You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1137 lines
41KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "indeo3data.h"
  37. /* RLE opcodes. */
  38. enum {
  39. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  40. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  41. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  42. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  43. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  44. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  45. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  46. };
  47. /* Some constants for parsing frame bitstream flags. */
  48. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  49. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  50. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  51. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  52. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  53. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  54. typedef struct Plane {
  55. uint8_t *buffers[2];
  56. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  57. uint32_t width;
  58. uint32_t height;
  59. uint32_t pitch;
  60. } Plane;
  61. #define CELL_STACK_MAX 20
  62. typedef struct Cell {
  63. int16_t xpos; ///< cell coordinates in 4x4 blocks
  64. int16_t ypos;
  65. int16_t width; ///< cell width in 4x4 blocks
  66. int16_t height; ///< cell height in 4x4 blocks
  67. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  68. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  69. } Cell;
  70. typedef struct Indeo3DecodeContext {
  71. AVCodecContext *avctx;
  72. AVFrame frame;
  73. DSPContext dsp;
  74. GetBitContext gb;
  75. int need_resync;
  76. int skip_bits;
  77. const uint8_t *next_cell_data;
  78. const uint8_t *last_byte;
  79. const int8_t *mc_vectors;
  80. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  81. int16_t width, height;
  82. uint32_t frame_num; ///< current frame number (zero-based)
  83. uint32_t data_size; ///< size of the frame data in bytes
  84. uint16_t frame_flags; ///< frame properties
  85. uint8_t cb_offset; ///< needed for selecting VQ tables
  86. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  87. const uint8_t *y_data_ptr;
  88. const uint8_t *v_data_ptr;
  89. const uint8_t *u_data_ptr;
  90. int32_t y_data_size;
  91. int32_t v_data_size;
  92. int32_t u_data_size;
  93. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  94. Plane planes[3];
  95. } Indeo3DecodeContext;
  96. static uint8_t requant_tab[8][128];
  97. /*
  98. * Build the static requantization table.
  99. * This table is used to remap pixel values according to a specific
  100. * quant index and thus avoid overflows while adding deltas.
  101. */
  102. static av_cold void build_requant_tab(void)
  103. {
  104. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  105. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  106. int i, j, step;
  107. for (i = 0; i < 8; i++) {
  108. step = i + 2;
  109. for (j = 0; j < 128; j++)
  110. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  111. }
  112. /* some last elements calculated above will have values >= 128 */
  113. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  114. /* according with the quantization step of the respective section */
  115. requant_tab[0][127] = 126;
  116. requant_tab[1][119] = 118;
  117. requant_tab[1][120] = 118;
  118. requant_tab[2][126] = 124;
  119. requant_tab[2][127] = 124;
  120. requant_tab[6][124] = 120;
  121. requant_tab[6][125] = 120;
  122. requant_tab[6][126] = 120;
  123. requant_tab[6][127] = 120;
  124. /* Patch for compatibility with the Intel's binary decoders */
  125. requant_tab[1][7] = 10;
  126. requant_tab[4][8] = 10;
  127. }
  128. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  129. AVCodecContext *avctx, int luma_width, int luma_height)
  130. {
  131. int p, chroma_width, chroma_height;
  132. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  133. if (luma_width < 16 || luma_width > 640 ||
  134. luma_height < 16 || luma_height > 480 ||
  135. luma_width & 3 || luma_height & 3) {
  136. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  137. luma_width, luma_height);
  138. return AVERROR_INVALIDDATA;
  139. }
  140. ctx->width = luma_width ;
  141. ctx->height = luma_height;
  142. chroma_width = FFALIGN(luma_width >> 2, 4);
  143. chroma_height = FFALIGN(luma_height >> 2, 4);
  144. luma_pitch = FFALIGN(luma_width, 16);
  145. chroma_pitch = FFALIGN(chroma_width, 16);
  146. /* Calculate size of the luminance plane. */
  147. /* Add one line more for INTRA prediction. */
  148. luma_size = luma_pitch * (luma_height + 1);
  149. /* Calculate size of a chrominance planes. */
  150. /* Add one line more for INTRA prediction. */
  151. chroma_size = chroma_pitch * (chroma_height + 1);
  152. /* allocate frame buffers */
  153. for (p = 0; p < 3; p++) {
  154. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  155. ctx->planes[p].width = !p ? luma_width : chroma_width;
  156. ctx->planes[p].height = !p ? luma_height : chroma_height;
  157. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  158. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  159. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  160. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  161. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  162. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  163. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  164. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  165. memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  166. memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  167. }
  168. return 0;
  169. }
  170. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  171. {
  172. int p;
  173. ctx->width=
  174. ctx->height= 0;
  175. for (p = 0; p < 3; p++) {
  176. av_freep(&ctx->planes[p].buffers[0]);
  177. av_freep(&ctx->planes[p].buffers[1]);
  178. ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
  179. }
  180. }
  181. /**
  182. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  183. * the cell(x, y) in the current frame.
  184. *
  185. * @param ctx pointer to the decoder context
  186. * @param plane pointer to the plane descriptor
  187. * @param cell pointer to the cell descriptor
  188. */
  189. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  190. {
  191. int h, w, mv_x, mv_y, offset, offset_dst;
  192. uint8_t *src, *dst;
  193. /* setup output and reference pointers */
  194. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  195. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  196. if(cell->mv_ptr){
  197. mv_y = cell->mv_ptr[0];
  198. mv_x = cell->mv_ptr[1];
  199. }else
  200. mv_x= mv_y= 0;
  201. offset = offset_dst + mv_y * plane->pitch + mv_x;
  202. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  203. h = cell->height << 2;
  204. for (w = cell->width; w > 0;) {
  205. /* copy using 16xH blocks */
  206. if (!((cell->xpos << 2) & 15) && w >= 4) {
  207. for (; w >= 4; src += 16, dst += 16, w -= 4)
  208. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  209. }
  210. /* copy using 8xH blocks */
  211. if (!((cell->xpos << 2) & 7) && w >= 2) {
  212. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  213. w -= 2;
  214. src += 8;
  215. dst += 8;
  216. }
  217. if (w >= 1) {
  218. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  219. w--;
  220. src += 4;
  221. dst += 4;
  222. }
  223. }
  224. }
  225. /* Average 4/8 pixels at once without rounding using SWAR */
  226. #define AVG_32(dst, src, ref) \
  227. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  228. #define AVG_64(dst, src, ref) \
  229. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  230. /*
  231. * Replicate each even pixel as follows:
  232. * ABCDEFGH -> AACCEEGG
  233. */
  234. static inline uint64_t replicate64(uint64_t a) {
  235. #if HAVE_BIGENDIAN
  236. a &= 0xFF00FF00FF00FF00ULL;
  237. a |= a >> 8;
  238. #else
  239. a &= 0x00FF00FF00FF00FFULL;
  240. a |= a << 8;
  241. #endif
  242. return a;
  243. }
  244. static inline uint32_t replicate32(uint32_t a) {
  245. #if HAVE_BIGENDIAN
  246. a &= 0xFF00FF00UL;
  247. a |= a >> 8;
  248. #else
  249. a &= 0x00FF00FFUL;
  250. a |= a << 8;
  251. #endif
  252. return a;
  253. }
  254. /* Fill n lines with 64bit pixel value pix */
  255. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  256. int32_t row_offset)
  257. {
  258. for (; n > 0; dst += row_offset, n--)
  259. AV_WN64A(dst, pix);
  260. }
  261. /* Error codes for cell decoding. */
  262. enum {
  263. IV3_NOERR = 0,
  264. IV3_BAD_RLE = 1,
  265. IV3_BAD_DATA = 2,
  266. IV3_BAD_COUNTER = 3,
  267. IV3_UNSUPPORTED = 4,
  268. IV3_OUT_OF_DATA = 5
  269. };
  270. #define BUFFER_PRECHECK \
  271. if (*data_ptr >= last_ptr) \
  272. return IV3_OUT_OF_DATA; \
  273. #define RLE_BLOCK_COPY \
  274. if (cell->mv_ptr || !skip_flag) \
  275. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  276. #define RLE_BLOCK_COPY_8 \
  277. pix64 = AV_RN64A(ref);\
  278. if (is_first_row) {/* special prediction case: top line of a cell */\
  279. pix64 = replicate64(pix64);\
  280. fill_64(dst + row_offset, pix64, 7, row_offset);\
  281. AVG_64(dst, ref, dst + row_offset);\
  282. } else \
  283. fill_64(dst, pix64, 8, row_offset)
  284. #define RLE_LINES_COPY \
  285. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  286. #define RLE_LINES_COPY_M10 \
  287. pix64 = AV_RN64A(ref);\
  288. if (is_top_of_cell) {\
  289. pix64 = replicate64(pix64);\
  290. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  291. AVG_64(dst, ref, dst + row_offset);\
  292. } else \
  293. fill_64(dst, pix64, num_lines << 1, row_offset)
  294. #define APPLY_DELTA_4 \
  295. AV_WN16A(dst + line_offset ,\
  296. (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  297. AV_WN16A(dst + line_offset + 2,\
  298. (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  299. if (mode >= 3) {\
  300. if (is_top_of_cell && !cell->ypos) {\
  301. AV_COPY32(dst, dst + row_offset);\
  302. } else {\
  303. AVG_32(dst, ref, dst + row_offset);\
  304. }\
  305. }
  306. #define APPLY_DELTA_8 \
  307. /* apply two 32-bit VQ deltas to next even line */\
  308. if (is_top_of_cell) { \
  309. AV_WN32A(dst + row_offset , \
  310. (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  311. AV_WN32A(dst + row_offset + 4, \
  312. (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  313. } else { \
  314. AV_WN32A(dst + row_offset , \
  315. (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  316. AV_WN32A(dst + row_offset + 4, \
  317. (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  318. } \
  319. /* odd lines are not coded but rather interpolated/replicated */\
  320. /* first line of the cell on the top of image? - replicate */\
  321. /* otherwise - interpolate */\
  322. if (is_top_of_cell && !cell->ypos) {\
  323. AV_COPY64(dst, dst + row_offset);\
  324. } else \
  325. AVG_64(dst, ref, dst + row_offset);
  326. #define APPLY_DELTA_1011_INTER \
  327. if (mode == 10) { \
  328. AV_WN32A(dst , \
  329. (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  330. AV_WN32A(dst + 4 , \
  331. (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  332. AV_WN32A(dst + row_offset , \
  333. (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  334. AV_WN32A(dst + row_offset + 4, \
  335. (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  336. } else { \
  337. AV_WN16A(dst , \
  338. (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  339. AV_WN16A(dst + 2 , \
  340. (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  341. AV_WN16A(dst + row_offset , \
  342. (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  343. AV_WN16A(dst + row_offset + 2, \
  344. (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  345. }
  346. static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
  347. int pitch, int h_zoom, int v_zoom, int mode,
  348. const vqEntry *delta[2], int swap_quads[2],
  349. const uint8_t **data_ptr, const uint8_t *last_ptr)
  350. {
  351. int x, y, line, num_lines;
  352. int rle_blocks = 0;
  353. uint8_t code, *dst, *ref;
  354. const vqEntry *delta_tab;
  355. unsigned int dyad1, dyad2;
  356. uint64_t pix64;
  357. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  358. int row_offset, blk_row_offset, line_offset;
  359. row_offset = pitch;
  360. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  361. line_offset = v_zoom ? row_offset : 0;
  362. if (cell->height & v_zoom || cell->width & h_zoom)
  363. return IV3_BAD_DATA;
  364. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  365. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  366. ref = ref_block;
  367. dst = block;
  368. if (rle_blocks > 0) {
  369. if (mode <= 4) {
  370. RLE_BLOCK_COPY;
  371. } else if (mode == 10 && !cell->mv_ptr) {
  372. RLE_BLOCK_COPY_8;
  373. }
  374. rle_blocks--;
  375. } else {
  376. for (line = 0; line < 4;) {
  377. num_lines = 1;
  378. is_top_of_cell = is_first_row && !line;
  379. /* select primary VQ table for odd, secondary for even lines */
  380. if (mode <= 4)
  381. delta_tab = delta[line & 1];
  382. else
  383. delta_tab = delta[1];
  384. BUFFER_PRECHECK;
  385. code = bytestream_get_byte(data_ptr);
  386. if (code < 248) {
  387. if (code < delta_tab->num_dyads) {
  388. BUFFER_PRECHECK;
  389. dyad1 = bytestream_get_byte(data_ptr);
  390. dyad2 = code;
  391. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  392. return IV3_BAD_DATA;
  393. } else {
  394. /* process QUADS */
  395. code -= delta_tab->num_dyads;
  396. dyad1 = code / delta_tab->quad_exp;
  397. dyad2 = code % delta_tab->quad_exp;
  398. if (swap_quads[line & 1])
  399. FFSWAP(unsigned int, dyad1, dyad2);
  400. }
  401. if (mode <= 4) {
  402. APPLY_DELTA_4;
  403. } else if (mode == 10 && !cell->mv_ptr) {
  404. APPLY_DELTA_8;
  405. } else {
  406. APPLY_DELTA_1011_INTER;
  407. }
  408. } else {
  409. /* process RLE codes */
  410. switch (code) {
  411. case RLE_ESC_FC:
  412. skip_flag = 0;
  413. rle_blocks = 1;
  414. code = 253;
  415. /* FALLTHROUGH */
  416. case RLE_ESC_FF:
  417. case RLE_ESC_FE:
  418. case RLE_ESC_FD:
  419. num_lines = 257 - code - line;
  420. if (num_lines <= 0)
  421. return IV3_BAD_RLE;
  422. if (mode <= 4) {
  423. RLE_LINES_COPY;
  424. } else if (mode == 10 && !cell->mv_ptr) {
  425. RLE_LINES_COPY_M10;
  426. }
  427. break;
  428. case RLE_ESC_FB:
  429. BUFFER_PRECHECK;
  430. code = bytestream_get_byte(data_ptr);
  431. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  432. if (code >= 64 || rle_blocks < 0)
  433. return IV3_BAD_COUNTER;
  434. skip_flag = code & 0x20;
  435. num_lines = 4 - line; /* enforce next block processing */
  436. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  437. if (mode <= 4) {
  438. RLE_LINES_COPY;
  439. } else if (mode == 10 && !cell->mv_ptr) {
  440. RLE_LINES_COPY_M10;
  441. }
  442. }
  443. break;
  444. case RLE_ESC_F9:
  445. skip_flag = 1;
  446. rle_blocks = 1;
  447. /* FALLTHROUGH */
  448. case RLE_ESC_FA:
  449. if (line)
  450. return IV3_BAD_RLE;
  451. num_lines = 4; /* enforce next block processing */
  452. if (cell->mv_ptr) {
  453. if (mode <= 4) {
  454. RLE_LINES_COPY;
  455. } else if (mode == 10 && !cell->mv_ptr) {
  456. RLE_LINES_COPY_M10;
  457. }
  458. }
  459. break;
  460. default:
  461. return IV3_UNSUPPORTED;
  462. }
  463. }
  464. line += num_lines;
  465. ref += row_offset * (num_lines << v_zoom);
  466. dst += row_offset * (num_lines << v_zoom);
  467. }
  468. }
  469. /* move to next horizontal block */
  470. block += 4 << h_zoom;
  471. ref_block += 4 << h_zoom;
  472. }
  473. /* move to next line of blocks */
  474. ref_block += blk_row_offset;
  475. block += blk_row_offset;
  476. }
  477. return IV3_NOERR;
  478. }
  479. /**
  480. * Decode a vector-quantized cell.
  481. * It consists of several routines, each of which handles one or more "modes"
  482. * with which a cell can be encoded.
  483. *
  484. * @param ctx pointer to the decoder context
  485. * @param avctx ptr to the AVCodecContext
  486. * @param plane pointer to the plane descriptor
  487. * @param cell pointer to the cell descriptor
  488. * @param data_ptr pointer to the compressed data
  489. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  490. * @return number of consumed bytes or negative number in case of error
  491. */
  492. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  493. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  494. const uint8_t *last_ptr)
  495. {
  496. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  497. int zoom_fac;
  498. int offset, error = 0, swap_quads[2];
  499. uint8_t code, *block, *ref_block = 0;
  500. const vqEntry *delta[2];
  501. const uint8_t *data_start = data_ptr;
  502. /* get coding mode and VQ table index from the VQ descriptor byte */
  503. code = *data_ptr++;
  504. mode = code >> 4;
  505. vq_index = code & 0xF;
  506. /* setup output and reference pointers */
  507. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  508. block = plane->pixels[ctx->buf_sel] + offset;
  509. if (cell->mv_ptr) {
  510. mv_y = cell->mv_ptr[0];
  511. mv_x = cell->mv_ptr[1];
  512. if ( mv_x + 4*cell->xpos < 0
  513. || mv_y + 4*cell->ypos < 0
  514. || mv_x + 4*cell->xpos + 4*cell->width > plane->width
  515. || mv_y + 4*cell->ypos + 4*cell->height > plane->height) {
  516. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*cell->xpos, mv_y + 4*cell->ypos);
  517. return AVERROR_INVALIDDATA;
  518. }
  519. }
  520. if (!cell->mv_ptr) {
  521. /* use previous line as reference for INTRA cells */
  522. ref_block = block - plane->pitch;
  523. } else if (mode >= 10) {
  524. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  525. /* so we don't need to do data copying for each RLE code later */
  526. copy_cell(ctx, plane, cell);
  527. } else {
  528. /* set the pointer to the reference pixels for modes 0-4 INTER */
  529. mv_y = cell->mv_ptr[0];
  530. mv_x = cell->mv_ptr[1];
  531. offset += mv_y * plane->pitch + mv_x;
  532. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  533. }
  534. /* select VQ tables as follows: */
  535. /* modes 0 and 3 use only the primary table for all lines in a block */
  536. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  537. if (mode == 1 || mode == 4) {
  538. code = ctx->alt_quant[vq_index];
  539. prim_indx = (code >> 4) + ctx->cb_offset;
  540. second_indx = (code & 0xF) + ctx->cb_offset;
  541. } else {
  542. vq_index += ctx->cb_offset;
  543. prim_indx = second_indx = vq_index;
  544. }
  545. if (prim_indx >= 24 || second_indx >= 24) {
  546. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  547. prim_indx, second_indx);
  548. return AVERROR_INVALIDDATA;
  549. }
  550. delta[0] = &vq_tab[second_indx];
  551. delta[1] = &vq_tab[prim_indx];
  552. swap_quads[0] = second_indx >= 16;
  553. swap_quads[1] = prim_indx >= 16;
  554. /* requantize the prediction if VQ index of this cell differs from VQ index */
  555. /* of the predicted cell in order to avoid overflows. */
  556. if (vq_index >= 8 && ref_block) {
  557. for (x = 0; x < cell->width << 2; x++)
  558. ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
  559. }
  560. error = IV3_NOERR;
  561. switch (mode) {
  562. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  563. case 1:
  564. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  565. case 4:
  566. if (mode >= 3 && cell->mv_ptr) {
  567. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  568. return AVERROR_INVALIDDATA;
  569. }
  570. zoom_fac = mode >= 3;
  571. error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
  572. mode, delta, swap_quads, &data_ptr, last_ptr);
  573. break;
  574. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  575. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  576. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  577. error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
  578. mode, delta, swap_quads, &data_ptr, last_ptr);
  579. } else { /* mode 10 and 11 INTER processing */
  580. if (mode == 11 && !cell->mv_ptr) {
  581. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  582. return AVERROR_INVALIDDATA;
  583. }
  584. zoom_fac = mode == 10;
  585. error = decode_cell_data(cell, block, ref_block, plane->pitch,
  586. zoom_fac, 1, mode, delta, swap_quads,
  587. &data_ptr, last_ptr);
  588. }
  589. break;
  590. default:
  591. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  592. return AVERROR_INVALIDDATA;
  593. }//switch mode
  594. switch (error) {
  595. case IV3_BAD_RLE:
  596. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  597. mode, data_ptr[-1]);
  598. return AVERROR_INVALIDDATA;
  599. case IV3_BAD_DATA:
  600. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  601. return AVERROR_INVALIDDATA;
  602. case IV3_BAD_COUNTER:
  603. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  604. return AVERROR_INVALIDDATA;
  605. case IV3_UNSUPPORTED:
  606. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  607. return AVERROR_INVALIDDATA;
  608. case IV3_OUT_OF_DATA:
  609. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  610. return AVERROR_INVALIDDATA;
  611. }
  612. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  613. }
  614. /* Binary tree codes. */
  615. enum {
  616. H_SPLIT = 0,
  617. V_SPLIT = 1,
  618. INTRA_NULL = 2,
  619. INTER_DATA = 3
  620. };
  621. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  622. #define UPDATE_BITPOS(n) \
  623. ctx->skip_bits += (n); \
  624. ctx->need_resync = 1
  625. #define RESYNC_BITSTREAM \
  626. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  627. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  628. ctx->skip_bits = 0; \
  629. ctx->need_resync = 0; \
  630. }
  631. #define CHECK_CELL \
  632. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  633. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  634. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  635. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  636. return AVERROR_INVALIDDATA; \
  637. }
  638. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  639. Plane *plane, int code, Cell *ref_cell,
  640. const int depth, const int strip_width)
  641. {
  642. Cell curr_cell;
  643. int bytes_used;
  644. int mv_x, mv_y;
  645. if (depth <= 0) {
  646. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  647. return AVERROR_INVALIDDATA; // unwind recursion
  648. }
  649. curr_cell = *ref_cell; // clone parent cell
  650. if (code == H_SPLIT) {
  651. SPLIT_CELL(ref_cell->height, curr_cell.height);
  652. ref_cell->ypos += curr_cell.height;
  653. ref_cell->height -= curr_cell.height;
  654. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  655. return AVERROR_INVALIDDATA;
  656. } else if (code == V_SPLIT) {
  657. if (curr_cell.width > strip_width) {
  658. /* split strip */
  659. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  660. } else
  661. SPLIT_CELL(ref_cell->width, curr_cell.width);
  662. ref_cell->xpos += curr_cell.width;
  663. ref_cell->width -= curr_cell.width;
  664. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  665. return AVERROR_INVALIDDATA;
  666. }
  667. while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
  668. RESYNC_BITSTREAM;
  669. switch (code = get_bits(&ctx->gb, 2)) {
  670. case H_SPLIT:
  671. case V_SPLIT:
  672. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  673. return AVERROR_INVALIDDATA;
  674. break;
  675. case INTRA_NULL:
  676. if (!curr_cell.tree) { /* MC tree INTRA code */
  677. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  678. curr_cell.tree = 1; /* enter the VQ tree */
  679. } else { /* VQ tree NULL code */
  680. RESYNC_BITSTREAM;
  681. code = get_bits(&ctx->gb, 2);
  682. if (code >= 2) {
  683. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  684. return AVERROR_INVALIDDATA;
  685. }
  686. if (code == 1)
  687. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  688. CHECK_CELL
  689. if (!curr_cell.mv_ptr)
  690. return AVERROR_INVALIDDATA;
  691. mv_y = curr_cell.mv_ptr[0];
  692. mv_x = curr_cell.mv_ptr[1];
  693. if ( mv_x + 4*curr_cell.xpos < 0
  694. || mv_y + 4*curr_cell.ypos < 0
  695. || mv_x + 4*curr_cell.xpos + 4*curr_cell.width > plane->width
  696. || mv_y + 4*curr_cell.ypos + 4*curr_cell.height > plane->height) {
  697. av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", mv_x + 4*curr_cell.xpos, mv_y + 4*curr_cell.ypos);
  698. return AVERROR_INVALIDDATA;
  699. }
  700. copy_cell(ctx, plane, &curr_cell);
  701. return 0;
  702. }
  703. break;
  704. case INTER_DATA:
  705. if (!curr_cell.tree) { /* MC tree INTER code */
  706. unsigned mv_idx;
  707. /* get motion vector index and setup the pointer to the mv set */
  708. if (!ctx->need_resync)
  709. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  710. if (ctx->next_cell_data >= ctx->last_byte) {
  711. av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
  712. return AVERROR_INVALIDDATA;
  713. }
  714. mv_idx = *(ctx->next_cell_data++);
  715. if (mv_idx >= ctx->num_vectors) {
  716. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  717. return AVERROR_INVALIDDATA;
  718. }
  719. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  720. curr_cell.tree = 1; /* enter the VQ tree */
  721. UPDATE_BITPOS(8);
  722. } else { /* VQ tree DATA code */
  723. if (!ctx->need_resync)
  724. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  725. CHECK_CELL
  726. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  727. ctx->next_cell_data, ctx->last_byte);
  728. if (bytes_used < 0)
  729. return AVERROR_INVALIDDATA;
  730. UPDATE_BITPOS(bytes_used << 3);
  731. ctx->next_cell_data += bytes_used;
  732. return 0;
  733. }
  734. break;
  735. }
  736. }//while
  737. return AVERROR_INVALIDDATA;
  738. }
  739. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  740. Plane *plane, const uint8_t *data, int32_t data_size,
  741. int32_t strip_width)
  742. {
  743. Cell curr_cell;
  744. unsigned num_vectors;
  745. /* each plane data starts with mc_vector_count field, */
  746. /* an optional array of motion vectors followed by the vq data */
  747. num_vectors = bytestream_get_le32(&data); data_size -= 4;
  748. if (num_vectors > 256) {
  749. av_log(ctx->avctx, AV_LOG_ERROR,
  750. "Read invalid number of motion vectors %d\n", num_vectors);
  751. return AVERROR_INVALIDDATA;
  752. }
  753. if (num_vectors * 2 > data_size)
  754. return AVERROR_INVALIDDATA;
  755. ctx->num_vectors = num_vectors;
  756. ctx->mc_vectors = num_vectors ? data : 0;
  757. /* init the bitreader */
  758. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  759. ctx->skip_bits = 0;
  760. ctx->need_resync = 0;
  761. ctx->last_byte = data + data_size;
  762. /* initialize the 1st cell and set its dimensions to whole plane */
  763. curr_cell.xpos = curr_cell.ypos = 0;
  764. curr_cell.width = plane->width >> 2;
  765. curr_cell.height = plane->height >> 2;
  766. curr_cell.tree = 0; // we are in the MC tree now
  767. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  768. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  769. }
  770. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  771. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  772. const uint8_t *buf, int buf_size)
  773. {
  774. const uint8_t *buf_ptr = buf, *bs_hdr;
  775. uint32_t frame_num, word2, check_sum, data_size;
  776. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  777. uint16_t height, width;
  778. int i, j;
  779. /* parse and check the OS header */
  780. frame_num = bytestream_get_le32(&buf_ptr);
  781. word2 = bytestream_get_le32(&buf_ptr);
  782. check_sum = bytestream_get_le32(&buf_ptr);
  783. data_size = bytestream_get_le32(&buf_ptr);
  784. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  785. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  786. return AVERROR_INVALIDDATA;
  787. }
  788. /* parse the bitstream header */
  789. bs_hdr = buf_ptr;
  790. buf_size -= 16;
  791. if (bytestream_get_le16(&buf_ptr) != 32) {
  792. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  793. return AVERROR_INVALIDDATA;
  794. }
  795. ctx->frame_num = frame_num;
  796. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  797. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  798. ctx->cb_offset = *buf_ptr++;
  799. if (ctx->data_size == 16)
  800. return 4;
  801. if (ctx->data_size > buf_size)
  802. ctx->data_size = buf_size;
  803. buf_ptr += 3; // skip reserved byte and checksum
  804. /* check frame dimensions */
  805. height = bytestream_get_le16(&buf_ptr);
  806. width = bytestream_get_le16(&buf_ptr);
  807. if (av_image_check_size(width, height, 0, avctx))
  808. return AVERROR_INVALIDDATA;
  809. if (width != ctx->width || height != ctx->height) {
  810. int res;
  811. av_dlog(avctx, "Frame dimensions changed!\n");
  812. if (width < 16 || width > 640 ||
  813. height < 16 || height > 480 ||
  814. width & 3 || height & 3) {
  815. av_log(avctx, AV_LOG_ERROR,
  816. "Invalid picture dimensions: %d x %d!\n", width, height);
  817. return AVERROR_INVALIDDATA;
  818. }
  819. free_frame_buffers(ctx);
  820. if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
  821. return res;
  822. avcodec_set_dimensions(avctx, width, height);
  823. }
  824. y_offset = bytestream_get_le32(&buf_ptr);
  825. v_offset = bytestream_get_le32(&buf_ptr);
  826. u_offset = bytestream_get_le32(&buf_ptr);
  827. /* unfortunately there is no common order of planes in the buffer */
  828. /* so we use that sorting algo for determining planes data sizes */
  829. starts[0] = y_offset;
  830. starts[1] = v_offset;
  831. starts[2] = u_offset;
  832. for (j = 0; j < 3; j++) {
  833. ends[j] = ctx->data_size;
  834. for (i = 2; i >= 0; i--)
  835. if (starts[i] < ends[j] && starts[i] > starts[j])
  836. ends[j] = starts[i];
  837. }
  838. ctx->y_data_size = ends[0] - starts[0];
  839. ctx->v_data_size = ends[1] - starts[1];
  840. ctx->u_data_size = ends[2] - starts[2];
  841. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  842. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  843. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  844. return AVERROR_INVALIDDATA;
  845. }
  846. ctx->y_data_ptr = bs_hdr + y_offset;
  847. ctx->v_data_ptr = bs_hdr + v_offset;
  848. ctx->u_data_ptr = bs_hdr + u_offset;
  849. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  850. if (ctx->data_size == 16) {
  851. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  852. return 16;
  853. }
  854. if (ctx->frame_flags & BS_8BIT_PEL) {
  855. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  856. return AVERROR_PATCHWELCOME;
  857. }
  858. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  859. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  860. return AVERROR_PATCHWELCOME;
  861. }
  862. return 0;
  863. }
  864. /**
  865. * Convert and output the current plane.
  866. * All pixel values will be upsampled by shifting right by one bit.
  867. *
  868. * @param[in] plane pointer to the descriptor of the plane being processed
  869. * @param[in] buf_sel indicates which frame buffer the input data stored in
  870. * @param[out] dst pointer to the buffer receiving converted pixels
  871. * @param[in] dst_pitch pitch for moving to the next y line
  872. */
  873. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
  874. {
  875. int x,y;
  876. const uint8_t *src = plane->pixels[buf_sel];
  877. uint32_t pitch = plane->pitch;
  878. for (y = 0; y < plane->height; y++) {
  879. /* convert four pixels at once using SWAR */
  880. for (x = 0; x < plane->width >> 2; x++) {
  881. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  882. src += 4;
  883. dst += 4;
  884. }
  885. for (x <<= 2; x < plane->width; x++)
  886. *dst++ = *src++ << 1;
  887. src += pitch - plane->width;
  888. dst += dst_pitch - plane->width;
  889. }
  890. }
  891. static av_cold int decode_init(AVCodecContext *avctx)
  892. {
  893. Indeo3DecodeContext *ctx = avctx->priv_data;
  894. ctx->avctx = avctx;
  895. avctx->pix_fmt = PIX_FMT_YUV410P;
  896. avcodec_get_frame_defaults(&ctx->frame);
  897. build_requant_tab();
  898. ff_dsputil_init(&ctx->dsp, avctx);
  899. return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
  900. }
  901. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  902. AVPacket *avpkt)
  903. {
  904. Indeo3DecodeContext *ctx = avctx->priv_data;
  905. const uint8_t *buf = avpkt->data;
  906. int buf_size = avpkt->size;
  907. int res;
  908. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  909. if (res < 0)
  910. return res;
  911. /* skip sync(null) frames */
  912. if (res) {
  913. // we have processed 16 bytes but no data was decoded
  914. *data_size = 0;
  915. return buf_size;
  916. }
  917. /* skip droppable INTER frames if requested */
  918. if (ctx->frame_flags & BS_NONREF &&
  919. (avctx->skip_frame >= AVDISCARD_NONREF))
  920. return 0;
  921. /* skip INTER frames if requested */
  922. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  923. return 0;
  924. /* use BS_BUFFER flag for buffer switching */
  925. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  926. /* decode luma plane */
  927. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  928. return res;
  929. /* decode chroma planes */
  930. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  931. return res;
  932. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  933. return res;
  934. if (ctx->frame.data[0])
  935. avctx->release_buffer(avctx, &ctx->frame);
  936. ctx->frame.reference = 0;
  937. if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
  938. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  939. return res;
  940. }
  941. output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
  942. output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
  943. output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
  944. *data_size = sizeof(AVFrame);
  945. *(AVFrame*)data = ctx->frame;
  946. return buf_size;
  947. }
  948. static av_cold int decode_close(AVCodecContext *avctx)
  949. {
  950. Indeo3DecodeContext *ctx = avctx->priv_data;
  951. free_frame_buffers(avctx->priv_data);
  952. if (ctx->frame.data[0])
  953. avctx->release_buffer(avctx, &ctx->frame);
  954. return 0;
  955. }
  956. AVCodec ff_indeo3_decoder = {
  957. .name = "indeo3",
  958. .type = AVMEDIA_TYPE_VIDEO,
  959. .id = AV_CODEC_ID_INDEO3,
  960. .priv_data_size = sizeof(Indeo3DecodeContext),
  961. .init = decode_init,
  962. .close = decode_close,
  963. .decode = decode_frame,
  964. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  965. };