; // (3.22)
  113. int ff2 = f2[i] - f2[i-1]; // (3.22)
  114. ff1 += 1 << 10; // for rounding
  115. lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  116. lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  117. }
  118. }
  119. void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
  120. {
  121. int lp_half_order = lp_order >> 1;
  122. double buf[MAX_LP_HALF_ORDER + 1];
  123. double pa[MAX_LP_HALF_ORDER + 1];
  124. double *qa = buf + 1;
  125. int i,j;
  126. qa[-1] = 0.0;
  127. ff_lsp2polyf(lsp , pa, lp_half_order );
  128. ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
  129. for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
  130. double paf = pa[i] * (1 + lsp[lp_order - 1]);
  131. double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
  132. lp[i-1] = (paf + qaf) * 0.5;
  133. lp[j-1] = (paf - qaf) * 0.5;
  134. }
  135. lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
  136. pa[lp_half_order] * 0.5;
  137. lp[lp_order - 1] = lsp[lp_order - 1];
  138. }
  139. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  140. {
  141. int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
  142. int i;
  143. /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  144. for(i=0; i<lp_order; i++)
  145. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  146. ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  147. /* LSP values for second subframe (3.2.5 of G.729)*/
  148. ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  149. }
  150. void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
  151. {
  152. int i, j;
  153. f[0] = 1.0;
  154. f[1] = -2 * lsp[0];
  155. lsp -= 2;
  156. for(i=2; i<=lp_half_order; i++)
  157. {
  158. double val = -2 * lsp[2*i];
  159. f[i] = val * f[i-1] + 2*f[i-2];
  160. for(j=i-1; j>1; j--)
  161. f[j] += f[j-1] * val + f[j-2];
  162. f[1] += val;
  163. }
  164. }
  165. void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
  166. {
  167. double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
  168. float *lpc2 = lpc + (lp_half_order << 1) - 1;
  169. assert(lp_half_order <= MAX_LP_HALF_ORDER);
  170. ff_lsp2polyf(lsp, pa, lp_half_order);
  171. ff_lsp2polyf(lsp + 1, qa, lp_half_order);
  172. while (lp_half_order--) {
  173. double paf = pa[lp_half_order+1] + pa[lp_half_order];
  174. double qaf = qa[lp_half_order+1] - qa[lp_half_order];
  175. lpc [ lp_half_order] = 0.5*(paf+qaf);
  176. lpc2[-lp_half_order] = 0.5*(paf-qaf);
  177. }
  178. }
  179. void ff_sort_nearly_sorted_floats(float *vals, int len)
  180. {
  181. int i,j;
  182. for (i = 0; i < len - 1; i++)
  183. for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
  184. FFSWAP(float, vals[j], vals[j+1]);
  185. }