You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3063 lines
116KB

  1. /*
  2. * HEVC video decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/md5.h"
  30. #include "libavutil/opt.h"
  31. #include "libavutil/pixdesc.h"
  32. #include "libavutil/stereo3d.h"
  33. #include "bswapdsp.h"
  34. #include "bytestream.h"
  35. #include "cabac_functions.h"
  36. #include "golomb.h"
  37. #include "hevc.h"
  38. #include "profiles.h"
  39. const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 3 };
  40. const uint8_t ff_hevc_qpel_extra_after[4] = { 0, 4, 4, 4 };
  41. const uint8_t ff_hevc_qpel_extra[4] = { 0, 7, 7, 7 };
  42. static const uint8_t scan_1x1[1] = { 0 };
  43. static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
  44. static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
  45. static const uint8_t horiz_scan4x4_x[16] = {
  46. 0, 1, 2, 3,
  47. 0, 1, 2, 3,
  48. 0, 1, 2, 3,
  49. 0, 1, 2, 3,
  50. };
  51. static const uint8_t horiz_scan4x4_y[16] = {
  52. 0, 0, 0, 0,
  53. 1, 1, 1, 1,
  54. 2, 2, 2, 2,
  55. 3, 3, 3, 3,
  56. };
  57. static const uint8_t horiz_scan8x8_inv[8][8] = {
  58. { 0, 1, 2, 3, 16, 17, 18, 19, },
  59. { 4, 5, 6, 7, 20, 21, 22, 23, },
  60. { 8, 9, 10, 11, 24, 25, 26, 27, },
  61. { 12, 13, 14, 15, 28, 29, 30, 31, },
  62. { 32, 33, 34, 35, 48, 49, 50, 51, },
  63. { 36, 37, 38, 39, 52, 53, 54, 55, },
  64. { 40, 41, 42, 43, 56, 57, 58, 59, },
  65. { 44, 45, 46, 47, 60, 61, 62, 63, },
  66. };
  67. static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
  68. static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
  69. static const uint8_t diag_scan2x2_inv[2][2] = {
  70. { 0, 2, },
  71. { 1, 3, },
  72. };
  73. static const uint8_t diag_scan4x4_inv[4][4] = {
  74. { 0, 2, 5, 9, },
  75. { 1, 4, 8, 12, },
  76. { 3, 7, 11, 14, },
  77. { 6, 10, 13, 15, },
  78. };
  79. static const uint8_t diag_scan8x8_inv[8][8] = {
  80. { 0, 2, 5, 9, 14, 20, 27, 35, },
  81. { 1, 4, 8, 13, 19, 26, 34, 42, },
  82. { 3, 7, 12, 18, 25, 33, 41, 48, },
  83. { 6, 11, 17, 24, 32, 40, 47, 53, },
  84. { 10, 16, 23, 31, 39, 46, 52, 57, },
  85. { 15, 22, 30, 38, 45, 51, 56, 60, },
  86. { 21, 29, 37, 44, 50, 55, 59, 62, },
  87. { 28, 36, 43, 49, 54, 58, 61, 63, },
  88. };
  89. /**
  90. * NOTE: Each function hls_foo correspond to the function foo in the
  91. * specification (HLS stands for High Level Syntax).
  92. */
  93. /**
  94. * Section 5.7
  95. */
  96. /* free everything allocated by pic_arrays_init() */
  97. static void pic_arrays_free(HEVCContext *s)
  98. {
  99. av_freep(&s->sao);
  100. av_freep(&s->deblock);
  101. av_freep(&s->skip_flag);
  102. av_freep(&s->tab_ct_depth);
  103. av_freep(&s->tab_ipm);
  104. av_freep(&s->cbf_luma);
  105. av_freep(&s->is_pcm);
  106. av_freep(&s->qp_y_tab);
  107. av_freep(&s->tab_slice_address);
  108. av_freep(&s->filter_slice_edges);
  109. av_freep(&s->horizontal_bs);
  110. av_freep(&s->vertical_bs);
  111. av_buffer_pool_uninit(&s->tab_mvf_pool);
  112. av_buffer_pool_uninit(&s->rpl_tab_pool);
  113. }
  114. /* allocate arrays that depend on frame dimensions */
  115. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  116. {
  117. int log2_min_cb_size = sps->log2_min_cb_size;
  118. int width = sps->width;
  119. int height = sps->height;
  120. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  121. ((height >> log2_min_cb_size) + 1);
  122. int ctb_count = sps->ctb_width * sps->ctb_height;
  123. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  124. s->bs_width = width >> 3;
  125. s->bs_height = height >> 3;
  126. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  127. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  128. if (!s->sao || !s->deblock)
  129. goto fail;
  130. s->skip_flag = av_malloc(pic_size_in_ctb);
  131. s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
  132. if (!s->skip_flag || !s->tab_ct_depth)
  133. goto fail;
  134. s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
  135. s->tab_ipm = av_mallocz(min_pu_size);
  136. s->is_pcm = av_malloc(min_pu_size);
  137. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  138. goto fail;
  139. s->filter_slice_edges = av_malloc(ctb_count);
  140. s->tab_slice_address = av_malloc(pic_size_in_ctb *
  141. sizeof(*s->tab_slice_address));
  142. s->qp_y_tab = av_malloc(pic_size_in_ctb *
  143. sizeof(*s->qp_y_tab));
  144. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  145. goto fail;
  146. s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
  147. s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
  148. if (!s->horizontal_bs || !s->vertical_bs)
  149. goto fail;
  150. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  151. av_buffer_alloc);
  152. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  153. av_buffer_allocz);
  154. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  155. goto fail;
  156. return 0;
  157. fail:
  158. pic_arrays_free(s);
  159. return AVERROR(ENOMEM);
  160. }
  161. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  162. {
  163. int i = 0;
  164. int j = 0;
  165. uint8_t luma_weight_l0_flag[16];
  166. uint8_t chroma_weight_l0_flag[16];
  167. uint8_t luma_weight_l1_flag[16];
  168. uint8_t chroma_weight_l1_flag[16];
  169. s->sh.luma_log2_weight_denom = av_clip(get_ue_golomb_long(gb), 0, 7);
  170. if (s->ps.sps->chroma_format_idc != 0) {
  171. int delta = get_se_golomb(gb);
  172. s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
  173. }
  174. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  175. luma_weight_l0_flag[i] = get_bits1(gb);
  176. if (!luma_weight_l0_flag[i]) {
  177. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  178. s->sh.luma_offset_l0[i] = 0;
  179. }
  180. }
  181. if (s->ps.sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
  182. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  183. chroma_weight_l0_flag[i] = get_bits1(gb);
  184. } else {
  185. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  186. chroma_weight_l0_flag[i] = 0;
  187. }
  188. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  189. if (luma_weight_l0_flag[i]) {
  190. int delta_luma_weight_l0 = get_se_golomb(gb);
  191. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  192. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  193. }
  194. if (chroma_weight_l0_flag[i]) {
  195. for (j = 0; j < 2; j++) {
  196. int delta_chroma_weight_l0 = get_se_golomb(gb);
  197. int delta_chroma_offset_l0 = get_se_golomb(gb);
  198. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  199. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  200. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  201. }
  202. } else {
  203. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  204. s->sh.chroma_offset_l0[i][0] = 0;
  205. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  206. s->sh.chroma_offset_l0[i][1] = 0;
  207. }
  208. }
  209. if (s->sh.slice_type == B_SLICE) {
  210. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  211. luma_weight_l1_flag[i] = get_bits1(gb);
  212. if (!luma_weight_l1_flag[i]) {
  213. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  214. s->sh.luma_offset_l1[i] = 0;
  215. }
  216. }
  217. if (s->ps.sps->chroma_format_idc != 0) {
  218. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  219. chroma_weight_l1_flag[i] = get_bits1(gb);
  220. } else {
  221. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  222. chroma_weight_l1_flag[i] = 0;
  223. }
  224. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  225. if (luma_weight_l1_flag[i]) {
  226. int delta_luma_weight_l1 = get_se_golomb(gb);
  227. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  228. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  229. }
  230. if (chroma_weight_l1_flag[i]) {
  231. for (j = 0; j < 2; j++) {
  232. int delta_chroma_weight_l1 = get_se_golomb(gb);
  233. int delta_chroma_offset_l1 = get_se_golomb(gb);
  234. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  235. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  236. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  237. }
  238. } else {
  239. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  240. s->sh.chroma_offset_l1[i][0] = 0;
  241. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  242. s->sh.chroma_offset_l1[i][1] = 0;
  243. }
  244. }
  245. }
  246. }
  247. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  248. {
  249. const HEVCSPS *sps = s->ps.sps;
  250. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  251. int prev_delta_msb = 0;
  252. unsigned int nb_sps = 0, nb_sh;
  253. int i;
  254. rps->nb_refs = 0;
  255. if (!sps->long_term_ref_pics_present_flag)
  256. return 0;
  257. if (sps->num_long_term_ref_pics_sps > 0)
  258. nb_sps = get_ue_golomb_long(gb);
  259. nb_sh = get_ue_golomb_long(gb);
  260. if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
  261. return AVERROR_INVALIDDATA;
  262. rps->nb_refs = nb_sh + nb_sps;
  263. for (i = 0; i < rps->nb_refs; i++) {
  264. uint8_t delta_poc_msb_present;
  265. if (i < nb_sps) {
  266. uint8_t lt_idx_sps = 0;
  267. if (sps->num_long_term_ref_pics_sps > 1)
  268. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  269. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  270. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  271. } else {
  272. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  273. rps->used[i] = get_bits1(gb);
  274. }
  275. delta_poc_msb_present = get_bits1(gb);
  276. if (delta_poc_msb_present) {
  277. int delta = get_ue_golomb_long(gb);
  278. if (i && i != nb_sps)
  279. delta += prev_delta_msb;
  280. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  281. prev_delta_msb = delta;
  282. }
  283. }
  284. return 0;
  285. }
  286. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  287. const HEVCSPS *sps)
  288. {
  289. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  290. unsigned int num = 0, den = 0;
  291. avctx->pix_fmt = sps->pix_fmt;
  292. avctx->coded_width = sps->width;
  293. avctx->coded_height = sps->height;
  294. avctx->width = sps->output_width;
  295. avctx->height = sps->output_height;
  296. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  297. avctx->profile = sps->ptl.general_ptl.profile_idc;
  298. avctx->level = sps->ptl.general_ptl.level_idc;
  299. ff_set_sar(avctx, sps->vui.sar);
  300. if (sps->vui.video_signal_type_present_flag)
  301. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  302. : AVCOL_RANGE_MPEG;
  303. else
  304. avctx->color_range = AVCOL_RANGE_MPEG;
  305. if (sps->vui.colour_description_present_flag) {
  306. avctx->color_primaries = sps->vui.colour_primaries;
  307. avctx->color_trc = sps->vui.transfer_characteristic;
  308. avctx->colorspace = sps->vui.matrix_coeffs;
  309. } else {
  310. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  311. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  312. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  313. }
  314. if (vps->vps_timing_info_present_flag) {
  315. num = vps->vps_num_units_in_tick;
  316. den = vps->vps_time_scale;
  317. } else if (sps->vui.vui_timing_info_present_flag) {
  318. num = sps->vui.vui_num_units_in_tick;
  319. den = sps->vui.vui_time_scale;
  320. }
  321. if (num != 0 && den != 0)
  322. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  323. num, den, 1 << 30);
  324. }
  325. static int set_sps(HEVCContext *s, const HEVCSPS *sps)
  326. {
  327. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  328. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  329. int ret;
  330. pic_arrays_free(s);
  331. s->ps.sps = NULL;
  332. s->ps.vps = NULL;
  333. if (!sps)
  334. return 0;
  335. ret = pic_arrays_init(s, sps);
  336. if (ret < 0)
  337. goto fail;
  338. export_stream_params(s->avctx, &s->ps, sps);
  339. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) {
  340. #if CONFIG_HEVC_DXVA2_HWACCEL
  341. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  342. #endif
  343. #if CONFIG_HEVC_D3D11VA_HWACCEL
  344. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  345. #endif
  346. #if CONFIG_HEVC_VDPAU_HWACCEL
  347. *fmt++ = AV_PIX_FMT_VDPAU;
  348. #endif
  349. }
  350. *fmt++ = sps->pix_fmt;
  351. *fmt = AV_PIX_FMT_NONE;
  352. ret = ff_get_format(s->avctx, pix_fmts);
  353. if (ret < 0)
  354. goto fail;
  355. s->avctx->pix_fmt = ret;
  356. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  357. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  358. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  359. if (sps->sao_enabled && !s->avctx->hwaccel) {
  360. av_frame_unref(s->tmp_frame);
  361. ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
  362. if (ret < 0)
  363. goto fail;
  364. s->frame = s->tmp_frame;
  365. }
  366. s->ps.sps = sps;
  367. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  368. return 0;
  369. fail:
  370. pic_arrays_free(s);
  371. s->ps.sps = NULL;
  372. return ret;
  373. }
  374. static int hls_slice_header(HEVCContext *s)
  375. {
  376. GetBitContext *gb = &s->HEVClc.gb;
  377. SliceHeader *sh = &s->sh;
  378. int i, ret;
  379. // Coded parameters
  380. sh->first_slice_in_pic_flag = get_bits1(gb);
  381. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  382. s->seq_decode = (s->seq_decode + 1) & 0xff;
  383. s->max_ra = INT_MAX;
  384. if (IS_IDR(s))
  385. ff_hevc_clear_refs(s);
  386. }
  387. if (IS_IRAP(s))
  388. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  389. sh->pps_id = get_ue_golomb_long(gb);
  390. if (sh->pps_id >= MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  391. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  392. return AVERROR_INVALIDDATA;
  393. }
  394. if (!sh->first_slice_in_pic_flag &&
  395. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  396. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  397. return AVERROR_INVALIDDATA;
  398. }
  399. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  400. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  401. s->ps.sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  402. ff_hevc_clear_refs(s);
  403. ret = set_sps(s, s->ps.sps);
  404. if (ret < 0)
  405. return ret;
  406. s->seq_decode = (s->seq_decode + 1) & 0xff;
  407. s->max_ra = INT_MAX;
  408. }
  409. sh->dependent_slice_segment_flag = 0;
  410. if (!sh->first_slice_in_pic_flag) {
  411. int slice_address_length;
  412. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  413. sh->dependent_slice_segment_flag = get_bits1(gb);
  414. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  415. s->ps.sps->ctb_height);
  416. sh->slice_segment_addr = slice_address_length ? get_bits(gb, slice_address_length) : 0;
  417. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  418. av_log(s->avctx, AV_LOG_ERROR,
  419. "Invalid slice segment address: %u.\n",
  420. sh->slice_segment_addr);
  421. return AVERROR_INVALIDDATA;
  422. }
  423. if (!sh->dependent_slice_segment_flag) {
  424. sh->slice_addr = sh->slice_segment_addr;
  425. s->slice_idx++;
  426. }
  427. } else {
  428. sh->slice_segment_addr = sh->slice_addr = 0;
  429. s->slice_idx = 0;
  430. s->slice_initialized = 0;
  431. }
  432. if (!sh->dependent_slice_segment_flag) {
  433. s->slice_initialized = 0;
  434. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  435. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  436. sh->slice_type = get_ue_golomb_long(gb);
  437. if (!(sh->slice_type == I_SLICE ||
  438. sh->slice_type == P_SLICE ||
  439. sh->slice_type == B_SLICE)) {
  440. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  441. sh->slice_type);
  442. return AVERROR_INVALIDDATA;
  443. }
  444. if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
  445. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  446. return AVERROR_INVALIDDATA;
  447. }
  448. // when flag is not present, picture is inferred to be output
  449. sh->pic_output_flag = 1;
  450. if (s->ps.pps->output_flag_present_flag)
  451. sh->pic_output_flag = get_bits1(gb);
  452. if (s->ps.sps->separate_colour_plane_flag)
  453. sh->colour_plane_id = get_bits(gb, 2);
  454. if (!IS_IDR(s)) {
  455. int poc, pos;
  456. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  457. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  458. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  459. av_log(s->avctx, AV_LOG_WARNING,
  460. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  461. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  462. return AVERROR_INVALIDDATA;
  463. poc = s->poc;
  464. }
  465. s->poc = poc;
  466. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  467. pos = get_bits_left(gb);
  468. if (!sh->short_term_ref_pic_set_sps_flag) {
  469. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  470. if (ret < 0)
  471. return ret;
  472. sh->short_term_rps = &sh->slice_rps;
  473. } else {
  474. int numbits, rps_idx;
  475. if (!s->ps.sps->nb_st_rps) {
  476. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  477. return AVERROR_INVALIDDATA;
  478. }
  479. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  480. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  481. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  482. }
  483. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  484. pos = get_bits_left(gb);
  485. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  486. if (ret < 0) {
  487. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  488. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  489. return AVERROR_INVALIDDATA;
  490. }
  491. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  492. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  493. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  494. else
  495. sh->slice_temporal_mvp_enabled_flag = 0;
  496. } else {
  497. s->sh.short_term_rps = NULL;
  498. s->poc = 0;
  499. }
  500. /* 8.3.1 */
  501. if (s->temporal_id == 0 &&
  502. s->nal_unit_type != NAL_TRAIL_N &&
  503. s->nal_unit_type != NAL_TSA_N &&
  504. s->nal_unit_type != NAL_STSA_N &&
  505. s->nal_unit_type != NAL_RADL_N &&
  506. s->nal_unit_type != NAL_RADL_R &&
  507. s->nal_unit_type != NAL_RASL_N &&
  508. s->nal_unit_type != NAL_RASL_R)
  509. s->pocTid0 = s->poc;
  510. if (s->ps.sps->sao_enabled) {
  511. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  512. sh->slice_sample_adaptive_offset_flag[1] =
  513. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  514. } else {
  515. sh->slice_sample_adaptive_offset_flag[0] = 0;
  516. sh->slice_sample_adaptive_offset_flag[1] = 0;
  517. sh->slice_sample_adaptive_offset_flag[2] = 0;
  518. }
  519. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  520. if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
  521. int nb_refs;
  522. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  523. if (sh->slice_type == B_SLICE)
  524. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  525. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  526. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  527. if (sh->slice_type == B_SLICE)
  528. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  529. }
  530. if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
  531. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  532. sh->nb_refs[L0], sh->nb_refs[L1]);
  533. return AVERROR_INVALIDDATA;
  534. }
  535. sh->rpl_modification_flag[0] = 0;
  536. sh->rpl_modification_flag[1] = 0;
  537. nb_refs = ff_hevc_frame_nb_refs(s);
  538. if (!nb_refs) {
  539. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  540. return AVERROR_INVALIDDATA;
  541. }
  542. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  543. sh->rpl_modification_flag[0] = get_bits1(gb);
  544. if (sh->rpl_modification_flag[0]) {
  545. for (i = 0; i < sh->nb_refs[L0]; i++)
  546. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  547. }
  548. if (sh->slice_type == B_SLICE) {
  549. sh->rpl_modification_flag[1] = get_bits1(gb);
  550. if (sh->rpl_modification_flag[1] == 1)
  551. for (i = 0; i < sh->nb_refs[L1]; i++)
  552. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  553. }
  554. }
  555. if (sh->slice_type == B_SLICE)
  556. sh->mvd_l1_zero_flag = get_bits1(gb);
  557. if (s->ps.pps->cabac_init_present_flag)
  558. sh->cabac_init_flag = get_bits1(gb);
  559. else
  560. sh->cabac_init_flag = 0;
  561. sh->collocated_ref_idx = 0;
  562. if (sh->slice_temporal_mvp_enabled_flag) {
  563. sh->collocated_list = L0;
  564. if (sh->slice_type == B_SLICE)
  565. sh->collocated_list = !get_bits1(gb);
  566. if (sh->nb_refs[sh->collocated_list] > 1) {
  567. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  568. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  569. av_log(s->avctx, AV_LOG_ERROR,
  570. "Invalid collocated_ref_idx: %d.\n",
  571. sh->collocated_ref_idx);
  572. return AVERROR_INVALIDDATA;
  573. }
  574. }
  575. }
  576. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
  577. (s->ps.pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
  578. pred_weight_table(s, gb);
  579. }
  580. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  581. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  582. av_log(s->avctx, AV_LOG_ERROR,
  583. "Invalid number of merging MVP candidates: %d.\n",
  584. sh->max_num_merge_cand);
  585. return AVERROR_INVALIDDATA;
  586. }
  587. }
  588. sh->slice_qp_delta = get_se_golomb(gb);
  589. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  590. sh->slice_cb_qp_offset = get_se_golomb(gb);
  591. sh->slice_cr_qp_offset = get_se_golomb(gb);
  592. } else {
  593. sh->slice_cb_qp_offset = 0;
  594. sh->slice_cr_qp_offset = 0;
  595. }
  596. if (s->ps.pps->deblocking_filter_control_present_flag) {
  597. int deblocking_filter_override_flag = 0;
  598. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  599. deblocking_filter_override_flag = get_bits1(gb);
  600. if (deblocking_filter_override_flag) {
  601. sh->disable_deblocking_filter_flag = get_bits1(gb);
  602. if (!sh->disable_deblocking_filter_flag) {
  603. sh->beta_offset = get_se_golomb(gb) * 2;
  604. sh->tc_offset = get_se_golomb(gb) * 2;
  605. }
  606. } else {
  607. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  608. sh->beta_offset = s->ps.pps->beta_offset;
  609. sh->tc_offset = s->ps.pps->tc_offset;
  610. }
  611. } else {
  612. sh->disable_deblocking_filter_flag = 0;
  613. sh->beta_offset = 0;
  614. sh->tc_offset = 0;
  615. }
  616. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  617. (sh->slice_sample_adaptive_offset_flag[0] ||
  618. sh->slice_sample_adaptive_offset_flag[1] ||
  619. !sh->disable_deblocking_filter_flag)) {
  620. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  621. } else {
  622. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  623. }
  624. } else if (!s->slice_initialized) {
  625. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  626. return AVERROR_INVALIDDATA;
  627. }
  628. sh->num_entry_point_offsets = 0;
  629. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  630. sh->num_entry_point_offsets = get_ue_golomb_long(gb);
  631. if (sh->num_entry_point_offsets > 0) {
  632. int offset_len = get_ue_golomb_long(gb) + 1;
  633. for (i = 0; i < sh->num_entry_point_offsets; i++)
  634. skip_bits(gb, offset_len);
  635. }
  636. }
  637. if (s->ps.pps->slice_header_extension_present_flag) {
  638. unsigned int length = get_ue_golomb_long(gb);
  639. for (i = 0; i < length; i++)
  640. skip_bits(gb, 8); // slice_header_extension_data_byte
  641. }
  642. // Inferred parameters
  643. sh->slice_qp = 26 + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  644. if (sh->slice_qp > 51 ||
  645. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  646. av_log(s->avctx, AV_LOG_ERROR,
  647. "The slice_qp %d is outside the valid range "
  648. "[%d, 51].\n",
  649. sh->slice_qp,
  650. -s->ps.sps->qp_bd_offset);
  651. return AVERROR_INVALIDDATA;
  652. }
  653. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  654. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  655. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  656. return AVERROR_INVALIDDATA;
  657. }
  658. s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
  659. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  660. s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->ps.sps->qp_bd_offset,
  661. 52 + s->ps.sps->qp_bd_offset) - s->ps.sps->qp_bd_offset;
  662. s->slice_initialized = 1;
  663. return 0;
  664. }
  665. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  666. #define SET_SAO(elem, value) \
  667. do { \
  668. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  669. sao->elem = value; \
  670. else if (sao_merge_left_flag) \
  671. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  672. else if (sao_merge_up_flag) \
  673. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  674. else \
  675. sao->elem = 0; \
  676. } while (0)
  677. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  678. {
  679. HEVCLocalContext *lc = &s->HEVClc;
  680. int sao_merge_left_flag = 0;
  681. int sao_merge_up_flag = 0;
  682. int shift = s->ps.sps->bit_depth - FFMIN(s->ps.sps->bit_depth, 10);
  683. SAOParams *sao = &CTB(s->sao, rx, ry);
  684. int c_idx, i;
  685. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  686. s->sh.slice_sample_adaptive_offset_flag[1]) {
  687. if (rx > 0) {
  688. if (lc->ctb_left_flag)
  689. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  690. }
  691. if (ry > 0 && !sao_merge_left_flag) {
  692. if (lc->ctb_up_flag)
  693. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  694. }
  695. }
  696. for (c_idx = 0; c_idx < 3; c_idx++) {
  697. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  698. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  699. continue;
  700. }
  701. if (c_idx == 2) {
  702. sao->type_idx[2] = sao->type_idx[1];
  703. sao->eo_class[2] = sao->eo_class[1];
  704. } else {
  705. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  706. }
  707. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  708. continue;
  709. for (i = 0; i < 4; i++)
  710. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  711. if (sao->type_idx[c_idx] == SAO_BAND) {
  712. for (i = 0; i < 4; i++) {
  713. if (sao->offset_abs[c_idx][i]) {
  714. SET_SAO(offset_sign[c_idx][i],
  715. ff_hevc_sao_offset_sign_decode(s));
  716. } else {
  717. sao->offset_sign[c_idx][i] = 0;
  718. }
  719. }
  720. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  721. } else if (c_idx != 2) {
  722. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  723. }
  724. // Inferred parameters
  725. sao->offset_val[c_idx][0] = 0;
  726. for (i = 0; i < 4; i++) {
  727. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
  728. if (sao->type_idx[c_idx] == SAO_EDGE) {
  729. if (i > 1)
  730. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  731. } else if (sao->offset_sign[c_idx][i]) {
  732. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  733. }
  734. }
  735. }
  736. }
  737. #undef SET_SAO
  738. #undef CTB
  739. static void hls_residual_coding(HEVCContext *s, int x0, int y0,
  740. int log2_trafo_size, enum ScanType scan_idx,
  741. int c_idx)
  742. {
  743. #define GET_COORD(offset, n) \
  744. do { \
  745. x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n]; \
  746. y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n]; \
  747. } while (0)
  748. HEVCLocalContext *lc = &s->HEVClc;
  749. int transform_skip_flag = 0;
  750. int last_significant_coeff_x, last_significant_coeff_y;
  751. int last_scan_pos;
  752. int n_end;
  753. int num_coeff = 0;
  754. int greater1_ctx = 1;
  755. int num_last_subset;
  756. int x_cg_last_sig, y_cg_last_sig;
  757. const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
  758. ptrdiff_t stride = s->frame->linesize[c_idx];
  759. int hshift = s->ps.sps->hshift[c_idx];
  760. int vshift = s->ps.sps->vshift[c_idx];
  761. uint8_t *dst = &s->frame->data[c_idx][(y0 >> vshift) * stride +
  762. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  763. DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
  764. DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
  765. int trafo_size = 1 << log2_trafo_size;
  766. int i, qp, shift, add, scale, scale_m;
  767. static const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
  768. const uint8_t *scale_matrix;
  769. uint8_t dc_scale;
  770. // Derive QP for dequant
  771. if (!lc->cu.cu_transquant_bypass_flag) {
  772. static const int qp_c[] = {
  773. 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
  774. };
  775. static const uint8_t rem6[51 + 2 * 6 + 1] = {
  776. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
  777. 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
  778. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  779. };
  780. static const uint8_t div6[51 + 2 * 6 + 1] = {
  781. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
  782. 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
  783. 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
  784. };
  785. int qp_y = lc->qp_y;
  786. if (c_idx == 0) {
  787. qp = qp_y + s->ps.sps->qp_bd_offset;
  788. } else {
  789. int qp_i, offset;
  790. if (c_idx == 1)
  791. offset = s->ps.pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
  792. else
  793. offset = s->ps.pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
  794. qp_i = av_clip(qp_y + offset, -s->ps.sps->qp_bd_offset, 57);
  795. if (qp_i < 30)
  796. qp = qp_i;
  797. else if (qp_i > 43)
  798. qp = qp_i - 6;
  799. else
  800. qp = qp_c[qp_i - 30];
  801. qp += s->ps.sps->qp_bd_offset;
  802. }
  803. shift = s->ps.sps->bit_depth + log2_trafo_size - 5;
  804. add = 1 << (shift - 1);
  805. scale = level_scale[rem6[qp]] << (div6[qp]);
  806. scale_m = 16; // default when no custom scaling lists.
  807. dc_scale = 16;
  808. if (s->ps.sps->scaling_list_enable_flag) {
  809. const ScalingList *sl = s->ps.pps->scaling_list_data_present_flag ?
  810. &s->ps.pps->scaling_list : &s->ps.sps->scaling_list;
  811. int matrix_id = lc->cu.pred_mode != MODE_INTRA;
  812. if (log2_trafo_size != 5)
  813. matrix_id = 3 * matrix_id + c_idx;
  814. scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
  815. if (log2_trafo_size >= 4)
  816. dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
  817. }
  818. }
  819. if (s->ps.pps->transform_skip_enabled_flag &&
  820. !lc->cu.cu_transquant_bypass_flag &&
  821. log2_trafo_size == 2) {
  822. transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
  823. }
  824. last_significant_coeff_x =
  825. ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
  826. last_significant_coeff_y =
  827. ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
  828. if (last_significant_coeff_x > 3) {
  829. int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
  830. last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
  831. (2 + (last_significant_coeff_x & 1)) +
  832. suffix;
  833. }
  834. if (last_significant_coeff_y > 3) {
  835. int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
  836. last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
  837. (2 + (last_significant_coeff_y & 1)) +
  838. suffix;
  839. }
  840. if (scan_idx == SCAN_VERT)
  841. FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
  842. x_cg_last_sig = last_significant_coeff_x >> 2;
  843. y_cg_last_sig = last_significant_coeff_y >> 2;
  844. switch (scan_idx) {
  845. case SCAN_DIAG: {
  846. int last_x_c = last_significant_coeff_x & 3;
  847. int last_y_c = last_significant_coeff_y & 3;
  848. scan_x_off = ff_hevc_diag_scan4x4_x;
  849. scan_y_off = ff_hevc_diag_scan4x4_y;
  850. num_coeff = diag_scan4x4_inv[last_y_c][last_x_c];
  851. if (trafo_size == 4) {
  852. scan_x_cg = scan_1x1;
  853. scan_y_cg = scan_1x1;
  854. } else if (trafo_size == 8) {
  855. num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  856. scan_x_cg = diag_scan2x2_x;
  857. scan_y_cg = diag_scan2x2_y;
  858. } else if (trafo_size == 16) {
  859. num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  860. scan_x_cg = ff_hevc_diag_scan4x4_x;
  861. scan_y_cg = ff_hevc_diag_scan4x4_y;
  862. } else { // trafo_size == 32
  863. num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  864. scan_x_cg = ff_hevc_diag_scan8x8_x;
  865. scan_y_cg = ff_hevc_diag_scan8x8_y;
  866. }
  867. break;
  868. }
  869. case SCAN_HORIZ:
  870. scan_x_cg = horiz_scan2x2_x;
  871. scan_y_cg = horiz_scan2x2_y;
  872. scan_x_off = horiz_scan4x4_x;
  873. scan_y_off = horiz_scan4x4_y;
  874. num_coeff = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
  875. break;
  876. default: //SCAN_VERT
  877. scan_x_cg = horiz_scan2x2_y;
  878. scan_y_cg = horiz_scan2x2_x;
  879. scan_x_off = horiz_scan4x4_y;
  880. scan_y_off = horiz_scan4x4_x;
  881. num_coeff = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
  882. break;
  883. }
  884. num_coeff++;
  885. num_last_subset = (num_coeff - 1) >> 4;
  886. for (i = num_last_subset; i >= 0; i--) {
  887. int n, m;
  888. int x_cg, y_cg, x_c, y_c;
  889. int implicit_non_zero_coeff = 0;
  890. int64_t trans_coeff_level;
  891. int prev_sig = 0;
  892. int offset = i << 4;
  893. uint8_t significant_coeff_flag_idx[16];
  894. uint8_t nb_significant_coeff_flag = 0;
  895. x_cg = scan_x_cg[i];
  896. y_cg = scan_y_cg[i];
  897. if (i < num_last_subset && i > 0) {
  898. int ctx_cg = 0;
  899. if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
  900. ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
  901. if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
  902. ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
  903. significant_coeff_group_flag[x_cg][y_cg] =
  904. ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
  905. implicit_non_zero_coeff = 1;
  906. } else {
  907. significant_coeff_group_flag[x_cg][y_cg] =
  908. ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
  909. (x_cg == 0 && y_cg == 0));
  910. }
  911. last_scan_pos = num_coeff - offset - 1;
  912. if (i == num_last_subset) {
  913. n_end = last_scan_pos - 1;
  914. significant_coeff_flag_idx[0] = last_scan_pos;
  915. nb_significant_coeff_flag = 1;
  916. } else {
  917. n_end = 15;
  918. }
  919. if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
  920. prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
  921. if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
  922. prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
  923. for (n = n_end; n >= 0; n--) {
  924. GET_COORD(offset, n);
  925. if (significant_coeff_group_flag[x_cg][y_cg] &&
  926. (n > 0 || implicit_non_zero_coeff == 0)) {
  927. if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
  928. log2_trafo_size,
  929. scan_idx,
  930. prev_sig) == 1) {
  931. significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
  932. nb_significant_coeff_flag++;
  933. implicit_non_zero_coeff = 0;
  934. }
  935. } else {
  936. int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
  937. if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
  938. significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
  939. nb_significant_coeff_flag++;
  940. }
  941. }
  942. }
  943. n_end = nb_significant_coeff_flag;
  944. if (n_end) {
  945. int first_nz_pos_in_cg = 16;
  946. int last_nz_pos_in_cg = -1;
  947. int c_rice_param = 0;
  948. int first_greater1_coeff_idx = -1;
  949. uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
  950. uint16_t coeff_sign_flag;
  951. int sum_abs = 0;
  952. int sign_hidden = 0;
  953. // initialize first elem of coeff_bas_level_greater1_flag
  954. int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
  955. if (!(i == num_last_subset) && greater1_ctx == 0)
  956. ctx_set++;
  957. greater1_ctx = 1;
  958. last_nz_pos_in_cg = significant_coeff_flag_idx[0];
  959. for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
  960. int n_idx = significant_coeff_flag_idx[m];
  961. int inc = (ctx_set << 2) + greater1_ctx;
  962. coeff_abs_level_greater1_flag[n_idx] =
  963. ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
  964. if (coeff_abs_level_greater1_flag[n_idx]) {
  965. greater1_ctx = 0;
  966. } else if (greater1_ctx > 0 && greater1_ctx < 3) {
  967. greater1_ctx++;
  968. }
  969. if (coeff_abs_level_greater1_flag[n_idx] &&
  970. first_greater1_coeff_idx == -1)
  971. first_greater1_coeff_idx = n_idx;
  972. }
  973. first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
  974. sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
  975. !lc->cu.cu_transquant_bypass_flag;
  976. if (first_greater1_coeff_idx != -1) {
  977. coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
  978. }
  979. if (!s->ps.pps->sign_data_hiding_flag || !sign_hidden) {
  980. coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
  981. } else {
  982. coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
  983. }
  984. for (m = 0; m < n_end; m++) {
  985. n = significant_coeff_flag_idx[m];
  986. GET_COORD(offset, n);
  987. trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
  988. if (trans_coeff_level == ((m < 8) ?
  989. ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
  990. int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
  991. trans_coeff_level += last_coeff_abs_level_remaining;
  992. if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
  993. c_rice_param = FFMIN(c_rice_param + 1, 4);
  994. }
  995. if (s->ps.pps->sign_data_hiding_flag && sign_hidden) {
  996. sum_abs += trans_coeff_level;
  997. if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
  998. trans_coeff_level = -trans_coeff_level;
  999. }
  1000. if (coeff_sign_flag >> 15)
  1001. trans_coeff_level = -trans_coeff_level;
  1002. coeff_sign_flag <<= 1;
  1003. if (!lc->cu.cu_transquant_bypass_flag) {
  1004. if (s->ps.sps->scaling_list_enable_flag) {
  1005. if (y_c || x_c || log2_trafo_size < 4) {
  1006. int pos;
  1007. switch (log2_trafo_size) {
  1008. case 3: pos = (y_c << 3) + x_c; break;
  1009. case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
  1010. case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
  1011. default: pos = (y_c << 2) + x_c;
  1012. }
  1013. scale_m = scale_matrix[pos];
  1014. } else {
  1015. scale_m = dc_scale;
  1016. }
  1017. }
  1018. trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
  1019. if(trans_coeff_level < 0) {
  1020. if((~trans_coeff_level) & 0xFffffffffff8000)
  1021. trans_coeff_level = -32768;
  1022. } else {
  1023. if (trans_coeff_level & 0xffffffffffff8000)
  1024. trans_coeff_level = 32767;
  1025. }
  1026. }
  1027. coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
  1028. }
  1029. }
  1030. }
  1031. if (lc->cu.cu_transquant_bypass_flag) {
  1032. s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
  1033. } else {
  1034. if (transform_skip_flag)
  1035. s->hevcdsp.transform_skip(dst, coeffs, stride);
  1036. else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
  1037. log2_trafo_size == 2)
  1038. s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
  1039. else
  1040. s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
  1041. }
  1042. }
  1043. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  1044. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1045. int log2_cb_size, int log2_trafo_size,
  1046. int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
  1047. {
  1048. HEVCLocalContext *lc = &s->HEVClc;
  1049. if (lc->cu.pred_mode == MODE_INTRA) {
  1050. int trafo_size = 1 << log2_trafo_size;
  1051. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  1052. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  1053. if (log2_trafo_size > 2) {
  1054. trafo_size = trafo_size << (s->ps.sps->hshift[1] - 1);
  1055. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  1056. s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
  1057. s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
  1058. } else if (blk_idx == 3) {
  1059. trafo_size = trafo_size << s->ps.sps->hshift[1];
  1060. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1061. trafo_size, trafo_size);
  1062. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1063. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1064. }
  1065. }
  1066. if (cbf_luma || cbf_cb || cbf_cr) {
  1067. int scan_idx = SCAN_DIAG;
  1068. int scan_idx_c = SCAN_DIAG;
  1069. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  1070. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  1071. if (lc->tu.cu_qp_delta != 0)
  1072. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  1073. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  1074. lc->tu.is_cu_qp_delta_coded = 1;
  1075. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  1076. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  1077. av_log(s->avctx, AV_LOG_ERROR,
  1078. "The cu_qp_delta %d is outside the valid range "
  1079. "[%d, %d].\n",
  1080. lc->tu.cu_qp_delta,
  1081. -(26 + s->ps.sps->qp_bd_offset / 2),
  1082. (25 + s->ps.sps->qp_bd_offset / 2));
  1083. return AVERROR_INVALIDDATA;
  1084. }
  1085. ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
  1086. }
  1087. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  1088. if (lc->tu.cur_intra_pred_mode >= 6 &&
  1089. lc->tu.cur_intra_pred_mode <= 14) {
  1090. scan_idx = SCAN_VERT;
  1091. } else if (lc->tu.cur_intra_pred_mode >= 22 &&
  1092. lc->tu.cur_intra_pred_mode <= 30) {
  1093. scan_idx = SCAN_HORIZ;
  1094. }
  1095. if (lc->pu.intra_pred_mode_c >= 6 &&
  1096. lc->pu.intra_pred_mode_c <= 14) {
  1097. scan_idx_c = SCAN_VERT;
  1098. } else if (lc->pu.intra_pred_mode_c >= 22 &&
  1099. lc->pu.intra_pred_mode_c <= 30) {
  1100. scan_idx_c = SCAN_HORIZ;
  1101. }
  1102. }
  1103. if (cbf_luma)
  1104. hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  1105. if (log2_trafo_size > 2) {
  1106. if (cbf_cb)
  1107. hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
  1108. if (cbf_cr)
  1109. hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
  1110. } else if (blk_idx == 3) {
  1111. if (cbf_cb)
  1112. hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
  1113. if (cbf_cr)
  1114. hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
  1115. }
  1116. }
  1117. return 0;
  1118. }
  1119. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1120. {
  1121. int cb_size = 1 << log2_cb_size;
  1122. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1123. int min_pu_width = s->ps.sps->min_pu_width;
  1124. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1125. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1126. int i, j;
  1127. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1128. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1129. s->is_pcm[i + j * min_pu_width] = 2;
  1130. }
  1131. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1132. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1133. int log2_cb_size, int log2_trafo_size,
  1134. int trafo_depth, int blk_idx,
  1135. int cbf_cb, int cbf_cr)
  1136. {
  1137. HEVCLocalContext *lc = &s->HEVClc;
  1138. uint8_t split_transform_flag;
  1139. int ret;
  1140. if (lc->cu.intra_split_flag) {
  1141. if (trafo_depth == 1)
  1142. lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1143. } else {
  1144. lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
  1145. }
  1146. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1147. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1148. trafo_depth < lc->cu.max_trafo_depth &&
  1149. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1150. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1151. } else {
  1152. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1153. lc->cu.pred_mode == MODE_INTER &&
  1154. lc->cu.part_mode != PART_2Nx2N &&
  1155. trafo_depth == 0;
  1156. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1157. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1158. inter_split;
  1159. }
  1160. if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
  1161. cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1162. else if (log2_trafo_size > 2 || trafo_depth == 0)
  1163. cbf_cb = 0;
  1164. if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
  1165. cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1166. else if (log2_trafo_size > 2 || trafo_depth == 0)
  1167. cbf_cr = 0;
  1168. if (split_transform_flag) {
  1169. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1170. const int x1 = x0 + trafo_size_split;
  1171. const int y1 = y0 + trafo_size_split;
  1172. #define SUBDIVIDE(x, y, idx) \
  1173. do { \
  1174. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1175. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1176. cbf_cb, cbf_cr); \
  1177. if (ret < 0) \
  1178. return ret; \
  1179. } while (0)
  1180. SUBDIVIDE(x0, y0, 0);
  1181. SUBDIVIDE(x1, y0, 1);
  1182. SUBDIVIDE(x0, y1, 2);
  1183. SUBDIVIDE(x1, y1, 3);
  1184. #undef SUBDIVIDE
  1185. } else {
  1186. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1187. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1188. int min_tu_width = s->ps.sps->min_tb_width;
  1189. int cbf_luma = 1;
  1190. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1191. cbf_cb || cbf_cr)
  1192. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1193. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1194. log2_cb_size, log2_trafo_size,
  1195. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1196. if (ret < 0)
  1197. return ret;
  1198. // TODO: store cbf_luma somewhere else
  1199. if (cbf_luma) {
  1200. int i, j;
  1201. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1202. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1203. int x_tu = (x0 + j) >> log2_min_tu_size;
  1204. int y_tu = (y0 + i) >> log2_min_tu_size;
  1205. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1206. }
  1207. }
  1208. if (!s->sh.disable_deblocking_filter_flag) {
  1209. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1210. if (s->ps.pps->transquant_bypass_enable_flag &&
  1211. lc->cu.cu_transquant_bypass_flag)
  1212. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1213. }
  1214. }
  1215. return 0;
  1216. }
  1217. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1218. {
  1219. //TODO: non-4:2:0 support
  1220. HEVCLocalContext *lc = &s->HEVClc;
  1221. GetBitContext gb;
  1222. int cb_size = 1 << log2_cb_size;
  1223. int stride0 = s->frame->linesize[0];
  1224. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1225. int stride1 = s->frame->linesize[1];
  1226. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1227. int stride2 = s->frame->linesize[2];
  1228. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1229. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->ps.sps->pcm.bit_depth_chroma;
  1230. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1231. int ret;
  1232. if (!s->sh.disable_deblocking_filter_flag)
  1233. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1234. ret = init_get_bits(&gb, pcm, length);
  1235. if (ret < 0)
  1236. return ret;
  1237. s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1238. s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->ps.sps->pcm.bit_depth_chroma);
  1239. s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->ps.sps->pcm.bit_depth_chroma);
  1240. return 0;
  1241. }
  1242. static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1243. {
  1244. HEVCLocalContext *lc = &s->HEVClc;
  1245. int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
  1246. int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
  1247. if (x)
  1248. x += ff_hevc_abs_mvd_greater1_flag_decode(s);
  1249. if (y)
  1250. y += ff_hevc_abs_mvd_greater1_flag_decode(s);
  1251. switch (x) {
  1252. case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s); break;
  1253. case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
  1254. case 0: lc->pu.mvd.x = 0; break;
  1255. }
  1256. switch (y) {
  1257. case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s); break;
  1258. case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
  1259. case 0: lc->pu.mvd.y = 0; break;
  1260. }
  1261. }
  1262. /**
  1263. * 8.5.3.2.2.1 Luma sample interpolation process
  1264. *
  1265. * @param s HEVC decoding context
  1266. * @param dst target buffer for block data at block position
  1267. * @param dststride stride of the dst buffer
  1268. * @param ref reference picture buffer at origin (0, 0)
  1269. * @param mv motion vector (relative to block position) to get pixel data from
  1270. * @param x_off horizontal position of block from origin (0, 0)
  1271. * @param y_off vertical position of block from origin (0, 0)
  1272. * @param block_w width of block
  1273. * @param block_h height of block
  1274. */
  1275. static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
  1276. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1277. int block_w, int block_h, int pred_idx)
  1278. {
  1279. HEVCLocalContext *lc = &s->HEVClc;
  1280. uint8_t *src = ref->data[0];
  1281. ptrdiff_t srcstride = ref->linesize[0];
  1282. int pic_width = s->ps.sps->width;
  1283. int pic_height = s->ps.sps->height;
  1284. int mx = mv->x & 3;
  1285. int my = mv->y & 3;
  1286. int extra_left = ff_hevc_qpel_extra_before[mx];
  1287. int extra_top = ff_hevc_qpel_extra_before[my];
  1288. x_off += mv->x >> 2;
  1289. y_off += mv->y >> 2;
  1290. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1291. if (x_off < extra_left || y_off < extra_top ||
  1292. x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
  1293. y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
  1294. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1295. int offset = extra_top * srcstride + (extra_left << s->ps.sps->pixel_shift);
  1296. int buf_offset = extra_top *
  1297. edge_emu_stride + (extra_left << s->ps.sps->pixel_shift);
  1298. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1299. edge_emu_stride, srcstride,
  1300. block_w + ff_hevc_qpel_extra[mx],
  1301. block_h + ff_hevc_qpel_extra[my],
  1302. x_off - extra_left, y_off - extra_top,
  1303. pic_width, pic_height);
  1304. src = lc->edge_emu_buffer + buf_offset;
  1305. srcstride = edge_emu_stride;
  1306. }
  1307. s->hevcdsp.put_hevc_qpel[!!my][!!mx][pred_idx](dst, dststride, src, srcstride,
  1308. block_h, mx, my, lc->mc_buffer);
  1309. }
  1310. /**
  1311. * 8.5.3.2.2.2 Chroma sample interpolation process
  1312. *
  1313. * @param s HEVC decoding context
  1314. * @param dst1 target buffer for block data at block position (U plane)
  1315. * @param dst2 target buffer for block data at block position (V plane)
  1316. * @param dststride stride of the dst1 and dst2 buffers
  1317. * @param ref reference picture buffer at origin (0, 0)
  1318. * @param mv motion vector (relative to block position) to get pixel data from
  1319. * @param x_off horizontal position of block from origin (0, 0)
  1320. * @param y_off vertical position of block from origin (0, 0)
  1321. * @param block_w width of block
  1322. * @param block_h height of block
  1323. */
  1324. static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
  1325. ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
  1326. int x_off, int y_off, int block_w, int block_h, int pred_idx)
  1327. {
  1328. HEVCLocalContext *lc = &s->HEVClc;
  1329. uint8_t *src1 = ref->data[1];
  1330. uint8_t *src2 = ref->data[2];
  1331. ptrdiff_t src1stride = ref->linesize[1];
  1332. ptrdiff_t src2stride = ref->linesize[2];
  1333. int pic_width = s->ps.sps->width >> 1;
  1334. int pic_height = s->ps.sps->height >> 1;
  1335. int mx = mv->x & 7;
  1336. int my = mv->y & 7;
  1337. x_off += mv->x >> 3;
  1338. y_off += mv->y >> 3;
  1339. src1 += y_off * src1stride + (x_off * (1 << s->ps.sps->pixel_shift));
  1340. src2 += y_off * src2stride + (x_off * (1 << s->ps.sps->pixel_shift));
  1341. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1342. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1343. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1344. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1345. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1346. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1347. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1348. int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1349. int buf_offset2 = EPEL_EXTRA_BEFORE *
  1350. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1351. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1352. edge_emu_stride, src1stride,
  1353. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1354. x_off - EPEL_EXTRA_BEFORE,
  1355. y_off - EPEL_EXTRA_BEFORE,
  1356. pic_width, pic_height);
  1357. src1 = lc->edge_emu_buffer + buf_offset1;
  1358. src1stride = edge_emu_stride;
  1359. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst1, dststride, src1, src1stride,
  1360. block_h, mx, my, lc->mc_buffer);
  1361. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
  1362. edge_emu_stride, src2stride,
  1363. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1364. x_off - EPEL_EXTRA_BEFORE,
  1365. y_off - EPEL_EXTRA_BEFORE,
  1366. pic_width, pic_height);
  1367. src2 = lc->edge_emu_buffer + buf_offset2;
  1368. src2stride = edge_emu_stride;
  1369. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst2, dststride, src2, src2stride,
  1370. block_h, mx, my, lc->mc_buffer);
  1371. } else {
  1372. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst1, dststride, src1, src1stride,
  1373. block_h, mx, my, lc->mc_buffer);
  1374. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst2, dststride, src2, src2stride,
  1375. block_h, mx, my, lc->mc_buffer);
  1376. }
  1377. }
  1378. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1379. const Mv *mv, int y0, int height)
  1380. {
  1381. int y = (mv->y >> 2) + y0 + height + 9;
  1382. ff_thread_await_progress(&ref->tf, y, 0);
  1383. }
  1384. static void hevc_luma_mv_mpv_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1385. int nPbH, int log2_cb_size, int part_idx,
  1386. int merge_idx, MvField *mv)
  1387. {
  1388. HEVCLocalContext *lc = &s->HEVClc;
  1389. enum InterPredIdc inter_pred_idc = PRED_L0;
  1390. int mvp_flag;
  1391. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1392. if (s->sh.slice_type == B_SLICE)
  1393. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1394. if (inter_pred_idc != PRED_L1) {
  1395. if (s->sh.nb_refs[L0])
  1396. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1397. mv->pred_flag[0] = 1;
  1398. hls_mvd_coding(s, x0, y0, 0);
  1399. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1400. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1401. part_idx, merge_idx, mv, mvp_flag, 0);
  1402. mv->mv[0].x += lc->pu.mvd.x;
  1403. mv->mv[0].y += lc->pu.mvd.y;
  1404. }
  1405. if (inter_pred_idc != PRED_L0) {
  1406. if (s->sh.nb_refs[L1])
  1407. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1408. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1409. AV_ZERO32(&lc->pu.mvd);
  1410. } else {
  1411. hls_mvd_coding(s, x0, y0, 1);
  1412. }
  1413. mv->pred_flag[1] = 1;
  1414. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1415. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1416. part_idx, merge_idx, mv, mvp_flag, 1);
  1417. mv->mv[1].x += lc->pu.mvd.x;
  1418. mv->mv[1].y += lc->pu.mvd.y;
  1419. }
  1420. }
  1421. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1422. int nPbW, int nPbH,
  1423. int log2_cb_size, int partIdx)
  1424. {
  1425. static const int pred_indices[] = {
  1426. [4] = 0, [8] = 1, [12] = 2, [16] = 3, [24] = 4, [32] = 5, [48] = 6, [64] = 7,
  1427. };
  1428. const int pred_idx = pred_indices[nPbW];
  1429. #define POS(c_idx, x, y) \
  1430. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1431. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1432. HEVCLocalContext *lc = &s->HEVClc;
  1433. int merge_idx = 0;
  1434. struct MvField current_mv = {{{ 0 }}};
  1435. int min_pu_width = s->ps.sps->min_pu_width;
  1436. MvField *tab_mvf = s->ref->tab_mvf;
  1437. RefPicList *refPicList = s->ref->refPicList;
  1438. HEVCFrame *ref0, *ref1;
  1439. int tmpstride = MAX_PB_SIZE * sizeof(int16_t);
  1440. uint8_t *dst0 = POS(0, x0, y0);
  1441. uint8_t *dst1 = POS(1, x0, y0);
  1442. uint8_t *dst2 = POS(2, x0, y0);
  1443. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1444. int min_cb_width = s->ps.sps->min_cb_width;
  1445. int x_cb = x0 >> log2_min_cb_size;
  1446. int y_cb = y0 >> log2_min_cb_size;
  1447. int x_pu, y_pu;
  1448. int i, j;
  1449. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1450. if (!skip_flag)
  1451. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1452. if (skip_flag || lc->pu.merge_flag) {
  1453. if (s->sh.max_num_merge_cand > 1)
  1454. merge_idx = ff_hevc_merge_idx_decode(s);
  1455. else
  1456. merge_idx = 0;
  1457. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1458. partIdx, merge_idx, &current_mv);
  1459. } else {
  1460. hevc_luma_mv_mpv_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1461. partIdx, merge_idx, &current_mv);
  1462. }
  1463. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1464. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1465. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1466. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1467. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1468. if (current_mv.pred_flag[0]) {
  1469. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1470. if (!ref0)
  1471. return;
  1472. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1473. }
  1474. if (current_mv.pred_flag[1]) {
  1475. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1476. if (!ref1)
  1477. return;
  1478. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1479. }
  1480. if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
  1481. DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
  1482. DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
  1483. luma_mc(s, tmp, tmpstride, ref0->frame,
  1484. &current_mv.mv[0], x0, y0, nPbW, nPbH, pred_idx);
  1485. if ((s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1486. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag)) {
  1487. s->hevcdsp.weighted_pred[pred_idx](s->sh.luma_log2_weight_denom,
  1488. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1489. s->sh.luma_offset_l0[current_mv.ref_idx[0]],
  1490. dst0, s->frame->linesize[0], tmp,
  1491. tmpstride, nPbH);
  1492. } else {
  1493. s->hevcdsp.put_unweighted_pred[pred_idx](dst0, s->frame->linesize[0], tmp, tmpstride, nPbH);
  1494. }
  1495. chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
  1496. &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1497. if ((s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1498. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag)) {
  1499. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1500. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
  1501. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
  1502. dst1, s->frame->linesize[1], tmp, tmpstride,
  1503. nPbH / 2);
  1504. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1505. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
  1506. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
  1507. dst2, s->frame->linesize[2], tmp2, tmpstride,
  1508. nPbH / 2);
  1509. } else {
  1510. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmpstride, nPbH / 2);
  1511. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH / 2);
  1512. }
  1513. } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
  1514. DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
  1515. DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
  1516. luma_mc(s, tmp, tmpstride, ref1->frame,
  1517. &current_mv.mv[1], x0, y0, nPbW, nPbH, pred_idx);
  1518. if ((s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1519. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag)) {
  1520. s->hevcdsp.weighted_pred[pred_idx](s->sh.luma_log2_weight_denom,
  1521. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1522. s->sh.luma_offset_l1[current_mv.ref_idx[1]],
  1523. dst0, s->frame->linesize[0], tmp, tmpstride,
  1524. nPbH);
  1525. } else {
  1526. s->hevcdsp.put_unweighted_pred[pred_idx](dst0, s->frame->linesize[0], tmp, tmpstride, nPbH);
  1527. }
  1528. chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
  1529. &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1530. if ((s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1531. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag)) {
  1532. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1533. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
  1534. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
  1535. dst1, s->frame->linesize[1], tmp, tmpstride, nPbH/2);
  1536. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1537. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
  1538. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
  1539. dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH/2);
  1540. } else {
  1541. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmpstride, nPbH / 2);
  1542. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH / 2);
  1543. }
  1544. } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
  1545. DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
  1546. DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
  1547. DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
  1548. DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
  1549. luma_mc(s, tmp, tmpstride, ref0->frame,
  1550. &current_mv.mv[0], x0, y0, nPbW, nPbH, pred_idx);
  1551. luma_mc(s, tmp2, tmpstride, ref1->frame,
  1552. &current_mv.mv[1], x0, y0, nPbW, nPbH, pred_idx);
  1553. if ((s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1554. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag)) {
  1555. s->hevcdsp.weighted_pred_avg[pred_idx](s->sh.luma_log2_weight_denom,
  1556. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1557. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1558. s->sh.luma_offset_l0[current_mv.ref_idx[0]],
  1559. s->sh.luma_offset_l1[current_mv.ref_idx[1]],
  1560. dst0, s->frame->linesize[0],
  1561. tmp, tmp2, tmpstride, nPbH);
  1562. } else {
  1563. s->hevcdsp.put_unweighted_pred_avg[pred_idx](dst0, s->frame->linesize[0],
  1564. tmp, tmp2, tmpstride, nPbH);
  1565. }
  1566. chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
  1567. &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1568. chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
  1569. &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1570. if ((s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
  1571. (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag)) {
  1572. s->hevcdsp.weighted_pred_avg_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1573. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
  1574. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
  1575. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
  1576. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
  1577. dst1, s->frame->linesize[1], tmp, tmp3,
  1578. tmpstride, nPbH / 2);
  1579. s->hevcdsp.weighted_pred_avg_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1580. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
  1581. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
  1582. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
  1583. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
  1584. dst2, s->frame->linesize[2], tmp2, tmp4,
  1585. tmpstride, nPbH / 2);
  1586. } else {
  1587. s->hevcdsp.put_unweighted_pred_avg_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbH/2);
  1588. s->hevcdsp.put_unweighted_pred_avg_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbH/2);
  1589. }
  1590. }
  1591. }
  1592. /**
  1593. * 8.4.1
  1594. */
  1595. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1596. int prev_intra_luma_pred_flag)
  1597. {
  1598. HEVCLocalContext *lc = &s->HEVClc;
  1599. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1600. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1601. int min_pu_width = s->ps.sps->min_pu_width;
  1602. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1603. int x0b = x0 & ((1 << s->ps.sps->log2_ctb_size) - 1);
  1604. int y0b = y0 & ((1 << s->ps.sps->log2_ctb_size) - 1);
  1605. int cand_up = (lc->ctb_up_flag || y0b) ?
  1606. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1607. int cand_left = (lc->ctb_left_flag || x0b) ?
  1608. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1609. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1610. MvField *tab_mvf = s->ref->tab_mvf;
  1611. int intra_pred_mode;
  1612. int candidate[3];
  1613. int i, j;
  1614. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1615. if ((y0 - 1) < y_ctb)
  1616. cand_up = INTRA_DC;
  1617. if (cand_left == cand_up) {
  1618. if (cand_left < 2) {
  1619. candidate[0] = INTRA_PLANAR;
  1620. candidate[1] = INTRA_DC;
  1621. candidate[2] = INTRA_ANGULAR_26;
  1622. } else {
  1623. candidate[0] = cand_left;
  1624. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1625. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1626. }
  1627. } else {
  1628. candidate[0] = cand_left;
  1629. candidate[1] = cand_up;
  1630. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1631. candidate[2] = INTRA_PLANAR;
  1632. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1633. candidate[2] = INTRA_DC;
  1634. } else {
  1635. candidate[2] = INTRA_ANGULAR_26;
  1636. }
  1637. }
  1638. if (prev_intra_luma_pred_flag) {
  1639. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1640. } else {
  1641. if (candidate[0] > candidate[1])
  1642. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1643. if (candidate[0] > candidate[2])
  1644. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1645. if (candidate[1] > candidate[2])
  1646. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1647. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1648. for (i = 0; i < 3; i++)
  1649. if (intra_pred_mode >= candidate[i])
  1650. intra_pred_mode++;
  1651. }
  1652. /* write the intra prediction units into the mv array */
  1653. if (!size_in_pus)
  1654. size_in_pus = 1;
  1655. for (i = 0; i < size_in_pus; i++) {
  1656. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1657. intra_pred_mode, size_in_pus);
  1658. for (j = 0; j < size_in_pus; j++) {
  1659. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra = 1;
  1660. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
  1661. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
  1662. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0] = 0;
  1663. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1] = 0;
  1664. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x = 0;
  1665. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y = 0;
  1666. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x = 0;
  1667. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y = 0;
  1668. }
  1669. }
  1670. return intra_pred_mode;
  1671. }
  1672. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1673. int log2_cb_size, int ct_depth)
  1674. {
  1675. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1676. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1677. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1678. int y;
  1679. for (y = 0; y < length; y++)
  1680. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1681. ct_depth, length);
  1682. }
  1683. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1684. int log2_cb_size)
  1685. {
  1686. HEVCLocalContext *lc = &s->HEVClc;
  1687. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1688. uint8_t prev_intra_luma_pred_flag[4];
  1689. int split = lc->cu.part_mode == PART_NxN;
  1690. int pb_size = (1 << log2_cb_size) >> split;
  1691. int side = split + 1;
  1692. int chroma_mode;
  1693. int i, j;
  1694. for (i = 0; i < side; i++)
  1695. for (j = 0; j < side; j++)
  1696. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1697. for (i = 0; i < side; i++) {
  1698. for (j = 0; j < side; j++) {
  1699. if (prev_intra_luma_pred_flag[2 * i + j])
  1700. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1701. else
  1702. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1703. lc->pu.intra_pred_mode[2 * i + j] =
  1704. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1705. prev_intra_luma_pred_flag[2 * i + j]);
  1706. }
  1707. }
  1708. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1709. if (chroma_mode != 4) {
  1710. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1711. lc->pu.intra_pred_mode_c = 34;
  1712. else
  1713. lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
  1714. } else {
  1715. lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
  1716. }
  1717. }
  1718. static void intra_prediction_unit_default_value(HEVCContext *s,
  1719. int x0, int y0,
  1720. int log2_cb_size)
  1721. {
  1722. HEVCLocalContext *lc = &s->HEVClc;
  1723. int pb_size = 1 << log2_cb_size;
  1724. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1725. int min_pu_width = s->ps.sps->min_pu_width;
  1726. MvField *tab_mvf = s->ref->tab_mvf;
  1727. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1728. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1729. int j, k;
  1730. if (size_in_pus == 0)
  1731. size_in_pus = 1;
  1732. for (j = 0; j < size_in_pus; j++) {
  1733. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1734. for (k = 0; k < size_in_pus; k++)
  1735. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
  1736. }
  1737. }
  1738. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1739. {
  1740. int cb_size = 1 << log2_cb_size;
  1741. HEVCLocalContext *lc = &s->HEVClc;
  1742. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1743. int length = cb_size >> log2_min_cb_size;
  1744. int min_cb_width = s->ps.sps->min_cb_width;
  1745. int x_cb = x0 >> log2_min_cb_size;
  1746. int y_cb = y0 >> log2_min_cb_size;
  1747. int x, y, ret;
  1748. lc->cu.x = x0;
  1749. lc->cu.y = y0;
  1750. lc->cu.pred_mode = MODE_INTRA;
  1751. lc->cu.part_mode = PART_2Nx2N;
  1752. lc->cu.intra_split_flag = 0;
  1753. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1754. for (x = 0; x < 4; x++)
  1755. lc->pu.intra_pred_mode[x] = 1;
  1756. if (s->ps.pps->transquant_bypass_enable_flag) {
  1757. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1758. if (lc->cu.cu_transquant_bypass_flag)
  1759. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1760. } else
  1761. lc->cu.cu_transquant_bypass_flag = 0;
  1762. if (s->sh.slice_type != I_SLICE) {
  1763. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1764. x = y_cb * min_cb_width + x_cb;
  1765. for (y = 0; y < length; y++) {
  1766. memset(&s->skip_flag[x], skip_flag, length);
  1767. x += min_cb_width;
  1768. }
  1769. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1770. }
  1771. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1772. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
  1773. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1774. if (!s->sh.disable_deblocking_filter_flag)
  1775. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1776. } else {
  1777. int pcm_flag = 0;
  1778. if (s->sh.slice_type != I_SLICE)
  1779. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1780. if (lc->cu.pred_mode != MODE_INTRA ||
  1781. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1782. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1783. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1784. lc->cu.pred_mode == MODE_INTRA;
  1785. }
  1786. if (lc->cu.pred_mode == MODE_INTRA) {
  1787. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1788. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1789. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1790. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1791. }
  1792. if (pcm_flag) {
  1793. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1794. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1795. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1796. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1797. if (ret < 0)
  1798. return ret;
  1799. } else {
  1800. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1801. }
  1802. } else {
  1803. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1804. switch (lc->cu.part_mode) {
  1805. case PART_2Nx2N:
  1806. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
  1807. break;
  1808. case PART_2NxN:
  1809. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
  1810. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
  1811. break;
  1812. case PART_Nx2N:
  1813. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
  1814. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
  1815. break;
  1816. case PART_2NxnU:
  1817. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
  1818. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
  1819. break;
  1820. case PART_2NxnD:
  1821. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
  1822. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
  1823. break;
  1824. case PART_nLx2N:
  1825. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0);
  1826. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
  1827. break;
  1828. case PART_nRx2N:
  1829. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
  1830. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1);
  1831. break;
  1832. case PART_NxN:
  1833. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
  1834. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
  1835. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
  1836. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
  1837. break;
  1838. }
  1839. }
  1840. if (!pcm_flag) {
  1841. int rqt_root_cbf = 1;
  1842. if (lc->cu.pred_mode != MODE_INTRA &&
  1843. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1844. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1845. }
  1846. if (rqt_root_cbf) {
  1847. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1848. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1849. s->ps.sps->max_transform_hierarchy_depth_inter;
  1850. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1851. log2_cb_size,
  1852. log2_cb_size, 0, 0, 0, 0);
  1853. if (ret < 0)
  1854. return ret;
  1855. } else {
  1856. if (!s->sh.disable_deblocking_filter_flag)
  1857. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1858. }
  1859. }
  1860. }
  1861. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1862. ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
  1863. x = y_cb * min_cb_width + x_cb;
  1864. for (y = 0; y < length; y++) {
  1865. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1866. x += min_cb_width;
  1867. }
  1868. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
  1869. return 0;
  1870. }
  1871. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1872. int log2_cb_size, int cb_depth)
  1873. {
  1874. HEVCLocalContext *lc = &s->HEVClc;
  1875. const int cb_size = 1 << log2_cb_size;
  1876. int split_cu;
  1877. lc->ct.depth = cb_depth;
  1878. if (x0 + cb_size <= s->ps.sps->width &&
  1879. y0 + cb_size <= s->ps.sps->height &&
  1880. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1881. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1882. } else {
  1883. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1884. }
  1885. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1886. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1887. lc->tu.is_cu_qp_delta_coded = 0;
  1888. lc->tu.cu_qp_delta = 0;
  1889. }
  1890. if (split_cu) {
  1891. const int cb_size_split = cb_size >> 1;
  1892. const int x1 = x0 + cb_size_split;
  1893. const int y1 = y0 + cb_size_split;
  1894. log2_cb_size--;
  1895. cb_depth++;
  1896. #define SUBDIVIDE(x, y) \
  1897. do { \
  1898. if (x < s->ps.sps->width && y < s->ps.sps->height) { \
  1899. int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
  1900. if (ret < 0) \
  1901. return ret; \
  1902. } \
  1903. } while (0)
  1904. SUBDIVIDE(x0, y0);
  1905. SUBDIVIDE(x1, y0);
  1906. SUBDIVIDE(x0, y1);
  1907. SUBDIVIDE(x1, y1);
  1908. } else {
  1909. int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1910. if (ret < 0)
  1911. return ret;
  1912. }
  1913. return 0;
  1914. }
  1915. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1916. int ctb_addr_ts)
  1917. {
  1918. HEVCLocalContext *lc = &s->HEVClc;
  1919. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1920. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1921. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1922. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1923. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  1924. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1925. lc->first_qp_group = 1;
  1926. lc->end_of_tiles_x = s->ps.sps->width;
  1927. } else if (s->ps.pps->tiles_enabled_flag) {
  1928. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  1929. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  1930. lc->start_of_tiles_x = x_ctb;
  1931. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  1932. lc->first_qp_group = 1;
  1933. }
  1934. } else {
  1935. lc->end_of_tiles_x = s->ps.sps->width;
  1936. }
  1937. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  1938. lc->boundary_flags = 0;
  1939. if (s->ps.pps->tiles_enabled_flag) {
  1940. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  1941. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  1942. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  1943. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1944. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  1945. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  1946. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  1947. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1948. } else {
  1949. if (!ctb_addr_in_slice)
  1950. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1951. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  1952. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1953. }
  1954. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  1955. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  1956. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  1957. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  1958. }
  1959. static int hls_slice_data(HEVCContext *s)
  1960. {
  1961. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1962. int more_data = 1;
  1963. int x_ctb = 0;
  1964. int y_ctb = 0;
  1965. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  1966. int ret;
  1967. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  1968. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1969. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  1970. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  1971. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  1972. ff_hevc_cabac_init(s, ctb_addr_ts);
  1973. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  1974. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  1975. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  1976. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  1977. ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  1978. if (ret < 0)
  1979. return ret;
  1980. more_data = !ff_hevc_end_of_slice_flag_decode(s);
  1981. ctb_addr_ts++;
  1982. ff_hevc_save_states(s, ctb_addr_ts);
  1983. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  1984. }
  1985. if (x_ctb + ctb_size >= s->ps.sps->width &&
  1986. y_ctb + ctb_size >= s->ps.sps->height)
  1987. ff_hevc_hls_filter(s, x_ctb, y_ctb);
  1988. return ctb_addr_ts;
  1989. }
  1990. static void restore_tqb_pixels(HEVCContext *s)
  1991. {
  1992. int min_pu_size = 1 << s->ps.sps->log2_min_pu_size;
  1993. int x, y, c_idx;
  1994. for (c_idx = 0; c_idx < 3; c_idx++) {
  1995. ptrdiff_t stride = s->frame->linesize[c_idx];
  1996. int hshift = s->ps.sps->hshift[c_idx];
  1997. int vshift = s->ps.sps->vshift[c_idx];
  1998. for (y = 0; y < s->ps.sps->min_pu_height; y++) {
  1999. for (x = 0; x < s->ps.sps->min_pu_width; x++) {
  2000. if (s->is_pcm[y * s->ps.sps->min_pu_width + x]) {
  2001. int n;
  2002. int len = min_pu_size >> hshift;
  2003. uint8_t *src = &s->frame->data[c_idx][((y << s->ps.sps->log2_min_pu_size) >> vshift) * stride + (((x << s->ps.sps->log2_min_pu_size) >> hshift) << s->ps.sps->pixel_shift)];
  2004. uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->ps.sps->log2_min_pu_size) >> vshift) * stride + (((x << s->ps.sps->log2_min_pu_size) >> hshift) << s->ps.sps->pixel_shift)];
  2005. for (n = 0; n < (min_pu_size >> vshift); n++) {
  2006. memcpy(dst, src, len);
  2007. src += stride;
  2008. dst += stride;
  2009. }
  2010. }
  2011. }
  2012. }
  2013. }
  2014. }
  2015. static int set_side_data(HEVCContext *s)
  2016. {
  2017. AVFrame *out = s->ref->frame;
  2018. if (s->sei_frame_packing_present &&
  2019. s->frame_packing_arrangement_type >= 3 &&
  2020. s->frame_packing_arrangement_type <= 5 &&
  2021. s->content_interpretation_type > 0 &&
  2022. s->content_interpretation_type < 3) {
  2023. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2024. if (!stereo)
  2025. return AVERROR(ENOMEM);
  2026. switch (s->frame_packing_arrangement_type) {
  2027. case 3:
  2028. if (s->quincunx_subsampling)
  2029. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2030. else
  2031. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2032. break;
  2033. case 4:
  2034. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2035. break;
  2036. case 5:
  2037. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2038. break;
  2039. }
  2040. if (s->content_interpretation_type == 2)
  2041. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2042. }
  2043. if (s->sei_display_orientation_present &&
  2044. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2045. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2046. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2047. AV_FRAME_DATA_DISPLAYMATRIX,
  2048. sizeof(int32_t) * 9);
  2049. if (!rotation)
  2050. return AVERROR(ENOMEM);
  2051. av_display_rotation_set((int32_t *)rotation->data, angle);
  2052. av_display_matrix_flip((int32_t *)rotation->data,
  2053. s->sei_hflip, s->sei_vflip);
  2054. }
  2055. return 0;
  2056. }
  2057. static int hevc_frame_start(HEVCContext *s)
  2058. {
  2059. HEVCLocalContext *lc = &s->HEVClc;
  2060. int ret;
  2061. memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
  2062. memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
  2063. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2064. memset(s->is_pcm, 0, s->ps.sps->min_pu_width * s->ps.sps->min_pu_height);
  2065. lc->start_of_tiles_x = 0;
  2066. s->is_decoded = 0;
  2067. s->first_nal_type = s->nal_unit_type;
  2068. if (s->ps.pps->tiles_enabled_flag)
  2069. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2070. ret = ff_hevc_set_new_ref(s, s->ps.sps->sao_enabled ? &s->sao_frame : &s->frame,
  2071. s->poc);
  2072. if (ret < 0)
  2073. goto fail;
  2074. ret = ff_hevc_frame_rps(s);
  2075. if (ret < 0) {
  2076. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2077. goto fail;
  2078. }
  2079. s->ref->frame->key_frame = IS_IRAP(s);
  2080. ret = set_side_data(s);
  2081. if (ret < 0)
  2082. goto fail;
  2083. av_frame_unref(s->output_frame);
  2084. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2085. if (ret < 0)
  2086. goto fail;
  2087. ff_thread_finish_setup(s->avctx);
  2088. return 0;
  2089. fail:
  2090. if (s->ref)
  2091. ff_hevc_unref_frame(s, s->ref, ~0);
  2092. s->ref = NULL;
  2093. return ret;
  2094. }
  2095. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2096. {
  2097. HEVCLocalContext *lc = &s->HEVClc;
  2098. GetBitContext *gb = &lc->gb;
  2099. int ctb_addr_ts, ret;
  2100. *gb = nal->gb;
  2101. s->nal_unit_type = nal->type;
  2102. s->temporal_id = nal->temporal_id;
  2103. switch (s->nal_unit_type) {
  2104. case NAL_VPS:
  2105. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2106. if (ret < 0)
  2107. goto fail;
  2108. break;
  2109. case NAL_SPS:
  2110. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2111. s->apply_defdispwin);
  2112. if (ret < 0)
  2113. goto fail;
  2114. break;
  2115. case NAL_PPS:
  2116. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2117. if (ret < 0)
  2118. goto fail;
  2119. break;
  2120. case NAL_SEI_PREFIX:
  2121. case NAL_SEI_SUFFIX:
  2122. ret = ff_hevc_decode_nal_sei(s);
  2123. if (ret < 0)
  2124. goto fail;
  2125. break;
  2126. case NAL_TRAIL_R:
  2127. case NAL_TRAIL_N:
  2128. case NAL_TSA_N:
  2129. case NAL_TSA_R:
  2130. case NAL_STSA_N:
  2131. case NAL_STSA_R:
  2132. case NAL_BLA_W_LP:
  2133. case NAL_BLA_W_RADL:
  2134. case NAL_BLA_N_LP:
  2135. case NAL_IDR_W_RADL:
  2136. case NAL_IDR_N_LP:
  2137. case NAL_CRA_NUT:
  2138. case NAL_RADL_N:
  2139. case NAL_RADL_R:
  2140. case NAL_RASL_N:
  2141. case NAL_RASL_R:
  2142. ret = hls_slice_header(s);
  2143. if (ret < 0)
  2144. return ret;
  2145. if (s->max_ra == INT_MAX) {
  2146. if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
  2147. s->max_ra = s->poc;
  2148. } else {
  2149. if (IS_IDR(s))
  2150. s->max_ra = INT_MIN;
  2151. }
  2152. }
  2153. if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
  2154. s->poc <= s->max_ra) {
  2155. s->is_decoded = 0;
  2156. break;
  2157. } else {
  2158. if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
  2159. s->max_ra = INT_MIN;
  2160. }
  2161. if (s->sh.first_slice_in_pic_flag) {
  2162. ret = hevc_frame_start(s);
  2163. if (ret < 0)
  2164. return ret;
  2165. } else if (!s->ref) {
  2166. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2167. goto fail;
  2168. }
  2169. if (s->nal_unit_type != s->first_nal_type) {
  2170. av_log(s->avctx, AV_LOG_ERROR,
  2171. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2172. s->first_nal_type, s->nal_unit_type);
  2173. return AVERROR_INVALIDDATA;
  2174. }
  2175. if (!s->sh.dependent_slice_segment_flag &&
  2176. s->sh.slice_type != I_SLICE) {
  2177. ret = ff_hevc_slice_rpl(s);
  2178. if (ret < 0) {
  2179. av_log(s->avctx, AV_LOG_WARNING,
  2180. "Error constructing the reference lists for the current slice.\n");
  2181. goto fail;
  2182. }
  2183. }
  2184. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2185. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2186. if (ret < 0)
  2187. goto fail;
  2188. }
  2189. if (s->avctx->hwaccel) {
  2190. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2191. if (ret < 0)
  2192. goto fail;
  2193. } else {
  2194. ctb_addr_ts = hls_slice_data(s);
  2195. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2196. s->is_decoded = 1;
  2197. if ((s->ps.pps->transquant_bypass_enable_flag ||
  2198. (s->ps.sps->pcm.loop_filter_disable_flag && s->ps.sps->pcm_enabled_flag)) &&
  2199. s->ps.sps->sao_enabled)
  2200. restore_tqb_pixels(s);
  2201. }
  2202. if (ctb_addr_ts < 0) {
  2203. ret = ctb_addr_ts;
  2204. goto fail;
  2205. }
  2206. }
  2207. break;
  2208. case NAL_EOS_NUT:
  2209. case NAL_EOB_NUT:
  2210. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2211. s->max_ra = INT_MAX;
  2212. break;
  2213. case NAL_AUD:
  2214. case NAL_FD_NUT:
  2215. break;
  2216. default:
  2217. av_log(s->avctx, AV_LOG_INFO,
  2218. "Skipping NAL unit %d\n", s->nal_unit_type);
  2219. }
  2220. return 0;
  2221. fail:
  2222. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2223. return ret;
  2224. return 0;
  2225. }
  2226. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2227. {
  2228. int i, ret = 0;
  2229. s->ref = NULL;
  2230. s->eos = 0;
  2231. /* split the input packet into NAL units, so we know the upper bound on the
  2232. * number of slices in the frame */
  2233. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2234. s->nal_length_size, s->avctx->codec_id);
  2235. if (ret < 0) {
  2236. av_log(s->avctx, AV_LOG_ERROR,
  2237. "Error splitting the input into NAL units.\n");
  2238. return ret;
  2239. }
  2240. for (i = 0; i < s->pkt.nb_nals; i++) {
  2241. if (s->pkt.nals[i].type == NAL_EOB_NUT ||
  2242. s->pkt.nals[i].type == NAL_EOS_NUT)
  2243. s->eos = 1;
  2244. }
  2245. /* decode the NAL units */
  2246. for (i = 0; i < s->pkt.nb_nals; i++) {
  2247. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2248. if (ret < 0) {
  2249. av_log(s->avctx, AV_LOG_WARNING,
  2250. "Error parsing NAL unit #%d.\n", i);
  2251. goto fail;
  2252. }
  2253. }
  2254. fail:
  2255. if (s->ref)
  2256. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2257. return ret;
  2258. }
  2259. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2260. {
  2261. int i;
  2262. for (i = 0; i < 16; i++)
  2263. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2264. }
  2265. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2266. {
  2267. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2268. int pixel_shift;
  2269. int i, j;
  2270. if (!desc)
  2271. return AVERROR(EINVAL);
  2272. pixel_shift = desc->comp[0].depth > 8;
  2273. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2274. s->poc);
  2275. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2276. * on BE arches */
  2277. #if HAVE_BIGENDIAN
  2278. if (pixel_shift && !s->checksum_buf) {
  2279. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2280. FFMAX3(frame->linesize[0], frame->linesize[1],
  2281. frame->linesize[2]));
  2282. if (!s->checksum_buf)
  2283. return AVERROR(ENOMEM);
  2284. }
  2285. #endif
  2286. for (i = 0; frame->data[i]; i++) {
  2287. int width = s->avctx->coded_width;
  2288. int height = s->avctx->coded_height;
  2289. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2290. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2291. uint8_t md5[16];
  2292. av_md5_init(s->md5_ctx);
  2293. for (j = 0; j < h; j++) {
  2294. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2295. #if HAVE_BIGENDIAN
  2296. if (pixel_shift) {
  2297. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2298. (const uint16_t *) src, w);
  2299. src = s->checksum_buf;
  2300. }
  2301. #endif
  2302. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2303. }
  2304. av_md5_final(s->md5_ctx, md5);
  2305. if (!memcmp(md5, s->md5[i], 16)) {
  2306. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2307. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2308. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2309. } else {
  2310. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2311. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2312. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2313. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2314. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2315. return AVERROR_INVALIDDATA;
  2316. }
  2317. }
  2318. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2319. return 0;
  2320. }
  2321. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2322. AVPacket *avpkt)
  2323. {
  2324. int ret;
  2325. HEVCContext *s = avctx->priv_data;
  2326. if (!avpkt->size) {
  2327. ret = ff_hevc_output_frame(s, data, 1);
  2328. if (ret < 0)
  2329. return ret;
  2330. *got_output = ret;
  2331. return 0;
  2332. }
  2333. s->ref = NULL;
  2334. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2335. if (ret < 0)
  2336. return ret;
  2337. if (avctx->hwaccel) {
  2338. if (s->ref && avctx->hwaccel->end_frame(avctx) < 0)
  2339. av_log(avctx, AV_LOG_ERROR,
  2340. "hardware accelerator failed to decode picture\n");
  2341. } else {
  2342. /* verify the SEI checksum */
  2343. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2344. s->is_md5) {
  2345. ret = verify_md5(s, s->ref->frame);
  2346. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2347. ff_hevc_unref_frame(s, s->ref, ~0);
  2348. return ret;
  2349. }
  2350. }
  2351. }
  2352. s->is_md5 = 0;
  2353. if (s->is_decoded) {
  2354. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2355. s->is_decoded = 0;
  2356. }
  2357. if (s->output_frame->buf[0]) {
  2358. av_frame_move_ref(data, s->output_frame);
  2359. *got_output = 1;
  2360. }
  2361. return avpkt->size;
  2362. }
  2363. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2364. {
  2365. int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2366. if (ret < 0)
  2367. return ret;
  2368. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2369. if (!dst->tab_mvf_buf)
  2370. goto fail;
  2371. dst->tab_mvf = src->tab_mvf;
  2372. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2373. if (!dst->rpl_tab_buf)
  2374. goto fail;
  2375. dst->rpl_tab = src->rpl_tab;
  2376. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2377. if (!dst->rpl_buf)
  2378. goto fail;
  2379. dst->poc = src->poc;
  2380. dst->ctb_count = src->ctb_count;
  2381. dst->window = src->window;
  2382. dst->flags = src->flags;
  2383. dst->sequence = src->sequence;
  2384. if (src->hwaccel_picture_private) {
  2385. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2386. if (!dst->hwaccel_priv_buf)
  2387. goto fail;
  2388. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2389. }
  2390. return 0;
  2391. fail:
  2392. ff_hevc_unref_frame(s, dst, ~0);
  2393. return AVERROR(ENOMEM);
  2394. }
  2395. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2396. {
  2397. HEVCContext *s = avctx->priv_data;
  2398. int i;
  2399. pic_arrays_free(s);
  2400. av_freep(&s->md5_ctx);
  2401. av_frame_free(&s->tmp_frame);
  2402. av_frame_free(&s->output_frame);
  2403. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2404. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2405. av_frame_free(&s->DPB[i].frame);
  2406. }
  2407. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2408. av_buffer_unref(&s->ps.vps_list[i]);
  2409. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2410. av_buffer_unref(&s->ps.sps_list[i]);
  2411. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2412. av_buffer_unref(&s->ps.pps_list[i]);
  2413. ff_h2645_packet_uninit(&s->pkt);
  2414. return 0;
  2415. }
  2416. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2417. {
  2418. HEVCContext *s = avctx->priv_data;
  2419. int i;
  2420. s->avctx = avctx;
  2421. s->tmp_frame = av_frame_alloc();
  2422. if (!s->tmp_frame)
  2423. goto fail;
  2424. s->output_frame = av_frame_alloc();
  2425. if (!s->output_frame)
  2426. goto fail;
  2427. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2428. s->DPB[i].frame = av_frame_alloc();
  2429. if (!s->DPB[i].frame)
  2430. goto fail;
  2431. s->DPB[i].tf.f = s->DPB[i].frame;
  2432. }
  2433. s->max_ra = INT_MAX;
  2434. s->md5_ctx = av_md5_alloc();
  2435. if (!s->md5_ctx)
  2436. goto fail;
  2437. ff_bswapdsp_init(&s->bdsp);
  2438. s->context_initialized = 1;
  2439. return 0;
  2440. fail:
  2441. hevc_decode_free(avctx);
  2442. return AVERROR(ENOMEM);
  2443. }
  2444. static int hevc_update_thread_context(AVCodecContext *dst,
  2445. const AVCodecContext *src)
  2446. {
  2447. HEVCContext *s = dst->priv_data;
  2448. HEVCContext *s0 = src->priv_data;
  2449. int i, ret;
  2450. if (!s->context_initialized) {
  2451. ret = hevc_init_context(dst);
  2452. if (ret < 0)
  2453. return ret;
  2454. }
  2455. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2456. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2457. if (s0->DPB[i].frame->buf[0]) {
  2458. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2459. if (ret < 0)
  2460. return ret;
  2461. }
  2462. }
  2463. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2464. av_buffer_unref(&s->ps.vps_list[i]);
  2465. if (s0->ps.vps_list[i]) {
  2466. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2467. if (!s->ps.vps_list[i])
  2468. return AVERROR(ENOMEM);
  2469. }
  2470. }
  2471. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2472. av_buffer_unref(&s->ps.sps_list[i]);
  2473. if (s0->ps.sps_list[i]) {
  2474. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2475. if (!s->ps.sps_list[i])
  2476. return AVERROR(ENOMEM);
  2477. }
  2478. }
  2479. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2480. av_buffer_unref(&s->ps.pps_list[i]);
  2481. if (s0->ps.pps_list[i]) {
  2482. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2483. if (!s->ps.pps_list[i])
  2484. return AVERROR(ENOMEM);
  2485. }
  2486. }
  2487. if (s->ps.sps != s0->ps.sps)
  2488. ret = set_sps(s, s0->ps.sps);
  2489. s->seq_decode = s0->seq_decode;
  2490. s->seq_output = s0->seq_output;
  2491. s->pocTid0 = s0->pocTid0;
  2492. s->max_ra = s0->max_ra;
  2493. s->is_nalff = s0->is_nalff;
  2494. s->nal_length_size = s0->nal_length_size;
  2495. if (s0->eos) {
  2496. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2497. s->max_ra = INT_MAX;
  2498. }
  2499. return 0;
  2500. }
  2501. static int hevc_decode_extradata(HEVCContext *s)
  2502. {
  2503. AVCodecContext *avctx = s->avctx;
  2504. GetByteContext gb;
  2505. int ret, i;
  2506. bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
  2507. if (avctx->extradata_size > 3 &&
  2508. (avctx->extradata[0] || avctx->extradata[1] ||
  2509. avctx->extradata[2] > 1)) {
  2510. /* It seems the extradata is encoded as hvcC format.
  2511. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2512. * is finalized. When finalized, configurationVersion will be 1 and we
  2513. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2514. int i, j, num_arrays, nal_len_size;
  2515. s->is_nalff = 1;
  2516. bytestream2_skip(&gb, 21);
  2517. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2518. num_arrays = bytestream2_get_byte(&gb);
  2519. /* nal units in the hvcC always have length coded with 2 bytes,
  2520. * so put a fake nal_length_size = 2 while parsing them */
  2521. s->nal_length_size = 2;
  2522. /* Decode nal units from hvcC. */
  2523. for (i = 0; i < num_arrays; i++) {
  2524. int type = bytestream2_get_byte(&gb) & 0x3f;
  2525. int cnt = bytestream2_get_be16(&gb);
  2526. for (j = 0; j < cnt; j++) {
  2527. // +2 for the nal size field
  2528. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2529. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2530. av_log(s->avctx, AV_LOG_ERROR,
  2531. "Invalid NAL unit size in extradata.\n");
  2532. return AVERROR_INVALIDDATA;
  2533. }
  2534. ret = decode_nal_units(s, gb.buffer, nalsize);
  2535. if (ret < 0) {
  2536. av_log(avctx, AV_LOG_ERROR,
  2537. "Decoding nal unit %d %d from hvcC failed\n",
  2538. type, i);
  2539. return ret;
  2540. }
  2541. bytestream2_skip(&gb, nalsize);
  2542. }
  2543. }
  2544. /* Now store right nal length size, that will be used to parse
  2545. * all other nals */
  2546. s->nal_length_size = nal_len_size;
  2547. } else {
  2548. s->is_nalff = 0;
  2549. ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
  2550. if (ret < 0)
  2551. return ret;
  2552. }
  2553. /* export stream parameters from the first SPS */
  2554. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2555. if (s->ps.sps_list[i]) {
  2556. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2557. export_stream_params(s->avctx, &s->ps, sps);
  2558. break;
  2559. }
  2560. }
  2561. return 0;
  2562. }
  2563. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2564. {
  2565. HEVCContext *s = avctx->priv_data;
  2566. int ret;
  2567. avctx->internal->allocate_progress = 1;
  2568. ret = hevc_init_context(avctx);
  2569. if (ret < 0)
  2570. return ret;
  2571. if (avctx->extradata_size > 0 && avctx->extradata) {
  2572. ret = hevc_decode_extradata(s);
  2573. if (ret < 0) {
  2574. hevc_decode_free(avctx);
  2575. return ret;
  2576. }
  2577. }
  2578. return 0;
  2579. }
  2580. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2581. {
  2582. HEVCContext *s = avctx->priv_data;
  2583. int ret;
  2584. memset(s, 0, sizeof(*s));
  2585. ret = hevc_init_context(avctx);
  2586. if (ret < 0)
  2587. return ret;
  2588. return 0;
  2589. }
  2590. static void hevc_decode_flush(AVCodecContext *avctx)
  2591. {
  2592. HEVCContext *s = avctx->priv_data;
  2593. ff_hevc_flush_dpb(s);
  2594. s->max_ra = INT_MAX;
  2595. }
  2596. #define OFFSET(x) offsetof(HEVCContext, x)
  2597. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2598. static const AVOption options[] = {
  2599. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2600. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  2601. { NULL },
  2602. };
  2603. static const AVClass hevc_decoder_class = {
  2604. .class_name = "HEVC decoder",
  2605. .item_name = av_default_item_name,
  2606. .option = options,
  2607. .version = LIBAVUTIL_VERSION_INT,
  2608. };
  2609. AVCodec ff_hevc_decoder = {
  2610. .name = "hevc",
  2611. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2612. .type = AVMEDIA_TYPE_VIDEO,
  2613. .id = AV_CODEC_ID_HEVC,
  2614. .priv_data_size = sizeof(HEVCContext),
  2615. .priv_class = &hevc_decoder_class,
  2616. .init = hevc_decode_init,
  2617. .close = hevc_decode_free,
  2618. .decode = hevc_decode_frame,
  2619. .flush = hevc_decode_flush,
  2620. .update_thread_context = hevc_update_thread_context,
  2621. .init_thread_copy = hevc_init_thread_copy,
  2622. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2623. AV_CODEC_CAP_FRAME_THREADS,
  2624. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2625. };