You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

806 lines
24KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG-4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264DEC_H
  27. #define AVCODEC_H264DEC_H
  28. #include "libavutil/buffer.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/thread.h"
  31. #include "cabac.h"
  32. #include "error_resilience.h"
  33. #include "h264_parse.h"
  34. #include "h264_ps.h"
  35. #include "h264_sei.h"
  36. #include "h2645_parse.h"
  37. #include "h264chroma.h"
  38. #include "h264dsp.h"
  39. #include "h264pred.h"
  40. #include "h264qpel.h"
  41. #include "internal.h"
  42. #include "mpegutils.h"
  43. #include "parser.h"
  44. #include "qpeldsp.h"
  45. #include "rectangle.h"
  46. #include "videodsp.h"
  47. #define H264_MAX_PICTURE_COUNT 32
  48. #define MAX_MMCO_COUNT 66
  49. #define MAX_DELAYED_PIC_COUNT 16
  50. /* Compiling in interlaced support reduces the speed
  51. * of progressive decoding by about 2%. */
  52. #define ALLOW_INTERLACE
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 32
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF(h) h->mb_mbaff
  61. #define MB_FIELD(h) h->mb_field_decoding_flag
  62. #define FRAME_MBAFF(h) h->mb_aff_frame
  63. #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
  64. #define LEFT_MBS 2
  65. #define LTOP 0
  66. #define LBOT 1
  67. #define LEFT(i) (i)
  68. #else
  69. #define MB_MBAFF(h) 0
  70. #define MB_FIELD(h) 0
  71. #define FRAME_MBAFF(h) 0
  72. #define FIELD_PICTURE(h) 0
  73. #undef IS_INTERLACED
  74. #define IS_INTERLACED(mb_type) 0
  75. #define LEFT_MBS 1
  76. #define LTOP 0
  77. #define LBOT 0
  78. #define LEFT(i) 0
  79. #endif
  80. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  81. #ifndef CABAC
  82. #define CABAC(h) h->ps.pps->cabac
  83. #endif
  84. #define CHROMA422(h) (h->ps.sps->chroma_format_idc == 2)
  85. #define CHROMA444(h) (h->ps.sps->chroma_format_idc == 3)
  86. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  87. #define MB_TYPE_8x8DCT 0x01000000
  88. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  89. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  90. /**
  91. * Memory management control operation opcode.
  92. */
  93. typedef enum MMCOOpcode {
  94. MMCO_END = 0,
  95. MMCO_SHORT2UNUSED,
  96. MMCO_LONG2UNUSED,
  97. MMCO_SHORT2LONG,
  98. MMCO_SET_MAX_LONG,
  99. MMCO_RESET,
  100. MMCO_LONG,
  101. } MMCOOpcode;
  102. /**
  103. * Memory management control operation.
  104. */
  105. typedef struct MMCO {
  106. MMCOOpcode opcode;
  107. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  108. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  109. } MMCO;
  110. typedef struct H264Picture {
  111. AVFrame *f;
  112. ThreadFrame tf;
  113. AVBufferRef *qscale_table_buf;
  114. int8_t *qscale_table;
  115. AVBufferRef *motion_val_buf[2];
  116. int16_t (*motion_val[2])[2];
  117. AVBufferRef *mb_type_buf;
  118. uint32_t *mb_type;
  119. AVBufferRef *hwaccel_priv_buf;
  120. void *hwaccel_picture_private; ///< hardware accelerator private data
  121. AVBufferRef *ref_index_buf[2];
  122. int8_t *ref_index[2];
  123. int field_poc[2]; ///< top/bottom POC
  124. int poc; ///< frame POC
  125. int frame_num; ///< frame_num (raw frame_num from slice header)
  126. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  127. not mix pictures before and after MMCO_RESET. */
  128. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  129. pic_num & max_pic_num; long -> long_pic_num) */
  130. int long_ref; ///< 1->long term reference 0->short term reference
  131. int ref_poc[2][2][32]; ///< POCs of the frames used as reference (FIXME need per slice)
  132. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  133. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  134. int field_picture; ///< whether or not picture was encoded in separate fields
  135. int reference;
  136. int recovered; ///< picture at IDR or recovery point + recovery count
  137. } H264Picture;
  138. typedef struct H264Ref {
  139. uint8_t *data[3];
  140. int linesize[3];
  141. int reference;
  142. int poc;
  143. int pic_id;
  144. H264Picture *parent;
  145. } H264Ref;
  146. typedef struct H264SliceContext {
  147. struct H264Context *h264;
  148. GetBitContext gb;
  149. ERContext er;
  150. int slice_num;
  151. int slice_type;
  152. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  153. int slice_type_fixed;
  154. int qscale;
  155. int chroma_qp[2]; // QPc
  156. int qp_thresh; ///< QP threshold to skip loopfilter
  157. int last_qscale_diff;
  158. // deblock
  159. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  160. int slice_alpha_c0_offset;
  161. int slice_beta_offset;
  162. H264PredWeightTable pwt;
  163. int prev_mb_skipped;
  164. int next_mb_skipped;
  165. int chroma_pred_mode;
  166. int intra16x16_pred_mode;
  167. int8_t intra4x4_pred_mode_cache[5 * 8];
  168. int8_t(*intra4x4_pred_mode);
  169. int topleft_mb_xy;
  170. int top_mb_xy;
  171. int topright_mb_xy;
  172. int left_mb_xy[LEFT_MBS];
  173. int topleft_type;
  174. int top_type;
  175. int topright_type;
  176. int left_type[LEFT_MBS];
  177. const uint8_t *left_block;
  178. int topleft_partition;
  179. unsigned int topleft_samples_available;
  180. unsigned int top_samples_available;
  181. unsigned int topright_samples_available;
  182. unsigned int left_samples_available;
  183. ptrdiff_t linesize, uvlinesize;
  184. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  185. ptrdiff_t mb_uvlinesize;
  186. int mb_x, mb_y;
  187. int mb_xy;
  188. int resync_mb_x;
  189. int resync_mb_y;
  190. unsigned int first_mb_addr;
  191. // index of the first MB of the next slice
  192. int next_slice_idx;
  193. int mb_skip_run;
  194. int is_complex;
  195. int picture_structure;
  196. int mb_field_decoding_flag;
  197. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  198. int redundant_pic_count;
  199. /**
  200. * number of neighbors (top and/or left) that used 8x8 dct
  201. */
  202. int neighbor_transform_size;
  203. int direct_spatial_mv_pred;
  204. int col_parity;
  205. int col_fieldoff;
  206. int cbp;
  207. int top_cbp;
  208. int left_cbp;
  209. int dist_scale_factor[32];
  210. int dist_scale_factor_field[2][32];
  211. int map_col_to_list0[2][16 + 32];
  212. int map_col_to_list0_field[2][2][16 + 32];
  213. /**
  214. * num_ref_idx_l0/1_active_minus1 + 1
  215. */
  216. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  217. unsigned int list_count;
  218. H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  219. * Reordered version of default_ref_list
  220. * according to picture reordering in slice header */
  221. struct {
  222. uint8_t op;
  223. uint8_t val;
  224. } ref_modifications[2][32];
  225. int nb_ref_modifications[2];
  226. unsigned int pps_id;
  227. const uint8_t *intra_pcm_ptr;
  228. int16_t *dc_val_base;
  229. uint8_t *bipred_scratchpad;
  230. uint8_t *edge_emu_buffer;
  231. uint8_t (*top_borders[2])[(16 * 3) * 2];
  232. int bipred_scratchpad_allocated;
  233. int edge_emu_buffer_allocated;
  234. int top_borders_allocated[2];
  235. /**
  236. * non zero coeff count cache.
  237. * is 64 if not available.
  238. */
  239. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  240. /**
  241. * Motion vector cache.
  242. */
  243. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  244. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  245. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  246. uint8_t direct_cache[5 * 8];
  247. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  248. ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
  249. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  250. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  251. ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
  252. ///< check that i is not too large or ensure that there is some unused stuff after mb
  253. int16_t mb_padding[256 * 2];
  254. uint8_t (*mvd_table[2])[2];
  255. /**
  256. * Cabac
  257. */
  258. CABACContext cabac;
  259. uint8_t cabac_state[1024];
  260. int cabac_init_idc;
  261. MMCO mmco[MAX_MMCO_COUNT];
  262. int nb_mmco;
  263. int explicit_ref_marking;
  264. int frame_num;
  265. int poc_lsb;
  266. int delta_poc_bottom;
  267. int delta_poc[2];
  268. int curr_pic_num;
  269. int max_pic_num;
  270. } H264SliceContext;
  271. /**
  272. * H264Context
  273. */
  274. typedef struct H264Context {
  275. const AVClass *class;
  276. AVCodecContext *avctx;
  277. VideoDSPContext vdsp;
  278. H264DSPContext h264dsp;
  279. H264ChromaContext h264chroma;
  280. H264QpelContext h264qpel;
  281. H264Picture DPB[H264_MAX_PICTURE_COUNT];
  282. H264Picture *cur_pic_ptr;
  283. H264Picture cur_pic;
  284. H264SliceContext *slice_ctx;
  285. int nb_slice_ctx;
  286. H2645Packet pkt;
  287. int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
  288. /* coded dimensions -- 16 * mb w/h */
  289. int width, height;
  290. int chroma_x_shift, chroma_y_shift;
  291. int droppable;
  292. int coded_picture_number;
  293. int context_initialized;
  294. int flags;
  295. int workaround_bugs;
  296. /* Set when slice threading is used and at least one slice uses deblocking
  297. * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
  298. * during normal MB decoding and execute it serially at the end.
  299. */
  300. int postpone_filter;
  301. /*
  302. * Set to 1 when the current picture is IDR, 0 otherwise.
  303. */
  304. int picture_idr;
  305. int8_t(*intra4x4_pred_mode);
  306. H264PredContext hpc;
  307. uint8_t (*non_zero_count)[48];
  308. #define LIST_NOT_USED -1 // FIXME rename?
  309. #define PART_NOT_AVAILABLE -2
  310. /**
  311. * block_offset[ 0..23] for frame macroblocks
  312. * block_offset[24..47] for field macroblocks
  313. */
  314. int block_offset[2 * (16 * 3)];
  315. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  316. uint32_t *mb2br_xy;
  317. int b_stride; // FIXME use s->b4_stride
  318. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  319. // interlacing specific flags
  320. int mb_aff_frame;
  321. int picture_structure;
  322. int first_field;
  323. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  324. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  325. uint16_t *cbp_table;
  326. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  327. uint8_t *chroma_pred_mode_table;
  328. uint8_t (*mvd_table[2])[2];
  329. uint8_t *direct_table;
  330. uint8_t zigzag_scan[16];
  331. uint8_t zigzag_scan8x8[64];
  332. uint8_t zigzag_scan8x8_cavlc[64];
  333. uint8_t field_scan[16];
  334. uint8_t field_scan8x8[64];
  335. uint8_t field_scan8x8_cavlc[64];
  336. const uint8_t *zigzag_scan_q0;
  337. const uint8_t *zigzag_scan8x8_q0;
  338. const uint8_t *zigzag_scan8x8_cavlc_q0;
  339. const uint8_t *field_scan_q0;
  340. const uint8_t *field_scan8x8_q0;
  341. const uint8_t *field_scan8x8_cavlc_q0;
  342. int mb_y;
  343. int mb_height, mb_width;
  344. int mb_stride;
  345. int mb_num;
  346. // =============================================================
  347. // Things below are not used in the MB or more inner code
  348. int nal_ref_idc;
  349. int nal_unit_type;
  350. /**
  351. * Used to parse AVC variant of H.264
  352. */
  353. int is_avc; ///< this flag is != 0 if codec is avc1
  354. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  355. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  356. int chroma_format_idc; ///< chroma format from sps to detect changes
  357. H264ParamSets ps;
  358. uint16_t *slice_table_base;
  359. H264POCContext poc;
  360. H264Picture *short_ref[32];
  361. H264Picture *long_ref[32];
  362. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  363. int last_pocs[MAX_DELAYED_PIC_COUNT];
  364. H264Picture *next_output_pic;
  365. int next_outputed_poc;
  366. /**
  367. * memory management control operations buffer.
  368. */
  369. MMCO mmco[MAX_MMCO_COUNT];
  370. int nb_mmco;
  371. int mmco_reset;
  372. int explicit_ref_marking;
  373. int long_ref_count; ///< number of actual long term references
  374. int short_ref_count; ///< number of actual short term references
  375. /**
  376. * @name Members for slice based multithreading
  377. * @{
  378. */
  379. /**
  380. * current slice number, used to initialize slice_num of each thread/context
  381. */
  382. int current_slice;
  383. /** @} */
  384. /**
  385. * Complement sei_pic_struct
  386. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  387. * However, soft telecined frames may have these values.
  388. * This is used in an attempt to flag soft telecine progressive.
  389. */
  390. int prev_interlaced_frame;
  391. /**
  392. * recovery_frame is the frame_num at which the next frame should
  393. * be fully constructed.
  394. *
  395. * Set to -1 when not expecting a recovery point.
  396. */
  397. int recovery_frame;
  398. /**
  399. * We have seen an IDR, so all the following frames in coded order are correctly
  400. * decodable.
  401. */
  402. #define FRAME_RECOVERED_IDR (1 << 0)
  403. /**
  404. * Sufficient number of frames have been decoded since a SEI recovery point,
  405. * so all the following frames in presentation order are correct.
  406. */
  407. #define FRAME_RECOVERED_SEI (1 << 1)
  408. int frame_recovered; ///< Initial frame has been completely recovered
  409. /* for frame threading, this is set to 1
  410. * after finish_setup() has been called, so we cannot modify
  411. * some context properties (which are supposed to stay constant between
  412. * slices) anymore */
  413. int setup_finished;
  414. int enable_er;
  415. H264SEIContext sei;
  416. AVBufferPool *qscale_table_pool;
  417. AVBufferPool *mb_type_pool;
  418. AVBufferPool *motion_val_pool;
  419. AVBufferPool *ref_index_pool;
  420. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  421. } H264Context;
  422. extern const uint16_t ff_h264_mb_sizes[4];
  423. /**
  424. * Reconstruct bitstream slice_type.
  425. */
  426. int ff_h264_get_slice_type(const H264SliceContext *sl);
  427. /**
  428. * Allocate tables.
  429. * needs width/height
  430. */
  431. int ff_h264_alloc_tables(H264Context *h);
  432. int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
  433. int ff_h264_build_ref_list(const H264Context *h, H264SliceContext *sl);
  434. void ff_h264_remove_all_refs(H264Context *h);
  435. /**
  436. * Execute the reference picture marking (memory management control operations).
  437. */
  438. int ff_h264_execute_ref_pic_marking(H264Context *h);
  439. int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
  440. const H2645NAL *nal, void *logctx);
  441. void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
  442. int ff_h264_decode_init(AVCodecContext *avctx);
  443. void ff_h264_decode_init_vlc(void);
  444. /**
  445. * Decode a macroblock
  446. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  447. */
  448. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
  449. /**
  450. * Decode a CABAC coded macroblock
  451. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  452. */
  453. int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
  454. void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
  455. void ff_h264_init_dequant_tables(H264Context *h);
  456. void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
  457. void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
  458. void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
  459. int *mb_type);
  460. void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  461. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  462. unsigned int linesize, unsigned int uvlinesize);
  463. void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  464. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  465. unsigned int linesize, unsigned int uvlinesize);
  466. /*
  467. * o-o o-o
  468. * / / /
  469. * o-o o-o
  470. * ,---'
  471. * o-o o-o
  472. * / / /
  473. * o-o o-o
  474. */
  475. /* Scan8 organization:
  476. * 0 1 2 3 4 5 6 7
  477. * 0 DY y y y y y
  478. * 1 y Y Y Y Y
  479. * 2 y Y Y Y Y
  480. * 3 y Y Y Y Y
  481. * 4 y Y Y Y Y
  482. * 5 DU u u u u u
  483. * 6 u U U U U
  484. * 7 u U U U U
  485. * 8 u U U U U
  486. * 9 u U U U U
  487. * 10 DV v v v v v
  488. * 11 v V V V V
  489. * 12 v V V V V
  490. * 13 v V V V V
  491. * 14 v V V V V
  492. * DY/DU/DV are for luma/chroma DC.
  493. */
  494. #define LUMA_DC_BLOCK_INDEX 48
  495. #define CHROMA_DC_BLOCK_INDEX 49
  496. // This table must be here because scan8[constant] must be known at compiletime
  497. static const uint8_t scan8[16 * 3 + 3] = {
  498. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  499. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  500. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  501. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  502. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  503. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  504. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  505. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  506. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  507. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  508. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  509. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  510. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  511. };
  512. static av_always_inline uint32_t pack16to32(int a, int b)
  513. {
  514. #if HAVE_BIGENDIAN
  515. return (b & 0xFFFF) + (a << 16);
  516. #else
  517. return (a & 0xFFFF) + (b << 16);
  518. #endif
  519. }
  520. static av_always_inline uint16_t pack8to16(int a, int b)
  521. {
  522. #if HAVE_BIGENDIAN
  523. return (b & 0xFF) + (a << 8);
  524. #else
  525. return (a & 0xFF) + (b << 8);
  526. #endif
  527. }
  528. /**
  529. * Get the chroma qp.
  530. */
  531. static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
  532. {
  533. return pps->chroma_qp_table[t][qscale];
  534. }
  535. /**
  536. * Get the predicted intra4x4 prediction mode.
  537. */
  538. static av_always_inline int pred_intra_mode(const H264Context *h,
  539. H264SliceContext *sl, int n)
  540. {
  541. const int index8 = scan8[n];
  542. const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
  543. const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
  544. const int min = FFMIN(left, top);
  545. ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  546. if (min < 0)
  547. return DC_PRED;
  548. else
  549. return min;
  550. }
  551. static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
  552. H264SliceContext *sl)
  553. {
  554. int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
  555. int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
  556. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  557. i4x4[4] = i4x4_cache[7 + 8 * 3];
  558. i4x4[5] = i4x4_cache[7 + 8 * 2];
  559. i4x4[6] = i4x4_cache[7 + 8 * 1];
  560. }
  561. static av_always_inline void write_back_non_zero_count(const H264Context *h,
  562. H264SliceContext *sl)
  563. {
  564. const int mb_xy = sl->mb_xy;
  565. uint8_t *nnz = h->non_zero_count[mb_xy];
  566. uint8_t *nnz_cache = sl->non_zero_count_cache;
  567. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  568. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  569. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  570. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  571. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  572. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  573. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  574. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  575. if (!h->chroma_y_shift) {
  576. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  577. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  578. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  579. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  580. }
  581. }
  582. static av_always_inline void write_back_motion_list(const H264Context *h,
  583. H264SliceContext *sl,
  584. int b_stride,
  585. int b_xy, int b8_xy,
  586. int mb_type, int list)
  587. {
  588. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  589. int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
  590. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  591. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  592. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  593. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  594. if (CABAC(h)) {
  595. uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
  596. : h->mb2br_xy[sl->mb_xy]];
  597. uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
  598. if (IS_SKIP(mb_type)) {
  599. AV_ZERO128(mvd_dst);
  600. } else {
  601. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  602. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  603. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  604. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  605. }
  606. }
  607. {
  608. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  609. int8_t *ref_cache = sl->ref_cache[list];
  610. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  611. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  612. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  613. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  614. }
  615. }
  616. static av_always_inline void write_back_motion(const H264Context *h,
  617. H264SliceContext *sl,
  618. int mb_type)
  619. {
  620. const int b_stride = h->b_stride;
  621. const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
  622. const int b8_xy = 4 * sl->mb_xy;
  623. if (USES_LIST(mb_type, 0)) {
  624. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
  625. } else {
  626. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  627. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  628. }
  629. if (USES_LIST(mb_type, 1))
  630. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
  631. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  632. if (IS_8X8(mb_type)) {
  633. uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
  634. direct_table[1] = sl->sub_mb_type[1] >> 1;
  635. direct_table[2] = sl->sub_mb_type[2] >> 1;
  636. direct_table[3] = sl->sub_mb_type[3] >> 1;
  637. }
  638. }
  639. }
  640. static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
  641. {
  642. if (h->ps.sps->direct_8x8_inference_flag)
  643. return !(AV_RN64A(sl->sub_mb_type) &
  644. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  645. 0x0001000100010001ULL));
  646. else
  647. return !(AV_RN64A(sl->sub_mb_type) &
  648. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  649. 0x0001000100010001ULL));
  650. }
  651. int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
  652. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  653. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  654. int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
  655. void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
  656. int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl,
  657. const H2645NAL *nal);
  658. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
  659. int ff_h264_update_thread_context(AVCodecContext *dst,
  660. const AVCodecContext *src);
  661. void ff_h264_flush_change(H264Context *h);
  662. void ff_h264_free_tables(H264Context *h);
  663. #endif /* AVCODEC_H264DEC_H */