You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1874 lines
67KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "dca.h"
  37. #include "dcadata.h"
  38. #include "dcadsp.h"
  39. #include "dcahuff.h"
  40. #include "dca_exss.h"
  41. #include "fft.h"
  42. #include "fmtconvert.h"
  43. #include "get_bits.h"
  44. #include "internal.h"
  45. #include "mathops.h"
  46. #include "synth_filter.h"
  47. #if ARCH_ARM
  48. # include "arm/dca.h"
  49. #endif
  50. enum DCAMode {
  51. DCA_MONO = 0,
  52. DCA_CHANNEL,
  53. DCA_STEREO,
  54. DCA_STEREO_SUMDIFF,
  55. DCA_STEREO_TOTAL,
  56. DCA_3F,
  57. DCA_2F1R,
  58. DCA_3F1R,
  59. DCA_2F2R,
  60. DCA_3F2R,
  61. DCA_4F2R
  62. };
  63. enum DCAXxchSpeakerMask {
  64. DCA_XXCH_FRONT_CENTER = 0x0000001,
  65. DCA_XXCH_FRONT_LEFT = 0x0000002,
  66. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  67. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  68. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  69. DCA_XXCH_LFE1 = 0x0000020,
  70. DCA_XXCH_REAR_CENTER = 0x0000040,
  71. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  72. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  73. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  74. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  75. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  76. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  77. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  78. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  79. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  80. DCA_XXCH_LFE2 = 0x0010000,
  81. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  82. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  83. DCA_XXCH_OVERHEAD = 0x0080000,
  84. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  85. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  86. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  87. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  88. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  89. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  90. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  91. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  92. };
  93. #define DCA_DOLBY 101 /* FIXME */
  94. #define DCA_CHANNEL_BITS 6
  95. #define DCA_CHANNEL_MASK 0x3F
  96. #define DCA_LFE 0x80
  97. #define HEADER_SIZE 14
  98. #define DCA_NSYNCAUX 0x9A1105A0
  99. /** Bit allocation */
  100. typedef struct BitAlloc {
  101. int offset; ///< code values offset
  102. int maxbits[8]; ///< max bits in VLC
  103. int wrap; ///< wrap for get_vlc2()
  104. VLC vlc[8]; ///< actual codes
  105. } BitAlloc;
  106. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  107. static BitAlloc dca_tmode; ///< transition mode VLCs
  108. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  109. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  110. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  111. int idx)
  112. {
  113. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  114. ba->offset;
  115. }
  116. static float dca_dmix_code(unsigned code);
  117. static av_cold void dca_init_vlcs(void)
  118. {
  119. static int vlcs_initialized = 0;
  120. int i, j, c = 14;
  121. static VLC_TYPE dca_table[23622][2];
  122. if (vlcs_initialized)
  123. return;
  124. dca_bitalloc_index.offset = 1;
  125. dca_bitalloc_index.wrap = 2;
  126. for (i = 0; i < 5; i++) {
  127. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  128. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  129. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  130. bitalloc_12_bits[i], 1, 1,
  131. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  132. }
  133. dca_scalefactor.offset = -64;
  134. dca_scalefactor.wrap = 2;
  135. for (i = 0; i < 5; i++) {
  136. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  137. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  138. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  139. scales_bits[i], 1, 1,
  140. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  141. }
  142. dca_tmode.offset = 0;
  143. dca_tmode.wrap = 1;
  144. for (i = 0; i < 4; i++) {
  145. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  146. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  147. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  148. tmode_bits[i], 1, 1,
  149. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  150. }
  151. for (i = 0; i < 10; i++)
  152. for (j = 0; j < 7; j++) {
  153. if (!bitalloc_codes[i][j])
  154. break;
  155. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  156. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  157. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  158. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  159. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  160. bitalloc_sizes[i],
  161. bitalloc_bits[i][j], 1, 1,
  162. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  163. c++;
  164. }
  165. vlcs_initialized = 1;
  166. }
  167. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  168. {
  169. while (len--)
  170. *dst++ = get_bits(gb, bits);
  171. }
  172. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  173. {
  174. int i, base, mask;
  175. /* locate channel set containing the channel */
  176. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  177. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  178. base += av_popcount(mask);
  179. return base + av_popcount(mask & (xxch_ch - 1));
  180. }
  181. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  182. int xxch)
  183. {
  184. int i, j;
  185. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  186. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  187. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  188. int hdr_pos = 0, hdr_size = 0;
  189. float scale_factor;
  190. int this_chans, acc_mask;
  191. int embedded_downmix;
  192. int nchans, mask[8];
  193. int coeff, ichan;
  194. /* xxch has arbitrary sized audio coding headers */
  195. if (xxch) {
  196. hdr_pos = get_bits_count(&s->gb);
  197. hdr_size = get_bits(&s->gb, 7) + 1;
  198. }
  199. nchans = get_bits(&s->gb, 3) + 1;
  200. s->total_channels = nchans + base_channel;
  201. s->prim_channels = s->total_channels;
  202. /* obtain speaker layout mask & downmix coefficients for XXCH */
  203. if (xxch) {
  204. acc_mask = s->xxch_core_spkmask;
  205. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  206. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  207. s->xxch_chset_nch[s->xxch_chset] = nchans;
  208. for (i = 0; i <= s->xxch_chset; i++)
  209. acc_mask |= s->xxch_spk_masks[i];
  210. /* check for downmixing information */
  211. if (get_bits1(&s->gb)) {
  212. embedded_downmix = get_bits1(&s->gb);
  213. coeff = get_bits(&s->gb, 6);
  214. if (coeff<1 || coeff>61) {
  215. av_log(s->avctx, AV_LOG_ERROR, "6bit coeff %d is out of range\n", coeff);
  216. return AVERROR_INVALIDDATA;
  217. }
  218. scale_factor = -1.0f / dca_dmix_code((coeff<<2)-3);
  219. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  220. for (i = base_channel; i < s->prim_channels; i++) {
  221. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  222. }
  223. for (j = base_channel; j < s->prim_channels; j++) {
  224. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  225. s->xxch_dmix_embedded |= (embedded_downmix << j);
  226. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  227. if (mask[j] & (1 << i)) {
  228. if ((1 << i) == DCA_XXCH_LFE1) {
  229. av_log(s->avctx, AV_LOG_WARNING,
  230. "DCA-XXCH: dmix to LFE1 not supported.\n");
  231. continue;
  232. }
  233. coeff = get_bits(&s->gb, 7);
  234. ichan = dca_xxch2index(s, 1 << i);
  235. if ((coeff&63)<1 || (coeff&63)>61) {
  236. av_log(s->avctx, AV_LOG_ERROR, "7bit coeff %d is out of range\n", coeff);
  237. return AVERROR_INVALIDDATA;
  238. }
  239. s->xxch_dmix_coeff[j][ichan] = dca_dmix_code((coeff<<2)-3);
  240. }
  241. }
  242. }
  243. }
  244. }
  245. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  246. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  247. for (i = base_channel; i < s->prim_channels; i++) {
  248. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  249. if (s->subband_activity[i] > DCA_SUBBANDS)
  250. s->subband_activity[i] = DCA_SUBBANDS;
  251. }
  252. for (i = base_channel; i < s->prim_channels; i++) {
  253. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  254. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  255. s->vq_start_subband[i] = DCA_SUBBANDS;
  256. }
  257. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  258. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  259. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  260. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  261. /* Get codebooks quantization indexes */
  262. if (!base_channel)
  263. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  264. for (j = 1; j < 11; j++)
  265. for (i = base_channel; i < s->prim_channels; i++)
  266. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  267. /* Get scale factor adjustment */
  268. for (j = 0; j < 11; j++)
  269. for (i = base_channel; i < s->prim_channels; i++)
  270. s->scalefactor_adj[i][j] = 1;
  271. for (j = 1; j < 11; j++)
  272. for (i = base_channel; i < s->prim_channels; i++)
  273. if (s->quant_index_huffman[i][j] < thr[j])
  274. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  275. if (!xxch) {
  276. if (s->crc_present) {
  277. /* Audio header CRC check */
  278. get_bits(&s->gb, 16);
  279. }
  280. } else {
  281. /* Skip to the end of the header, also ignore CRC if present */
  282. i = get_bits_count(&s->gb);
  283. if (hdr_pos + 8 * hdr_size > i)
  284. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  285. }
  286. s->current_subframe = 0;
  287. s->current_subsubframe = 0;
  288. return 0;
  289. }
  290. static int dca_parse_frame_header(DCAContext *s)
  291. {
  292. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  293. /* Sync code */
  294. skip_bits_long(&s->gb, 32);
  295. /* Frame header */
  296. s->frame_type = get_bits(&s->gb, 1);
  297. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  298. s->crc_present = get_bits(&s->gb, 1);
  299. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  300. s->frame_size = get_bits(&s->gb, 14) + 1;
  301. if (s->frame_size < 95)
  302. return AVERROR_INVALIDDATA;
  303. s->amode = get_bits(&s->gb, 6);
  304. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  305. if (!s->sample_rate)
  306. return AVERROR_INVALIDDATA;
  307. s->bit_rate_index = get_bits(&s->gb, 5);
  308. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  309. if (!s->bit_rate)
  310. return AVERROR_INVALIDDATA;
  311. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  312. s->dynrange = get_bits(&s->gb, 1);
  313. s->timestamp = get_bits(&s->gb, 1);
  314. s->aux_data = get_bits(&s->gb, 1);
  315. s->hdcd = get_bits(&s->gb, 1);
  316. s->ext_descr = get_bits(&s->gb, 3);
  317. s->ext_coding = get_bits(&s->gb, 1);
  318. s->aspf = get_bits(&s->gb, 1);
  319. s->lfe = get_bits(&s->gb, 2);
  320. s->predictor_history = get_bits(&s->gb, 1);
  321. if (s->lfe > 2) {
  322. s->lfe = 0;
  323. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  324. return AVERROR_INVALIDDATA;
  325. }
  326. /* TODO: check CRC */
  327. if (s->crc_present)
  328. s->header_crc = get_bits(&s->gb, 16);
  329. s->multirate_inter = get_bits(&s->gb, 1);
  330. s->version = get_bits(&s->gb, 4);
  331. s->copy_history = get_bits(&s->gb, 2);
  332. s->source_pcm_res = get_bits(&s->gb, 3);
  333. s->front_sum = get_bits(&s->gb, 1);
  334. s->surround_sum = get_bits(&s->gb, 1);
  335. s->dialog_norm = get_bits(&s->gb, 4);
  336. /* FIXME: channels mixing levels */
  337. s->output = s->amode;
  338. if (s->lfe)
  339. s->output |= DCA_LFE;
  340. /* Primary audio coding header */
  341. s->subframes = get_bits(&s->gb, 4) + 1;
  342. return dca_parse_audio_coding_header(s, 0, 0);
  343. }
  344. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  345. {
  346. if (level < 5) {
  347. /* huffman encoded */
  348. value += get_bitalloc(gb, &dca_scalefactor, level);
  349. value = av_clip(value, 0, (1 << log2range) - 1);
  350. } else if (level < 8) {
  351. if (level + 1 > log2range) {
  352. skip_bits(gb, level + 1 - log2range);
  353. value = get_bits(gb, log2range);
  354. } else {
  355. value = get_bits(gb, level + 1);
  356. }
  357. }
  358. return value;
  359. }
  360. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  361. {
  362. /* Primary audio coding side information */
  363. int j, k;
  364. if (get_bits_left(&s->gb) < 0)
  365. return AVERROR_INVALIDDATA;
  366. if (!base_channel) {
  367. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  368. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  369. }
  370. for (j = base_channel; j < s->prim_channels; j++) {
  371. for (k = 0; k < s->subband_activity[j]; k++)
  372. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  373. }
  374. /* Get prediction codebook */
  375. for (j = base_channel; j < s->prim_channels; j++) {
  376. for (k = 0; k < s->subband_activity[j]; k++) {
  377. if (s->prediction_mode[j][k] > 0) {
  378. /* (Prediction coefficient VQ address) */
  379. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  380. }
  381. }
  382. }
  383. /* Bit allocation index */
  384. for (j = base_channel; j < s->prim_channels; j++) {
  385. for (k = 0; k < s->vq_start_subband[j]; k++) {
  386. if (s->bitalloc_huffman[j] == 6)
  387. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  388. else if (s->bitalloc_huffman[j] == 5)
  389. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  390. else if (s->bitalloc_huffman[j] == 7) {
  391. av_log(s->avctx, AV_LOG_ERROR,
  392. "Invalid bit allocation index\n");
  393. return AVERROR_INVALIDDATA;
  394. } else {
  395. s->bitalloc[j][k] =
  396. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  397. }
  398. if (s->bitalloc[j][k] > 26) {
  399. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  400. j, k, s->bitalloc[j][k]);
  401. return AVERROR_INVALIDDATA;
  402. }
  403. }
  404. }
  405. /* Transition mode */
  406. for (j = base_channel; j < s->prim_channels; j++) {
  407. for (k = 0; k < s->subband_activity[j]; k++) {
  408. s->transition_mode[j][k] = 0;
  409. if (s->subsubframes[s->current_subframe] > 1 &&
  410. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  411. s->transition_mode[j][k] =
  412. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  413. }
  414. }
  415. }
  416. if (get_bits_left(&s->gb) < 0)
  417. return AVERROR_INVALIDDATA;
  418. for (j = base_channel; j < s->prim_channels; j++) {
  419. const uint32_t *scale_table;
  420. int scale_sum, log_size;
  421. memset(s->scale_factor[j], 0,
  422. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  423. if (s->scalefactor_huffman[j] == 6) {
  424. scale_table = scale_factor_quant7;
  425. log_size = 7;
  426. } else {
  427. scale_table = scale_factor_quant6;
  428. log_size = 6;
  429. }
  430. /* When huffman coded, only the difference is encoded */
  431. scale_sum = 0;
  432. for (k = 0; k < s->subband_activity[j]; k++) {
  433. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  434. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  435. s->scale_factor[j][k][0] = scale_table[scale_sum];
  436. }
  437. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  438. /* Get second scale factor */
  439. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  440. s->scale_factor[j][k][1] = scale_table[scale_sum];
  441. }
  442. }
  443. }
  444. /* Joint subband scale factor codebook select */
  445. for (j = base_channel; j < s->prim_channels; j++) {
  446. /* Transmitted only if joint subband coding enabled */
  447. if (s->joint_intensity[j] > 0)
  448. s->joint_huff[j] = get_bits(&s->gb, 3);
  449. }
  450. if (get_bits_left(&s->gb) < 0)
  451. return AVERROR_INVALIDDATA;
  452. /* Scale factors for joint subband coding */
  453. for (j = base_channel; j < s->prim_channels; j++) {
  454. int source_channel;
  455. /* Transmitted only if joint subband coding enabled */
  456. if (s->joint_intensity[j] > 0) {
  457. int scale = 0;
  458. source_channel = s->joint_intensity[j] - 1;
  459. /* When huffman coded, only the difference is encoded
  460. * (is this valid as well for joint scales ???) */
  461. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  462. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  463. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  464. }
  465. if (!(s->debug_flag & 0x02)) {
  466. av_log(s->avctx, AV_LOG_DEBUG,
  467. "Joint stereo coding not supported\n");
  468. s->debug_flag |= 0x02;
  469. }
  470. }
  471. }
  472. /* Dynamic range coefficient */
  473. if (!base_channel && s->dynrange)
  474. s->dynrange_coef = get_bits(&s->gb, 8);
  475. /* Side information CRC check word */
  476. if (s->crc_present) {
  477. get_bits(&s->gb, 16);
  478. }
  479. /*
  480. * Primary audio data arrays
  481. */
  482. /* VQ encoded high frequency subbands */
  483. for (j = base_channel; j < s->prim_channels; j++)
  484. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  485. /* 1 vector -> 32 samples */
  486. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  487. /* Low frequency effect data */
  488. if (!base_channel && s->lfe) {
  489. int quant7;
  490. /* LFE samples */
  491. int lfe_samples = 2 * s->lfe * (4 + block_index);
  492. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  493. float lfe_scale;
  494. for (j = lfe_samples; j < lfe_end_sample; j++) {
  495. /* Signed 8 bits int */
  496. s->lfe_data[j] = get_sbits(&s->gb, 8);
  497. }
  498. /* Scale factor index */
  499. quant7 = get_bits(&s->gb, 8);
  500. if (quant7 > 127) {
  501. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  502. return AVERROR_INVALIDDATA;
  503. }
  504. s->lfe_scale_factor = scale_factor_quant7[quant7];
  505. /* Quantization step size * scale factor */
  506. lfe_scale = 0.035 * s->lfe_scale_factor;
  507. for (j = lfe_samples; j < lfe_end_sample; j++)
  508. s->lfe_data[j] *= lfe_scale;
  509. }
  510. return 0;
  511. }
  512. static void qmf_32_subbands(DCAContext *s, int chans,
  513. float samples_in[32][8], float *samples_out,
  514. float scale)
  515. {
  516. const float *prCoeff;
  517. int sb_act = s->subband_activity[chans];
  518. scale *= sqrt(1 / 8.0);
  519. /* Select filter */
  520. if (!s->multirate_inter) /* Non-perfect reconstruction */
  521. prCoeff = fir_32bands_nonperfect;
  522. else /* Perfect reconstruction */
  523. prCoeff = fir_32bands_perfect;
  524. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  525. s->subband_fir_hist[chans],
  526. &s->hist_index[chans],
  527. s->subband_fir_noidea[chans], prCoeff,
  528. samples_out, s->raXin, scale);
  529. }
  530. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  531. int num_deci_sample, float *samples_in,
  532. float *samples_out)
  533. {
  534. /* samples_in: An array holding decimated samples.
  535. * Samples in current subframe starts from samples_in[0],
  536. * while samples_in[-1], samples_in[-2], ..., stores samples
  537. * from last subframe as history.
  538. *
  539. * samples_out: An array holding interpolated samples
  540. */
  541. int idx;
  542. const float *prCoeff;
  543. int deciindex;
  544. /* Select decimation filter */
  545. if (decimation_select == 1) {
  546. idx = 1;
  547. prCoeff = lfe_fir_128;
  548. } else {
  549. idx = 0;
  550. prCoeff = lfe_fir_64;
  551. }
  552. /* Interpolation */
  553. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  554. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  555. samples_in++;
  556. samples_out += 2 * 32 * (1 + idx);
  557. }
  558. }
  559. /* downmixing routines */
  560. #define MIX_REAR1(samples, s1, rs, coef) \
  561. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  562. samples[1][i] += samples[s1][i] * coef[rs][1];
  563. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  564. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  565. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  566. #define MIX_FRONT3(samples, coef) \
  567. t = samples[c][i]; \
  568. u = samples[l][i]; \
  569. v = samples[r][i]; \
  570. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  571. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  572. #define DOWNMIX_TO_STEREO(op1, op2) \
  573. for (i = 0; i < 256; i++) { \
  574. op1 \
  575. op2 \
  576. }
  577. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  578. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  579. const int8_t *channel_mapping)
  580. {
  581. int c, l, r, sl, sr, s;
  582. int i;
  583. float t, u, v;
  584. switch (srcfmt) {
  585. case DCA_MONO:
  586. case DCA_4F2R:
  587. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  588. break;
  589. case DCA_CHANNEL:
  590. case DCA_STEREO:
  591. case DCA_STEREO_TOTAL:
  592. case DCA_STEREO_SUMDIFF:
  593. break;
  594. case DCA_3F:
  595. c = channel_mapping[0];
  596. l = channel_mapping[1];
  597. r = channel_mapping[2];
  598. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  599. break;
  600. case DCA_2F1R:
  601. s = channel_mapping[2];
  602. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  603. break;
  604. case DCA_3F1R:
  605. c = channel_mapping[0];
  606. l = channel_mapping[1];
  607. r = channel_mapping[2];
  608. s = channel_mapping[3];
  609. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  610. MIX_REAR1(samples, s, 3, coef));
  611. break;
  612. case DCA_2F2R:
  613. sl = channel_mapping[2];
  614. sr = channel_mapping[3];
  615. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  616. break;
  617. case DCA_3F2R:
  618. c = channel_mapping[0];
  619. l = channel_mapping[1];
  620. r = channel_mapping[2];
  621. sl = channel_mapping[3];
  622. sr = channel_mapping[4];
  623. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  624. MIX_REAR2(samples, sl, sr, 3, coef));
  625. break;
  626. }
  627. if (lfe_present) {
  628. int lf_buf = dca_lfe_index[srcfmt];
  629. int lf_idx = dca_channels[srcfmt];
  630. for (i = 0; i < 256; i++) {
  631. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  632. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  633. }
  634. }
  635. }
  636. #ifndef decode_blockcodes
  637. /* Very compact version of the block code decoder that does not use table
  638. * look-up but is slightly slower */
  639. static int decode_blockcode(int code, int levels, int32_t *values)
  640. {
  641. int i;
  642. int offset = (levels - 1) >> 1;
  643. for (i = 0; i < 4; i++) {
  644. int div = FASTDIV(code, levels);
  645. values[i] = code - offset - div * levels;
  646. code = div;
  647. }
  648. return code;
  649. }
  650. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  651. {
  652. return decode_blockcode(code1, levels, values) |
  653. decode_blockcode(code2, levels, values + 4);
  654. }
  655. #endif
  656. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  657. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  658. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  659. {
  660. int k, l;
  661. int subsubframe = s->current_subsubframe;
  662. const float *quant_step_table;
  663. /* FIXME */
  664. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  665. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  666. /*
  667. * Audio data
  668. */
  669. /* Select quantization step size table */
  670. if (s->bit_rate_index == 0x1f)
  671. quant_step_table = lossless_quant_d;
  672. else
  673. quant_step_table = lossy_quant_d;
  674. for (k = base_channel; k < s->prim_channels; k++) {
  675. float rscale[DCA_SUBBANDS];
  676. if (get_bits_left(&s->gb) < 0)
  677. return AVERROR_INVALIDDATA;
  678. for (l = 0; l < s->vq_start_subband[k]; l++) {
  679. int m;
  680. /* Select the mid-tread linear quantizer */
  681. int abits = s->bitalloc[k][l];
  682. float quant_step_size = quant_step_table[abits];
  683. /*
  684. * Determine quantization index code book and its type
  685. */
  686. /* Select quantization index code book */
  687. int sel = s->quant_index_huffman[k][abits];
  688. /*
  689. * Extract bits from the bit stream
  690. */
  691. if (!abits) {
  692. rscale[l] = 0;
  693. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  694. } else {
  695. /* Deal with transients */
  696. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  697. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  698. s->scalefactor_adj[k][sel];
  699. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  700. if (abits <= 7) {
  701. /* Block code */
  702. int block_code1, block_code2, size, levels, err;
  703. size = abits_sizes[abits - 1];
  704. levels = abits_levels[abits - 1];
  705. block_code1 = get_bits(&s->gb, size);
  706. block_code2 = get_bits(&s->gb, size);
  707. err = decode_blockcodes(block_code1, block_code2,
  708. levels, block + 8 * l);
  709. if (err) {
  710. av_log(s->avctx, AV_LOG_ERROR,
  711. "ERROR: block code look-up failed\n");
  712. return AVERROR_INVALIDDATA;
  713. }
  714. } else {
  715. /* no coding */
  716. for (m = 0; m < 8; m++)
  717. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  718. }
  719. } else {
  720. /* Huffman coded */
  721. for (m = 0; m < 8; m++)
  722. block[8 * l + m] = get_bitalloc(&s->gb,
  723. &dca_smpl_bitalloc[abits], sel);
  724. }
  725. }
  726. }
  727. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  728. block, rscale, 8 * s->vq_start_subband[k]);
  729. for (l = 0; l < s->vq_start_subband[k]; l++) {
  730. int m;
  731. /*
  732. * Inverse ADPCM if in prediction mode
  733. */
  734. if (s->prediction_mode[k][l]) {
  735. int n;
  736. if (s->predictor_history)
  737. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  738. s->subband_samples_hist[k][l][3] +
  739. adpcm_vb[s->prediction_vq[k][l]][1] *
  740. s->subband_samples_hist[k][l][2] +
  741. adpcm_vb[s->prediction_vq[k][l]][2] *
  742. s->subband_samples_hist[k][l][1] +
  743. adpcm_vb[s->prediction_vq[k][l]][3] *
  744. s->subband_samples_hist[k][l][0]) *
  745. (1.0f / 8192);
  746. for (m = 1; m < 8; m++) {
  747. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  748. subband_samples[k][l][m - 1];
  749. for (n = 2; n <= 4; n++)
  750. if (m >= n)
  751. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  752. subband_samples[k][l][m - n];
  753. else if (s->predictor_history)
  754. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  755. s->subband_samples_hist[k][l][m - n + 4];
  756. subband_samples[k][l][m] += sum * (1.0f / 8192);
  757. }
  758. }
  759. }
  760. /*
  761. * Decode VQ encoded high frequencies
  762. */
  763. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  764. if (!(s->debug_flag & 0x01)) {
  765. av_log(s->avctx, AV_LOG_DEBUG,
  766. "Stream with high frequencies VQ coding\n");
  767. s->debug_flag |= 0x01;
  768. }
  769. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  770. high_freq_vq, subsubframe * 8,
  771. s->scale_factor[k], s->vq_start_subband[k],
  772. s->subband_activity[k]);
  773. }
  774. }
  775. /* Check for DSYNC after subsubframe */
  776. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  777. if (get_bits(&s->gb, 16) != 0xFFFF) {
  778. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  779. return AVERROR_INVALIDDATA;
  780. }
  781. }
  782. /* Backup predictor history for adpcm */
  783. for (k = base_channel; k < s->prim_channels; k++)
  784. for (l = 0; l < s->vq_start_subband[k]; l++)
  785. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  786. return 0;
  787. }
  788. static int dca_filter_channels(DCAContext *s, int block_index)
  789. {
  790. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  791. int k;
  792. /* 32 subbands QMF */
  793. for (k = 0; k < s->prim_channels; k++) {
  794. if (s->channel_order_tab[k] >= 0)
  795. qmf_32_subbands(s, k, subband_samples[k],
  796. s->samples_chanptr[s->channel_order_tab[k]],
  797. M_SQRT1_2 / 32768.0);
  798. }
  799. /* Generate LFE samples for this subsubframe FIXME!!! */
  800. if (s->lfe) {
  801. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  802. s->lfe_data + 2 * s->lfe * (block_index + 4),
  803. s->samples_chanptr[s->lfe_index]);
  804. /* Outputs 20bits pcm samples */
  805. }
  806. /* Downmixing to Stereo */
  807. if (s->prim_channels + !!s->lfe > 2 &&
  808. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  809. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  810. s->channel_order_tab);
  811. }
  812. return 0;
  813. }
  814. static int dca_subframe_footer(DCAContext *s, int base_channel)
  815. {
  816. int in, out, aux_data_count, aux_data_end, reserved;
  817. uint32_t nsyncaux;
  818. /*
  819. * Unpack optional information
  820. */
  821. /* presumably optional information only appears in the core? */
  822. if (!base_channel) {
  823. if (s->timestamp)
  824. skip_bits_long(&s->gb, 32);
  825. if (s->aux_data) {
  826. aux_data_count = get_bits(&s->gb, 6);
  827. // align (32-bit)
  828. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  829. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  830. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  831. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  832. nsyncaux);
  833. return AVERROR_INVALIDDATA;
  834. }
  835. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  836. avpriv_request_sample(s->avctx,
  837. "Auxiliary Decode Time Stamp Flag");
  838. // align (4-bit)
  839. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  840. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  841. skip_bits_long(&s->gb, 44);
  842. }
  843. if ((s->core_downmix = get_bits1(&s->gb))) {
  844. int am = get_bits(&s->gb, 3);
  845. switch (am) {
  846. case 0:
  847. s->core_downmix_amode = DCA_MONO;
  848. break;
  849. case 1:
  850. s->core_downmix_amode = DCA_STEREO;
  851. break;
  852. case 2:
  853. s->core_downmix_amode = DCA_STEREO_TOTAL;
  854. break;
  855. case 3:
  856. s->core_downmix_amode = DCA_3F;
  857. break;
  858. case 4:
  859. s->core_downmix_amode = DCA_2F1R;
  860. break;
  861. case 5:
  862. s->core_downmix_amode = DCA_2F2R;
  863. break;
  864. case 6:
  865. s->core_downmix_amode = DCA_3F1R;
  866. break;
  867. default:
  868. av_log(s->avctx, AV_LOG_ERROR,
  869. "Invalid mode %d for embedded downmix coefficients\n",
  870. am);
  871. return AVERROR_INVALIDDATA;
  872. }
  873. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  874. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  875. uint16_t tmp = get_bits(&s->gb, 9);
  876. if ((tmp & 0xFF) > 241) {
  877. av_log(s->avctx, AV_LOG_ERROR,
  878. "Invalid downmix coefficient code %"PRIu16"\n",
  879. tmp);
  880. return AVERROR_INVALIDDATA;
  881. }
  882. s->core_downmix_codes[in][out] = tmp;
  883. }
  884. }
  885. }
  886. align_get_bits(&s->gb); // byte align
  887. skip_bits(&s->gb, 16); // nAUXCRC16
  888. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  889. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  890. av_log(s->avctx, AV_LOG_ERROR,
  891. "Overread auxiliary data by %d bits\n", -reserved);
  892. return AVERROR_INVALIDDATA;
  893. } else if (reserved) {
  894. avpriv_request_sample(s->avctx,
  895. "Core auxiliary data reserved content");
  896. skip_bits_long(&s->gb, reserved);
  897. }
  898. }
  899. if (s->crc_present && s->dynrange)
  900. get_bits(&s->gb, 16);
  901. }
  902. return 0;
  903. }
  904. /**
  905. * Decode a dca frame block
  906. *
  907. * @param s pointer to the DCAContext
  908. */
  909. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  910. {
  911. int ret;
  912. /* Sanity check */
  913. if (s->current_subframe >= s->subframes) {
  914. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  915. s->current_subframe, s->subframes);
  916. return AVERROR_INVALIDDATA;
  917. }
  918. if (!s->current_subsubframe) {
  919. /* Read subframe header */
  920. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  921. return ret;
  922. }
  923. /* Read subsubframe */
  924. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  925. return ret;
  926. /* Update state */
  927. s->current_subsubframe++;
  928. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  929. s->current_subsubframe = 0;
  930. s->current_subframe++;
  931. }
  932. if (s->current_subframe >= s->subframes) {
  933. /* Read subframe footer */
  934. if ((ret = dca_subframe_footer(s, base_channel)))
  935. return ret;
  936. }
  937. return 0;
  938. }
  939. int ff_dca_xbr_parse_frame(DCAContext *s)
  940. {
  941. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  942. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  943. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  944. int anctemp[DCA_CHSET_CHANS_MAX];
  945. int chset_fsize[DCA_CHSETS_MAX];
  946. int n_xbr_ch[DCA_CHSETS_MAX];
  947. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  948. int i, j, k, l, chset, chan_base;
  949. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  950. /* get bit position of sync header */
  951. hdr_pos = get_bits_count(&s->gb) - 32;
  952. hdr_size = get_bits(&s->gb, 6) + 1;
  953. num_chsets = get_bits(&s->gb, 2) + 1;
  954. for(i = 0; i < num_chsets; i++)
  955. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  956. xbr_tmode = get_bits1(&s->gb);
  957. for(i = 0; i < num_chsets; i++) {
  958. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  959. k = get_bits(&s->gb, 2) + 5;
  960. for(j = 0; j < n_xbr_ch[i]; j++)
  961. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  962. }
  963. /* skip to the end of the header */
  964. i = get_bits_count(&s->gb);
  965. if(hdr_pos + hdr_size * 8 > i)
  966. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  967. /* loop over the channel data sets */
  968. /* only decode as many channels as we've decoded base data for */
  969. for(chset = 0, chan_base = 0;
  970. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  971. chan_base += n_xbr_ch[chset++]) {
  972. int start_posn = get_bits_count(&s->gb);
  973. int subsubframe = 0;
  974. int subframe = 0;
  975. /* loop over subframes */
  976. for (k = 0; k < (s->sample_blocks / 8); k++) {
  977. /* parse header if we're on first subsubframe of a block */
  978. if(subsubframe == 0) {
  979. /* Parse subframe header */
  980. for(i = 0; i < n_xbr_ch[chset]; i++) {
  981. anctemp[i] = get_bits(&s->gb, 2) + 2;
  982. }
  983. for(i = 0; i < n_xbr_ch[chset]; i++) {
  984. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  985. }
  986. for(i = 0; i < n_xbr_ch[chset]; i++) {
  987. anctemp[i] = get_bits(&s->gb, 3);
  988. if(anctemp[i] < 1) {
  989. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  990. return AVERROR_INVALIDDATA;
  991. }
  992. }
  993. /* generate scale factors */
  994. for(i = 0; i < n_xbr_ch[chset]; i++) {
  995. const uint32_t *scale_table;
  996. int nbits;
  997. if (s->scalefactor_huffman[chan_base+i] == 6) {
  998. scale_table = scale_factor_quant7;
  999. } else {
  1000. scale_table = scale_factor_quant6;
  1001. }
  1002. nbits = anctemp[i];
  1003. for(j = 0; j < active_bands[chset][i]; j++) {
  1004. if(abits_high[i][j] > 0) {
  1005. scale_table_high[i][j][0] =
  1006. scale_table[get_bits(&s->gb, nbits)];
  1007. if(xbr_tmode && s->transition_mode[i][j]) {
  1008. scale_table_high[i][j][1] =
  1009. scale_table[get_bits(&s->gb, nbits)];
  1010. }
  1011. }
  1012. }
  1013. }
  1014. }
  1015. /* decode audio array for this block */
  1016. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1017. for(j = 0; j < active_bands[chset][i]; j++) {
  1018. const int xbr_abits = abits_high[i][j];
  1019. const float quant_step_size = lossless_quant_d[xbr_abits];
  1020. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1021. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1022. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1023. int block[8];
  1024. if(xbr_abits <= 0)
  1025. continue;
  1026. if(xbr_abits > 7) {
  1027. get_array(&s->gb, block, 8, xbr_abits - 3);
  1028. } else {
  1029. int block_code1, block_code2, size, levels, err;
  1030. size = abits_sizes[xbr_abits - 1];
  1031. levels = abits_levels[xbr_abits - 1];
  1032. block_code1 = get_bits(&s->gb, size);
  1033. block_code2 = get_bits(&s->gb, size);
  1034. err = decode_blockcodes(block_code1, block_code2,
  1035. levels, block);
  1036. if (err) {
  1037. av_log(s->avctx, AV_LOG_ERROR,
  1038. "ERROR: DTS-XBR: block code look-up failed\n");
  1039. return AVERROR_INVALIDDATA;
  1040. }
  1041. }
  1042. /* scale & sum into subband */
  1043. for(l = 0; l < 8; l++)
  1044. subband_samples[l] += (float)block[l] * rscale;
  1045. }
  1046. }
  1047. /* check DSYNC marker */
  1048. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1049. if(get_bits(&s->gb, 16) != 0xffff) {
  1050. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1051. return AVERROR_INVALIDDATA;
  1052. }
  1053. }
  1054. /* advance sub-sub-frame index */
  1055. if(++subsubframe >= s->subsubframes[subframe]) {
  1056. subsubframe = 0;
  1057. subframe++;
  1058. }
  1059. }
  1060. /* skip to next channel set */
  1061. i = get_bits_count(&s->gb);
  1062. if(start_posn + chset_fsize[chset] * 8 != i) {
  1063. j = start_posn + chset_fsize[chset] * 8 - i;
  1064. if(j < 0 || j >= 8)
  1065. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1066. " skipping further than expected (%d bits)\n", j);
  1067. skip_bits_long(&s->gb, j);
  1068. }
  1069. }
  1070. return 0;
  1071. }
  1072. /* parse initial header for XXCH and dump details */
  1073. int ff_dca_xxch_decode_frame(DCAContext *s)
  1074. {
  1075. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1076. int i, chset, base_channel, chstart, fsize[8];
  1077. /* assume header word has already been parsed */
  1078. hdr_pos = get_bits_count(&s->gb) - 32;
  1079. hdr_size = get_bits(&s->gb, 6) + 1;
  1080. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1081. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1082. num_chsets = get_bits(&s->gb, 2) + 1;
  1083. for (i = 0; i < num_chsets; i++)
  1084. fsize[i] = get_bits(&s->gb, 14) + 1;
  1085. core_spk = get_bits(&s->gb, spkmsk_bits);
  1086. s->xxch_core_spkmask = core_spk;
  1087. s->xxch_nbits_spk_mask = spkmsk_bits;
  1088. s->xxch_dmix_embedded = 0;
  1089. /* skip to the end of the header */
  1090. i = get_bits_count(&s->gb);
  1091. if (hdr_pos + hdr_size * 8 > i)
  1092. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1093. for (chset = 0; chset < num_chsets; chset++) {
  1094. chstart = get_bits_count(&s->gb);
  1095. base_channel = s->prim_channels;
  1096. s->xxch_chset = chset;
  1097. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1098. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1099. dca_parse_audio_coding_header(s, base_channel, 1);
  1100. /* decode channel data */
  1101. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1102. if (dca_decode_block(s, base_channel, i)) {
  1103. av_log(s->avctx, AV_LOG_ERROR,
  1104. "Error decoding DTS-XXCH extension\n");
  1105. continue;
  1106. }
  1107. }
  1108. /* skip to end of this section */
  1109. i = get_bits_count(&s->gb);
  1110. if (chstart + fsize[chset] * 8 > i)
  1111. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1112. }
  1113. s->xxch_chset = num_chsets;
  1114. return 0;
  1115. }
  1116. static float dca_dmix_code(unsigned code)
  1117. {
  1118. int sign = (code >> 8) - 1;
  1119. code &= 0xff;
  1120. return ((dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1 << 15));
  1121. }
  1122. /**
  1123. * Main frame decoding function
  1124. * FIXME add arguments
  1125. */
  1126. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1127. int *got_frame_ptr, AVPacket *avpkt)
  1128. {
  1129. AVFrame *frame = data;
  1130. const uint8_t *buf = avpkt->data;
  1131. int buf_size = avpkt->size;
  1132. int channel_mask;
  1133. int channel_layout;
  1134. int lfe_samples;
  1135. int num_core_channels = 0;
  1136. int i, ret;
  1137. float **samples_flt;
  1138. float *src_chan;
  1139. float *dst_chan;
  1140. DCAContext *s = avctx->priv_data;
  1141. int core_ss_end;
  1142. int channels, full_channels;
  1143. float scale;
  1144. int achan;
  1145. int chset;
  1146. int mask;
  1147. int lavc;
  1148. int posn;
  1149. int j, k;
  1150. int endch;
  1151. s->xch_present = 0;
  1152. s->dca_buffer_size = avpriv_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1153. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1154. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1155. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1156. return AVERROR_INVALIDDATA;
  1157. }
  1158. if ((ret = dca_parse_frame_header(s)) < 0) {
  1159. // seems like the frame is corrupt, try with the next one
  1160. return ret;
  1161. }
  1162. // set AVCodec values with parsed data
  1163. avctx->sample_rate = s->sample_rate;
  1164. avctx->bit_rate = s->bit_rate;
  1165. s->profile = FF_PROFILE_DTS;
  1166. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1167. if ((ret = dca_decode_block(s, 0, i))) {
  1168. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1169. return ret;
  1170. }
  1171. }
  1172. /* record number of core channels incase less than max channels are requested */
  1173. num_core_channels = s->prim_channels;
  1174. if (s->prim_channels + !!s->lfe > 2 &&
  1175. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1176. /* Stereo downmix coefficients
  1177. *
  1178. * The decoder can only downmix to 2-channel, so we need to ensure
  1179. * embedded downmix coefficients are actually targeting 2-channel.
  1180. */
  1181. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1182. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1183. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1184. /* Range checked earlier */
  1185. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1186. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1187. }
  1188. s->output = s->core_downmix_amode;
  1189. } else {
  1190. int am = s->amode & DCA_CHANNEL_MASK;
  1191. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1192. av_log(s->avctx, AV_LOG_ERROR,
  1193. "Invalid channel mode %d\n", am);
  1194. return AVERROR_INVALIDDATA;
  1195. }
  1196. if (num_core_channels + !!s->lfe >
  1197. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1198. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1199. s->prim_channels + !!s->lfe);
  1200. return AVERROR_PATCHWELCOME;
  1201. }
  1202. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1203. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1204. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1205. }
  1206. }
  1207. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1208. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1209. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1210. s->downmix_coef[i][0]);
  1211. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1212. s->downmix_coef[i][1]);
  1213. }
  1214. av_dlog(s->avctx, "\n");
  1215. }
  1216. if (s->ext_coding)
  1217. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1218. else
  1219. s->core_ext_mask = 0;
  1220. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1221. /* only scan for extensions if ext_descr was unknown or indicated a
  1222. * supported XCh extension */
  1223. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1224. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1225. * extensions scan can fill it up */
  1226. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1227. /* extensions start at 32-bit boundaries into bitstream */
  1228. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1229. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1230. uint32_t bits = get_bits_long(&s->gb, 32);
  1231. switch (bits) {
  1232. case 0x5a5a5a5a: {
  1233. int ext_amode, xch_fsize;
  1234. s->xch_base_channel = s->prim_channels;
  1235. /* validate sync word using XCHFSIZE field */
  1236. xch_fsize = show_bits(&s->gb, 10);
  1237. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1238. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1239. continue;
  1240. /* skip length-to-end-of-frame field for the moment */
  1241. skip_bits(&s->gb, 10);
  1242. s->core_ext_mask |= DCA_EXT_XCH;
  1243. /* extension amode(number of channels in extension) should be 1 */
  1244. /* AFAIK XCh is not used for more channels */
  1245. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1246. av_log(avctx, AV_LOG_ERROR,
  1247. "XCh extension amode %d not supported!\n",
  1248. ext_amode);
  1249. continue;
  1250. }
  1251. if (s->xch_base_channel < 2) {
  1252. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1253. continue;
  1254. }
  1255. /* much like core primary audio coding header */
  1256. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1257. for (i = 0; i < (s->sample_blocks / 8); i++)
  1258. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1259. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1260. continue;
  1261. }
  1262. s->xch_present = 1;
  1263. break;
  1264. }
  1265. case 0x47004a03:
  1266. /* XXCh: extended channels */
  1267. /* usually found either in core or HD part in DTS-HD HRA streams,
  1268. * but not in DTS-ES which contains XCh extensions instead */
  1269. s->core_ext_mask |= DCA_EXT_XXCH;
  1270. ff_dca_xxch_decode_frame(s);
  1271. break;
  1272. case 0x1d95f262: {
  1273. int fsize96 = show_bits(&s->gb, 12) + 1;
  1274. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1275. continue;
  1276. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1277. get_bits_count(&s->gb));
  1278. skip_bits(&s->gb, 12);
  1279. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1280. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1281. s->core_ext_mask |= DCA_EXT_X96;
  1282. break;
  1283. }
  1284. }
  1285. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1286. }
  1287. } else {
  1288. /* no supported extensions, skip the rest of the core substream */
  1289. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1290. }
  1291. if (s->core_ext_mask & DCA_EXT_X96)
  1292. s->profile = FF_PROFILE_DTS_96_24;
  1293. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1294. s->profile = FF_PROFILE_DTS_ES;
  1295. /* check for ExSS (HD part) */
  1296. if (s->dca_buffer_size - s->frame_size > 32 &&
  1297. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1298. ff_dca_exss_parse_header(s);
  1299. avctx->profile = s->profile;
  1300. full_channels = channels = s->prim_channels + !!s->lfe;
  1301. /* If we have XXCH then the channel layout is managed differently */
  1302. /* note that XLL will also have another way to do things */
  1303. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1304. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1305. && avctx->request_channels
  1306. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1307. { /* xxx should also do MA extensions */
  1308. if (s->amode < 16) {
  1309. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1310. if (s->prim_channels + !!s->lfe > 2 &&
  1311. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1312. /*
  1313. * Neither the core's auxiliary data nor our default tables contain
  1314. * downmix coefficients for the additional channel coded in the XCh
  1315. * extension, so when we're doing a Stereo downmix, don't decode it.
  1316. */
  1317. s->xch_disable = 1;
  1318. }
  1319. #if FF_API_REQUEST_CHANNELS
  1320. FF_DISABLE_DEPRECATION_WARNINGS
  1321. if (s->xch_present && !s->xch_disable &&
  1322. (!avctx->request_channels ||
  1323. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1324. FF_ENABLE_DEPRECATION_WARNINGS
  1325. #else
  1326. if (s->xch_present && !s->xch_disable) {
  1327. #endif
  1328. if (avctx->channel_layout & AV_CH_BACK_CENTER) {
  1329. avpriv_request_sample(avctx, "XCh with Back center channel");
  1330. return AVERROR_INVALIDDATA;
  1331. }
  1332. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1333. if (s->lfe) {
  1334. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1335. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1336. } else {
  1337. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1338. }
  1339. if (s->channel_order_tab[s->xch_base_channel] < 0)
  1340. return AVERROR_INVALIDDATA;
  1341. } else {
  1342. channels = num_core_channels + !!s->lfe;
  1343. s->xch_present = 0; /* disable further xch processing */
  1344. if (s->lfe) {
  1345. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1346. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1347. } else
  1348. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1349. }
  1350. if (channels > !!s->lfe &&
  1351. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1352. return AVERROR_INVALIDDATA;
  1353. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  1354. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  1355. return AVERROR_INVALIDDATA;
  1356. }
  1357. if (num_core_channels + !!s->lfe > 2 &&
  1358. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1359. channels = 2;
  1360. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  1361. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1362. }
  1363. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1364. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1365. s->channel_order_tab = dca_channel_order_native;
  1366. }
  1367. s->lfe_index = dca_lfe_index[s->amode];
  1368. } else {
  1369. av_log(avctx, AV_LOG_ERROR,
  1370. "Non standard configuration %d !\n", s->amode);
  1371. return AVERROR_INVALIDDATA;
  1372. }
  1373. s->xxch_dmix_embedded = 0;
  1374. } else {
  1375. /* we only get here if an XXCH channel set can be added to the mix */
  1376. channel_mask = s->xxch_core_spkmask;
  1377. if (avctx->request_channels > 0
  1378. && avctx->request_channels < s->prim_channels) {
  1379. channels = num_core_channels + !!s->lfe;
  1380. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  1381. <= avctx->request_channels; i++) {
  1382. channels += s->xxch_chset_nch[i];
  1383. channel_mask |= s->xxch_spk_masks[i];
  1384. }
  1385. } else {
  1386. channels = s->prim_channels + !!s->lfe;
  1387. for (i = 0; i < s->xxch_chset; i++) {
  1388. channel_mask |= s->xxch_spk_masks[i];
  1389. }
  1390. }
  1391. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  1392. channel_layout = 0;
  1393. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  1394. if (channel_mask & (1 << i)) {
  1395. channel_layout |= map_xxch_to_native[i];
  1396. }
  1397. }
  1398. /* make sure that we have managed to get equivalent dts/avcodec channel
  1399. * masks in some sense -- unfortunately some channels could overlap */
  1400. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  1401. av_log(avctx, AV_LOG_DEBUG,
  1402. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  1403. return AVERROR_INVALIDDATA;
  1404. }
  1405. avctx->channel_layout = channel_layout;
  1406. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  1407. /* Estimate DTS --> avcodec ordering table */
  1408. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  1409. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  1410. : s->xxch_core_spkmask;
  1411. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  1412. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  1413. lavc = map_xxch_to_native[i];
  1414. posn = av_popcount(channel_layout & (lavc - 1));
  1415. s->xxch_order_tab[j++] = posn;
  1416. }
  1417. }
  1418. }
  1419. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  1420. } else { /* native ordering */
  1421. for (i = 0; i < channels; i++)
  1422. s->xxch_order_tab[i] = i;
  1423. s->lfe_index = channels - 1;
  1424. }
  1425. s->channel_order_tab = s->xxch_order_tab;
  1426. }
  1427. if (avctx->channels != channels) {
  1428. if (avctx->channels)
  1429. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1430. avctx->channels = channels;
  1431. }
  1432. /* get output buffer */
  1433. frame->nb_samples = 256 * (s->sample_blocks / 8);
  1434. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1435. return ret;
  1436. samples_flt = (float **) frame->extended_data;
  1437. /* allocate buffer for extra channels if downmixing */
  1438. if (avctx->channels < full_channels) {
  1439. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  1440. frame->nb_samples,
  1441. avctx->sample_fmt, 0);
  1442. if (ret < 0)
  1443. return ret;
  1444. av_fast_malloc(&s->extra_channels_buffer,
  1445. &s->extra_channels_buffer_size, ret);
  1446. if (!s->extra_channels_buffer)
  1447. return AVERROR(ENOMEM);
  1448. ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
  1449. s->extra_channels_buffer,
  1450. full_channels - channels,
  1451. frame->nb_samples, avctx->sample_fmt, 0);
  1452. if (ret < 0)
  1453. return ret;
  1454. }
  1455. /* filter to get final output */
  1456. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1457. int ch;
  1458. for (ch = 0; ch < channels; ch++)
  1459. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  1460. for (; ch < full_channels; ch++)
  1461. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  1462. dca_filter_channels(s, i);
  1463. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1464. /* channel from SL & SR to remove matrixed back-channel signal */
  1465. if ((s->source_pcm_res & 1) && s->xch_present) {
  1466. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  1467. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  1468. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  1469. s->fdsp->vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1470. s->fdsp->vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1471. }
  1472. /* If stream contains XXCH, we might need to undo an embedded downmix */
  1473. if (s->xxch_dmix_embedded) {
  1474. /* Loop over channel sets in turn */
  1475. ch = num_core_channels;
  1476. for (chset = 0; chset < s->xxch_chset; chset++) {
  1477. endch = ch + s->xxch_chset_nch[chset];
  1478. mask = s->xxch_dmix_embedded;
  1479. /* undo downmix */
  1480. for (j = ch; j < endch; j++) {
  1481. if (mask & (1 << j)) { /* this channel has been mixed-out */
  1482. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1483. for (k = 0; k < endch; k++) {
  1484. achan = s->channel_order_tab[k];
  1485. scale = s->xxch_dmix_coeff[j][k];
  1486. if (scale != 0.0) {
  1487. dst_chan = s->samples_chanptr[achan];
  1488. s->fdsp->vector_fmac_scalar(dst_chan, src_chan,
  1489. -scale, 256);
  1490. }
  1491. }
  1492. }
  1493. }
  1494. /* if a downmix has been embedded then undo the pre-scaling */
  1495. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  1496. scale = s->xxch_dmix_sf[chset];
  1497. for (j = 0; j < ch; j++) {
  1498. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1499. for (k = 0; k < 256; k++)
  1500. src_chan[k] *= scale;
  1501. }
  1502. /* LFE channel is always part of core, scale if it exists */
  1503. if (s->lfe) {
  1504. src_chan = s->samples_chanptr[s->lfe_index];
  1505. for (k = 0; k < 256; k++)
  1506. src_chan[k] *= scale;
  1507. }
  1508. }
  1509. ch = endch;
  1510. }
  1511. }
  1512. }
  1513. /* update lfe history */
  1514. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1515. for (i = 0; i < 2 * s->lfe * 4; i++)
  1516. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1517. /* AVMatrixEncoding
  1518. *
  1519. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  1520. ret = ff_side_data_update_matrix_encoding(frame,
  1521. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  1522. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  1523. if (ret < 0)
  1524. return ret;
  1525. *got_frame_ptr = 1;
  1526. return buf_size;
  1527. }
  1528. /**
  1529. * DCA initialization
  1530. *
  1531. * @param avctx pointer to the AVCodecContext
  1532. */
  1533. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1534. {
  1535. DCAContext *s = avctx->priv_data;
  1536. s->avctx = avctx;
  1537. dca_init_vlcs();
  1538. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT);
  1539. if (!s->fdsp)
  1540. return AVERROR(ENOMEM);
  1541. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1542. ff_synth_filter_init(&s->synth);
  1543. ff_dcadsp_init(&s->dcadsp);
  1544. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1545. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1546. /* allow downmixing to stereo */
  1547. #if FF_API_REQUEST_CHANNELS
  1548. FF_DISABLE_DEPRECATION_WARNINGS
  1549. if (avctx->request_channels == 2)
  1550. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  1551. FF_ENABLE_DEPRECATION_WARNINGS
  1552. #endif
  1553. if (avctx->channels > 2 &&
  1554. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  1555. avctx->channels = 2;
  1556. return 0;
  1557. }
  1558. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1559. {
  1560. DCAContext *s = avctx->priv_data;
  1561. ff_mdct_end(&s->imdct);
  1562. av_freep(&s->extra_channels_buffer);
  1563. av_freep(&s->fdsp);
  1564. return 0;
  1565. }
  1566. static const AVProfile profiles[] = {
  1567. { FF_PROFILE_DTS, "DTS" },
  1568. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1569. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1570. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1571. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1572. { FF_PROFILE_UNKNOWN },
  1573. };
  1574. static const AVOption options[] = {
  1575. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1576. { NULL },
  1577. };
  1578. static const AVClass dca_decoder_class = {
  1579. .class_name = "DCA decoder",
  1580. .item_name = av_default_item_name,
  1581. .option = options,
  1582. .version = LIBAVUTIL_VERSION_INT,
  1583. .category = AV_CLASS_CATEGORY_DECODER,
  1584. };
  1585. AVCodec ff_dca_decoder = {
  1586. .name = "dca",
  1587. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1588. .type = AVMEDIA_TYPE_AUDIO,
  1589. .id = AV_CODEC_ID_DTS,
  1590. .priv_data_size = sizeof(DCAContext),
  1591. .init = dca_decode_init,
  1592. .decode = dca_decode_frame,
  1593. .close = dca_decode_end,
  1594. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1595. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1596. AV_SAMPLE_FMT_NONE },
  1597. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1598. .priv_class = &dca_decoder_class,
  1599. };