You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

444 lines
13KB

  1. /*
  2. * TTA (The Lossless True Audio) decoder
  3. * Copyright (c) 2006 Alex Beregszaszi
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * TTA (The Lossless True Audio) decoder
  24. * @see http://www.true-audio.com/
  25. * @see http://tta.corecodec.org/
  26. * @author Alex Beregszaszi
  27. */
  28. #define BITSTREAM_READER_LE
  29. //#define DEBUG
  30. #include <limits.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #define FORMAT_SIMPLE 1
  34. #define FORMAT_ENCRYPTED 2
  35. #define MAX_ORDER 16
  36. typedef struct TTAFilter {
  37. int32_t shift, round, error, mode;
  38. int32_t qm[MAX_ORDER];
  39. int32_t dx[MAX_ORDER];
  40. int32_t dl[MAX_ORDER];
  41. } TTAFilter;
  42. typedef struct TTARice {
  43. uint32_t k0, k1, sum0, sum1;
  44. } TTARice;
  45. typedef struct TTAChannel {
  46. int32_t predictor;
  47. TTAFilter filter;
  48. TTARice rice;
  49. } TTAChannel;
  50. typedef struct TTAContext {
  51. AVCodecContext *avctx;
  52. AVFrame frame;
  53. GetBitContext gb;
  54. int format, channels, bps, data_length;
  55. int frame_length, last_frame_length, total_frames;
  56. int32_t *decode_buffer;
  57. TTAChannel *ch_ctx;
  58. } TTAContext;
  59. static const uint32_t shift_1[] = {
  60. 0x00000001, 0x00000002, 0x00000004, 0x00000008,
  61. 0x00000010, 0x00000020, 0x00000040, 0x00000080,
  62. 0x00000100, 0x00000200, 0x00000400, 0x00000800,
  63. 0x00001000, 0x00002000, 0x00004000, 0x00008000,
  64. 0x00010000, 0x00020000, 0x00040000, 0x00080000,
  65. 0x00100000, 0x00200000, 0x00400000, 0x00800000,
  66. 0x01000000, 0x02000000, 0x04000000, 0x08000000,
  67. 0x10000000, 0x20000000, 0x40000000, 0x80000000,
  68. 0x80000000, 0x80000000, 0x80000000, 0x80000000,
  69. 0x80000000, 0x80000000, 0x80000000, 0x80000000
  70. };
  71. static const uint32_t * const shift_16 = shift_1 + 4;
  72. static const int32_t ttafilter_configs[4][2] = {
  73. {10, 1},
  74. {9, 1},
  75. {10, 1},
  76. {12, 0}
  77. };
  78. static void ttafilter_init(TTAFilter *c, int32_t shift, int32_t mode) {
  79. memset(c, 0, sizeof(TTAFilter));
  80. c->shift = shift;
  81. c->round = shift_1[shift-1];
  82. // c->round = 1 << (shift - 1);
  83. c->mode = mode;
  84. }
  85. // FIXME: copy paste from original
  86. static inline void memshl(register int32_t *a, register int32_t *b) {
  87. *a++ = *b++;
  88. *a++ = *b++;
  89. *a++ = *b++;
  90. *a++ = *b++;
  91. *a++ = *b++;
  92. *a++ = *b++;
  93. *a++ = *b++;
  94. *a = *b;
  95. }
  96. // FIXME: copy paste from original
  97. // mode=1 encoder, mode=0 decoder
  98. static inline void ttafilter_process(TTAFilter *c, int32_t *in, int32_t mode) {
  99. register int32_t *dl = c->dl, *qm = c->qm, *dx = c->dx, sum = c->round;
  100. if (!c->error) {
  101. sum += *dl++ * *qm, qm++;
  102. sum += *dl++ * *qm, qm++;
  103. sum += *dl++ * *qm, qm++;
  104. sum += *dl++ * *qm, qm++;
  105. sum += *dl++ * *qm, qm++;
  106. sum += *dl++ * *qm, qm++;
  107. sum += *dl++ * *qm, qm++;
  108. sum += *dl++ * *qm, qm++;
  109. dx += 8;
  110. } else if(c->error < 0) {
  111. sum += *dl++ * (*qm -= *dx++), qm++;
  112. sum += *dl++ * (*qm -= *dx++), qm++;
  113. sum += *dl++ * (*qm -= *dx++), qm++;
  114. sum += *dl++ * (*qm -= *dx++), qm++;
  115. sum += *dl++ * (*qm -= *dx++), qm++;
  116. sum += *dl++ * (*qm -= *dx++), qm++;
  117. sum += *dl++ * (*qm -= *dx++), qm++;
  118. sum += *dl++ * (*qm -= *dx++), qm++;
  119. } else {
  120. sum += *dl++ * (*qm += *dx++), qm++;
  121. sum += *dl++ * (*qm += *dx++), qm++;
  122. sum += *dl++ * (*qm += *dx++), qm++;
  123. sum += *dl++ * (*qm += *dx++), qm++;
  124. sum += *dl++ * (*qm += *dx++), qm++;
  125. sum += *dl++ * (*qm += *dx++), qm++;
  126. sum += *dl++ * (*qm += *dx++), qm++;
  127. sum += *dl++ * (*qm += *dx++), qm++;
  128. }
  129. *(dx-0) = ((*(dl-1) >> 30) | 1) << 2;
  130. *(dx-1) = ((*(dl-2) >> 30) | 1) << 1;
  131. *(dx-2) = ((*(dl-3) >> 30) | 1) << 1;
  132. *(dx-3) = ((*(dl-4) >> 30) | 1);
  133. // compress
  134. if (mode) {
  135. *dl = *in;
  136. *in -= (sum >> c->shift);
  137. c->error = *in;
  138. } else {
  139. c->error = *in;
  140. *in += (sum >> c->shift);
  141. *dl = *in;
  142. }
  143. if (c->mode) {
  144. *(dl-1) = *dl - *(dl-1);
  145. *(dl-2) = *(dl-1) - *(dl-2);
  146. *(dl-3) = *(dl-2) - *(dl-3);
  147. }
  148. memshl(c->dl, c->dl + 1);
  149. memshl(c->dx, c->dx + 1);
  150. }
  151. static void rice_init(TTARice *c, uint32_t k0, uint32_t k1)
  152. {
  153. c->k0 = k0;
  154. c->k1 = k1;
  155. c->sum0 = shift_16[k0];
  156. c->sum1 = shift_16[k1];
  157. }
  158. static int tta_get_unary(GetBitContext *gb)
  159. {
  160. int ret = 0;
  161. // count ones
  162. while (get_bits_left(gb) > 0 && get_bits1(gb))
  163. ret++;
  164. return ret;
  165. }
  166. static av_cold int tta_decode_init(AVCodecContext * avctx)
  167. {
  168. TTAContext *s = avctx->priv_data;
  169. s->avctx = avctx;
  170. // 30bytes includes a seektable with one frame
  171. if (avctx->extradata_size < 30)
  172. return -1;
  173. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size * 8);
  174. if (show_bits_long(&s->gb, 32) == AV_RL32("TTA1"))
  175. {
  176. /* signature */
  177. skip_bits_long(&s->gb, 32);
  178. s->format = get_bits(&s->gb, 16);
  179. if (s->format > 2) {
  180. av_log(s->avctx, AV_LOG_ERROR, "Invalid format\n");
  181. return -1;
  182. }
  183. if (s->format == FORMAT_ENCRYPTED) {
  184. av_log_missing_feature(s->avctx, "Encrypted TTA", 0);
  185. return AVERROR(EINVAL);
  186. }
  187. avctx->channels = s->channels = get_bits(&s->gb, 16);
  188. avctx->bits_per_coded_sample = get_bits(&s->gb, 16);
  189. s->bps = (avctx->bits_per_coded_sample + 7) / 8;
  190. avctx->sample_rate = get_bits_long(&s->gb, 32);
  191. s->data_length = get_bits_long(&s->gb, 32);
  192. skip_bits_long(&s->gb, 32); // CRC32 of header
  193. if (s->channels == 0) {
  194. av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  195. return AVERROR_INVALIDDATA;
  196. }
  197. switch(s->bps) {
  198. case 2:
  199. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  200. avctx->bits_per_raw_sample = 16;
  201. break;
  202. case 3:
  203. avctx->sample_fmt = AV_SAMPLE_FMT_S32;
  204. avctx->bits_per_raw_sample = 24;
  205. break;
  206. default:
  207. av_log(avctx, AV_LOG_ERROR, "Invalid/unsupported sample format.\n");
  208. return AVERROR_INVALIDDATA;
  209. }
  210. // prevent overflow
  211. if (avctx->sample_rate > 0x7FFFFF) {
  212. av_log(avctx, AV_LOG_ERROR, "sample_rate too large\n");
  213. return AVERROR(EINVAL);
  214. }
  215. s->frame_length = 256 * avctx->sample_rate / 245;
  216. s->last_frame_length = s->data_length % s->frame_length;
  217. s->total_frames = s->data_length / s->frame_length +
  218. (s->last_frame_length ? 1 : 0);
  219. av_log(s->avctx, AV_LOG_DEBUG, "format: %d chans: %d bps: %d rate: %d block: %d\n",
  220. s->format, avctx->channels, avctx->bits_per_coded_sample, avctx->sample_rate,
  221. avctx->block_align);
  222. av_log(s->avctx, AV_LOG_DEBUG, "data_length: %d frame_length: %d last: %d total: %d\n",
  223. s->data_length, s->frame_length, s->last_frame_length, s->total_frames);
  224. // FIXME: seek table
  225. skip_bits_long(&s->gb, 32 * s->total_frames);
  226. skip_bits_long(&s->gb, 32); // CRC32 of seektable
  227. if(s->frame_length >= UINT_MAX / (s->channels * sizeof(int32_t))){
  228. av_log(avctx, AV_LOG_ERROR, "frame_length too large\n");
  229. return -1;
  230. }
  231. if (s->bps == 2) {
  232. s->decode_buffer = av_mallocz(sizeof(int32_t)*s->frame_length*s->channels);
  233. if (!s->decode_buffer)
  234. return AVERROR(ENOMEM);
  235. }
  236. s->ch_ctx = av_malloc(avctx->channels * sizeof(*s->ch_ctx));
  237. if (!s->ch_ctx) {
  238. av_freep(&s->decode_buffer);
  239. return AVERROR(ENOMEM);
  240. }
  241. } else {
  242. av_log(avctx, AV_LOG_ERROR, "Wrong extradata present\n");
  243. return -1;
  244. }
  245. avcodec_get_frame_defaults(&s->frame);
  246. avctx->coded_frame = &s->frame;
  247. return 0;
  248. }
  249. static int tta_decode_frame(AVCodecContext *avctx, void *data,
  250. int *got_frame_ptr, AVPacket *avpkt)
  251. {
  252. const uint8_t *buf = avpkt->data;
  253. int buf_size = avpkt->size;
  254. TTAContext *s = avctx->priv_data;
  255. int i, ret;
  256. int cur_chan = 0, framelen = s->frame_length;
  257. int32_t *p;
  258. init_get_bits(&s->gb, buf, buf_size*8);
  259. // FIXME: seeking
  260. s->total_frames--;
  261. if (!s->total_frames && s->last_frame_length)
  262. framelen = s->last_frame_length;
  263. /* get output buffer */
  264. s->frame.nb_samples = framelen;
  265. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  266. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  267. return ret;
  268. }
  269. // decode directly to output buffer for 24-bit sample format
  270. if (s->bps == 3)
  271. s->decode_buffer = (int32_t *)s->frame.data[0];
  272. // init per channel states
  273. for (i = 0; i < s->channels; i++) {
  274. s->ch_ctx[i].predictor = 0;
  275. ttafilter_init(&s->ch_ctx[i].filter, ttafilter_configs[s->bps-1][0], ttafilter_configs[s->bps-1][1]);
  276. rice_init(&s->ch_ctx[i].rice, 10, 10);
  277. }
  278. for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) {
  279. int32_t *predictor = &s->ch_ctx[cur_chan].predictor;
  280. TTAFilter *filter = &s->ch_ctx[cur_chan].filter;
  281. TTARice *rice = &s->ch_ctx[cur_chan].rice;
  282. uint32_t unary, depth, k;
  283. int32_t value;
  284. unary = tta_get_unary(&s->gb);
  285. if (unary == 0) {
  286. depth = 0;
  287. k = rice->k0;
  288. } else {
  289. depth = 1;
  290. k = rice->k1;
  291. unary--;
  292. }
  293. if (get_bits_left(&s->gb) < k)
  294. return -1;
  295. if (k) {
  296. if (k > MIN_CACHE_BITS)
  297. return -1;
  298. value = (unary << k) + get_bits(&s->gb, k);
  299. } else
  300. value = unary;
  301. // FIXME: copy paste from original
  302. switch (depth) {
  303. case 1:
  304. rice->sum1 += value - (rice->sum1 >> 4);
  305. if (rice->k1 > 0 && rice->sum1 < shift_16[rice->k1])
  306. rice->k1--;
  307. else if(rice->sum1 > shift_16[rice->k1 + 1])
  308. rice->k1++;
  309. value += shift_1[rice->k0];
  310. default:
  311. rice->sum0 += value - (rice->sum0 >> 4);
  312. if (rice->k0 > 0 && rice->sum0 < shift_16[rice->k0])
  313. rice->k0--;
  314. else if(rice->sum0 > shift_16[rice->k0 + 1])
  315. rice->k0++;
  316. }
  317. // extract coded value
  318. #define UNFOLD(x) (((x)&1) ? (++(x)>>1) : (-(x)>>1))
  319. *p = UNFOLD(value);
  320. // run hybrid filter
  321. ttafilter_process(filter, p, 0);
  322. // fixed order prediction
  323. #define PRED(x, k) (int32_t)((((uint64_t)x << k) - x) >> k)
  324. switch (s->bps) {
  325. case 1: *p += PRED(*predictor, 4); break;
  326. case 2:
  327. case 3: *p += PRED(*predictor, 5); break;
  328. case 4: *p += *predictor; break;
  329. }
  330. *predictor = *p;
  331. // flip channels
  332. if (cur_chan < (s->channels-1))
  333. cur_chan++;
  334. else {
  335. // decorrelate in case of stereo integer
  336. if (s->channels > 1) {
  337. int32_t *r = p - 1;
  338. for (*p += *r / 2; r > p - s->channels; r--)
  339. *r = *(r + 1) - *r;
  340. }
  341. cur_chan = 0;
  342. }
  343. }
  344. if (get_bits_left(&s->gb) < 32)
  345. return -1;
  346. skip_bits_long(&s->gb, 32); // frame crc
  347. // convert to output buffer
  348. if (s->bps == 2) {
  349. int16_t *samples = (int16_t *)s->frame.data[0];
  350. for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++)
  351. *samples++ = *p;
  352. } else {
  353. // shift samples for 24-bit sample format
  354. int32_t *samples = (int32_t *)s->frame.data[0];
  355. for (i = 0; i < framelen * s->channels; i++)
  356. *samples++ <<= 8;
  357. // reset decode buffer
  358. s->decode_buffer = NULL;
  359. }
  360. *got_frame_ptr = 1;
  361. *(AVFrame *)data = s->frame;
  362. return buf_size;
  363. }
  364. static av_cold int tta_decode_close(AVCodecContext *avctx) {
  365. TTAContext *s = avctx->priv_data;
  366. av_free(s->decode_buffer);
  367. av_freep(&s->ch_ctx);
  368. return 0;
  369. }
  370. AVCodec ff_tta_decoder = {
  371. .name = "tta",
  372. .type = AVMEDIA_TYPE_AUDIO,
  373. .id = CODEC_ID_TTA,
  374. .priv_data_size = sizeof(TTAContext),
  375. .init = tta_decode_init,
  376. .close = tta_decode_close,
  377. .decode = tta_decode_frame,
  378. .capabilities = CODEC_CAP_DR1,
  379. .long_name = NULL_IF_CONFIG_SMALL("True Audio (TTA)"),
  380. };