|
- /*
- * ATRAC3 compatible decoder
- * Copyright (c) 2006-2008 Maxim Poliakovski
- * Copyright (c) 2006-2008 Benjamin Larsson
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * ATRAC3 compatible decoder.
- * This decoder handles Sony's ATRAC3 data.
- *
- * Container formats used to store ATRAC3 data:
- * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
- *
- * To use this decoder, a calling application must supply the extradata
- * bytes provided in the containers above.
- */
-
- #include <math.h>
- #include <stddef.h>
- #include <stdio.h>
-
- #include "libavutil/attributes.h"
- #include "libavutil/float_dsp.h"
- #include "avcodec.h"
- #include "bytestream.h"
- #include "fft.h"
- #include "get_bits.h"
- #include "internal.h"
-
- #include "atrac.h"
- #include "atrac3data.h"
-
- #define JOINT_STEREO 0x12
- #define STEREO 0x2
-
- #define SAMPLES_PER_FRAME 1024
- #define MDCT_SIZE 512
-
- typedef struct GainBlock {
- AtracGainInfo g_block[4];
- } GainBlock;
-
- typedef struct TonalComponent {
- int pos;
- int num_coefs;
- float coef[8];
- } TonalComponent;
-
- typedef struct ChannelUnit {
- int bands_coded;
- int num_components;
- float prev_frame[SAMPLES_PER_FRAME];
- int gc_blk_switch;
- TonalComponent components[64];
- GainBlock gain_block[2];
-
- DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME];
- DECLARE_ALIGNED(32, float, imdct_buf)[SAMPLES_PER_FRAME];
-
- float delay_buf1[46]; ///<qmf delay buffers
- float delay_buf2[46];
- float delay_buf3[46];
- } ChannelUnit;
-
- typedef struct ATRAC3Context {
- GetBitContext gb;
- //@{
- /** stream data */
- int coding_mode;
-
- ChannelUnit *units;
- //@}
- //@{
- /** joint-stereo related variables */
- int matrix_coeff_index_prev[4];
- int matrix_coeff_index_now[4];
- int matrix_coeff_index_next[4];
- int weighting_delay[6];
- //@}
- //@{
- /** data buffers */
- uint8_t *decoded_bytes_buffer;
- float temp_buf[1070];
- //@}
- //@{
- /** extradata */
- int scrambled_stream;
- //@}
-
- AtracGCContext gainc_ctx;
- FFTContext mdct_ctx;
- AVFloatDSPContext fdsp;
- } ATRAC3Context;
-
- static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE];
- static VLC_TYPE atrac3_vlc_table[4096][2];
- static VLC spectral_coeff_tab[7];
-
- /**
- * Regular 512 points IMDCT without overlapping, with the exception of the
- * swapping of odd bands caused by the reverse spectra of the QMF.
- *
- * @param odd_band 1 if the band is an odd band
- */
- static void imlt(ATRAC3Context *q, float *input, float *output, int odd_band)
- {
- int i;
-
- if (odd_band) {
- /**
- * Reverse the odd bands before IMDCT, this is an effect of the QMF
- * transform or it gives better compression to do it this way.
- * FIXME: It should be possible to handle this in imdct_calc
- * for that to happen a modification of the prerotation step of
- * all SIMD code and C code is needed.
- * Or fix the functions before so they generate a pre reversed spectrum.
- */
- for (i = 0; i < 128; i++)
- FFSWAP(float, input[i], input[255 - i]);
- }
-
- q->mdct_ctx.imdct_calc(&q->mdct_ctx, output, input);
-
- /* Perform windowing on the output. */
- q->fdsp.vector_fmul(output, output, mdct_window, MDCT_SIZE);
- }
-
- /*
- * indata descrambling, only used for data coming from the rm container
- */
- static int decode_bytes(const uint8_t *input, uint8_t *out, int bytes)
- {
- int i, off;
- uint32_t c;
- const uint32_t *buf;
- uint32_t *output = (uint32_t *)out;
-
- off = (intptr_t)input & 3;
- buf = (const uint32_t *)(input - off);
- if (off)
- c = av_be2ne32((0x537F6103U >> (off * 8)) | (0x537F6103U << (32 - (off * 8))));
- else
- c = av_be2ne32(0x537F6103U);
- bytes += 3 + off;
- for (i = 0; i < bytes / 4; i++)
- output[i] = c ^ buf[i];
-
- if (off)
- avpriv_request_sample(NULL, "Offset of %d", off);
-
- return off;
- }
-
- static av_cold void init_imdct_window(void)
- {
- int i, j;
-
- /* generate the mdct window, for details see
- * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
- for (i = 0, j = 255; i < 128; i++, j--) {
- float wi = sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0;
- float wj = sin(((j + 0.5) / 256.0 - 0.5) * M_PI) + 1.0;
- float w = 0.5 * (wi * wi + wj * wj);
- mdct_window[i] = mdct_window[511 - i] = wi / w;
- mdct_window[j] = mdct_window[511 - j] = wj / w;
- }
- }
-
- static av_cold int atrac3_decode_close(AVCodecContext *avctx)
- {
- ATRAC3Context *q = avctx->priv_data;
-
- av_free(q->units);
- av_free(q->decoded_bytes_buffer);
-
- ff_mdct_end(&q->mdct_ctx);
-
- return 0;
- }
-
- /**
- * Mantissa decoding
- *
- * @param selector which table the output values are coded with
- * @param coding_flag constant length coding or variable length coding
- * @param mantissas mantissa output table
- * @param num_codes number of values to get
- */
- static void read_quant_spectral_coeffs(GetBitContext *gb, int selector,
- int coding_flag, int *mantissas,
- int num_codes)
- {
- int i, code, huff_symb;
-
- if (selector == 1)
- num_codes /= 2;
-
- if (coding_flag != 0) {
- /* constant length coding (CLC) */
- int num_bits = clc_length_tab[selector];
-
- if (selector > 1) {
- for (i = 0; i < num_codes; i++) {
- if (num_bits)
- code = get_sbits(gb, num_bits);
- else
- code = 0;
- mantissas[i] = code;
- }
- } else {
- for (i = 0; i < num_codes; i++) {
- if (num_bits)
- code = get_bits(gb, num_bits); // num_bits is always 4 in this case
- else
- code = 0;
- mantissas[i * 2 ] = mantissa_clc_tab[code >> 2];
- mantissas[i * 2 + 1] = mantissa_clc_tab[code & 3];
- }
- }
- } else {
- /* variable length coding (VLC) */
- if (selector != 1) {
- for (i = 0; i < num_codes; i++) {
- huff_symb = get_vlc2(gb, spectral_coeff_tab[selector-1].table,
- spectral_coeff_tab[selector-1].bits, 3);
- huff_symb += 1;
- code = huff_symb >> 1;
- if (huff_symb & 1)
- code = -code;
- mantissas[i] = code;
- }
- } else {
- for (i = 0; i < num_codes; i++) {
- huff_symb = get_vlc2(gb, spectral_coeff_tab[selector - 1].table,
- spectral_coeff_tab[selector - 1].bits, 3);
- mantissas[i * 2 ] = mantissa_vlc_tab[huff_symb * 2 ];
- mantissas[i * 2 + 1] = mantissa_vlc_tab[huff_symb * 2 + 1];
- }
- }
- }
- }
-
- /**
- * Restore the quantized band spectrum coefficients
- *
- * @return subband count, fix for broken specification/files
- */
- static int decode_spectrum(GetBitContext *gb, float *output)
- {
- int num_subbands, coding_mode, i, j, first, last, subband_size;
- int subband_vlc_index[32], sf_index[32];
- int mantissas[128];
- float scale_factor;
-
- num_subbands = get_bits(gb, 5); // number of coded subbands
- coding_mode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
-
- /* get the VLC selector table for the subbands, 0 means not coded */
- for (i = 0; i <= num_subbands; i++)
- subband_vlc_index[i] = get_bits(gb, 3);
-
- /* read the scale factor indexes from the stream */
- for (i = 0; i <= num_subbands; i++) {
- if (subband_vlc_index[i] != 0)
- sf_index[i] = get_bits(gb, 6);
- }
-
- for (i = 0; i <= num_subbands; i++) {
- first = subband_tab[i ];
- last = subband_tab[i + 1];
-
- subband_size = last - first;
-
- if (subband_vlc_index[i] != 0) {
- /* decode spectral coefficients for this subband */
- /* TODO: This can be done faster is several blocks share the
- * same VLC selector (subband_vlc_index) */
- read_quant_spectral_coeffs(gb, subband_vlc_index[i], coding_mode,
- mantissas, subband_size);
-
- /* decode the scale factor for this subband */
- scale_factor = ff_atrac_sf_table[sf_index[i]] *
- inv_max_quant[subband_vlc_index[i]];
-
- /* inverse quantize the coefficients */
- for (j = 0; first < last; first++, j++)
- output[first] = mantissas[j] * scale_factor;
- } else {
- /* this subband was not coded, so zero the entire subband */
- memset(output + first, 0, subband_size * sizeof(*output));
- }
- }
-
- /* clear the subbands that were not coded */
- first = subband_tab[i];
- memset(output + first, 0, (SAMPLES_PER_FRAME - first) * sizeof(*output));
- return num_subbands;
- }
-
- /**
- * Restore the quantized tonal components
- *
- * @param components tonal components
- * @param num_bands number of coded bands
- */
- static int decode_tonal_components(GetBitContext *gb,
- TonalComponent *components, int num_bands)
- {
- int i, b, c, m;
- int nb_components, coding_mode_selector, coding_mode;
- int band_flags[4], mantissa[8];
- int component_count = 0;
-
- nb_components = get_bits(gb, 5);
-
- /* no tonal components */
- if (nb_components == 0)
- return 0;
-
- coding_mode_selector = get_bits(gb, 2);
- if (coding_mode_selector == 2)
- return AVERROR_INVALIDDATA;
-
- coding_mode = coding_mode_selector & 1;
-
- for (i = 0; i < nb_components; i++) {
- int coded_values_per_component, quant_step_index;
-
- for (b = 0; b <= num_bands; b++)
- band_flags[b] = get_bits1(gb);
-
- coded_values_per_component = get_bits(gb, 3);
-
- quant_step_index = get_bits(gb, 3);
- if (quant_step_index <= 1)
- return AVERROR_INVALIDDATA;
-
- if (coding_mode_selector == 3)
- coding_mode = get_bits1(gb);
-
- for (b = 0; b < (num_bands + 1) * 4; b++) {
- int coded_components;
-
- if (band_flags[b >> 2] == 0)
- continue;
-
- coded_components = get_bits(gb, 3);
-
- for (c = 0; c < coded_components; c++) {
- TonalComponent *cmp = &components[component_count];
- int sf_index, coded_values, max_coded_values;
- float scale_factor;
-
- sf_index = get_bits(gb, 6);
- if (component_count >= 64)
- return AVERROR_INVALIDDATA;
-
- cmp->pos = b * 64 + get_bits(gb, 6);
-
- max_coded_values = SAMPLES_PER_FRAME - cmp->pos;
- coded_values = coded_values_per_component + 1;
- coded_values = FFMIN(max_coded_values, coded_values);
-
- scale_factor = ff_atrac_sf_table[sf_index] *
- inv_max_quant[quant_step_index];
-
- read_quant_spectral_coeffs(gb, quant_step_index, coding_mode,
- mantissa, coded_values);
-
- cmp->num_coefs = coded_values;
-
- /* inverse quant */
- for (m = 0; m < coded_values; m++)
- cmp->coef[m] = mantissa[m] * scale_factor;
-
- component_count++;
- }
- }
- }
-
- return component_count;
- }
-
- /**
- * Decode gain parameters for the coded bands
- *
- * @param block the gainblock for the current band
- * @param num_bands amount of coded bands
- */
- static int decode_gain_control(GetBitContext *gb, GainBlock *block,
- int num_bands)
- {
- int i, j;
- int *level, *loc;
-
- AtracGainInfo *gain = block->g_block;
-
- for (i = 0; i <= num_bands; i++) {
- gain[i].num_points = get_bits(gb, 3);
- level = gain[i].lev_code;
- loc = gain[i].loc_code;
-
- for (j = 0; j < gain[i].num_points; j++) {
- level[j] = get_bits(gb, 4);
- loc[j] = get_bits(gb, 5);
- if (j && loc[j] <= loc[j - 1])
- return AVERROR_INVALIDDATA;
- }
- }
-
- /* Clear the unused blocks. */
- for (; i < 4 ; i++)
- gain[i].num_points = 0;
-
- return 0;
- }
-
- /**
- * Combine the tonal band spectrum and regular band spectrum
- *
- * @param spectrum output spectrum buffer
- * @param num_components number of tonal components
- * @param components tonal components for this band
- * @return position of the last tonal coefficient
- */
- static int add_tonal_components(float *spectrum, int num_components,
- TonalComponent *components)
- {
- int i, j, last_pos = -1;
- float *input, *output;
-
- for (i = 0; i < num_components; i++) {
- last_pos = FFMAX(components[i].pos + components[i].num_coefs, last_pos);
- input = components[i].coef;
- output = &spectrum[components[i].pos];
-
- for (j = 0; j < components[i].num_coefs; j++)
- output[j] += input[j];
- }
-
- return last_pos;
- }
-
- #define INTERPOLATE(old, new, nsample) \
- ((old) + (nsample) * 0.125 * ((new) - (old)))
-
- static void reverse_matrixing(float *su1, float *su2, int *prev_code,
- int *curr_code)
- {
- int i, nsample, band;
- float mc1_l, mc1_r, mc2_l, mc2_r;
-
- for (i = 0, band = 0; band < 4 * 256; band += 256, i++) {
- int s1 = prev_code[i];
- int s2 = curr_code[i];
- nsample = band;
-
- if (s1 != s2) {
- /* Selector value changed, interpolation needed. */
- mc1_l = matrix_coeffs[s1 * 2 ];
- mc1_r = matrix_coeffs[s1 * 2 + 1];
- mc2_l = matrix_coeffs[s2 * 2 ];
- mc2_r = matrix_coeffs[s2 * 2 + 1];
-
- /* Interpolation is done over the first eight samples. */
- for (; nsample < band + 8; nsample++) {
- float c1 = su1[nsample];
- float c2 = su2[nsample];
- c2 = c1 * INTERPOLATE(mc1_l, mc2_l, nsample - band) +
- c2 * INTERPOLATE(mc1_r, mc2_r, nsample - band);
- su1[nsample] = c2;
- su2[nsample] = c1 * 2.0 - c2;
- }
- }
-
- /* Apply the matrix without interpolation. */
- switch (s2) {
- case 0: /* M/S decoding */
- for (; nsample < band + 256; nsample++) {
- float c1 = su1[nsample];
- float c2 = su2[nsample];
- su1[nsample] = c2 * 2.0;
- su2[nsample] = (c1 - c2) * 2.0;
- }
- break;
- case 1:
- for (; nsample < band + 256; nsample++) {
- float c1 = su1[nsample];
- float c2 = su2[nsample];
- su1[nsample] = (c1 + c2) * 2.0;
- su2[nsample] = c2 * -2.0;
- }
- break;
- case 2:
- case 3:
- for (; nsample < band + 256; nsample++) {
- float c1 = su1[nsample];
- float c2 = su2[nsample];
- su1[nsample] = c1 + c2;
- su2[nsample] = c1 - c2;
- }
- break;
- default:
- assert(0);
- }
- }
- }
-
- static void get_channel_weights(int index, int flag, float ch[2])
- {
- if (index == 7) {
- ch[0] = 1.0;
- ch[1] = 1.0;
- } else {
- ch[0] = (index & 7) / 7.0;
- ch[1] = sqrt(2 - ch[0] * ch[0]);
- if (flag)
- FFSWAP(float, ch[0], ch[1]);
- }
- }
-
- static void channel_weighting(float *su1, float *su2, int *p3)
- {
- int band, nsample;
- /* w[x][y] y=0 is left y=1 is right */
- float w[2][2];
-
- if (p3[1] != 7 || p3[3] != 7) {
- get_channel_weights(p3[1], p3[0], w[0]);
- get_channel_weights(p3[3], p3[2], w[1]);
-
- for (band = 256; band < 4 * 256; band += 256) {
- for (nsample = band; nsample < band + 8; nsample++) {
- su1[nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample - band);
- su2[nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample - band);
- }
- for(; nsample < band + 256; nsample++) {
- su1[nsample] *= w[1][0];
- su2[nsample] *= w[1][1];
- }
- }
- }
- }
-
- /**
- * Decode a Sound Unit
- *
- * @param snd the channel unit to be used
- * @param output the decoded samples before IQMF in float representation
- * @param channel_num channel number
- * @param coding_mode the coding mode (JOINT_STEREO or regular stereo/mono)
- */
- static int decode_channel_sound_unit(ATRAC3Context *q, GetBitContext *gb,
- ChannelUnit *snd, float *output,
- int channel_num, int coding_mode)
- {
- int band, ret, num_subbands, last_tonal, num_bands;
- GainBlock *gain1 = &snd->gain_block[ snd->gc_blk_switch];
- GainBlock *gain2 = &snd->gain_block[1 - snd->gc_blk_switch];
-
- if (coding_mode == JOINT_STEREO && channel_num == 1) {
- if (get_bits(gb, 2) != 3) {
- av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
- return AVERROR_INVALIDDATA;
- }
- } else {
- if (get_bits(gb, 6) != 0x28) {
- av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
- return AVERROR_INVALIDDATA;
- }
- }
-
- /* number of coded QMF bands */
- snd->bands_coded = get_bits(gb, 2);
-
- ret = decode_gain_control(gb, gain2, snd->bands_coded);
- if (ret)
- return ret;
-
- snd->num_components = decode_tonal_components(gb, snd->components,
- snd->bands_coded);
- if (snd->num_components < 0)
- return snd->num_components;
-
- num_subbands = decode_spectrum(gb, snd->spectrum);
-
- /* Merge the decoded spectrum and tonal components. */
- last_tonal = add_tonal_components(snd->spectrum, snd->num_components,
- snd->components);
-
-
- /* calculate number of used MLT/QMF bands according to the amount of coded
- spectral lines */
- num_bands = (subband_tab[num_subbands] - 1) >> 8;
- if (last_tonal >= 0)
- num_bands = FFMAX((last_tonal + 256) >> 8, num_bands);
-
-
- /* Reconstruct time domain samples. */
- for (band = 0; band < 4; band++) {
- /* Perform the IMDCT step without overlapping. */
- if (band <= num_bands)
- imlt(q, &snd->spectrum[band * 256], snd->imdct_buf, band & 1);
- else
- memset(snd->imdct_buf, 0, 512 * sizeof(*snd->imdct_buf));
-
- /* gain compensation and overlapping */
- ff_atrac_gain_compensation(&q->gainc_ctx, snd->imdct_buf,
- &snd->prev_frame[band * 256],
- &gain1->g_block[band], &gain2->g_block[band],
- 256, &output[band * 256]);
- }
-
- /* Swap the gain control buffers for the next frame. */
- snd->gc_blk_switch ^= 1;
-
- return 0;
- }
-
- static int decode_frame(AVCodecContext *avctx, const uint8_t *databuf,
- float **out_samples)
- {
- ATRAC3Context *q = avctx->priv_data;
- int ret, i;
- uint8_t *ptr1;
-
- if (q->coding_mode == JOINT_STEREO) {
- /* channel coupling mode */
- /* decode Sound Unit 1 */
- init_get_bits(&q->gb, databuf, avctx->block_align * 8);
-
- ret = decode_channel_sound_unit(q, &q->gb, q->units, out_samples[0], 0,
- JOINT_STEREO);
- if (ret != 0)
- return ret;
-
- /* Framedata of the su2 in the joint-stereo mode is encoded in
- * reverse byte order so we need to swap it first. */
- if (databuf == q->decoded_bytes_buffer) {
- uint8_t *ptr2 = q->decoded_bytes_buffer + avctx->block_align - 1;
- ptr1 = q->decoded_bytes_buffer;
- for (i = 0; i < avctx->block_align / 2; i++, ptr1++, ptr2--)
- FFSWAP(uint8_t, *ptr1, *ptr2);
- } else {
- const uint8_t *ptr2 = databuf + avctx->block_align - 1;
- for (i = 0; i < avctx->block_align; i++)
- q->decoded_bytes_buffer[i] = *ptr2--;
- }
-
- /* Skip the sync codes (0xF8). */
- ptr1 = q->decoded_bytes_buffer;
- for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
- if (i >= avctx->block_align)
- return AVERROR_INVALIDDATA;
- }
-
-
- /* set the bitstream reader at the start of the second Sound Unit*/
- init_get_bits(&q->gb, ptr1, (avctx->block_align - i) * 8);
-
- /* Fill the Weighting coeffs delay buffer */
- memmove(q->weighting_delay, &q->weighting_delay[2],
- 4 * sizeof(*q->weighting_delay));
- q->weighting_delay[4] = get_bits1(&q->gb);
- q->weighting_delay[5] = get_bits(&q->gb, 3);
-
- for (i = 0; i < 4; i++) {
- q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
- q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
- q->matrix_coeff_index_next[i] = get_bits(&q->gb, 2);
- }
-
- /* Decode Sound Unit 2. */
- ret = decode_channel_sound_unit(q, &q->gb, &q->units[1],
- out_samples[1], 1, JOINT_STEREO);
- if (ret != 0)
- return ret;
-
- /* Reconstruct the channel coefficients. */
- reverse_matrixing(out_samples[0], out_samples[1],
- q->matrix_coeff_index_prev,
- q->matrix_coeff_index_now);
-
- channel_weighting(out_samples[0], out_samples[1], q->weighting_delay);
- } else {
- /* normal stereo mode or mono */
- /* Decode the channel sound units. */
- for (i = 0; i < avctx->channels; i++) {
- /* Set the bitstream reader at the start of a channel sound unit. */
- init_get_bits(&q->gb,
- databuf + i * avctx->block_align / avctx->channels,
- avctx->block_align * 8 / avctx->channels);
-
- ret = decode_channel_sound_unit(q, &q->gb, &q->units[i],
- out_samples[i], i, q->coding_mode);
- if (ret != 0)
- return ret;
- }
- }
-
- /* Apply the iQMF synthesis filter. */
- for (i = 0; i < avctx->channels; i++) {
- float *p1 = out_samples[i];
- float *p2 = p1 + 256;
- float *p3 = p2 + 256;
- float *p4 = p3 + 256;
- ff_atrac_iqmf(p1, p2, 256, p1, q->units[i].delay_buf1, q->temp_buf);
- ff_atrac_iqmf(p4, p3, 256, p3, q->units[i].delay_buf2, q->temp_buf);
- ff_atrac_iqmf(p1, p3, 512, p1, q->units[i].delay_buf3, q->temp_buf);
- }
-
- return 0;
- }
-
- static int atrac3_decode_frame(AVCodecContext *avctx, void *data,
- int *got_frame_ptr, AVPacket *avpkt)
- {
- AVFrame *frame = data;
- const uint8_t *buf = avpkt->data;
- int buf_size = avpkt->size;
- ATRAC3Context *q = avctx->priv_data;
- int ret;
- const uint8_t *databuf;
-
- if (buf_size < avctx->block_align) {
- av_log(avctx, AV_LOG_ERROR,
- "Frame too small (%d bytes). Truncated file?\n", buf_size);
- return AVERROR_INVALIDDATA;
- }
-
- /* get output buffer */
- frame->nb_samples = SAMPLES_PER_FRAME;
- if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return ret;
- }
-
- /* Check if we need to descramble and what buffer to pass on. */
- if (q->scrambled_stream) {
- decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
- databuf = q->decoded_bytes_buffer;
- } else {
- databuf = buf;
- }
-
- ret = decode_frame(avctx, databuf, (float **)frame->extended_data);
- if (ret) {
- av_log(NULL, AV_LOG_ERROR, "Frame decoding error!\n");
- return ret;
- }
-
- *got_frame_ptr = 1;
-
- return avctx->block_align;
- }
-
- static av_cold void atrac3_init_static_data(AVCodec *codec)
- {
- int i;
-
- init_imdct_window();
- ff_atrac_generate_tables();
-
- /* Initialize the VLC tables. */
- for (i = 0; i < 7; i++) {
- spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
- spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] -
- atrac3_vlc_offs[i ];
- init_vlc(&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
- huff_bits[i], 1, 1,
- huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
- }
- }
-
- static av_cold int atrac3_decode_init(AVCodecContext *avctx)
- {
- int i, ret;
- int version, delay, samples_per_frame, frame_factor;
- const uint8_t *edata_ptr = avctx->extradata;
- ATRAC3Context *q = avctx->priv_data;
-
- if (avctx->channels <= 0 || avctx->channels > 2) {
- av_log(avctx, AV_LOG_ERROR, "Channel configuration error!\n");
- return AVERROR(EINVAL);
- }
-
- /* Take care of the codec-specific extradata. */
- if (avctx->extradata_size == 14) {
- /* Parse the extradata, WAV format */
- av_log(avctx, AV_LOG_DEBUG, "[0-1] %d\n",
- bytestream_get_le16(&edata_ptr)); // Unknown value always 1
- edata_ptr += 4; // samples per channel
- q->coding_mode = bytestream_get_le16(&edata_ptr);
- av_log(avctx, AV_LOG_DEBUG,"[8-9] %d\n",
- bytestream_get_le16(&edata_ptr)); //Dupe of coding mode
- frame_factor = bytestream_get_le16(&edata_ptr); // Unknown always 1
- av_log(avctx, AV_LOG_DEBUG,"[12-13] %d\n",
- bytestream_get_le16(&edata_ptr)); // Unknown always 0
-
- /* setup */
- samples_per_frame = SAMPLES_PER_FRAME * avctx->channels;
- version = 4;
- delay = 0x88E;
- q->coding_mode = q->coding_mode ? JOINT_STEREO : STEREO;
- q->scrambled_stream = 0;
-
- if (avctx->block_align != 96 * avctx->channels * frame_factor &&
- avctx->block_align != 152 * avctx->channels * frame_factor &&
- avctx->block_align != 192 * avctx->channels * frame_factor) {
- av_log(avctx, AV_LOG_ERROR, "Unknown frame/channel/frame_factor "
- "configuration %d/%d/%d\n", avctx->block_align,
- avctx->channels, frame_factor);
- return AVERROR_INVALIDDATA;
- }
- } else if (avctx->extradata_size == 10) {
- /* Parse the extradata, RM format. */
- version = bytestream_get_be32(&edata_ptr);
- samples_per_frame = bytestream_get_be16(&edata_ptr);
- delay = bytestream_get_be16(&edata_ptr);
- q->coding_mode = bytestream_get_be16(&edata_ptr);
- q->scrambled_stream = 1;
-
- } else {
- av_log(NULL, AV_LOG_ERROR, "Unknown extradata size %d.\n",
- avctx->extradata_size);
- return AVERROR(EINVAL);
- }
-
- /* Check the extradata */
-
- if (version != 4) {
- av_log(avctx, AV_LOG_ERROR, "Version %d != 4.\n", version);
- return AVERROR_INVALIDDATA;
- }
-
- if (samples_per_frame != SAMPLES_PER_FRAME &&
- samples_per_frame != SAMPLES_PER_FRAME * 2) {
- av_log(avctx, AV_LOG_ERROR, "Unknown amount of samples per frame %d.\n",
- samples_per_frame);
- return AVERROR_INVALIDDATA;
- }
-
- if (delay != 0x88E) {
- av_log(avctx, AV_LOG_ERROR, "Unknown amount of delay %x != 0x88E.\n",
- delay);
- return AVERROR_INVALIDDATA;
- }
-
- if (q->coding_mode == STEREO)
- av_log(avctx, AV_LOG_DEBUG, "Normal stereo detected.\n");
- else if (q->coding_mode == JOINT_STEREO) {
- if (avctx->channels != 2)
- return AVERROR_INVALIDDATA;
- av_log(avctx, AV_LOG_DEBUG, "Joint stereo detected.\n");
- } else {
- av_log(avctx, AV_LOG_ERROR, "Unknown channel coding mode %x!\n",
- q->coding_mode);
- return AVERROR_INVALIDDATA;
- }
-
- if (avctx->block_align >= UINT_MAX / 2)
- return AVERROR(EINVAL);
-
- q->decoded_bytes_buffer = av_mallocz(FFALIGN(avctx->block_align, 4) +
- AV_INPUT_BUFFER_PADDING_SIZE);
- if (!q->decoded_bytes_buffer)
- return AVERROR(ENOMEM);
-
- avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
-
- /* initialize the MDCT transform */
- if ((ret = ff_mdct_init(&q->mdct_ctx, 9, 1, 1.0 / 32768)) < 0) {
- av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
- av_freep(&q->decoded_bytes_buffer);
- return ret;
- }
-
- /* init the joint-stereo decoding data */
- q->weighting_delay[0] = 0;
- q->weighting_delay[1] = 7;
- q->weighting_delay[2] = 0;
- q->weighting_delay[3] = 7;
- q->weighting_delay[4] = 0;
- q->weighting_delay[5] = 7;
-
- for (i = 0; i < 4; i++) {
- q->matrix_coeff_index_prev[i] = 3;
- q->matrix_coeff_index_now[i] = 3;
- q->matrix_coeff_index_next[i] = 3;
- }
-
- ff_atrac_init_gain_compensation(&q->gainc_ctx, 4, 3);
- avpriv_float_dsp_init(&q->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
-
- q->units = av_mallocz(sizeof(*q->units) * avctx->channels);
- if (!q->units) {
- atrac3_decode_close(avctx);
- return AVERROR(ENOMEM);
- }
-
- return 0;
- }
-
- AVCodec ff_atrac3_decoder = {
- .name = "atrac3",
- .long_name = NULL_IF_CONFIG_SMALL("ATRAC3 (Adaptive TRansform Acoustic Coding 3)"),
- .type = AVMEDIA_TYPE_AUDIO,
- .id = AV_CODEC_ID_ATRAC3,
- .priv_data_size = sizeof(ATRAC3Context),
- .init = atrac3_decode_init,
- .init_static_data = atrac3_init_static_data,
- .close = atrac3_decode_close,
- .decode = atrac3_decode_frame,
- .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
- .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
- AV_SAMPLE_FMT_NONE },
- };
|