You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

651 lines
22KB

  1. @chapter Muxers
  2. @c man begin MUXERS
  3. Muxers are configured elements in FFmpeg which allow writing
  4. multimedia streams to a particular type of file.
  5. When you configure your FFmpeg build, all the supported muxers
  6. are enabled by default. You can list all available muxers using the
  7. configure option @code{--list-muxers}.
  8. You can disable all the muxers with the configure option
  9. @code{--disable-muxers} and selectively enable / disable single muxers
  10. with the options @code{--enable-muxer=@var{MUXER}} /
  11. @code{--disable-muxer=@var{MUXER}}.
  12. The option @code{-formats} of the ff* tools will display the list of
  13. enabled muxers.
  14. A description of some of the currently available muxers follows.
  15. @anchor{crc}
  16. @section crc
  17. CRC (Cyclic Redundancy Check) testing format.
  18. This muxer computes and prints the Adler-32 CRC of all the input audio
  19. and video frames. By default audio frames are converted to signed
  20. 16-bit raw audio and video frames to raw video before computing the
  21. CRC.
  22. The output of the muxer consists of a single line of the form:
  23. CRC=0x@var{CRC}, where @var{CRC} is a hexadecimal number 0-padded to
  24. 8 digits containing the CRC for all the decoded input frames.
  25. For example to compute the CRC of the input, and store it in the file
  26. @file{out.crc}:
  27. @example
  28. ffmpeg -i INPUT -f crc out.crc
  29. @end example
  30. You can print the CRC to stdout with the command:
  31. @example
  32. ffmpeg -i INPUT -f crc -
  33. @end example
  34. You can select the output format of each frame with @command{ffmpeg} by
  35. specifying the audio and video codec and format. For example to
  36. compute the CRC of the input audio converted to PCM unsigned 8-bit
  37. and the input video converted to MPEG-2 video, use the command:
  38. @example
  39. ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -
  40. @end example
  41. See also the @ref{framecrc} muxer.
  42. @anchor{framecrc}
  43. @section framecrc
  44. Per-packet CRC (Cyclic Redundancy Check) testing format.
  45. This muxer computes and prints the Adler-32 CRC for each audio
  46. and video packet. By default audio frames are converted to signed
  47. 16-bit raw audio and video frames to raw video before computing the
  48. CRC.
  49. The output of the muxer consists of a line for each audio and video
  50. packet of the form:
  51. @example
  52. @var{stream_index}, @var{packet_dts}, @var{packet_pts}, @var{packet_duration}, @var{packet_size}, 0x@var{CRC}
  53. @end example
  54. @var{CRC} is a hexadecimal number 0-padded to 8 digits containing the
  55. CRC of the packet.
  56. For example to compute the CRC of the audio and video frames in
  57. @file{INPUT}, converted to raw audio and video packets, and store it
  58. in the file @file{out.crc}:
  59. @example
  60. ffmpeg -i INPUT -f framecrc out.crc
  61. @end example
  62. To print the information to stdout, use the command:
  63. @example
  64. ffmpeg -i INPUT -f framecrc -
  65. @end example
  66. With @command{ffmpeg}, you can select the output format to which the
  67. audio and video frames are encoded before computing the CRC for each
  68. packet by specifying the audio and video codec. For example, to
  69. compute the CRC of each decoded input audio frame converted to PCM
  70. unsigned 8-bit and of each decoded input video frame converted to
  71. MPEG-2 video, use the command:
  72. @example
  73. ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -
  74. @end example
  75. See also the @ref{crc} muxer.
  76. @anchor{framemd5}
  77. @section framemd5
  78. Per-packet MD5 testing format.
  79. This muxer computes and prints the MD5 hash for each audio
  80. and video packet. By default audio frames are converted to signed
  81. 16-bit raw audio and video frames to raw video before computing the
  82. hash.
  83. The output of the muxer consists of a line for each audio and video
  84. packet of the form:
  85. @example
  86. @var{stream_index}, @var{packet_dts}, @var{packet_pts}, @var{packet_duration}, @var{packet_size}, @var{MD5}
  87. @end example
  88. @var{MD5} is a hexadecimal number representing the computed MD5 hash
  89. for the packet.
  90. For example to compute the MD5 of the audio and video frames in
  91. @file{INPUT}, converted to raw audio and video packets, and store it
  92. in the file @file{out.md5}:
  93. @example
  94. ffmpeg -i INPUT -f framemd5 out.md5
  95. @end example
  96. To print the information to stdout, use the command:
  97. @example
  98. ffmpeg -i INPUT -f framemd5 -
  99. @end example
  100. See also the @ref{md5} muxer.
  101. @anchor{ico}
  102. @section ico
  103. ICO file muxer.
  104. Microsoft's icon file format (ICO) has some strict limitations that should be noted:
  105. @itemize
  106. @item
  107. Size cannot exceed 256 pixels in any dimension
  108. @item
  109. Only BMP and PNG images can be stored
  110. @item
  111. If a BMP image is used, it must be one of the following pixel formats:
  112. @example
  113. BMP Bit Depth FFmpeg Pixel Format
  114. 1bit pal8
  115. 4bit pal8
  116. 8bit pal8
  117. 16bit rgb555le
  118. 24bit bgr24
  119. 32bit bgra
  120. @end example
  121. @item
  122. If a BMP image is used, it must use the BITMAPINFOHEADER DIB header
  123. @item
  124. If a PNG image is used, it must use the rgba pixel format
  125. @end itemize
  126. @anchor{image2}
  127. @section image2
  128. Image file muxer.
  129. The image file muxer writes video frames to image files.
  130. The output filenames are specified by a pattern, which can be used to
  131. produce sequentially numbered series of files.
  132. The pattern may contain the string "%d" or "%0@var{N}d", this string
  133. specifies the position of the characters representing a numbering in
  134. the filenames. If the form "%0@var{N}d" is used, the string
  135. representing the number in each filename is 0-padded to @var{N}
  136. digits. The literal character '%' can be specified in the pattern with
  137. the string "%%".
  138. If the pattern contains "%d" or "%0@var{N}d", the first filename of
  139. the file list specified will contain the number 1, all the following
  140. numbers will be sequential.
  141. The pattern may contain a suffix which is used to automatically
  142. determine the format of the image files to write.
  143. For example the pattern "img-%03d.bmp" will specify a sequence of
  144. filenames of the form @file{img-001.bmp}, @file{img-002.bmp}, ...,
  145. @file{img-010.bmp}, etc.
  146. The pattern "img%%-%d.jpg" will specify a sequence of filenames of the
  147. form @file{img%-1.jpg}, @file{img%-2.jpg}, ..., @file{img%-10.jpg},
  148. etc.
  149. The following example shows how to use @command{ffmpeg} for creating a
  150. sequence of files @file{img-001.jpeg}, @file{img-002.jpeg}, ...,
  151. taking one image every second from the input video:
  152. @example
  153. ffmpeg -i in.avi -vsync 1 -r 1 -f image2 'img-%03d.jpeg'
  154. @end example
  155. Note that with @command{ffmpeg}, if the format is not specified with the
  156. @code{-f} option and the output filename specifies an image file
  157. format, the image2 muxer is automatically selected, so the previous
  158. command can be written as:
  159. @example
  160. ffmpeg -i in.avi -vsync 1 -r 1 'img-%03d.jpeg'
  161. @end example
  162. Note also that the pattern must not necessarily contain "%d" or
  163. "%0@var{N}d", for example to create a single image file
  164. @file{img.jpeg} from the input video you can employ the command:
  165. @example
  166. ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg
  167. @end example
  168. The image muxer supports the .Y.U.V image file format. This format is
  169. special in that that each image frame consists of three files, for
  170. each of the YUV420P components. To read or write this image file format,
  171. specify the name of the '.Y' file. The muxer will automatically open the
  172. '.U' and '.V' files as required.
  173. @anchor{md5}
  174. @section md5
  175. MD5 testing format.
  176. This muxer computes and prints the MD5 hash of all the input audio
  177. and video frames. By default audio frames are converted to signed
  178. 16-bit raw audio and video frames to raw video before computing the
  179. hash.
  180. The output of the muxer consists of a single line of the form:
  181. MD5=@var{MD5}, where @var{MD5} is a hexadecimal number representing
  182. the computed MD5 hash.
  183. For example to compute the MD5 hash of the input converted to raw
  184. audio and video, and store it in the file @file{out.md5}:
  185. @example
  186. ffmpeg -i INPUT -f md5 out.md5
  187. @end example
  188. You can print the MD5 to stdout with the command:
  189. @example
  190. ffmpeg -i INPUT -f md5 -
  191. @end example
  192. See also the @ref{framemd5} muxer.
  193. @section MOV/MP4/ISMV
  194. The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4
  195. file has all the metadata about all packets stored in one location
  196. (written at the end of the file, it can be moved to the start for
  197. better playback using the @command{qt-faststart} tool). A fragmented
  198. file consists of a number of fragments, where packets and metadata
  199. about these packets are stored together. Writing a fragmented
  200. file has the advantage that the file is decodable even if the
  201. writing is interrupted (while a normal MOV/MP4 is undecodable if
  202. it is not properly finished), and it requires less memory when writing
  203. very long files (since writing normal MOV/MP4 files stores info about
  204. every single packet in memory until the file is closed). The downside
  205. is that it is less compatible with other applications.
  206. Fragmentation is enabled by setting one of the AVOptions that define
  207. how to cut the file into fragments:
  208. @table @option
  209. @item -moov_size @var{bytes}
  210. Reserves space for the moov atom at the beginning of the file instead of placing the
  211. moov atom at the end. If the space reserved is insufficient, muxing will fail.
  212. @item -movflags frag_keyframe
  213. Start a new fragment at each video keyframe.
  214. @item -frag_duration @var{duration}
  215. Create fragments that are @var{duration} microseconds long.
  216. @item -frag_size @var{size}
  217. Create fragments that contain up to @var{size} bytes of payload data.
  218. @item -movflags frag_custom
  219. Allow the caller to manually choose when to cut fragments, by
  220. calling @code{av_write_frame(ctx, NULL)} to write a fragment with
  221. the packets written so far. (This is only useful with other
  222. applications integrating libavformat, not from @command{ffmpeg}.)
  223. @item -min_frag_duration @var{duration}
  224. Don't create fragments that are shorter than @var{duration} microseconds long.
  225. @end table
  226. If more than one condition is specified, fragments are cut when
  227. one of the specified conditions is fulfilled. The exception to this is
  228. @code{-min_frag_duration}, which has to be fulfilled for any of the other
  229. conditions to apply.
  230. Additionally, the way the output file is written can be adjusted
  231. through a few other options:
  232. @table @option
  233. @item -movflags empty_moov
  234. Write an initial moov atom directly at the start of the file, without
  235. describing any samples in it. Generally, an mdat/moov pair is written
  236. at the start of the file, as a normal MOV/MP4 file, containing only
  237. a short portion of the file. With this option set, there is no initial
  238. mdat atom, and the moov atom only describes the tracks but has
  239. a zero duration.
  240. Files written with this option set do not work in QuickTime.
  241. This option is implicitly set when writing ismv (Smooth Streaming) files.
  242. @item -movflags separate_moof
  243. Write a separate moof (movie fragment) atom for each track. Normally,
  244. packets for all tracks are written in a moof atom (which is slightly
  245. more efficient), but with this option set, the muxer writes one moof/mdat
  246. pair for each track, making it easier to separate tracks.
  247. This option is implicitly set when writing ismv (Smooth Streaming) files.
  248. @end table
  249. Smooth Streaming content can be pushed in real time to a publishing
  250. point on IIS with this muxer. Example:
  251. @example
  252. ffmpeg -re @var{<normal input/transcoding options>} -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)
  253. @end example
  254. @section mpegts
  255. MPEG transport stream muxer.
  256. This muxer implements ISO 13818-1 and part of ETSI EN 300 468.
  257. The muxer options are:
  258. @table @option
  259. @item -mpegts_original_network_id @var{number}
  260. Set the original_network_id (default 0x0001). This is unique identifier
  261. of a network in DVB. Its main use is in the unique identification of a
  262. service through the path Original_Network_ID, Transport_Stream_ID.
  263. @item -mpegts_transport_stream_id @var{number}
  264. Set the transport_stream_id (default 0x0001). This identifies a
  265. transponder in DVB.
  266. @item -mpegts_service_id @var{number}
  267. Set the service_id (default 0x0001) also known as program in DVB.
  268. @item -mpegts_pmt_start_pid @var{number}
  269. Set the first PID for PMT (default 0x1000, max 0x1f00).
  270. @item -mpegts_start_pid @var{number}
  271. Set the first PID for data packets (default 0x0100, max 0x0f00).
  272. @end table
  273. The recognized metadata settings in mpegts muxer are @code{service_provider}
  274. and @code{service_name}. If they are not set the default for
  275. @code{service_provider} is "FFmpeg" and the default for
  276. @code{service_name} is "Service01".
  277. @example
  278. ffmpeg -i file.mpg -c copy \
  279. -mpegts_original_network_id 0x1122 \
  280. -mpegts_transport_stream_id 0x3344 \
  281. -mpegts_service_id 0x5566 \
  282. -mpegts_pmt_start_pid 0x1500 \
  283. -mpegts_start_pid 0x150 \
  284. -metadata service_provider="Some provider" \
  285. -metadata service_name="Some Channel" \
  286. -y out.ts
  287. @end example
  288. @section null
  289. Null muxer.
  290. This muxer does not generate any output file, it is mainly useful for
  291. testing or benchmarking purposes.
  292. For example to benchmark decoding with @command{ffmpeg} you can use the
  293. command:
  294. @example
  295. ffmpeg -benchmark -i INPUT -f null out.null
  296. @end example
  297. Note that the above command does not read or write the @file{out.null}
  298. file, but specifying the output file is required by the @command{ffmpeg}
  299. syntax.
  300. Alternatively you can write the command as:
  301. @example
  302. ffmpeg -benchmark -i INPUT -f null -
  303. @end example
  304. @section matroska
  305. Matroska container muxer.
  306. This muxer implements the matroska and webm container specs.
  307. The recognized metadata settings in this muxer are:
  308. @table @option
  309. @item title=@var{title name}
  310. Name provided to a single track
  311. @end table
  312. @table @option
  313. @item language=@var{language name}
  314. Specifies the language of the track in the Matroska languages form
  315. @end table
  316. @table @option
  317. @item stereo_mode=@var{mode}
  318. Stereo 3D video layout of two views in a single video track
  319. @table @option
  320. @item mono
  321. video is not stereo
  322. @item left_right
  323. Both views are arranged side by side, Left-eye view is on the left
  324. @item bottom_top
  325. Both views are arranged in top-bottom orientation, Left-eye view is at bottom
  326. @item top_bottom
  327. Both views are arranged in top-bottom orientation, Left-eye view is on top
  328. @item checkerboard_rl
  329. Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first
  330. @item checkerboard_lr
  331. Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first
  332. @item row_interleaved_rl
  333. Each view is constituted by a row based interleaving, Right-eye view is first row
  334. @item row_interleaved_lr
  335. Each view is constituted by a row based interleaving, Left-eye view is first row
  336. @item col_interleaved_rl
  337. Both views are arranged in a column based interleaving manner, Right-eye view is first column
  338. @item col_interleaved_lr
  339. Both views are arranged in a column based interleaving manner, Left-eye view is first column
  340. @item anaglyph_cyan_red
  341. All frames are in anaglyph format viewable through red-cyan filters
  342. @item right_left
  343. Both views are arranged side by side, Right-eye view is on the left
  344. @item anaglyph_green_magenta
  345. All frames are in anaglyph format viewable through green-magenta filters
  346. @item block_lr
  347. Both eyes laced in one Block, Left-eye view is first
  348. @item block_rl
  349. Both eyes laced in one Block, Right-eye view is first
  350. @end table
  351. @end table
  352. For example a 3D WebM clip can be created using the following command line:
  353. @example
  354. ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm
  355. @end example
  356. @section segment, stream_segment, ssegment
  357. Basic stream segmenter.
  358. The segmenter muxer outputs streams to a number of separate files of nearly
  359. fixed duration. Output filename pattern can be set in a fashion similar to
  360. @ref{image2}.
  361. @code{stream_segment} is a variant of the muxer used to write to
  362. streaming output formats, i.e. which do not require global headers,
  363. and is recommended for outputting e.g. to MPEG transport stream segments.
  364. @code{ssegment} is a shorter alias for @code{stream_segment}.
  365. Every segment starts with a video keyframe, if a video stream is present.
  366. Note that if you want accurate splitting for a video file, you need to
  367. make the input key frames correspond to the exact splitting times
  368. expected by the segmenter, or the segment muxer will start the new
  369. segment with the key frame found next after the specified start
  370. time.
  371. The segment muxer works best with a single constant frame rate video.
  372. Optionally it can generate a list of the created segments, by setting
  373. the option @var{segment_list}. The list type is specified by the
  374. @var{segment_list_type} option.
  375. The segment muxer supports the following options:
  376. @table @option
  377. @item segment_format @var{format}
  378. Override the inner container format, by default it is guessed by the filename
  379. extension.
  380. @item segment_list @var{name}
  381. Generate also a listfile named @var{name}. If not specified no
  382. listfile is generated.
  383. @item segment_list_flags @var{flags}
  384. Set flags affecting the segment list generation.
  385. It currently supports the following flags:
  386. @table @var
  387. @item cache
  388. Allow caching (only affects M3U8 list files).
  389. @item live
  390. Allow live-friendly file generation.
  391. This currently only affects M3U8 lists. In particular, write a fake
  392. EXT-X-TARGETDURATION duration field at the top of the file, based on
  393. the specified @var{segment_time}.
  394. @end table
  395. Default value is @code{cache}.
  396. @item segment_list_size @var{size}
  397. Overwrite the listfile once it reaches @var{size} entries. If 0
  398. the listfile is never overwritten. Default value is 0.
  399. @item segment_list type @var{type}
  400. Specify the format for the segment list file.
  401. The following values are recognized:
  402. @table @option
  403. @item flat
  404. Generate a flat list for the created segments, one segment per line.
  405. @item csv, ext
  406. Generate a list for the created segments, one segment per line,
  407. each line matching the format (comma-separated values):
  408. @example
  409. @var{segment_filename},@var{segment_start_time},@var{segment_end_time}
  410. @end example
  411. @var{segment_filename} is the name of the output file generated by the
  412. muxer according to the provided pattern. CSV escaping (according to
  413. RFC4180) is applied if required.
  414. @var{segment_start_time} and @var{segment_end_time} specify
  415. the segment start and end time expressed in seconds.
  416. A list file with the suffix @code{".csv"} or @code{".ext"} will
  417. auto-select this format.
  418. @code{ext} is deprecated in favor or @code{csv}.
  419. @item m3u8
  420. Generate an extended M3U8 file, version 4, compliant with
  421. @url{http://tools.ietf.org/id/draft-pantos-http-live-streaming-08.txt}.
  422. A list file with the suffix @code{".m3u8"} will auto-select this format.
  423. @end table
  424. If not specified the type is guessed from the list file name suffix.
  425. @item segment_time @var{time}
  426. Set segment duration to @var{time}. Default value is "2".
  427. @item segment_time_delta @var{delta}
  428. Specify the accuracy time when selecting the start time for a
  429. segment. Default value is "0".
  430. When delta is specified a key-frame will start a new segment if its
  431. PTS satisfies the relation:
  432. @example
  433. PTS >= start_time - time_delta
  434. @end example
  435. This option is useful when splitting video content, which is always
  436. split at GOP boundaries, in case a key frame is found just before the
  437. specified split time.
  438. In particular may be used in combination with the @file{ffmpeg} option
  439. @var{force_key_frames}. The key frame times specified by
  440. @var{force_key_frames} may not be set accurately because of rounding
  441. issues, with the consequence that a key frame time may result set just
  442. before the specified time. For constant frame rate videos a value of
  443. 1/2*@var{frame_rate} should address the worst case mismatch between
  444. the specified time and the time set by @var{force_key_frames}.
  445. @item segment_times @var{times}
  446. Specify a list of split points. @var{times} contains a list of comma
  447. separated duration specifications, in increasing order.
  448. @item segment_wrap @var{limit}
  449. Wrap around segment index once it reaches @var{limit}.
  450. @end table
  451. Some examples follow.
  452. @itemize
  453. @item
  454. To remux the content of file @file{in.mkv} to a list of segments
  455. @file{out-000.nut}, @file{out-001.nut}, etc., and write the list of
  456. generated segments to @file{out.list}:
  457. @example
  458. ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.list out%03d.nut
  459. @end example
  460. @item
  461. As the example above, but segment the input file according to the split
  462. points specified by the @var{segment_times} option:
  463. @example
  464. ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut
  465. @end example
  466. @item
  467. As the example above, but use the @code{ffmpeg} @var{force_key_frames}
  468. option to force key frames in the input at the specified location, together
  469. with the segment option @var{segment_time_delta} to account for
  470. possible roundings operated when setting key frame times.
  471. @example
  472. ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -vcodec mpeg4 -acodec pcm_s16le -map 0 \
  473. -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut
  474. @end example
  475. In order to force key frames on the input file, transcoding is
  476. required.
  477. @item
  478. To convert the @file{in.mkv} to TS segments using the @code{libx264}
  479. and @code{libfaac} encoders:
  480. @example
  481. ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a libfaac -f ssegment -segment_list out.list out%03d.ts
  482. @end example
  483. @item
  484. Segment the input file, and create an M3U8 live playlist (can be used
  485. as live HLS source):
  486. @example
  487. ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
  488. -segment_list_flags +live -segment_time 10 out%03d.mkv
  489. @end example
  490. @end itemize
  491. @section mp3
  492. The MP3 muxer writes a raw MP3 stream with an ID3v2 header at the beginning and
  493. optionally an ID3v1 tag at the end. ID3v2.3 and ID3v2.4 are supported, the
  494. @code{id3v2_version} option controls which one is used. The legacy ID3v1 tag is
  495. not written by default, but may be enabled with the @code{write_id3v1} option.
  496. For seekable output the muxer also writes a Xing frame at the beginning, which
  497. contains the number of frames in the file. It is useful for computing duration
  498. of VBR files.
  499. The muxer supports writing ID3v2 attached pictures (APIC frames). The pictures
  500. are supplied to the muxer in form of a video stream with a single packet. There
  501. can be any number of those streams, each will correspond to a single APIC frame.
  502. The stream metadata tags @var{title} and @var{comment} map to APIC
  503. @var{description} and @var{picture type} respectively. See
  504. @url{http://id3.org/id3v2.4.0-frames} for allowed picture types.
  505. Note that the APIC frames must be written at the beginning, so the muxer will
  506. buffer the audio frames until it gets all the pictures. It is therefore advised
  507. to provide the pictures as soon as possible to avoid excessive buffering.
  508. Examples:
  509. Write an mp3 with an ID3v2.3 header and an ID3v1 footer:
  510. @example
  511. ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3
  512. @end example
  513. Attach a picture to an mp3:
  514. @example
  515. ffmpeg -i input.mp3 -i cover.png -c copy -metadata:s:v title="Album cover"
  516. -metadata:s:v comment="Cover (Front)" out.mp3
  517. @end example
  518. @c man end MUXERS