You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

979 lines
30KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "cabac.h"
  30. #include "error_resilience.h"
  31. #include "get_bits.h"
  32. #include "mpegvideo.h"
  33. #include "h264chroma.h"
  34. #include "h264dsp.h"
  35. #include "h264pred.h"
  36. #include "h264qpel.h"
  37. #include "rectangle.h"
  38. #define MAX_SPS_COUNT 32
  39. #define MAX_PPS_COUNT 256
  40. #define MAX_MMCO_COUNT 66
  41. #define MAX_DELAYED_PIC_COUNT 16
  42. #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
  43. /* Compiling in interlaced support reduces the speed
  44. * of progressive decoding by about 2%. */
  45. #define ALLOW_INTERLACE
  46. #define FMO 0
  47. /**
  48. * The maximum number of slices supported by the decoder.
  49. * must be a power of 2
  50. */
  51. #define MAX_SLICES 16
  52. #ifdef ALLOW_INTERLACE
  53. #define MB_MBAFF h->mb_mbaff
  54. #define MB_FIELD h->mb_field_decoding_flag
  55. #define FRAME_MBAFF h->mb_aff_frame
  56. #define FIELD_PICTURE (h->picture_structure != PICT_FRAME)
  57. #define LEFT_MBS 2
  58. #define LTOP 0
  59. #define LBOT 1
  60. #define LEFT(i) (i)
  61. #else
  62. #define MB_MBAFF 0
  63. #define MB_FIELD 0
  64. #define FRAME_MBAFF 0
  65. #define FIELD_PICTURE 0
  66. #undef IS_INTERLACED
  67. #define IS_INTERLACED(mb_type) 0
  68. #define LEFT_MBS 1
  69. #define LTOP 0
  70. #define LBOT 0
  71. #define LEFT(i) 0
  72. #endif
  73. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  74. #ifndef CABAC
  75. #define CABAC h->pps.cabac
  76. #endif
  77. #define CHROMA (h->sps.chroma_format_idc)
  78. #define CHROMA422 (h->sps.chroma_format_idc == 2)
  79. #define CHROMA444 (h->sps.chroma_format_idc == 3)
  80. #define EXTENDED_SAR 255
  81. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  82. #define MB_TYPE_8x8DCT 0x01000000
  83. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  84. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  85. #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
  86. /* NAL unit types */
  87. enum {
  88. NAL_SLICE = 1,
  89. NAL_DPA,
  90. NAL_DPB,
  91. NAL_DPC,
  92. NAL_IDR_SLICE,
  93. NAL_SEI,
  94. NAL_SPS,
  95. NAL_PPS,
  96. NAL_AUD,
  97. NAL_END_SEQUENCE,
  98. NAL_END_STREAM,
  99. NAL_FILLER_DATA,
  100. NAL_SPS_EXT,
  101. NAL_AUXILIARY_SLICE = 19,
  102. NAL_FF_IGNORE = 0xff0f001,
  103. };
  104. /**
  105. * SEI message types
  106. */
  107. typedef enum {
  108. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  109. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  110. SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
  111. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  112. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  113. } SEI_Type;
  114. /**
  115. * pic_struct in picture timing SEI message
  116. */
  117. typedef enum {
  118. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  119. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  120. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  121. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  122. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  123. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  124. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  125. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  126. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  127. } SEI_PicStructType;
  128. /**
  129. * Sequence parameter set
  130. */
  131. typedef struct SPS {
  132. int profile_idc;
  133. int level_idc;
  134. int chroma_format_idc;
  135. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  136. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  137. int poc_type; ///< pic_order_cnt_type
  138. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  139. int delta_pic_order_always_zero_flag;
  140. int offset_for_non_ref_pic;
  141. int offset_for_top_to_bottom_field;
  142. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  143. int ref_frame_count; ///< num_ref_frames
  144. int gaps_in_frame_num_allowed_flag;
  145. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  146. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  147. int frame_mbs_only_flag;
  148. int mb_aff; ///< mb_adaptive_frame_field_flag
  149. int direct_8x8_inference_flag;
  150. int crop; ///< frame_cropping_flag
  151. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  152. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  153. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  154. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  155. int vui_parameters_present_flag;
  156. AVRational sar;
  157. int video_signal_type_present_flag;
  158. int full_range;
  159. int colour_description_present_flag;
  160. enum AVColorPrimaries color_primaries;
  161. enum AVColorTransferCharacteristic color_trc;
  162. enum AVColorSpace colorspace;
  163. int timing_info_present_flag;
  164. uint32_t num_units_in_tick;
  165. uint32_t time_scale;
  166. int fixed_frame_rate_flag;
  167. short offset_for_ref_frame[256]; // FIXME dyn aloc?
  168. int bitstream_restriction_flag;
  169. int num_reorder_frames;
  170. int scaling_matrix_present;
  171. uint8_t scaling_matrix4[6][16];
  172. uint8_t scaling_matrix8[6][64];
  173. int nal_hrd_parameters_present_flag;
  174. int vcl_hrd_parameters_present_flag;
  175. int pic_struct_present_flag;
  176. int time_offset_length;
  177. int cpb_cnt; ///< See H.264 E.1.2
  178. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
  179. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  180. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  181. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  182. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  183. int residual_color_transform_flag; ///< residual_colour_transform_flag
  184. int constraint_set_flags; ///< constraint_set[0-3]_flag
  185. int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
  186. } SPS;
  187. /**
  188. * Picture parameter set
  189. */
  190. typedef struct PPS {
  191. unsigned int sps_id;
  192. int cabac; ///< entropy_coding_mode_flag
  193. int pic_order_present; ///< pic_order_present_flag
  194. int slice_group_count; ///< num_slice_groups_minus1 + 1
  195. int mb_slice_group_map_type;
  196. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  197. int weighted_pred; ///< weighted_pred_flag
  198. int weighted_bipred_idc;
  199. int init_qp; ///< pic_init_qp_minus26 + 26
  200. int init_qs; ///< pic_init_qs_minus26 + 26
  201. int chroma_qp_index_offset[2];
  202. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  203. int constrained_intra_pred; ///< constrained_intra_pred_flag
  204. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  205. int transform_8x8_mode; ///< transform_8x8_mode_flag
  206. uint8_t scaling_matrix4[6][16];
  207. uint8_t scaling_matrix8[6][64];
  208. uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  209. int chroma_qp_diff;
  210. } PPS;
  211. /**
  212. * Memory management control operation opcode.
  213. */
  214. typedef enum MMCOOpcode {
  215. MMCO_END = 0,
  216. MMCO_SHORT2UNUSED,
  217. MMCO_LONG2UNUSED,
  218. MMCO_SHORT2LONG,
  219. MMCO_SET_MAX_LONG,
  220. MMCO_RESET,
  221. MMCO_LONG,
  222. } MMCOOpcode;
  223. /**
  224. * Memory management control operation.
  225. */
  226. typedef struct MMCO {
  227. MMCOOpcode opcode;
  228. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  229. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  230. } MMCO;
  231. /**
  232. * H264Context
  233. */
  234. typedef struct H264Context {
  235. AVCodecContext *avctx;
  236. VideoDSPContext vdsp;
  237. H264DSPContext h264dsp;
  238. H264ChromaContext h264chroma;
  239. H264QpelContext h264qpel;
  240. MotionEstContext me;
  241. ParseContext parse_context;
  242. GetBitContext gb;
  243. DSPContext dsp;
  244. ERContext er;
  245. Picture *DPB;
  246. Picture *cur_pic_ptr;
  247. Picture cur_pic;
  248. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  249. int chroma_qp[2]; // QPc
  250. int qp_thresh; ///< QP threshold to skip loopfilter
  251. int width, height;
  252. int linesize, uvlinesize;
  253. int chroma_x_shift, chroma_y_shift;
  254. int qscale;
  255. int droppable;
  256. int data_partitioning;
  257. int coded_picture_number;
  258. int low_delay;
  259. int context_initialized;
  260. int flags;
  261. int workaround_bugs;
  262. int prev_mb_skipped;
  263. int next_mb_skipped;
  264. // prediction stuff
  265. int chroma_pred_mode;
  266. int intra16x16_pred_mode;
  267. int topleft_mb_xy;
  268. int top_mb_xy;
  269. int topright_mb_xy;
  270. int left_mb_xy[LEFT_MBS];
  271. int topleft_type;
  272. int top_type;
  273. int topright_type;
  274. int left_type[LEFT_MBS];
  275. const uint8_t *left_block;
  276. int topleft_partition;
  277. int8_t intra4x4_pred_mode_cache[5 * 8];
  278. int8_t(*intra4x4_pred_mode);
  279. H264PredContext hpc;
  280. unsigned int topleft_samples_available;
  281. unsigned int top_samples_available;
  282. unsigned int topright_samples_available;
  283. unsigned int left_samples_available;
  284. uint8_t (*top_borders[2])[(16 * 3) * 2];
  285. /**
  286. * non zero coeff count cache.
  287. * is 64 if not available.
  288. */
  289. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  290. uint8_t (*non_zero_count)[48];
  291. /**
  292. * Motion vector cache.
  293. */
  294. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  295. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  296. #define LIST_NOT_USED -1 // FIXME rename?
  297. #define PART_NOT_AVAILABLE -2
  298. /**
  299. * number of neighbors (top and/or left) that used 8x8 dct
  300. */
  301. int neighbor_transform_size;
  302. /**
  303. * block_offset[ 0..23] for frame macroblocks
  304. * block_offset[24..47] for field macroblocks
  305. */
  306. int block_offset[2 * (16 * 3)];
  307. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  308. uint32_t *mb2br_xy;
  309. int b_stride; // FIXME use s->b4_stride
  310. int mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  311. int mb_uvlinesize;
  312. unsigned current_sps_id; ///< id of the current SPS
  313. SPS sps; ///< current sps
  314. /**
  315. * current pps
  316. */
  317. PPS pps; // FIXME move to Picture perhaps? (->no) do we need that?
  318. uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
  319. uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
  320. uint32_t(*dequant4_coeff[6])[16];
  321. uint32_t(*dequant8_coeff[6])[64];
  322. int slice_num;
  323. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  324. int slice_type;
  325. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  326. int slice_type_fixed;
  327. // interlacing specific flags
  328. int mb_aff_frame;
  329. int mb_field_decoding_flag;
  330. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  331. int picture_structure;
  332. int first_field;
  333. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  334. // Weighted pred stuff
  335. int use_weight;
  336. int use_weight_chroma;
  337. int luma_log2_weight_denom;
  338. int chroma_log2_weight_denom;
  339. // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  340. int luma_weight[48][2][2];
  341. int chroma_weight[48][2][2][2];
  342. int implicit_weight[48][48][2];
  343. int direct_spatial_mv_pred;
  344. int col_parity;
  345. int col_fieldoff;
  346. int dist_scale_factor[32];
  347. int dist_scale_factor_field[2][32];
  348. int map_col_to_list0[2][16 + 32];
  349. int map_col_to_list0_field[2][2][16 + 32];
  350. /**
  351. * num_ref_idx_l0/1_active_minus1 + 1
  352. */
  353. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  354. unsigned int list_count;
  355. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  356. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  357. * Reordered version of default_ref_list
  358. * according to picture reordering in slice header */
  359. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  360. // data partitioning
  361. GetBitContext intra_gb;
  362. GetBitContext inter_gb;
  363. GetBitContext *intra_gb_ptr;
  364. GetBitContext *inter_gb_ptr;
  365. const uint8_t *intra_pcm_ptr;
  366. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  367. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  368. int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  369. /**
  370. * Cabac
  371. */
  372. CABACContext cabac;
  373. uint8_t cabac_state[1024];
  374. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  375. uint16_t *cbp_table;
  376. int cbp;
  377. int top_cbp;
  378. int left_cbp;
  379. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  380. uint8_t *chroma_pred_mode_table;
  381. int last_qscale_diff;
  382. uint8_t (*mvd_table[2])[2];
  383. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  384. uint8_t *direct_table;
  385. uint8_t direct_cache[5 * 8];
  386. uint8_t zigzag_scan[16];
  387. uint8_t zigzag_scan8x8[64];
  388. uint8_t zigzag_scan8x8_cavlc[64];
  389. uint8_t field_scan[16];
  390. uint8_t field_scan8x8[64];
  391. uint8_t field_scan8x8_cavlc[64];
  392. uint8_t zigzag_scan_q0[16];
  393. uint8_t zigzag_scan8x8_q0[64];
  394. uint8_t zigzag_scan8x8_cavlc_q0[64];
  395. uint8_t field_scan_q0[16];
  396. uint8_t field_scan8x8_q0[64];
  397. uint8_t field_scan8x8_cavlc_q0[64];
  398. int x264_build;
  399. int mb_x, mb_y;
  400. int resync_mb_x;
  401. int resync_mb_y;
  402. int mb_skip_run;
  403. int mb_height, mb_width;
  404. int mb_stride;
  405. int mb_num;
  406. int mb_xy;
  407. int is_complex;
  408. // deblock
  409. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  410. int slice_alpha_c0_offset;
  411. int slice_beta_offset;
  412. // =============================================================
  413. // Things below are not used in the MB or more inner code
  414. int nal_ref_idc;
  415. int nal_unit_type;
  416. uint8_t *rbsp_buffer[2];
  417. unsigned int rbsp_buffer_size[2];
  418. /**
  419. * Used to parse AVC variant of h264
  420. */
  421. int is_avc; ///< this flag is != 0 if codec is avc1
  422. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  423. int got_first; ///< this flag is != 0 if we've parsed a frame
  424. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  425. int chroma_format_idc; ///< chroma format from sps to detect changes
  426. SPS *sps_buffers[MAX_SPS_COUNT];
  427. PPS *pps_buffers[MAX_PPS_COUNT];
  428. int dequant_coeff_pps; ///< reinit tables when pps changes
  429. uint16_t *slice_table_base;
  430. // POC stuff
  431. int poc_lsb;
  432. int poc_msb;
  433. int delta_poc_bottom;
  434. int delta_poc[2];
  435. int frame_num;
  436. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  437. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  438. int frame_num_offset; ///< for POC type 2
  439. int prev_frame_num_offset; ///< for POC type 2
  440. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  441. /**
  442. * frame_num for frames or 2 * frame_num + 1 for field pics.
  443. */
  444. int curr_pic_num;
  445. /**
  446. * max_frame_num or 2 * max_frame_num for field pics.
  447. */
  448. int max_pic_num;
  449. int redundant_pic_count;
  450. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  451. Picture *short_ref[32];
  452. Picture *long_ref[32];
  453. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  454. int last_pocs[MAX_DELAYED_PIC_COUNT];
  455. Picture *next_output_pic;
  456. int outputed_poc;
  457. int next_outputed_poc;
  458. /**
  459. * memory management control operations buffer.
  460. */
  461. MMCO mmco[MAX_MMCO_COUNT];
  462. int mmco_index;
  463. int mmco_reset;
  464. int long_ref_count; ///< number of actual long term references
  465. int short_ref_count; ///< number of actual short term references
  466. int cabac_init_idc;
  467. /**
  468. * @name Members for slice based multithreading
  469. * @{
  470. */
  471. struct H264Context *thread_context[MAX_THREADS];
  472. /**
  473. * current slice number, used to initialize slice_num of each thread/context
  474. */
  475. int current_slice;
  476. /**
  477. * Max number of threads / contexts.
  478. * This is equal to AVCodecContext.thread_count unless
  479. * multithreaded decoding is impossible, in which case it is
  480. * reduced to 1.
  481. */
  482. int max_contexts;
  483. int slice_context_count;
  484. /**
  485. * 1 if the single thread fallback warning has already been
  486. * displayed, 0 otherwise.
  487. */
  488. int single_decode_warning;
  489. enum AVPictureType pict_type;
  490. int last_slice_type;
  491. unsigned int last_ref_count[2];
  492. /** @} */
  493. /**
  494. * pic_struct in picture timing SEI message
  495. */
  496. SEI_PicStructType sei_pic_struct;
  497. /**
  498. * Complement sei_pic_struct
  499. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  500. * However, soft telecined frames may have these values.
  501. * This is used in an attempt to flag soft telecine progressive.
  502. */
  503. int prev_interlaced_frame;
  504. /**
  505. * Bit set of clock types for fields/frames in picture timing SEI message.
  506. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  507. * interlaced).
  508. */
  509. int sei_ct_type;
  510. /**
  511. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  512. */
  513. int sei_dpb_output_delay;
  514. /**
  515. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  516. */
  517. int sei_cpb_removal_delay;
  518. /**
  519. * recovery_frame_cnt from SEI message
  520. *
  521. * Set to -1 if no recovery point SEI message found or to number of frames
  522. * before playback synchronizes. Frames having recovery point are key
  523. * frames.
  524. */
  525. int sei_recovery_frame_cnt;
  526. /**
  527. * recovery_frame is the frame_num at which the next frame should
  528. * be fully constructed.
  529. *
  530. * Set to -1 when not expecting a recovery point.
  531. */
  532. int recovery_frame;
  533. /**
  534. * Are the SEI recovery points looking valid.
  535. */
  536. int valid_recovery_point;
  537. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  538. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  539. // Timestamp stuff
  540. int sei_buffering_period_present; ///< Buffering period SEI flag
  541. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  542. int cur_chroma_format_idc;
  543. uint8_t *bipred_scratchpad;
  544. int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
  545. int sync; ///< did we had a keyframe or recovery point
  546. uint8_t parse_history[4];
  547. int parse_history_count;
  548. int parse_last_mb;
  549. uint8_t *edge_emu_buffer;
  550. int16_t *dc_val_base;
  551. uint8_t *visualization_buffer[3]; ///< temporary buffer vor MV visualization
  552. AVBufferPool *qscale_table_pool;
  553. AVBufferPool *mb_type_pool;
  554. AVBufferPool *motion_val_pool;
  555. AVBufferPool *ref_index_pool;
  556. } H264Context;
  557. extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
  558. extern const uint16_t ff_h264_mb_sizes[4];
  559. /**
  560. * Decode SEI
  561. */
  562. int ff_h264_decode_sei(H264Context *h);
  563. /**
  564. * Decode SPS
  565. */
  566. int ff_h264_decode_seq_parameter_set(H264Context *h);
  567. /**
  568. * compute profile from sps
  569. */
  570. int ff_h264_get_profile(SPS *sps);
  571. /**
  572. * Decode PPS
  573. */
  574. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  575. /**
  576. * Decode a network abstraction layer unit.
  577. * @param consumed is the number of bytes used as input
  578. * @param length is the length of the array
  579. * @param dst_length is the number of decoded bytes FIXME here
  580. * or a decode rbsp tailing?
  581. * @return decoded bytes, might be src+1 if no escapes
  582. */
  583. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
  584. int *dst_length, int *consumed, int length);
  585. /**
  586. * Free any data that may have been allocated in the H264 context
  587. * like SPS, PPS etc.
  588. */
  589. void ff_h264_free_context(H264Context *h);
  590. /**
  591. * Reconstruct bitstream slice_type.
  592. */
  593. int ff_h264_get_slice_type(const H264Context *h);
  594. /**
  595. * Allocate tables.
  596. * needs width/height
  597. */
  598. int ff_h264_alloc_tables(H264Context *h);
  599. /**
  600. * Fill the default_ref_list.
  601. */
  602. int ff_h264_fill_default_ref_list(H264Context *h);
  603. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  604. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  605. void ff_h264_remove_all_refs(H264Context *h);
  606. /**
  607. * Execute the reference picture marking (memory management control operations).
  608. */
  609. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  610. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
  611. int first_slice);
  612. int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
  613. /**
  614. * Check if the top & left blocks are available if needed & change the
  615. * dc mode so it only uses the available blocks.
  616. */
  617. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  618. /**
  619. * Check if the top & left blocks are available if needed & change the
  620. * dc mode so it only uses the available blocks.
  621. */
  622. int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
  623. void ff_h264_hl_decode_mb(H264Context *h);
  624. int ff_h264_frame_start(H264Context *h);
  625. int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
  626. int ff_h264_decode_init(AVCodecContext *avctx);
  627. void ff_h264_decode_init_vlc(void);
  628. /**
  629. * Decode a macroblock
  630. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  631. */
  632. int ff_h264_decode_mb_cavlc(H264Context *h);
  633. /**
  634. * Decode a CABAC coded macroblock
  635. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  636. */
  637. int ff_h264_decode_mb_cabac(H264Context *h);
  638. void ff_h264_init_cabac_states(H264Context *h);
  639. void ff_h264_direct_dist_scale_factor(H264Context *const h);
  640. void ff_h264_direct_ref_list_init(H264Context *const h);
  641. void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
  642. void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
  643. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  644. unsigned int linesize, unsigned int uvlinesize);
  645. void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
  646. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  647. unsigned int linesize, unsigned int uvlinesize);
  648. /**
  649. * Reset SEI values at the beginning of the frame.
  650. *
  651. * @param h H.264 context.
  652. */
  653. void ff_h264_reset_sei(H264Context *h);
  654. /*
  655. * o-o o-o
  656. * / / /
  657. * o-o o-o
  658. * ,---'
  659. * o-o o-o
  660. * / / /
  661. * o-o o-o
  662. */
  663. /* Scan8 organization:
  664. * 0 1 2 3 4 5 6 7
  665. * 0 DY y y y y y
  666. * 1 y Y Y Y Y
  667. * 2 y Y Y Y Y
  668. * 3 y Y Y Y Y
  669. * 4 y Y Y Y Y
  670. * 5 DU u u u u u
  671. * 6 u U U U U
  672. * 7 u U U U U
  673. * 8 u U U U U
  674. * 9 u U U U U
  675. * 10 DV v v v v v
  676. * 11 v V V V V
  677. * 12 v V V V V
  678. * 13 v V V V V
  679. * 14 v V V V V
  680. * DY/DU/DV are for luma/chroma DC.
  681. */
  682. #define LUMA_DC_BLOCK_INDEX 48
  683. #define CHROMA_DC_BLOCK_INDEX 49
  684. // This table must be here because scan8[constant] must be known at compiletime
  685. static const uint8_t scan8[16 * 3 + 3] = {
  686. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  687. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  688. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  689. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  690. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  691. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  692. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  693. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  694. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  695. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  696. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  697. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  698. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  699. };
  700. static av_always_inline uint32_t pack16to32(int a, int b)
  701. {
  702. #if HAVE_BIGENDIAN
  703. return (b & 0xFFFF) + (a << 16);
  704. #else
  705. return (a & 0xFFFF) + (b << 16);
  706. #endif
  707. }
  708. static av_always_inline uint16_t pack8to16(int a, int b)
  709. {
  710. #if HAVE_BIGENDIAN
  711. return (b & 0xFF) + (a << 8);
  712. #else
  713. return (a & 0xFF) + (b << 8);
  714. #endif
  715. }
  716. /**
  717. * Get the chroma qp.
  718. */
  719. static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
  720. {
  721. return h->pps.chroma_qp_table[t][qscale];
  722. }
  723. /**
  724. * Get the predicted intra4x4 prediction mode.
  725. */
  726. static av_always_inline int pred_intra_mode(H264Context *h, int n)
  727. {
  728. const int index8 = scan8[n];
  729. const int left = h->intra4x4_pred_mode_cache[index8 - 1];
  730. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  731. const int min = FFMIN(left, top);
  732. tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  733. if (min < 0)
  734. return DC_PRED;
  735. else
  736. return min;
  737. }
  738. static av_always_inline void write_back_intra_pred_mode(H264Context *h)
  739. {
  740. int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
  741. int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
  742. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  743. i4x4[4] = i4x4_cache[7 + 8 * 3];
  744. i4x4[5] = i4x4_cache[7 + 8 * 2];
  745. i4x4[6] = i4x4_cache[7 + 8 * 1];
  746. }
  747. static av_always_inline void write_back_non_zero_count(H264Context *h)
  748. {
  749. const int mb_xy = h->mb_xy;
  750. uint8_t *nnz = h->non_zero_count[mb_xy];
  751. uint8_t *nnz_cache = h->non_zero_count_cache;
  752. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  753. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  754. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  755. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  756. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  757. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  758. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  759. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  760. if (!h->chroma_y_shift) {
  761. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  762. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  763. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  764. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  765. }
  766. }
  767. static av_always_inline void write_back_motion_list(H264Context *h,
  768. int b_stride,
  769. int b_xy, int b8_xy,
  770. int mb_type, int list)
  771. {
  772. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  773. int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
  774. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  775. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  776. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  777. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  778. if (CABAC) {
  779. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
  780. : h->mb2br_xy[h->mb_xy]];
  781. uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  782. if (IS_SKIP(mb_type)) {
  783. AV_ZERO128(mvd_dst);
  784. } else {
  785. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  786. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  787. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  788. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  789. }
  790. }
  791. {
  792. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  793. int8_t *ref_cache = h->ref_cache[list];
  794. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  795. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  796. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  797. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  798. }
  799. }
  800. static av_always_inline void write_back_motion(H264Context *h, int mb_type)
  801. {
  802. const int b_stride = h->b_stride;
  803. const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
  804. const int b8_xy = 4 * h->mb_xy;
  805. if (USES_LIST(mb_type, 0)) {
  806. write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
  807. } else {
  808. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  809. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  810. }
  811. if (USES_LIST(mb_type, 1))
  812. write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
  813. if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC) {
  814. if (IS_8X8(mb_type)) {
  815. uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
  816. direct_table[1] = h->sub_mb_type[1] >> 1;
  817. direct_table[2] = h->sub_mb_type[2] >> 1;
  818. direct_table[3] = h->sub_mb_type[3] >> 1;
  819. }
  820. }
  821. }
  822. static av_always_inline int get_dct8x8_allowed(H264Context *h)
  823. {
  824. if (h->sps.direct_8x8_inference_flag)
  825. return !(AV_RN64A(h->sub_mb_type) &
  826. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  827. 0x0001000100010001ULL));
  828. else
  829. return !(AV_RN64A(h->sub_mb_type) &
  830. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  831. 0x0001000100010001ULL));
  832. }
  833. void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
  834. #endif /* AVCODEC_H264_H */