You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1163 lines
42KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 cavlc bitstream decoding.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #define CABAC 0
  27. #define UNCHECKED_BITSTREAM_READER 1
  28. #include "internal.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h264.h"
  32. #include "h264data.h" // FIXME FIXME FIXME
  33. #include "h264_mvpred.h"
  34. #include "golomb.h"
  35. #include "libavutil/avassert.h"
  36. static const uint8_t golomb_to_inter_cbp_gray[16]={
  37. 0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9,
  38. };
  39. static const uint8_t golomb_to_intra4x4_cbp_gray[16]={
  40. 15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9,
  41. };
  42. static const uint8_t chroma_dc_coeff_token_len[4*5]={
  43. 2, 0, 0, 0,
  44. 6, 1, 0, 0,
  45. 6, 6, 3, 0,
  46. 6, 7, 7, 6,
  47. 6, 8, 8, 7,
  48. };
  49. static const uint8_t chroma_dc_coeff_token_bits[4*5]={
  50. 1, 0, 0, 0,
  51. 7, 1, 0, 0,
  52. 4, 6, 1, 0,
  53. 3, 3, 2, 5,
  54. 2, 3, 2, 0,
  55. };
  56. static const uint8_t chroma422_dc_coeff_token_len[4*9]={
  57. 1, 0, 0, 0,
  58. 7, 2, 0, 0,
  59. 7, 7, 3, 0,
  60. 9, 7, 7, 5,
  61. 9, 9, 7, 6,
  62. 10, 10, 9, 7,
  63. 11, 11, 10, 7,
  64. 12, 12, 11, 10,
  65. 13, 12, 12, 11,
  66. };
  67. static const uint8_t chroma422_dc_coeff_token_bits[4*9]={
  68. 1, 0, 0, 0,
  69. 15, 1, 0, 0,
  70. 14, 13, 1, 0,
  71. 7, 12, 11, 1,
  72. 6, 5, 10, 1,
  73. 7, 6, 4, 9,
  74. 7, 6, 5, 8,
  75. 7, 6, 5, 4,
  76. 7, 5, 4, 4,
  77. };
  78. static const uint8_t coeff_token_len[4][4*17]={
  79. {
  80. 1, 0, 0, 0,
  81. 6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6,
  82. 11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10,
  83. 14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14,
  84. 16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16,
  85. },
  86. {
  87. 2, 0, 0, 0,
  88. 6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4,
  89. 8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7,
  90. 12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12,
  91. 13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14,
  92. },
  93. {
  94. 4, 0, 0, 0,
  95. 6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4,
  96. 7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5,
  97. 8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8,
  98. 10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10,
  99. },
  100. {
  101. 6, 0, 0, 0,
  102. 6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6,
  103. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  104. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  105. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  106. }
  107. };
  108. static const uint8_t coeff_token_bits[4][4*17]={
  109. {
  110. 1, 0, 0, 0,
  111. 5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3,
  112. 7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4,
  113. 15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8,
  114. 15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8,
  115. },
  116. {
  117. 3, 0, 0, 0,
  118. 11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4,
  119. 4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4,
  120. 15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12,
  121. 11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4,
  122. },
  123. {
  124. 15, 0, 0, 0,
  125. 15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11,
  126. 11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13,
  127. 11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8,
  128. 13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2,
  129. },
  130. {
  131. 3, 0, 0, 0,
  132. 0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15,
  133. 16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
  134. 32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47,
  135. 48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63,
  136. }
  137. };
  138. static const uint8_t total_zeros_len[16][16]= {
  139. {1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},
  140. {3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},
  141. {4,3,3,3,4,4,3,3,4,5,5,6,5,6},
  142. {5,3,4,4,3,3,3,4,3,4,5,5,5},
  143. {4,4,4,3,3,3,3,3,4,5,4,5},
  144. {6,5,3,3,3,3,3,3,4,3,6},
  145. {6,5,3,3,3,2,3,4,3,6},
  146. {6,4,5,3,2,2,3,3,6},
  147. {6,6,4,2,2,3,2,5},
  148. {5,5,3,2,2,2,4},
  149. {4,4,3,3,1,3},
  150. {4,4,2,1,3},
  151. {3,3,1,2},
  152. {2,2,1},
  153. {1,1},
  154. };
  155. static const uint8_t total_zeros_bits[16][16]= {
  156. {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},
  157. {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},
  158. {5,7,6,5,4,3,4,3,2,3,2,1,1,0},
  159. {3,7,5,4,6,5,4,3,3,2,2,1,0},
  160. {5,4,3,7,6,5,4,3,2,1,1,0},
  161. {1,1,7,6,5,4,3,2,1,1,0},
  162. {1,1,5,4,3,3,2,1,1,0},
  163. {1,1,1,3,3,2,2,1,0},
  164. {1,0,1,3,2,1,1,1},
  165. {1,0,1,3,2,1,1},
  166. {0,1,1,2,1,3},
  167. {0,1,1,1,1},
  168. {0,1,1,1},
  169. {0,1,1},
  170. {0,1},
  171. };
  172. static const uint8_t chroma_dc_total_zeros_len[3][4]= {
  173. { 1, 2, 3, 3,},
  174. { 1, 2, 2, 0,},
  175. { 1, 1, 0, 0,},
  176. };
  177. static const uint8_t chroma_dc_total_zeros_bits[3][4]= {
  178. { 1, 1, 1, 0,},
  179. { 1, 1, 0, 0,},
  180. { 1, 0, 0, 0,},
  181. };
  182. static const uint8_t chroma422_dc_total_zeros_len[7][8]= {
  183. { 1, 3, 3, 4, 4, 4, 5, 5 },
  184. { 3, 2, 3, 3, 3, 3, 3 },
  185. { 3, 3, 2, 2, 3, 3 },
  186. { 3, 2, 2, 2, 3 },
  187. { 2, 2, 2, 2 },
  188. { 2, 2, 1 },
  189. { 1, 1 },
  190. };
  191. static const uint8_t chroma422_dc_total_zeros_bits[7][8]= {
  192. { 1, 2, 3, 2, 3, 1, 1, 0 },
  193. { 0, 1, 1, 4, 5, 6, 7 },
  194. { 0, 1, 1, 2, 6, 7 },
  195. { 6, 0, 1, 2, 7 },
  196. { 0, 1, 2, 3 },
  197. { 0, 1, 1 },
  198. { 0, 1 },
  199. };
  200. static const uint8_t run_len[7][16]={
  201. {1,1},
  202. {1,2,2},
  203. {2,2,2,2},
  204. {2,2,2,3,3},
  205. {2,2,3,3,3,3},
  206. {2,3,3,3,3,3,3},
  207. {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},
  208. };
  209. static const uint8_t run_bits[7][16]={
  210. {1,0},
  211. {1,1,0},
  212. {3,2,1,0},
  213. {3,2,1,1,0},
  214. {3,2,3,2,1,0},
  215. {3,0,1,3,2,5,4},
  216. {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},
  217. };
  218. static VLC coeff_token_vlc[4];
  219. static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
  220. static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
  221. static VLC chroma_dc_coeff_token_vlc;
  222. static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
  223. static const int chroma_dc_coeff_token_vlc_table_size = 256;
  224. static VLC chroma422_dc_coeff_token_vlc;
  225. static VLC_TYPE chroma422_dc_coeff_token_vlc_table[8192][2];
  226. static const int chroma422_dc_coeff_token_vlc_table_size = 8192;
  227. static VLC total_zeros_vlc[15];
  228. static VLC_TYPE total_zeros_vlc_tables[15][512][2];
  229. static const int total_zeros_vlc_tables_size = 512;
  230. static VLC chroma_dc_total_zeros_vlc[3];
  231. static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
  232. static const int chroma_dc_total_zeros_vlc_tables_size = 8;
  233. static VLC chroma422_dc_total_zeros_vlc[7];
  234. static VLC_TYPE chroma422_dc_total_zeros_vlc_tables[7][32][2];
  235. static const int chroma422_dc_total_zeros_vlc_tables_size = 32;
  236. static VLC run_vlc[6];
  237. static VLC_TYPE run_vlc_tables[6][8][2];
  238. static const int run_vlc_tables_size = 8;
  239. static VLC run7_vlc;
  240. static VLC_TYPE run7_vlc_table[96][2];
  241. static const int run7_vlc_table_size = 96;
  242. #define LEVEL_TAB_BITS 8
  243. static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
  244. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  245. #define CHROMA422_DC_COEFF_TOKEN_VLC_BITS 13
  246. #define COEFF_TOKEN_VLC_BITS 8
  247. #define TOTAL_ZEROS_VLC_BITS 9
  248. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  249. #define CHROMA422_DC_TOTAL_ZEROS_VLC_BITS 5
  250. #define RUN_VLC_BITS 3
  251. #define RUN7_VLC_BITS 6
  252. /**
  253. * Get the predicted number of non-zero coefficients.
  254. * @param n block index
  255. */
  256. static inline int pred_non_zero_count(H264Context *h, int n){
  257. const int index8= scan8[n];
  258. const int left= h->non_zero_count_cache[index8 - 1];
  259. const int top = h->non_zero_count_cache[index8 - 8];
  260. int i= left + top;
  261. if(i<64) i= (i+1)>>1;
  262. tprintf(h->avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  263. return i&31;
  264. }
  265. static av_cold void init_cavlc_level_tab(void){
  266. int suffix_length;
  267. unsigned int i;
  268. for(suffix_length=0; suffix_length<7; suffix_length++){
  269. for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
  270. int prefix= LEVEL_TAB_BITS - av_log2(2*i);
  271. if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
  272. int level_code = (prefix << suffix_length) +
  273. (i >> (av_log2(i) - suffix_length)) - (1 << suffix_length);
  274. int mask = -(level_code&1);
  275. level_code = (((2 + level_code) >> 1) ^ mask) - mask;
  276. cavlc_level_tab[suffix_length][i][0]= level_code;
  277. cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
  278. }else if(prefix + 1 <= LEVEL_TAB_BITS){
  279. cavlc_level_tab[suffix_length][i][0]= prefix+100;
  280. cavlc_level_tab[suffix_length][i][1]= prefix + 1;
  281. }else{
  282. cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
  283. cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
  284. }
  285. }
  286. }
  287. }
  288. av_cold void ff_h264_decode_init_vlc(void){
  289. static int done = 0;
  290. if (!done) {
  291. int i;
  292. int offset;
  293. done = 1;
  294. chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
  295. chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
  296. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  297. &chroma_dc_coeff_token_len [0], 1, 1,
  298. &chroma_dc_coeff_token_bits[0], 1, 1,
  299. INIT_VLC_USE_NEW_STATIC);
  300. chroma422_dc_coeff_token_vlc.table = chroma422_dc_coeff_token_vlc_table;
  301. chroma422_dc_coeff_token_vlc.table_allocated = chroma422_dc_coeff_token_vlc_table_size;
  302. init_vlc(&chroma422_dc_coeff_token_vlc, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4*9,
  303. &chroma422_dc_coeff_token_len [0], 1, 1,
  304. &chroma422_dc_coeff_token_bits[0], 1, 1,
  305. INIT_VLC_USE_NEW_STATIC);
  306. offset = 0;
  307. for(i=0; i<4; i++){
  308. coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
  309. coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
  310. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  311. &coeff_token_len [i][0], 1, 1,
  312. &coeff_token_bits[i][0], 1, 1,
  313. INIT_VLC_USE_NEW_STATIC);
  314. offset += coeff_token_vlc_tables_size[i];
  315. }
  316. /*
  317. * This is a one time safety check to make sure that
  318. * the packed static coeff_token_vlc table sizes
  319. * were initialized correctly.
  320. */
  321. av_assert0(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
  322. for(i=0; i<3; i++){
  323. chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
  324. chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
  325. init_vlc(&chroma_dc_total_zeros_vlc[i],
  326. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  327. &chroma_dc_total_zeros_len [i][0], 1, 1,
  328. &chroma_dc_total_zeros_bits[i][0], 1, 1,
  329. INIT_VLC_USE_NEW_STATIC);
  330. }
  331. for(i=0; i<7; i++){
  332. chroma422_dc_total_zeros_vlc[i].table = chroma422_dc_total_zeros_vlc_tables[i];
  333. chroma422_dc_total_zeros_vlc[i].table_allocated = chroma422_dc_total_zeros_vlc_tables_size;
  334. init_vlc(&chroma422_dc_total_zeros_vlc[i],
  335. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8,
  336. &chroma422_dc_total_zeros_len [i][0], 1, 1,
  337. &chroma422_dc_total_zeros_bits[i][0], 1, 1,
  338. INIT_VLC_USE_NEW_STATIC);
  339. }
  340. for(i=0; i<15; i++){
  341. total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
  342. total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
  343. init_vlc(&total_zeros_vlc[i],
  344. TOTAL_ZEROS_VLC_BITS, 16,
  345. &total_zeros_len [i][0], 1, 1,
  346. &total_zeros_bits[i][0], 1, 1,
  347. INIT_VLC_USE_NEW_STATIC);
  348. }
  349. for(i=0; i<6; i++){
  350. run_vlc[i].table = run_vlc_tables[i];
  351. run_vlc[i].table_allocated = run_vlc_tables_size;
  352. init_vlc(&run_vlc[i],
  353. RUN_VLC_BITS, 7,
  354. &run_len [i][0], 1, 1,
  355. &run_bits[i][0], 1, 1,
  356. INIT_VLC_USE_NEW_STATIC);
  357. }
  358. run7_vlc.table = run7_vlc_table,
  359. run7_vlc.table_allocated = run7_vlc_table_size;
  360. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  361. &run_len [6][0], 1, 1,
  362. &run_bits[6][0], 1, 1,
  363. INIT_VLC_USE_NEW_STATIC);
  364. init_cavlc_level_tab();
  365. }
  366. }
  367. /**
  368. *
  369. */
  370. static inline int get_level_prefix(GetBitContext *gb){
  371. unsigned int buf;
  372. int log;
  373. OPEN_READER(re, gb);
  374. UPDATE_CACHE(re, gb);
  375. buf=GET_CACHE(re, gb);
  376. log= 32 - av_log2(buf);
  377. #ifdef TRACE
  378. print_bin(buf>>(32-log), log);
  379. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  380. #endif
  381. LAST_SKIP_BITS(re, gb, log);
  382. CLOSE_READER(re, gb);
  383. return log-1;
  384. }
  385. /**
  386. * Decode a residual block.
  387. * @param n block index
  388. * @param scantable scantable
  389. * @param max_coeff number of coefficients in the block
  390. * @return <0 if an error occurred
  391. */
  392. static int decode_residual(H264Context *h, GetBitContext *gb, int16_t *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  393. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  394. int level[16];
  395. int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before;
  396. //FIXME put trailing_onex into the context
  397. if(max_coeff <= 8){
  398. if (max_coeff == 4)
  399. coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  400. else
  401. coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc.table, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1);
  402. total_coeff= coeff_token>>2;
  403. }else{
  404. if(n >= LUMA_DC_BLOCK_INDEX){
  405. total_coeff= pred_non_zero_count(h, (n - LUMA_DC_BLOCK_INDEX)*16);
  406. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  407. total_coeff= coeff_token>>2;
  408. }else{
  409. total_coeff= pred_non_zero_count(h, n);
  410. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  411. total_coeff= coeff_token>>2;
  412. }
  413. }
  414. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  415. //FIXME set last_non_zero?
  416. if(total_coeff==0)
  417. return 0;
  418. if(total_coeff > (unsigned)max_coeff) {
  419. av_log(h->avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", h->mb_x, h->mb_y, total_coeff);
  420. return -1;
  421. }
  422. trailing_ones= coeff_token&3;
  423. tprintf(h->avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  424. av_assert2(total_coeff<=16);
  425. i = show_bits(gb, 3);
  426. skip_bits(gb, trailing_ones);
  427. level[0] = 1-((i&4)>>1);
  428. level[1] = 1-((i&2) );
  429. level[2] = 1-((i&1)<<1);
  430. if(trailing_ones<total_coeff) {
  431. int mask, prefix;
  432. int suffix_length = total_coeff > 10 & trailing_ones < 3;
  433. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  434. int level_code= cavlc_level_tab[suffix_length][bitsi][0];
  435. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  436. if(level_code >= 100){
  437. prefix= level_code - 100;
  438. if(prefix == LEVEL_TAB_BITS)
  439. prefix += get_level_prefix(gb);
  440. //first coefficient has suffix_length equal to 0 or 1
  441. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  442. if(suffix_length)
  443. level_code= (prefix<<1) + get_bits1(gb); //part
  444. else
  445. level_code= prefix; //part
  446. }else if(prefix==14){
  447. if(suffix_length)
  448. level_code= (prefix<<1) + get_bits1(gb); //part
  449. else
  450. level_code= prefix + get_bits(gb, 4); //part
  451. }else{
  452. level_code= 30;
  453. if(prefix>=16){
  454. if(prefix > 25+3){
  455. av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n");
  456. return -1;
  457. }
  458. level_code += (1<<(prefix-3))-4096;
  459. }
  460. level_code += get_bits(gb, prefix-3); //part
  461. }
  462. if(trailing_ones < 3) level_code += 2;
  463. suffix_length = 2;
  464. mask= -(level_code&1);
  465. level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
  466. }else{
  467. level_code += ((level_code>>31)|1) & -(trailing_ones < 3);
  468. suffix_length = 1 + (level_code + 3U > 6U);
  469. level[trailing_ones]= level_code;
  470. }
  471. //remaining coefficients have suffix_length > 0
  472. for(i=trailing_ones+1;i<total_coeff;i++) {
  473. static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX };
  474. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  475. level_code= cavlc_level_tab[suffix_length][bitsi][0];
  476. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  477. if(level_code >= 100){
  478. prefix= level_code - 100;
  479. if(prefix == LEVEL_TAB_BITS){
  480. prefix += get_level_prefix(gb);
  481. }
  482. if(prefix<15){
  483. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  484. }else{
  485. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  486. if(prefix>=16)
  487. level_code += (1<<(prefix-3))-4096;
  488. }
  489. mask= -(level_code&1);
  490. level_code= (((2+level_code)>>1) ^ mask) - mask;
  491. }
  492. level[i]= level_code;
  493. suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length];
  494. }
  495. }
  496. if(total_coeff == max_coeff)
  497. zeros_left=0;
  498. else{
  499. if (max_coeff <= 8) {
  500. if (max_coeff == 4)
  501. zeros_left = get_vlc2(gb, (chroma_dc_total_zeros_vlc-1)[total_coeff].table,
  502. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  503. else
  504. zeros_left = get_vlc2(gb, (chroma422_dc_total_zeros_vlc-1)[total_coeff].table,
  505. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1);
  506. } else {
  507. zeros_left= get_vlc2(gb, (total_zeros_vlc-1)[ total_coeff ].table, TOTAL_ZEROS_VLC_BITS, 1);
  508. }
  509. }
  510. #define STORE_BLOCK(type) \
  511. scantable += zeros_left + total_coeff - 1; \
  512. if(n >= LUMA_DC_BLOCK_INDEX){ \
  513. ((type*)block)[*scantable] = level[0]; \
  514. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  515. if(zeros_left < 7) \
  516. run_before= get_vlc2(gb, (run_vlc-1)[zeros_left].table, RUN_VLC_BITS, 1); \
  517. else \
  518. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  519. zeros_left -= run_before; \
  520. scantable -= 1 + run_before; \
  521. ((type*)block)[*scantable]= level[i]; \
  522. } \
  523. for(;i<total_coeff;i++) { \
  524. scantable--; \
  525. ((type*)block)[*scantable]= level[i]; \
  526. } \
  527. }else{ \
  528. ((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \
  529. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  530. if(zeros_left < 7) \
  531. run_before= get_vlc2(gb, (run_vlc-1)[zeros_left].table, RUN_VLC_BITS, 1); \
  532. else \
  533. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  534. zeros_left -= run_before; \
  535. scantable -= 1 + run_before; \
  536. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  537. } \
  538. for(;i<total_coeff;i++) { \
  539. scantable--; \
  540. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  541. } \
  542. }
  543. if (h->pixel_shift) {
  544. STORE_BLOCK(int32_t)
  545. } else {
  546. STORE_BLOCK(int16_t)
  547. }
  548. if(zeros_left<0){
  549. av_log(h->avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", h->mb_x, h->mb_y);
  550. return -1;
  551. }
  552. return 0;
  553. }
  554. static av_always_inline int decode_luma_residual(H264Context *h, GetBitContext *gb, const uint8_t *scan, const uint8_t *scan8x8, int pixel_shift, int mb_type, int cbp, int p){
  555. int i4x4, i8x8;
  556. int qscale = p == 0 ? h->qscale : h->chroma_qp[p-1];
  557. if(IS_INTRA16x16(mb_type)){
  558. AV_ZERO128(h->mb_luma_dc[p]+0);
  559. AV_ZERO128(h->mb_luma_dc[p]+8);
  560. AV_ZERO128(h->mb_luma_dc[p]+16);
  561. AV_ZERO128(h->mb_luma_dc[p]+24);
  562. if( decode_residual(h, h->intra_gb_ptr, h->mb_luma_dc[p], LUMA_DC_BLOCK_INDEX+p, scan, NULL, 16) < 0){
  563. return -1; //FIXME continue if partitioned and other return -1 too
  564. }
  565. av_assert2((cbp&15) == 0 || (cbp&15) == 15);
  566. if(cbp&15){
  567. for(i8x8=0; i8x8<4; i8x8++){
  568. for(i4x4=0; i4x4<4; i4x4++){
  569. const int index= i4x4 + 4*i8x8 + p*16;
  570. if( decode_residual(h, h->intra_gb_ptr, h->mb + (16*index << pixel_shift),
  571. index, scan + 1, h->dequant4_coeff[p][qscale], 15) < 0 ){
  572. return -1;
  573. }
  574. }
  575. }
  576. return 0xf;
  577. }else{
  578. fill_rectangle(&h->non_zero_count_cache[scan8[p*16]], 4, 4, 8, 0, 1);
  579. return 0;
  580. }
  581. }else{
  582. int cqm = (IS_INTRA( mb_type ) ? 0:3)+p;
  583. /* For CAVLC 4:4:4, we need to keep track of the luma 8x8 CBP for deblocking nnz purposes. */
  584. int new_cbp = 0;
  585. for(i8x8=0; i8x8<4; i8x8++){
  586. if(cbp & (1<<i8x8)){
  587. if(IS_8x8DCT(mb_type)){
  588. int16_t *buf = &h->mb[64*i8x8+256*p << pixel_shift];
  589. uint8_t *nnz;
  590. for(i4x4=0; i4x4<4; i4x4++){
  591. const int index= i4x4 + 4*i8x8 + p*16;
  592. if( decode_residual(h, gb, buf, index, scan8x8+16*i4x4,
  593. h->dequant8_coeff[cqm][qscale], 16) < 0 )
  594. return -1;
  595. }
  596. nnz= &h->non_zero_count_cache[ scan8[4*i8x8+p*16] ];
  597. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  598. new_cbp |= !!nnz[0] << i8x8;
  599. }else{
  600. for(i4x4=0; i4x4<4; i4x4++){
  601. const int index= i4x4 + 4*i8x8 + p*16;
  602. if( decode_residual(h, gb, h->mb + (16*index << pixel_shift), index,
  603. scan, h->dequant4_coeff[cqm][qscale], 16) < 0 ){
  604. return -1;
  605. }
  606. new_cbp |= h->non_zero_count_cache[ scan8[index] ] << i8x8;
  607. }
  608. }
  609. }else{
  610. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8+p*16] ];
  611. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  612. }
  613. }
  614. return new_cbp;
  615. }
  616. }
  617. int ff_h264_decode_mb_cavlc(H264Context *h){
  618. int mb_xy;
  619. int partition_count;
  620. unsigned int mb_type, cbp;
  621. int dct8x8_allowed= h->pps.transform_8x8_mode;
  622. int decode_chroma = h->sps.chroma_format_idc == 1 || h->sps.chroma_format_idc == 2;
  623. const int pixel_shift = h->pixel_shift;
  624. unsigned local_ref_count[2];
  625. mb_xy = h->mb_xy = h->mb_x + h->mb_y*h->mb_stride;
  626. tprintf(h->avctx, "pic:%d mb:%d/%d\n", h->frame_num, h->mb_x, h->mb_y);
  627. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  628. down the code */
  629. if(h->slice_type_nos != AV_PICTURE_TYPE_I){
  630. if(h->mb_skip_run==-1)
  631. h->mb_skip_run= get_ue_golomb(&h->gb);
  632. if (h->mb_skip_run--) {
  633. if(FRAME_MBAFF && (h->mb_y&1) == 0){
  634. if(h->mb_skip_run==0)
  635. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&h->gb);
  636. }
  637. decode_mb_skip(h);
  638. return 0;
  639. }
  640. }
  641. if(FRAME_MBAFF){
  642. if( (h->mb_y&1) == 0 )
  643. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&h->gb);
  644. }
  645. h->prev_mb_skipped= 0;
  646. mb_type= get_ue_golomb(&h->gb);
  647. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  648. if(mb_type < 23){
  649. partition_count= b_mb_type_info[mb_type].partition_count;
  650. mb_type= b_mb_type_info[mb_type].type;
  651. }else{
  652. mb_type -= 23;
  653. goto decode_intra_mb;
  654. }
  655. }else if(h->slice_type_nos == AV_PICTURE_TYPE_P){
  656. if(mb_type < 5){
  657. partition_count= p_mb_type_info[mb_type].partition_count;
  658. mb_type= p_mb_type_info[mb_type].type;
  659. }else{
  660. mb_type -= 5;
  661. goto decode_intra_mb;
  662. }
  663. }else{
  664. av_assert2(h->slice_type_nos == AV_PICTURE_TYPE_I);
  665. if(h->slice_type == AV_PICTURE_TYPE_SI && mb_type)
  666. mb_type--;
  667. decode_intra_mb:
  668. if(mb_type > 25){
  669. av_log(h->avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_picture_type_char(h->slice_type), h->mb_x, h->mb_y);
  670. return -1;
  671. }
  672. partition_count=0;
  673. cbp= i_mb_type_info[mb_type].cbp;
  674. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  675. mb_type= i_mb_type_info[mb_type].type;
  676. }
  677. if(MB_FIELD)
  678. mb_type |= MB_TYPE_INTERLACED;
  679. h->slice_table[ mb_xy ]= h->slice_num;
  680. if(IS_INTRA_PCM(mb_type)){
  681. const int mb_size = ff_h264_mb_sizes[h->sps.chroma_format_idc] *
  682. h->sps.bit_depth_luma;
  683. // We assume these blocks are very rare so we do not optimize it.
  684. h->intra_pcm_ptr = align_get_bits(&h->gb);
  685. skip_bits_long(&h->gb, mb_size);
  686. // In deblocking, the quantizer is 0
  687. h->cur_pic.qscale_table[mb_xy] = 0;
  688. // All coeffs are present
  689. memset(h->non_zero_count[mb_xy], 16, 48);
  690. h->cur_pic.mb_type[mb_xy] = mb_type;
  691. return 0;
  692. }
  693. local_ref_count[0] = h->ref_count[0] << MB_MBAFF;
  694. local_ref_count[1] = h->ref_count[1] << MB_MBAFF;
  695. fill_decode_neighbors(h, mb_type);
  696. fill_decode_caches(h, mb_type);
  697. //mb_pred
  698. if(IS_INTRA(mb_type)){
  699. int pred_mode;
  700. // init_top_left_availability(h);
  701. if(IS_INTRA4x4(mb_type)){
  702. int i;
  703. int di = 1;
  704. if(dct8x8_allowed && get_bits1(&h->gb)){
  705. mb_type |= MB_TYPE_8x8DCT;
  706. di = 4;
  707. }
  708. // fill_intra4x4_pred_table(h);
  709. for(i=0; i<16; i+=di){
  710. int mode= pred_intra_mode(h, i);
  711. if(!get_bits1(&h->gb)){
  712. const int rem_mode= get_bits(&h->gb, 3);
  713. mode = rem_mode + (rem_mode >= mode);
  714. }
  715. if(di==4)
  716. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  717. else
  718. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  719. }
  720. write_back_intra_pred_mode(h);
  721. if( ff_h264_check_intra4x4_pred_mode(h) < 0)
  722. return -1;
  723. }else{
  724. h->intra16x16_pred_mode= ff_h264_check_intra_pred_mode(h, h->intra16x16_pred_mode, 0);
  725. if(h->intra16x16_pred_mode < 0)
  726. return -1;
  727. }
  728. if(decode_chroma){
  729. pred_mode= ff_h264_check_intra_pred_mode(h, get_ue_golomb_31(&h->gb), 1);
  730. if(pred_mode < 0)
  731. return -1;
  732. h->chroma_pred_mode= pred_mode;
  733. } else {
  734. h->chroma_pred_mode = DC_128_PRED8x8;
  735. }
  736. }else if(partition_count==4){
  737. int i, j, sub_partition_count[4], list, ref[2][4];
  738. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  739. for(i=0; i<4; i++){
  740. h->sub_mb_type[i]= get_ue_golomb_31(&h->gb);
  741. if(h->sub_mb_type[i] >=13){
  742. av_log(h->avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], h->mb_x, h->mb_y);
  743. return -1;
  744. }
  745. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  746. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  747. }
  748. if( IS_DIRECT(h->sub_mb_type[0]|h->sub_mb_type[1]|h->sub_mb_type[2]|h->sub_mb_type[3])) {
  749. ff_h264_pred_direct_motion(h, &mb_type);
  750. h->ref_cache[0][scan8[4]] =
  751. h->ref_cache[1][scan8[4]] =
  752. h->ref_cache[0][scan8[12]] =
  753. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  754. }
  755. }else{
  756. av_assert2(h->slice_type_nos == AV_PICTURE_TYPE_P); //FIXME SP correct ?
  757. for(i=0; i<4; i++){
  758. h->sub_mb_type[i]= get_ue_golomb_31(&h->gb);
  759. if(h->sub_mb_type[i] >=4){
  760. av_log(h->avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], h->mb_x, h->mb_y);
  761. return -1;
  762. }
  763. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  764. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  765. }
  766. }
  767. for(list=0; list<h->list_count; list++){
  768. int ref_count= IS_REF0(mb_type) ? 1 : local_ref_count[list];
  769. for(i=0; i<4; i++){
  770. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  771. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  772. unsigned int tmp;
  773. if(ref_count == 1){
  774. tmp= 0;
  775. }else if(ref_count == 2){
  776. tmp= get_bits1(&h->gb)^1;
  777. }else{
  778. tmp= get_ue_golomb_31(&h->gb);
  779. if(tmp>=ref_count){
  780. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  781. return -1;
  782. }
  783. }
  784. ref[list][i]= tmp;
  785. }else{
  786. //FIXME
  787. ref[list][i] = -1;
  788. }
  789. }
  790. }
  791. if(dct8x8_allowed)
  792. dct8x8_allowed = get_dct8x8_allowed(h);
  793. for(list=0; list<h->list_count; list++){
  794. for(i=0; i<4; i++){
  795. if(IS_DIRECT(h->sub_mb_type[i])) {
  796. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  797. continue;
  798. }
  799. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  800. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  801. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  802. const int sub_mb_type= h->sub_mb_type[i];
  803. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  804. for(j=0; j<sub_partition_count[i]; j++){
  805. int mx, my;
  806. const int index= 4*i + block_width*j;
  807. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  808. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  809. mx += get_se_golomb(&h->gb);
  810. my += get_se_golomb(&h->gb);
  811. tprintf(h->avctx, "final mv:%d %d\n", mx, my);
  812. if(IS_SUB_8X8(sub_mb_type)){
  813. mv_cache[ 1 ][0]=
  814. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  815. mv_cache[ 1 ][1]=
  816. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  817. }else if(IS_SUB_8X4(sub_mb_type)){
  818. mv_cache[ 1 ][0]= mx;
  819. mv_cache[ 1 ][1]= my;
  820. }else if(IS_SUB_4X8(sub_mb_type)){
  821. mv_cache[ 8 ][0]= mx;
  822. mv_cache[ 8 ][1]= my;
  823. }
  824. mv_cache[ 0 ][0]= mx;
  825. mv_cache[ 0 ][1]= my;
  826. }
  827. }else{
  828. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  829. p[0] = p[1]=
  830. p[8] = p[9]= 0;
  831. }
  832. }
  833. }
  834. }else if(IS_DIRECT(mb_type)){
  835. ff_h264_pred_direct_motion(h, &mb_type);
  836. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  837. }else{
  838. int list, mx, my, i;
  839. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  840. if(IS_16X16(mb_type)){
  841. for(list=0; list<h->list_count; list++){
  842. unsigned int val;
  843. if(IS_DIR(mb_type, 0, list)){
  844. if(local_ref_count[list]==1){
  845. val= 0;
  846. }else if(local_ref_count[list]==2){
  847. val= get_bits1(&h->gb)^1;
  848. }else{
  849. val= get_ue_golomb_31(&h->gb);
  850. if(val >= local_ref_count[list]){
  851. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  852. return -1;
  853. }
  854. }
  855. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  856. }
  857. }
  858. for(list=0; list<h->list_count; list++){
  859. if(IS_DIR(mb_type, 0, list)){
  860. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  861. mx += get_se_golomb(&h->gb);
  862. my += get_se_golomb(&h->gb);
  863. tprintf(h->avctx, "final mv:%d %d\n", mx, my);
  864. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  865. }
  866. }
  867. }
  868. else if(IS_16X8(mb_type)){
  869. for(list=0; list<h->list_count; list++){
  870. for(i=0; i<2; i++){
  871. unsigned int val;
  872. if(IS_DIR(mb_type, i, list)){
  873. if(local_ref_count[list] == 1){
  874. val= 0;
  875. }else if(local_ref_count[list] == 2){
  876. val= get_bits1(&h->gb)^1;
  877. }else{
  878. val= get_ue_golomb_31(&h->gb);
  879. if(val >= local_ref_count[list]){
  880. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  881. return -1;
  882. }
  883. }
  884. }else
  885. val= LIST_NOT_USED&0xFF;
  886. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  887. }
  888. }
  889. for(list=0; list<h->list_count; list++){
  890. for(i=0; i<2; i++){
  891. unsigned int val;
  892. if(IS_DIR(mb_type, i, list)){
  893. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  894. mx += get_se_golomb(&h->gb);
  895. my += get_se_golomb(&h->gb);
  896. tprintf(h->avctx, "final mv:%d %d\n", mx, my);
  897. val= pack16to32(mx,my);
  898. }else
  899. val=0;
  900. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  901. }
  902. }
  903. }else{
  904. av_assert2(IS_8X16(mb_type));
  905. for(list=0; list<h->list_count; list++){
  906. for(i=0; i<2; i++){
  907. unsigned int val;
  908. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  909. if(local_ref_count[list]==1){
  910. val= 0;
  911. }else if(local_ref_count[list]==2){
  912. val= get_bits1(&h->gb)^1;
  913. }else{
  914. val= get_ue_golomb_31(&h->gb);
  915. if(val >= local_ref_count[list]){
  916. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  917. return -1;
  918. }
  919. }
  920. }else
  921. val= LIST_NOT_USED&0xFF;
  922. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  923. }
  924. }
  925. for(list=0; list<h->list_count; list++){
  926. for(i=0; i<2; i++){
  927. unsigned int val;
  928. if(IS_DIR(mb_type, i, list)){
  929. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  930. mx += get_se_golomb(&h->gb);
  931. my += get_se_golomb(&h->gb);
  932. tprintf(h->avctx, "final mv:%d %d\n", mx, my);
  933. val= pack16to32(mx,my);
  934. }else
  935. val=0;
  936. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  937. }
  938. }
  939. }
  940. }
  941. if(IS_INTER(mb_type))
  942. write_back_motion(h, mb_type);
  943. if(!IS_INTRA16x16(mb_type)){
  944. cbp= get_ue_golomb(&h->gb);
  945. if(decode_chroma){
  946. if(cbp > 47){
  947. av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, h->mb_x, h->mb_y);
  948. return -1;
  949. }
  950. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp];
  951. else cbp= golomb_to_inter_cbp [cbp];
  952. }else{
  953. if(cbp > 15){
  954. av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, h->mb_x, h->mb_y);
  955. return -1;
  956. }
  957. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
  958. else cbp= golomb_to_inter_cbp_gray[cbp];
  959. }
  960. } else {
  961. if (!decode_chroma && cbp>15) {
  962. av_log(h->avctx, AV_LOG_ERROR, "gray chroma\n");
  963. return AVERROR_INVALIDDATA;
  964. }
  965. }
  966. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  967. mb_type |= MB_TYPE_8x8DCT*get_bits1(&h->gb);
  968. }
  969. h->cbp=
  970. h->cbp_table[mb_xy]= cbp;
  971. h->cur_pic.mb_type[mb_xy] = mb_type;
  972. if(cbp || IS_INTRA16x16(mb_type)){
  973. int i4x4, i8x8, chroma_idx;
  974. int dquant;
  975. int ret;
  976. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  977. const uint8_t *scan, *scan8x8;
  978. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  979. if(IS_INTERLACED(mb_type)){
  980. scan8x8= h->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  981. scan= h->qscale ? h->field_scan : h->field_scan_q0;
  982. }else{
  983. scan8x8= h->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  984. scan= h->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  985. }
  986. dquant= get_se_golomb(&h->gb);
  987. h->qscale += dquant;
  988. if(((unsigned)h->qscale) > max_qp){
  989. if(h->qscale<0) h->qscale+= max_qp+1;
  990. else h->qscale-= max_qp+1;
  991. if(((unsigned)h->qscale) > max_qp){
  992. av_log(h->avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, h->mb_x, h->mb_y);
  993. return -1;
  994. }
  995. }
  996. h->chroma_qp[0]= get_chroma_qp(h, 0, h->qscale);
  997. h->chroma_qp[1]= get_chroma_qp(h, 1, h->qscale);
  998. if( (ret = decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 0)) < 0 ){
  999. return -1;
  1000. }
  1001. h->cbp_table[mb_xy] |= ret << 12;
  1002. if(CHROMA444){
  1003. if( decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 1) < 0 ){
  1004. return -1;
  1005. }
  1006. if( decode_luma_residual(h, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 2) < 0 ){
  1007. return -1;
  1008. }
  1009. } else {
  1010. const int num_c8x8 = h->sps.chroma_format_idc;
  1011. if(cbp&0x30){
  1012. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  1013. if (decode_residual(h, gb, h->mb + ((256 + 16*16*chroma_idx) << pixel_shift),
  1014. CHROMA_DC_BLOCK_INDEX+chroma_idx,
  1015. CHROMA422 ? chroma422_dc_scan : chroma_dc_scan,
  1016. NULL, 4*num_c8x8) < 0) {
  1017. return -1;
  1018. }
  1019. }
  1020. if(cbp&0x20){
  1021. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  1022. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  1023. int16_t *mb = h->mb + (16*(16 + 16*chroma_idx) << pixel_shift);
  1024. for (i8x8=0; i8x8<num_c8x8; i8x8++) {
  1025. for (i4x4=0; i4x4<4; i4x4++) {
  1026. const int index= 16 + 16*chroma_idx + 8*i8x8 + i4x4;
  1027. if (decode_residual(h, gb, mb, index, scan + 1, qmul, 15) < 0)
  1028. return -1;
  1029. mb += 16<<pixel_shift;
  1030. }
  1031. }
  1032. }
  1033. }else{
  1034. fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1035. fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1036. }
  1037. }
  1038. }else{
  1039. fill_rectangle(&h->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1);
  1040. fill_rectangle(&h->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1041. fill_rectangle(&h->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1042. }
  1043. h->cur_pic.qscale_table[mb_xy] = h->qscale;
  1044. write_back_non_zero_count(h);
  1045. return 0;
  1046. }