You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1817 lines
64KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "bswapdsp.h"
  34. #include "internal.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct ALSSpecificConfig {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct ALSChannelData {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct ALSDecContext {
  171. AVCodecContext *avctx;
  172. ALSSpecificConfig sconf;
  173. GetBitContext gb;
  174. BswapDSPContext bdsp;
  175. const AVCRC *crc_table;
  176. uint32_t crc_org; ///< CRC value of the original input data
  177. uint32_t crc; ///< CRC value calculated from decoded data
  178. unsigned int cur_frame_length; ///< length of the current frame to decode
  179. unsigned int frame_id; ///< the frame ID / number of the current frame
  180. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  181. unsigned int num_blocks; ///< number of blocks used in the current frame
  182. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  183. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  184. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  185. int ltp_lag_length; ///< number of bits used for ltp lag value
  186. int *const_block; ///< contains const_block flags for all channels
  187. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  188. unsigned int *opt_order; ///< contains opt_order flags for all channels
  189. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  190. int *use_ltp; ///< contains use_ltp flags for all channels
  191. int *ltp_lag; ///< contains ltp lag values for all channels
  192. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  193. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  194. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  195. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  196. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  197. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  198. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  199. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  200. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  201. int *reverted_channels; ///< stores a flag for each reverted channel
  202. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  203. int32_t **raw_samples; ///< decoded raw samples for each channel
  204. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  205. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  206. } ALSDecContext;
  207. typedef struct ALSBlockData {
  208. unsigned int block_length; ///< number of samples within the block
  209. unsigned int ra_block; ///< if true, this is a random access block
  210. int *const_block; ///< if true, this is a constant value block
  211. int js_blocks; ///< true if this block contains a difference signal
  212. unsigned int *shift_lsbs; ///< shift of values for this block
  213. unsigned int *opt_order; ///< prediction order of this block
  214. int *store_prev_samples;///< if true, carryover samples have to be stored
  215. int *use_ltp; ///< if true, long-term prediction is used
  216. int *ltp_lag; ///< lag value for long-term prediction
  217. int *ltp_gain; ///< gain values for ltp 5-tap filter
  218. int32_t *quant_cof; ///< quantized parcor coefficients
  219. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  220. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  221. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  222. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  223. } ALSBlockData;
  224. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  225. {
  226. #ifdef DEBUG
  227. AVCodecContext *avctx = ctx->avctx;
  228. ALSSpecificConfig *sconf = &ctx->sconf;
  229. ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
  230. ff_dlog(avctx, "floating = %i\n", sconf->floating);
  231. ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  232. ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  233. ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  234. ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  235. ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  236. ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  237. ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
  238. ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  239. ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  240. ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  241. ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  242. ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  243. ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  244. ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  245. ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  246. ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  247. #endif
  248. }
  249. /** Read an ALSSpecificConfig from a buffer into the output struct.
  250. */
  251. static av_cold int read_specific_config(ALSDecContext *ctx)
  252. {
  253. GetBitContext gb;
  254. uint64_t ht_size;
  255. int i, config_offset;
  256. MPEG4AudioConfig m4ac;
  257. ALSSpecificConfig *sconf = &ctx->sconf;
  258. AVCodecContext *avctx = ctx->avctx;
  259. uint32_t als_id, header_size, trailer_size;
  260. init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
  261. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  262. avctx->extradata_size * 8, 1);
  263. if (config_offset < 0)
  264. return AVERROR_INVALIDDATA;
  265. skip_bits_long(&gb, config_offset);
  266. if (get_bits_left(&gb) < (30 << 3))
  267. return AVERROR_INVALIDDATA;
  268. // read the fixed items
  269. als_id = get_bits_long(&gb, 32);
  270. avctx->sample_rate = m4ac.sample_rate;
  271. skip_bits_long(&gb, 32); // sample rate already known
  272. sconf->samples = get_bits_long(&gb, 32);
  273. avctx->channels = m4ac.channels;
  274. skip_bits(&gb, 16); // number of channels already known
  275. skip_bits(&gb, 3); // skip file_type
  276. sconf->resolution = get_bits(&gb, 3);
  277. sconf->floating = get_bits1(&gb);
  278. sconf->msb_first = get_bits1(&gb);
  279. sconf->frame_length = get_bits(&gb, 16) + 1;
  280. sconf->ra_distance = get_bits(&gb, 8);
  281. sconf->ra_flag = get_bits(&gb, 2);
  282. sconf->adapt_order = get_bits1(&gb);
  283. sconf->coef_table = get_bits(&gb, 2);
  284. sconf->long_term_prediction = get_bits1(&gb);
  285. sconf->max_order = get_bits(&gb, 10);
  286. sconf->block_switching = get_bits(&gb, 2);
  287. sconf->bgmc = get_bits1(&gb);
  288. sconf->sb_part = get_bits1(&gb);
  289. sconf->joint_stereo = get_bits1(&gb);
  290. sconf->mc_coding = get_bits1(&gb);
  291. sconf->chan_config = get_bits1(&gb);
  292. sconf->chan_sort = get_bits1(&gb);
  293. sconf->crc_enabled = get_bits1(&gb);
  294. sconf->rlslms = get_bits1(&gb);
  295. skip_bits(&gb, 5); // skip 5 reserved bits
  296. skip_bits1(&gb); // skip aux_data_enabled
  297. // check for ALSSpecificConfig struct
  298. if (als_id != MKBETAG('A','L','S','\0'))
  299. return AVERROR_INVALIDDATA;
  300. ctx->cur_frame_length = sconf->frame_length;
  301. // read channel config
  302. if (sconf->chan_config)
  303. sconf->chan_config_info = get_bits(&gb, 16);
  304. // TODO: use this to set avctx->channel_layout
  305. // read channel sorting
  306. if (sconf->chan_sort && avctx->channels > 1) {
  307. int chan_pos_bits = av_ceil_log2(avctx->channels);
  308. int bits_needed = avctx->channels * chan_pos_bits + 7;
  309. if (get_bits_left(&gb) < bits_needed)
  310. return AVERROR_INVALIDDATA;
  311. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  312. return AVERROR(ENOMEM);
  313. for (i = 0; i < avctx->channels; i++)
  314. sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
  315. align_get_bits(&gb);
  316. // TODO: use this to actually do channel sorting
  317. } else {
  318. sconf->chan_sort = 0;
  319. }
  320. // read fixed header and trailer sizes,
  321. // if size = 0xFFFFFFFF then there is no data field!
  322. if (get_bits_left(&gb) < 64)
  323. return AVERROR_INVALIDDATA;
  324. header_size = get_bits_long(&gb, 32);
  325. trailer_size = get_bits_long(&gb, 32);
  326. if (header_size == 0xFFFFFFFF)
  327. header_size = 0;
  328. if (trailer_size == 0xFFFFFFFF)
  329. trailer_size = 0;
  330. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  331. // skip the header and trailer data
  332. if (get_bits_left(&gb) < ht_size)
  333. return AVERROR_INVALIDDATA;
  334. if (ht_size > INT32_MAX)
  335. return AVERROR_PATCHWELCOME;
  336. skip_bits_long(&gb, ht_size);
  337. // initialize CRC calculation
  338. if (sconf->crc_enabled) {
  339. if (get_bits_left(&gb) < 32)
  340. return AVERROR_INVALIDDATA;
  341. if (avctx->err_recognition & AV_EF_CRCCHECK) {
  342. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  343. ctx->crc = 0xFFFFFFFF;
  344. ctx->crc_org = ~get_bits_long(&gb, 32);
  345. } else
  346. skip_bits_long(&gb, 32);
  347. }
  348. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  349. dprint_specific_config(ctx);
  350. return 0;
  351. }
  352. /** Check the ALSSpecificConfig for unsupported features.
  353. */
  354. static int check_specific_config(ALSDecContext *ctx)
  355. {
  356. ALSSpecificConfig *sconf = &ctx->sconf;
  357. int error = 0;
  358. // report unsupported feature and set error value
  359. #define MISSING_ERR(cond, str, errval) \
  360. { \
  361. if (cond) { \
  362. avpriv_report_missing_feature(ctx->avctx, \
  363. str); \
  364. error = errval; \
  365. } \
  366. }
  367. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  368. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  369. MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
  370. return error;
  371. }
  372. /** Parse the bs_info field to extract the block partitioning used in
  373. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  374. */
  375. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  376. unsigned int div, unsigned int **div_blocks,
  377. unsigned int *num_blocks)
  378. {
  379. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  380. // if the level is valid and the investigated bit n is set
  381. // then recursively check both children at bits (2n+1) and (2n+2)
  382. n *= 2;
  383. div += 1;
  384. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  385. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  386. } else {
  387. // else the bit is not set or the last level has been reached
  388. // (bit implicitly not set)
  389. **div_blocks = div;
  390. (*div_blocks)++;
  391. (*num_blocks)++;
  392. }
  393. }
  394. /** Read and decode a Rice codeword.
  395. */
  396. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  397. {
  398. int max = get_bits_left(gb) - k;
  399. int q = get_unary(gb, 0, max);
  400. int r = k ? get_bits1(gb) : !(q & 1);
  401. if (k > 1) {
  402. q <<= (k - 1);
  403. q += get_bits_long(gb, k - 1);
  404. } else if (!k) {
  405. q >>= 1;
  406. }
  407. return r ? q : ~q;
  408. }
  409. /** Convert PARCOR coefficient k to direct filter coefficient.
  410. */
  411. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  412. {
  413. int i, j;
  414. for (i = 0, j = k - 1; i < j; i++, j--) {
  415. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  416. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  417. cof[i] += tmp1;
  418. }
  419. if (i == j)
  420. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  421. cof[k] = par[k];
  422. }
  423. /** Read block switching field if necessary and set actual block sizes.
  424. * Also assure that the block sizes of the last frame correspond to the
  425. * actual number of samples.
  426. */
  427. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  428. uint32_t *bs_info)
  429. {
  430. ALSSpecificConfig *sconf = &ctx->sconf;
  431. GetBitContext *gb = &ctx->gb;
  432. unsigned int *ptr_div_blocks = div_blocks;
  433. unsigned int b;
  434. if (sconf->block_switching) {
  435. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  436. *bs_info = get_bits_long(gb, bs_info_len);
  437. *bs_info <<= (32 - bs_info_len);
  438. }
  439. ctx->num_blocks = 0;
  440. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  441. // The last frame may have an overdetermined block structure given in
  442. // the bitstream. In that case the defined block structure would need
  443. // more samples than available to be consistent.
  444. // The block structure is actually used but the block sizes are adapted
  445. // to fit the actual number of available samples.
  446. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  447. // This results in the actual block sizes: 2 2 1 0.
  448. // This is not specified in 14496-3 but actually done by the reference
  449. // codec RM22 revision 2.
  450. // This appears to happen in case of an odd number of samples in the last
  451. // frame which is actually not allowed by the block length switching part
  452. // of 14496-3.
  453. // The ALS conformance files feature an odd number of samples in the last
  454. // frame.
  455. for (b = 0; b < ctx->num_blocks; b++)
  456. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  457. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  458. unsigned int remaining = ctx->cur_frame_length;
  459. for (b = 0; b < ctx->num_blocks; b++) {
  460. if (remaining <= div_blocks[b]) {
  461. div_blocks[b] = remaining;
  462. ctx->num_blocks = b + 1;
  463. break;
  464. }
  465. remaining -= div_blocks[b];
  466. }
  467. }
  468. }
  469. /** Read the block data for a constant block
  470. */
  471. static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  472. {
  473. ALSSpecificConfig *sconf = &ctx->sconf;
  474. AVCodecContext *avctx = ctx->avctx;
  475. GetBitContext *gb = &ctx->gb;
  476. *bd->raw_samples = 0;
  477. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  478. bd->js_blocks = get_bits1(gb);
  479. // skip 5 reserved bits
  480. skip_bits(gb, 5);
  481. if (*bd->const_block) {
  482. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  483. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  484. }
  485. // ensure constant block decoding by reusing this field
  486. *bd->const_block = 1;
  487. }
  488. /** Decode the block data for a constant block
  489. */
  490. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  491. {
  492. int smp = bd->block_length - 1;
  493. int32_t val = *bd->raw_samples;
  494. int32_t *dst = bd->raw_samples + 1;
  495. // write raw samples into buffer
  496. for (; smp; smp--)
  497. *dst++ = val;
  498. }
  499. /** Read the block data for a non-constant block
  500. */
  501. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  502. {
  503. ALSSpecificConfig *sconf = &ctx->sconf;
  504. AVCodecContext *avctx = ctx->avctx;
  505. GetBitContext *gb = &ctx->gb;
  506. unsigned int k;
  507. unsigned int s[8];
  508. unsigned int sx[8];
  509. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  510. unsigned int start = 0;
  511. unsigned int opt_order;
  512. int sb;
  513. int32_t *quant_cof = bd->quant_cof;
  514. int32_t *current_res;
  515. // ensure variable block decoding by reusing this field
  516. *bd->const_block = 0;
  517. *bd->opt_order = 1;
  518. bd->js_blocks = get_bits1(gb);
  519. opt_order = *bd->opt_order;
  520. // determine the number of subblocks for entropy decoding
  521. if (!sconf->bgmc && !sconf->sb_part) {
  522. log2_sub_blocks = 0;
  523. } else {
  524. if (sconf->bgmc && sconf->sb_part)
  525. log2_sub_blocks = get_bits(gb, 2);
  526. else
  527. log2_sub_blocks = 2 * get_bits1(gb);
  528. }
  529. sub_blocks = 1 << log2_sub_blocks;
  530. // do not continue in case of a damaged stream since
  531. // block_length must be evenly divisible by sub_blocks
  532. if (bd->block_length & (sub_blocks - 1)) {
  533. av_log(avctx, AV_LOG_WARNING,
  534. "Block length is not evenly divisible by the number of subblocks.\n");
  535. return AVERROR_INVALIDDATA;
  536. }
  537. sb_length = bd->block_length >> log2_sub_blocks;
  538. if (sconf->bgmc) {
  539. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  540. for (k = 1; k < sub_blocks; k++)
  541. s[k] = s[k - 1] + decode_rice(gb, 2);
  542. for (k = 0; k < sub_blocks; k++) {
  543. sx[k] = s[k] & 0x0F;
  544. s [k] >>= 4;
  545. }
  546. } else {
  547. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  548. for (k = 1; k < sub_blocks; k++)
  549. s[k] = s[k - 1] + decode_rice(gb, 0);
  550. }
  551. for (k = 1; k < sub_blocks; k++)
  552. if (s[k] > 32) {
  553. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  554. return AVERROR_INVALIDDATA;
  555. }
  556. if (get_bits1(gb))
  557. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  558. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  559. if (!sconf->rlslms) {
  560. if (sconf->adapt_order && sconf->max_order) {
  561. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  562. 2, sconf->max_order + 1));
  563. *bd->opt_order = get_bits(gb, opt_order_length);
  564. if (*bd->opt_order > sconf->max_order) {
  565. *bd->opt_order = sconf->max_order;
  566. av_log(avctx, AV_LOG_ERROR, "Predictor order too large!\n");
  567. return AVERROR_INVALIDDATA;
  568. }
  569. } else {
  570. *bd->opt_order = sconf->max_order;
  571. }
  572. opt_order = *bd->opt_order;
  573. if (opt_order) {
  574. int add_base;
  575. if (sconf->coef_table == 3) {
  576. add_base = 0x7F;
  577. // read coefficient 0
  578. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  579. // read coefficient 1
  580. if (opt_order > 1)
  581. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  582. // read coefficients 2 to opt_order
  583. for (k = 2; k < opt_order; k++)
  584. quant_cof[k] = get_bits(gb, 7);
  585. } else {
  586. int k_max;
  587. add_base = 1;
  588. // read coefficient 0 to 19
  589. k_max = FFMIN(opt_order, 20);
  590. for (k = 0; k < k_max; k++) {
  591. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  592. int offset = parcor_rice_table[sconf->coef_table][k][0];
  593. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  594. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  595. av_log(avctx, AV_LOG_ERROR,
  596. "quant_cof %"PRIu32" is out of range\n",
  597. quant_cof[k]);
  598. return AVERROR_INVALIDDATA;
  599. }
  600. }
  601. // read coefficients 20 to 126
  602. k_max = FFMIN(opt_order, 127);
  603. for (; k < k_max; k++)
  604. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  605. // read coefficients 127 to opt_order
  606. for (; k < opt_order; k++)
  607. quant_cof[k] = decode_rice(gb, 1);
  608. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  609. if (opt_order > 1)
  610. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  611. }
  612. for (k = 2; k < opt_order; k++)
  613. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  614. }
  615. }
  616. // read LTP gain and lag values
  617. if (sconf->long_term_prediction) {
  618. *bd->use_ltp = get_bits1(gb);
  619. if (*bd->use_ltp) {
  620. int r, c;
  621. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  622. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  623. r = get_unary(gb, 0, 3);
  624. c = get_bits(gb, 2);
  625. bd->ltp_gain[2] = ltp_gain_values[r][c];
  626. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  627. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  628. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  629. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  630. }
  631. }
  632. // read first value and residuals in case of a random access block
  633. if (bd->ra_block) {
  634. if (opt_order)
  635. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  636. if (opt_order > 1)
  637. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  638. if (opt_order > 2)
  639. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  640. start = FFMIN(opt_order, 3);
  641. }
  642. // read all residuals
  643. if (sconf->bgmc) {
  644. int delta[8];
  645. unsigned int k [8];
  646. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  647. // read most significant bits
  648. unsigned int high;
  649. unsigned int low;
  650. unsigned int value;
  651. ff_bgmc_decode_init(gb, &high, &low, &value);
  652. current_res = bd->raw_samples + start;
  653. for (sb = 0; sb < sub_blocks; sb++) {
  654. unsigned int sb_len = sb_length - (sb ? 0 : start);
  655. k [sb] = s[sb] > b ? s[sb] - b : 0;
  656. delta[sb] = 5 - s[sb] + k[sb];
  657. ff_bgmc_decode(gb, sb_len, current_res,
  658. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  659. current_res += sb_len;
  660. }
  661. ff_bgmc_decode_end(gb);
  662. // read least significant bits and tails
  663. current_res = bd->raw_samples + start;
  664. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  665. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  666. unsigned int cur_k = k[sb];
  667. unsigned int cur_s = s[sb];
  668. for (; start < sb_length; start++) {
  669. int32_t res = *current_res;
  670. if (res == cur_tail_code) {
  671. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  672. << (5 - delta[sb]);
  673. res = decode_rice(gb, cur_s);
  674. if (res >= 0) {
  675. res += (max_msb ) << cur_k;
  676. } else {
  677. res -= (max_msb - 1) << cur_k;
  678. }
  679. } else {
  680. if (res > cur_tail_code)
  681. res--;
  682. if (res & 1)
  683. res = -res;
  684. res >>= 1;
  685. if (cur_k) {
  686. res <<= cur_k;
  687. res |= get_bits_long(gb, cur_k);
  688. }
  689. }
  690. *current_res++ = res;
  691. }
  692. }
  693. } else {
  694. current_res = bd->raw_samples + start;
  695. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  696. for (; start < sb_length; start++)
  697. *current_res++ = decode_rice(gb, s[sb]);
  698. }
  699. if (!sconf->mc_coding || ctx->js_switch)
  700. align_get_bits(gb);
  701. return 0;
  702. }
  703. /** Decode the block data for a non-constant block
  704. */
  705. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  706. {
  707. ALSSpecificConfig *sconf = &ctx->sconf;
  708. unsigned int block_length = bd->block_length;
  709. unsigned int smp = 0;
  710. unsigned int k;
  711. int opt_order = *bd->opt_order;
  712. int sb;
  713. int64_t y;
  714. int32_t *quant_cof = bd->quant_cof;
  715. int32_t *lpc_cof = bd->lpc_cof;
  716. int32_t *raw_samples = bd->raw_samples;
  717. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  718. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  719. // reverse long-term prediction
  720. if (*bd->use_ltp) {
  721. int ltp_smp;
  722. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  723. int center = ltp_smp - *bd->ltp_lag;
  724. int begin = FFMAX(0, center - 2);
  725. int end = center + 3;
  726. int tab = 5 - (end - begin);
  727. int base;
  728. y = 1 << 6;
  729. for (base = begin; base < end; base++, tab++)
  730. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  731. raw_samples[ltp_smp] += y >> 7;
  732. }
  733. }
  734. // reconstruct all samples from residuals
  735. if (bd->ra_block) {
  736. for (smp = 0; smp < opt_order; smp++) {
  737. y = 1 << 19;
  738. for (sb = 0; sb < smp; sb++)
  739. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  740. *raw_samples++ -= y >> 20;
  741. parcor_to_lpc(smp, quant_cof, lpc_cof);
  742. }
  743. } else {
  744. for (k = 0; k < opt_order; k++)
  745. parcor_to_lpc(k, quant_cof, lpc_cof);
  746. // store previous samples in case that they have to be altered
  747. if (*bd->store_prev_samples)
  748. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  749. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  750. // reconstruct difference signal for prediction (joint-stereo)
  751. if (bd->js_blocks && bd->raw_other) {
  752. int32_t *left, *right;
  753. if (bd->raw_other > raw_samples) { // D = R - L
  754. left = raw_samples;
  755. right = bd->raw_other;
  756. } else { // D = R - L
  757. left = bd->raw_other;
  758. right = raw_samples;
  759. }
  760. for (sb = -1; sb >= -sconf->max_order; sb--)
  761. raw_samples[sb] = right[sb] - left[sb];
  762. }
  763. // reconstruct shifted signal
  764. if (*bd->shift_lsbs)
  765. for (sb = -1; sb >= -sconf->max_order; sb--)
  766. raw_samples[sb] >>= *bd->shift_lsbs;
  767. }
  768. // reverse linear prediction coefficients for efficiency
  769. lpc_cof = lpc_cof + opt_order;
  770. for (sb = 0; sb < opt_order; sb++)
  771. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  772. // reconstruct raw samples
  773. raw_samples = bd->raw_samples + smp;
  774. lpc_cof = lpc_cof_reversed + opt_order;
  775. for (; raw_samples < raw_samples_end; raw_samples++) {
  776. y = 1 << 19;
  777. for (sb = -opt_order; sb < 0; sb++)
  778. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  779. *raw_samples -= y >> 20;
  780. }
  781. raw_samples = bd->raw_samples;
  782. // restore previous samples in case that they have been altered
  783. if (*bd->store_prev_samples)
  784. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  785. sizeof(*raw_samples) * sconf->max_order);
  786. return 0;
  787. }
  788. /** Read the block data.
  789. */
  790. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  791. {
  792. int ret = 0;
  793. GetBitContext *gb = &ctx->gb;
  794. *bd->shift_lsbs = 0;
  795. // read block type flag and read the samples accordingly
  796. if (get_bits1(gb)) {
  797. ret = read_var_block_data(ctx, bd);
  798. } else {
  799. read_const_block_data(ctx, bd);
  800. }
  801. return ret;
  802. }
  803. /** Decode the block data.
  804. */
  805. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  806. {
  807. unsigned int smp;
  808. int ret = 0;
  809. // read block type flag and read the samples accordingly
  810. if (*bd->const_block)
  811. decode_const_block_data(ctx, bd);
  812. else
  813. ret = decode_var_block_data(ctx, bd); // always return 0
  814. if (ret < 0)
  815. return ret;
  816. // TODO: read RLSLMS extension data
  817. if (*bd->shift_lsbs)
  818. for (smp = 0; smp < bd->block_length; smp++)
  819. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  820. return 0;
  821. }
  822. /** Read and decode block data successively.
  823. */
  824. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  825. {
  826. int ret;
  827. if ((ret = read_block(ctx, bd)) < 0)
  828. return ret;
  829. return decode_block(ctx, bd);
  830. }
  831. /** Compute the number of samples left to decode for the current frame and
  832. * sets these samples to zero.
  833. */
  834. static void zero_remaining(unsigned int b, unsigned int b_max,
  835. const unsigned int *div_blocks, int32_t *buf)
  836. {
  837. unsigned int count = 0;
  838. for (; b < b_max; b++)
  839. count += div_blocks[b];
  840. if (count)
  841. memset(buf, 0, sizeof(*buf) * count);
  842. }
  843. /** Decode blocks independently.
  844. */
  845. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  846. unsigned int c, const unsigned int *div_blocks,
  847. unsigned int *js_blocks)
  848. {
  849. int ret;
  850. unsigned int b;
  851. ALSBlockData bd = { 0 };
  852. bd.ra_block = ra_frame;
  853. bd.const_block = ctx->const_block;
  854. bd.shift_lsbs = ctx->shift_lsbs;
  855. bd.opt_order = ctx->opt_order;
  856. bd.store_prev_samples = ctx->store_prev_samples;
  857. bd.use_ltp = ctx->use_ltp;
  858. bd.ltp_lag = ctx->ltp_lag;
  859. bd.ltp_gain = ctx->ltp_gain[0];
  860. bd.quant_cof = ctx->quant_cof[0];
  861. bd.lpc_cof = ctx->lpc_cof[0];
  862. bd.prev_raw_samples = ctx->prev_raw_samples;
  863. bd.raw_samples = ctx->raw_samples[c];
  864. for (b = 0; b < ctx->num_blocks; b++) {
  865. bd.block_length = div_blocks[b];
  866. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  867. // damaged block, write zero for the rest of the frame
  868. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  869. return ret;
  870. }
  871. bd.raw_samples += div_blocks[b];
  872. bd.ra_block = 0;
  873. }
  874. return 0;
  875. }
  876. /** Decode blocks dependently.
  877. */
  878. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  879. unsigned int c, const unsigned int *div_blocks,
  880. unsigned int *js_blocks)
  881. {
  882. ALSSpecificConfig *sconf = &ctx->sconf;
  883. unsigned int offset = 0;
  884. unsigned int b;
  885. int ret;
  886. ALSBlockData bd[2] = { { 0 } };
  887. bd[0].ra_block = ra_frame;
  888. bd[0].const_block = ctx->const_block;
  889. bd[0].shift_lsbs = ctx->shift_lsbs;
  890. bd[0].opt_order = ctx->opt_order;
  891. bd[0].store_prev_samples = ctx->store_prev_samples;
  892. bd[0].use_ltp = ctx->use_ltp;
  893. bd[0].ltp_lag = ctx->ltp_lag;
  894. bd[0].ltp_gain = ctx->ltp_gain[0];
  895. bd[0].quant_cof = ctx->quant_cof[0];
  896. bd[0].lpc_cof = ctx->lpc_cof[0];
  897. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  898. bd[0].js_blocks = *js_blocks;
  899. bd[1].ra_block = ra_frame;
  900. bd[1].const_block = ctx->const_block;
  901. bd[1].shift_lsbs = ctx->shift_lsbs;
  902. bd[1].opt_order = ctx->opt_order;
  903. bd[1].store_prev_samples = ctx->store_prev_samples;
  904. bd[1].use_ltp = ctx->use_ltp;
  905. bd[1].ltp_lag = ctx->ltp_lag;
  906. bd[1].ltp_gain = ctx->ltp_gain[0];
  907. bd[1].quant_cof = ctx->quant_cof[0];
  908. bd[1].lpc_cof = ctx->lpc_cof[0];
  909. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  910. bd[1].js_blocks = *(js_blocks + 1);
  911. // decode all blocks
  912. for (b = 0; b < ctx->num_blocks; b++) {
  913. unsigned int s;
  914. bd[0].block_length = div_blocks[b];
  915. bd[1].block_length = div_blocks[b];
  916. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  917. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  918. bd[0].raw_other = bd[1].raw_samples;
  919. bd[1].raw_other = bd[0].raw_samples;
  920. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  921. (ret = read_decode_block(ctx, &bd[1])) < 0)
  922. goto fail;
  923. // reconstruct joint-stereo blocks
  924. if (bd[0].js_blocks) {
  925. if (bd[1].js_blocks)
  926. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
  927. for (s = 0; s < div_blocks[b]; s++)
  928. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  929. } else if (bd[1].js_blocks) {
  930. for (s = 0; s < div_blocks[b]; s++)
  931. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  932. }
  933. offset += div_blocks[b];
  934. bd[0].ra_block = 0;
  935. bd[1].ra_block = 0;
  936. }
  937. // store carryover raw samples,
  938. // the others channel raw samples are stored by the calling function.
  939. memmove(ctx->raw_samples[c] - sconf->max_order,
  940. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  941. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  942. return 0;
  943. fail:
  944. // damaged block, write zero for the rest of the frame
  945. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  946. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  947. return ret;
  948. }
  949. static inline int als_weighting(GetBitContext *gb, int k, int off)
  950. {
  951. int idx = av_clip(decode_rice(gb, k) + off,
  952. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  953. return mcc_weightings[idx];
  954. }
  955. /** Read the channel data.
  956. */
  957. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  958. {
  959. GetBitContext *gb = &ctx->gb;
  960. ALSChannelData *current = cd;
  961. unsigned int channels = ctx->avctx->channels;
  962. int entries = 0;
  963. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  964. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  965. if (current->master_channel >= channels) {
  966. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
  967. return AVERROR_INVALIDDATA;
  968. }
  969. if (current->master_channel != c) {
  970. current->time_diff_flag = get_bits1(gb);
  971. current->weighting[0] = als_weighting(gb, 1, 16);
  972. current->weighting[1] = als_weighting(gb, 2, 14);
  973. current->weighting[2] = als_weighting(gb, 1, 16);
  974. if (current->time_diff_flag) {
  975. current->weighting[3] = als_weighting(gb, 1, 16);
  976. current->weighting[4] = als_weighting(gb, 1, 16);
  977. current->weighting[5] = als_weighting(gb, 1, 16);
  978. current->time_diff_sign = get_bits1(gb);
  979. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  980. }
  981. }
  982. current++;
  983. entries++;
  984. }
  985. if (entries == channels) {
  986. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
  987. return AVERROR_INVALIDDATA;
  988. }
  989. align_get_bits(gb);
  990. return 0;
  991. }
  992. /** Recursively reverts the inter-channel correlation for a block.
  993. */
  994. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  995. ALSChannelData **cd, int *reverted,
  996. unsigned int offset, int c)
  997. {
  998. ALSChannelData *ch = cd[c];
  999. unsigned int dep = 0;
  1000. unsigned int channels = ctx->avctx->channels;
  1001. unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
  1002. if (reverted[c])
  1003. return 0;
  1004. reverted[c] = 1;
  1005. while (dep < channels && !ch[dep].stop_flag) {
  1006. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1007. ch[dep].master_channel);
  1008. dep++;
  1009. }
  1010. if (dep == channels) {
  1011. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
  1012. return AVERROR_INVALIDDATA;
  1013. }
  1014. bd->const_block = ctx->const_block + c;
  1015. bd->shift_lsbs = ctx->shift_lsbs + c;
  1016. bd->opt_order = ctx->opt_order + c;
  1017. bd->store_prev_samples = ctx->store_prev_samples + c;
  1018. bd->use_ltp = ctx->use_ltp + c;
  1019. bd->ltp_lag = ctx->ltp_lag + c;
  1020. bd->ltp_gain = ctx->ltp_gain[c];
  1021. bd->lpc_cof = ctx->lpc_cof[c];
  1022. bd->quant_cof = ctx->quant_cof[c];
  1023. bd->raw_samples = ctx->raw_samples[c] + offset;
  1024. dep = 0;
  1025. while (!ch[dep].stop_flag) {
  1026. ptrdiff_t smp;
  1027. ptrdiff_t begin = 1;
  1028. ptrdiff_t end = bd->block_length - 1;
  1029. int64_t y;
  1030. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1031. if (ch[dep].time_diff_flag) {
  1032. int t = ch[dep].time_diff_index;
  1033. if (ch[dep].time_diff_sign) {
  1034. t = -t;
  1035. begin -= t;
  1036. } else {
  1037. end -= t;
  1038. }
  1039. if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
  1040. FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
  1041. av_log(ctx->avctx, AV_LOG_ERROR,
  1042. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1043. master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
  1044. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1045. return AVERROR_INVALIDDATA;
  1046. }
  1047. for (smp = begin; smp < end; smp++) {
  1048. y = (1 << 6) +
  1049. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1050. MUL64(ch[dep].weighting[1], master[smp ]) +
  1051. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1052. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1053. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1054. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1055. bd->raw_samples[smp] += y >> 7;
  1056. }
  1057. } else {
  1058. if (begin - 1 < ctx->raw_buffer - master ||
  1059. end + 1 > ctx->raw_buffer + channels * channel_size - master) {
  1060. av_log(ctx->avctx, AV_LOG_ERROR,
  1061. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1062. master + begin - 1, master + end + 1,
  1063. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1064. return AVERROR_INVALIDDATA;
  1065. }
  1066. for (smp = begin; smp < end; smp++) {
  1067. y = (1 << 6) +
  1068. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1069. MUL64(ch[dep].weighting[1], master[smp ]) +
  1070. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1071. bd->raw_samples[smp] += y >> 7;
  1072. }
  1073. }
  1074. dep++;
  1075. }
  1076. return 0;
  1077. }
  1078. /** Read the frame data.
  1079. */
  1080. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1081. {
  1082. ALSSpecificConfig *sconf = &ctx->sconf;
  1083. AVCodecContext *avctx = ctx->avctx;
  1084. GetBitContext *gb = &ctx->gb;
  1085. unsigned int div_blocks[32]; ///< block sizes.
  1086. unsigned int c;
  1087. unsigned int js_blocks[2];
  1088. uint32_t bs_info = 0;
  1089. int ret;
  1090. // skip the size of the ra unit if present in the frame
  1091. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1092. skip_bits_long(gb, 32);
  1093. if (sconf->mc_coding && sconf->joint_stereo) {
  1094. ctx->js_switch = get_bits1(gb);
  1095. align_get_bits(gb);
  1096. }
  1097. if (!sconf->mc_coding || ctx->js_switch) {
  1098. int independent_bs = !sconf->joint_stereo;
  1099. for (c = 0; c < avctx->channels; c++) {
  1100. js_blocks[0] = 0;
  1101. js_blocks[1] = 0;
  1102. get_block_sizes(ctx, div_blocks, &bs_info);
  1103. // if joint_stereo and block_switching is set, independent decoding
  1104. // is signaled via the first bit of bs_info
  1105. if (sconf->joint_stereo && sconf->block_switching)
  1106. if (bs_info >> 31)
  1107. independent_bs = 2;
  1108. // if this is the last channel, it has to be decoded independently
  1109. if (c == avctx->channels - 1)
  1110. independent_bs = 1;
  1111. if (independent_bs) {
  1112. ret = decode_blocks_ind(ctx, ra_frame, c,
  1113. div_blocks, js_blocks);
  1114. if (ret < 0)
  1115. return ret;
  1116. independent_bs--;
  1117. } else {
  1118. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1119. if (ret < 0)
  1120. return ret;
  1121. c++;
  1122. }
  1123. // store carryover raw samples
  1124. memmove(ctx->raw_samples[c] - sconf->max_order,
  1125. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1126. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1127. }
  1128. } else { // multi-channel coding
  1129. ALSBlockData bd = { 0 };
  1130. int b, ret;
  1131. int *reverted_channels = ctx->reverted_channels;
  1132. unsigned int offset = 0;
  1133. for (c = 0; c < avctx->channels; c++)
  1134. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1135. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
  1136. return AVERROR_INVALIDDATA;
  1137. }
  1138. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1139. bd.ra_block = ra_frame;
  1140. bd.prev_raw_samples = ctx->prev_raw_samples;
  1141. get_block_sizes(ctx, div_blocks, &bs_info);
  1142. for (b = 0; b < ctx->num_blocks; b++) {
  1143. bd.block_length = div_blocks[b];
  1144. if (bd.block_length <= 0) {
  1145. av_log(ctx->avctx, AV_LOG_WARNING,
  1146. "Invalid block length %u in channel data!\n",
  1147. bd.block_length);
  1148. continue;
  1149. }
  1150. for (c = 0; c < avctx->channels; c++) {
  1151. bd.const_block = ctx->const_block + c;
  1152. bd.shift_lsbs = ctx->shift_lsbs + c;
  1153. bd.opt_order = ctx->opt_order + c;
  1154. bd.store_prev_samples = ctx->store_prev_samples + c;
  1155. bd.use_ltp = ctx->use_ltp + c;
  1156. bd.ltp_lag = ctx->ltp_lag + c;
  1157. bd.ltp_gain = ctx->ltp_gain[c];
  1158. bd.lpc_cof = ctx->lpc_cof[c];
  1159. bd.quant_cof = ctx->quant_cof[c];
  1160. bd.raw_samples = ctx->raw_samples[c] + offset;
  1161. bd.raw_other = NULL;
  1162. if ((ret = read_block(ctx, &bd)) < 0)
  1163. return ret;
  1164. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1165. return ret;
  1166. }
  1167. for (c = 0; c < avctx->channels; c++) {
  1168. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1169. reverted_channels, offset, c);
  1170. if (ret < 0)
  1171. return ret;
  1172. }
  1173. for (c = 0; c < avctx->channels; c++) {
  1174. bd.const_block = ctx->const_block + c;
  1175. bd.shift_lsbs = ctx->shift_lsbs + c;
  1176. bd.opt_order = ctx->opt_order + c;
  1177. bd.store_prev_samples = ctx->store_prev_samples + c;
  1178. bd.use_ltp = ctx->use_ltp + c;
  1179. bd.ltp_lag = ctx->ltp_lag + c;
  1180. bd.ltp_gain = ctx->ltp_gain[c];
  1181. bd.lpc_cof = ctx->lpc_cof[c];
  1182. bd.quant_cof = ctx->quant_cof[c];
  1183. bd.raw_samples = ctx->raw_samples[c] + offset;
  1184. if ((ret = decode_block(ctx, &bd)) < 0)
  1185. return ret;
  1186. }
  1187. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1188. offset += div_blocks[b];
  1189. bd.ra_block = 0;
  1190. }
  1191. // store carryover raw samples
  1192. for (c = 0; c < avctx->channels; c++)
  1193. memmove(ctx->raw_samples[c] - sconf->max_order,
  1194. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1195. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1196. }
  1197. // TODO: read_diff_float_data
  1198. return 0;
  1199. }
  1200. /** Decode an ALS frame.
  1201. */
  1202. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1203. AVPacket *avpkt)
  1204. {
  1205. ALSDecContext *ctx = avctx->priv_data;
  1206. AVFrame *frame = data;
  1207. ALSSpecificConfig *sconf = &ctx->sconf;
  1208. const uint8_t *buffer = avpkt->data;
  1209. int buffer_size = avpkt->size;
  1210. int invalid_frame, ret;
  1211. unsigned int c, sample, ra_frame, bytes_read, shift;
  1212. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1213. // In the case that the distance between random access frames is set to zero
  1214. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1215. // For the first frame, if prediction is used, all samples used from the
  1216. // previous frame are assumed to be zero.
  1217. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1218. // the last frame to decode might have a different length
  1219. if (sconf->samples != 0xFFFFFFFF)
  1220. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1221. sconf->frame_length);
  1222. else
  1223. ctx->cur_frame_length = sconf->frame_length;
  1224. // decode the frame data
  1225. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1226. av_log(ctx->avctx, AV_LOG_WARNING,
  1227. "Reading frame data failed. Skipping RA unit.\n");
  1228. ctx->frame_id++;
  1229. /* get output buffer */
  1230. frame->nb_samples = ctx->cur_frame_length;
  1231. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1232. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1233. return ret;
  1234. }
  1235. // transform decoded frame into output format
  1236. #define INTERLEAVE_OUTPUT(bps) \
  1237. { \
  1238. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1239. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1240. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1241. for (c = 0; c < avctx->channels; c++) \
  1242. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1243. }
  1244. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1245. INTERLEAVE_OUTPUT(16)
  1246. } else {
  1247. INTERLEAVE_OUTPUT(32)
  1248. }
  1249. // update CRC
  1250. if (sconf->crc_enabled && (avctx->err_recognition & AV_EF_CRCCHECK)) {
  1251. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1252. if (ctx->avctx->bits_per_raw_sample == 24) {
  1253. int32_t *src = (int32_t *)frame->data[0];
  1254. for (sample = 0;
  1255. sample < ctx->cur_frame_length * avctx->channels;
  1256. sample++) {
  1257. int32_t v;
  1258. if (swap)
  1259. v = av_bswap32(src[sample]);
  1260. else
  1261. v = src[sample];
  1262. if (!HAVE_BIGENDIAN)
  1263. v >>= 8;
  1264. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1265. }
  1266. } else {
  1267. uint8_t *crc_source;
  1268. if (swap) {
  1269. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1270. int16_t *src = (int16_t*) frame->data[0];
  1271. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1272. for (sample = 0;
  1273. sample < ctx->cur_frame_length * avctx->channels;
  1274. sample++)
  1275. *dest++ = av_bswap16(src[sample]);
  1276. } else {
  1277. ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
  1278. (uint32_t *) frame->data[0],
  1279. ctx->cur_frame_length * avctx->channels);
  1280. }
  1281. crc_source = ctx->crc_buffer;
  1282. } else {
  1283. crc_source = frame->data[0];
  1284. }
  1285. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1286. ctx->cur_frame_length * avctx->channels *
  1287. av_get_bytes_per_sample(avctx->sample_fmt));
  1288. }
  1289. // check CRC sums if this is the last frame
  1290. if (ctx->cur_frame_length != sconf->frame_length &&
  1291. ctx->crc_org != ctx->crc) {
  1292. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1293. if (avctx->err_recognition & AV_EF_EXPLODE)
  1294. return AVERROR_INVALIDDATA;
  1295. }
  1296. }
  1297. *got_frame_ptr = 1;
  1298. bytes_read = invalid_frame ? buffer_size :
  1299. (get_bits_count(&ctx->gb) + 7) >> 3;
  1300. return bytes_read;
  1301. }
  1302. /** Uninitialize the ALS decoder.
  1303. */
  1304. static av_cold int decode_end(AVCodecContext *avctx)
  1305. {
  1306. ALSDecContext *ctx = avctx->priv_data;
  1307. av_freep(&ctx->sconf.chan_pos);
  1308. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1309. av_freep(&ctx->const_block);
  1310. av_freep(&ctx->shift_lsbs);
  1311. av_freep(&ctx->opt_order);
  1312. av_freep(&ctx->store_prev_samples);
  1313. av_freep(&ctx->use_ltp);
  1314. av_freep(&ctx->ltp_lag);
  1315. av_freep(&ctx->ltp_gain);
  1316. av_freep(&ctx->ltp_gain_buffer);
  1317. av_freep(&ctx->quant_cof);
  1318. av_freep(&ctx->lpc_cof);
  1319. av_freep(&ctx->quant_cof_buffer);
  1320. av_freep(&ctx->lpc_cof_buffer);
  1321. av_freep(&ctx->lpc_cof_reversed_buffer);
  1322. av_freep(&ctx->prev_raw_samples);
  1323. av_freep(&ctx->raw_samples);
  1324. av_freep(&ctx->raw_buffer);
  1325. av_freep(&ctx->chan_data);
  1326. av_freep(&ctx->chan_data_buffer);
  1327. av_freep(&ctx->reverted_channels);
  1328. av_freep(&ctx->crc_buffer);
  1329. return 0;
  1330. }
  1331. /** Initialize the ALS decoder.
  1332. */
  1333. static av_cold int decode_init(AVCodecContext *avctx)
  1334. {
  1335. unsigned int c;
  1336. unsigned int channel_size;
  1337. int num_buffers, ret;
  1338. ALSDecContext *ctx = avctx->priv_data;
  1339. ALSSpecificConfig *sconf = &ctx->sconf;
  1340. ctx->avctx = avctx;
  1341. if (!avctx->extradata) {
  1342. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1343. return AVERROR_INVALIDDATA;
  1344. }
  1345. if ((ret = read_specific_config(ctx)) < 0) {
  1346. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1347. goto fail;
  1348. }
  1349. if ((ret = check_specific_config(ctx)) < 0) {
  1350. goto fail;
  1351. }
  1352. if (sconf->bgmc) {
  1353. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1354. if (ret < 0)
  1355. goto fail;
  1356. }
  1357. if (sconf->floating) {
  1358. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1359. avctx->bits_per_raw_sample = 32;
  1360. } else {
  1361. avctx->sample_fmt = sconf->resolution > 1
  1362. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1363. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1364. if (avctx->bits_per_raw_sample > 32) {
  1365. av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
  1366. avctx->bits_per_raw_sample);
  1367. ret = AVERROR_INVALIDDATA;
  1368. goto fail;
  1369. }
  1370. }
  1371. // set maximum Rice parameter for progressive decoding based on resolution
  1372. // This is not specified in 14496-3 but actually done by the reference
  1373. // codec RM22 revision 2.
  1374. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1375. // set lag value for long-term prediction
  1376. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1377. (avctx->sample_rate >= 192000);
  1378. // allocate quantized parcor coefficient buffer
  1379. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1380. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1381. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1382. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1383. num_buffers * sconf->max_order);
  1384. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1385. num_buffers * sconf->max_order);
  1386. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1387. sconf->max_order);
  1388. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1389. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1390. !ctx->lpc_cof_reversed_buffer) {
  1391. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1392. ret = AVERROR(ENOMEM);
  1393. goto fail;
  1394. }
  1395. // assign quantized parcor coefficient buffers
  1396. for (c = 0; c < num_buffers; c++) {
  1397. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1398. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1399. }
  1400. // allocate and assign lag and gain data buffer for ltp mode
  1401. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1402. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1403. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1404. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1405. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1406. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1407. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1408. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1409. num_buffers * 5);
  1410. if (!ctx->const_block || !ctx->shift_lsbs ||
  1411. !ctx->opt_order || !ctx->store_prev_samples ||
  1412. !ctx->use_ltp || !ctx->ltp_lag ||
  1413. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1414. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1415. ret = AVERROR(ENOMEM);
  1416. goto fail;
  1417. }
  1418. for (c = 0; c < num_buffers; c++)
  1419. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1420. // allocate and assign channel data buffer for mcc mode
  1421. if (sconf->mc_coding) {
  1422. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1423. num_buffers * num_buffers);
  1424. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1425. num_buffers);
  1426. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1427. num_buffers);
  1428. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1429. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1430. ret = AVERROR(ENOMEM);
  1431. goto fail;
  1432. }
  1433. for (c = 0; c < num_buffers; c++)
  1434. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1435. } else {
  1436. ctx->chan_data = NULL;
  1437. ctx->chan_data_buffer = NULL;
  1438. ctx->reverted_channels = NULL;
  1439. }
  1440. channel_size = sconf->frame_length + sconf->max_order;
  1441. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1442. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1443. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1444. // allocate previous raw sample buffer
  1445. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1446. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1447. ret = AVERROR(ENOMEM);
  1448. goto fail;
  1449. }
  1450. // assign raw samples buffers
  1451. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1452. for (c = 1; c < avctx->channels; c++)
  1453. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1454. // allocate crc buffer
  1455. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1456. (avctx->err_recognition & AV_EF_CRCCHECK)) {
  1457. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1458. ctx->cur_frame_length *
  1459. avctx->channels *
  1460. av_get_bytes_per_sample(avctx->sample_fmt));
  1461. if (!ctx->crc_buffer) {
  1462. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1463. ret = AVERROR(ENOMEM);
  1464. goto fail;
  1465. }
  1466. }
  1467. ff_bswapdsp_init(&ctx->bdsp);
  1468. return 0;
  1469. fail:
  1470. decode_end(avctx);
  1471. return ret;
  1472. }
  1473. /** Flush (reset) the frame ID after seeking.
  1474. */
  1475. static av_cold void flush(AVCodecContext *avctx)
  1476. {
  1477. ALSDecContext *ctx = avctx->priv_data;
  1478. ctx->frame_id = 0;
  1479. }
  1480. AVCodec ff_als_decoder = {
  1481. .name = "als",
  1482. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1483. .type = AVMEDIA_TYPE_AUDIO,
  1484. .id = AV_CODEC_ID_MP4ALS,
  1485. .priv_data_size = sizeof(ALSDecContext),
  1486. .init = decode_init,
  1487. .close = decode_end,
  1488. .decode = decode_frame,
  1489. .flush = flush,
  1490. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  1491. };