You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1941 lines
66KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "get_bits.h"
  30. #include "bytestream.h"
  31. #include "internal.h"
  32. #include "golomb.h"
  33. #include "dirac_arith.h"
  34. #include "mpeg12data.h"
  35. #include "dirac_dwt.h"
  36. #include "dirac.h"
  37. #include "diracdsp.h"
  38. #include "videodsp.h" // for ff_emulated_edge_mc_8
  39. /**
  40. * The spec limits the number of wavelet decompositions to 4 for both
  41. * level 1 (VC-2) and 128 (long-gop default).
  42. * 5 decompositions is the maximum before >16-bit buffers are needed.
  43. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  44. * the others to 4 decompositions (or 3 for the fidelity filter).
  45. *
  46. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  47. */
  48. #define MAX_DWT_LEVELS 5
  49. /**
  50. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  51. */
  52. #define MAX_REFERENCE_FRAMES 8
  53. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  54. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  55. #define MAX_QUANT 68 /* max quant for VC-2 */
  56. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  57. /**
  58. * DiracBlock->ref flags, if set then the block does MC from the given ref
  59. */
  60. #define DIRAC_REF_MASK_REF1 1
  61. #define DIRAC_REF_MASK_REF2 2
  62. #define DIRAC_REF_MASK_GLOBAL 4
  63. /**
  64. * Value of Picture.reference when Picture is not a reference picture, but
  65. * is held for delayed output.
  66. */
  67. #define DELAYED_PIC_REF 4
  68. #define ff_emulated_edge_mc ff_emulated_edge_mc_8 /* Fix: change the calls to this function regarding bit depth */
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. } DiracFrame;
  78. typedef struct {
  79. union {
  80. int16_t mv[2][2];
  81. int16_t dc[3];
  82. } u; /* anonymous unions aren't in C99 :( */
  83. uint8_t ref;
  84. } DiracBlock;
  85. typedef struct SubBand {
  86. int level;
  87. int orientation;
  88. int stride;
  89. int width;
  90. int height;
  91. int quant;
  92. IDWTELEM *ibuf;
  93. struct SubBand *parent;
  94. /* for low delay */
  95. unsigned length;
  96. const uint8_t *coeff_data;
  97. } SubBand;
  98. typedef struct Plane {
  99. int width;
  100. int height;
  101. int stride;
  102. int idwt_width;
  103. int idwt_height;
  104. int idwt_stride;
  105. IDWTELEM *idwt_buf;
  106. IDWTELEM *idwt_buf_base;
  107. IDWTELEM *idwt_tmp;
  108. /* block length */
  109. uint8_t xblen;
  110. uint8_t yblen;
  111. /* block separation (block n+1 starts after this many pixels in block n) */
  112. uint8_t xbsep;
  113. uint8_t ybsep;
  114. /* amount of overspill on each edge (half of the overlap between blocks) */
  115. uint8_t xoffset;
  116. uint8_t yoffset;
  117. SubBand band[MAX_DWT_LEVELS][4];
  118. } Plane;
  119. typedef struct DiracContext {
  120. AVCodecContext *avctx;
  121. DSPContext dsp;
  122. DiracDSPContext diracdsp;
  123. GetBitContext gb;
  124. dirac_source_params source;
  125. int seen_sequence_header;
  126. int frame_number; /* number of the next frame to display */
  127. Plane plane[3];
  128. int chroma_x_shift;
  129. int chroma_y_shift;
  130. int zero_res; /* zero residue flag */
  131. int is_arith; /* whether coeffs use arith or golomb coding */
  132. int low_delay; /* use the low delay syntax */
  133. int globalmc_flag; /* use global motion compensation */
  134. int num_refs; /* number of reference pictures */
  135. /* wavelet decoding */
  136. unsigned wavelet_depth; /* depth of the IDWT */
  137. unsigned wavelet_idx;
  138. /**
  139. * schroedinger older than 1.0.8 doesn't store
  140. * quant delta if only one codebook exists in a band
  141. */
  142. unsigned old_delta_quant;
  143. unsigned codeblock_mode;
  144. struct {
  145. unsigned width;
  146. unsigned height;
  147. } codeblock[MAX_DWT_LEVELS+1];
  148. struct {
  149. unsigned num_x; /* number of horizontal slices */
  150. unsigned num_y; /* number of vertical slices */
  151. AVRational bytes; /* average bytes per slice */
  152. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  153. } lowdelay;
  154. struct {
  155. int pan_tilt[2]; /* pan/tilt vector */
  156. int zrs[2][2]; /* zoom/rotate/shear matrix */
  157. int perspective[2]; /* perspective vector */
  158. unsigned zrs_exp;
  159. unsigned perspective_exp;
  160. } globalmc[2];
  161. /* motion compensation */
  162. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  163. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  164. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  165. int blwidth; /* number of blocks (horizontally) */
  166. int blheight; /* number of blocks (vertically) */
  167. int sbwidth; /* number of superblocks (horizontally) */
  168. int sbheight; /* number of superblocks (vertically) */
  169. uint8_t *sbsplit;
  170. DiracBlock *blmotion;
  171. uint8_t *edge_emu_buffer[4];
  172. uint8_t *edge_emu_buffer_base;
  173. uint16_t *mctmp; /* buffer holding the MC data multipled by OBMC weights */
  174. uint8_t *mcscratch;
  175. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  176. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  177. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  178. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  179. dirac_weight_func weight_func;
  180. dirac_biweight_func biweight_func;
  181. DiracFrame *current_picture;
  182. DiracFrame *ref_pics[2];
  183. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  184. DiracFrame *delay_frames[MAX_DELAY+1];
  185. DiracFrame all_frames[MAX_FRAMES];
  186. } DiracContext;
  187. /**
  188. * Dirac Specification ->
  189. * Parse code values. 9.6.1 Table 9.1
  190. */
  191. enum dirac_parse_code {
  192. pc_seq_header = 0x00,
  193. pc_eos = 0x10,
  194. pc_aux_data = 0x20,
  195. pc_padding = 0x30,
  196. };
  197. enum dirac_subband {
  198. subband_ll = 0,
  199. subband_hl = 1,
  200. subband_lh = 2,
  201. subband_hh = 3
  202. };
  203. static const uint8_t default_qmat[][4][4] = {
  204. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  205. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  206. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  207. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  208. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  209. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  210. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  211. };
  212. static const int qscale_tab[MAX_QUANT+1] = {
  213. 4, 5, 6, 7, 8, 10, 11, 13,
  214. 16, 19, 23, 27, 32, 38, 45, 54,
  215. 64, 76, 91, 108, 128, 152, 181, 215,
  216. 256, 304, 362, 431, 512, 609, 724, 861,
  217. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  218. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  219. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  220. 65536, 77936
  221. };
  222. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  223. 1, 2, 3, 4, 4, 5, 6, 7,
  224. 8, 10, 12, 14, 16, 19, 23, 27,
  225. 32, 38, 46, 54, 64, 76, 91, 108,
  226. 128, 152, 181, 216, 256, 305, 362, 431,
  227. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  228. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  229. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  230. 32768, 38968
  231. };
  232. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  233. 1, 2, 2, 3, 3, 4, 4, 5,
  234. 6, 7, 9, 10, 12, 14, 17, 20,
  235. 24, 29, 34, 41, 48, 57, 68, 81,
  236. 96, 114, 136, 162, 192, 228, 272, 323,
  237. 384, 457, 543, 646, 768, 913, 1086, 1292,
  238. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  239. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  240. 24576, 29226
  241. };
  242. /* magic number division by 3 from schroedinger */
  243. static inline int divide3(int x)
  244. {
  245. return ((x+1)*21845 + 10922) >> 16;
  246. }
  247. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  248. {
  249. DiracFrame *remove_pic = NULL;
  250. int i, remove_idx = -1;
  251. for (i = 0; framelist[i]; i++)
  252. if (framelist[i]->avframe.display_picture_number == picnum) {
  253. remove_pic = framelist[i];
  254. remove_idx = i;
  255. }
  256. if (remove_pic)
  257. for (i = remove_idx; framelist[i]; i++)
  258. framelist[i] = framelist[i+1];
  259. return remove_pic;
  260. }
  261. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  262. {
  263. int i;
  264. for (i = 0; i < maxframes; i++)
  265. if (!framelist[i]) {
  266. framelist[i] = frame;
  267. return 0;
  268. }
  269. return -1;
  270. }
  271. static int alloc_sequence_buffers(DiracContext *s)
  272. {
  273. int sbwidth = DIVRNDUP(s->source.width, 4);
  274. int sbheight = DIVRNDUP(s->source.height, 4);
  275. int i, w, h, top_padding;
  276. /* todo: think more about this / use or set Plane here */
  277. for (i = 0; i < 3; i++) {
  278. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  279. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  280. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  281. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  282. /* we allocate the max we support here since num decompositions can
  283. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  284. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  285. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  286. * on each side */
  287. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  288. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  289. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  290. s->plane[i].idwt_buf_base = av_mallocz((w+max_xblen)*h * sizeof(IDWTELEM));
  291. s->plane[i].idwt_tmp = av_malloc((w+16) * sizeof(IDWTELEM));
  292. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
  293. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  294. return AVERROR(ENOMEM);
  295. }
  296. w = s->source.width;
  297. h = s->source.height;
  298. /* fixme: allocate using real stride here */
  299. s->sbsplit = av_malloc(sbwidth * sbheight);
  300. s->blmotion = av_malloc(sbwidth * sbheight * 16 * sizeof(*s->blmotion));
  301. s->edge_emu_buffer_base = av_malloc((w+64)*MAX_BLOCKSIZE);
  302. s->mctmp = av_malloc((w+64+MAX_BLOCKSIZE) * (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  303. s->mcscratch = av_malloc((w+64)*MAX_BLOCKSIZE);
  304. if (!s->sbsplit || !s->blmotion || !s->mctmp || !s->mcscratch)
  305. return AVERROR(ENOMEM);
  306. return 0;
  307. }
  308. static void free_sequence_buffers(DiracContext *s)
  309. {
  310. int i, j, k;
  311. for (i = 0; i < MAX_FRAMES; i++) {
  312. if (s->all_frames[i].avframe.data[0]) {
  313. av_frame_unref(&s->all_frames[i].avframe);
  314. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  315. }
  316. for (j = 0; j < 3; j++)
  317. for (k = 1; k < 4; k++)
  318. av_freep(&s->all_frames[i].hpel_base[j][k]);
  319. }
  320. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  321. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  322. for (i = 0; i < 3; i++) {
  323. av_freep(&s->plane[i].idwt_buf_base);
  324. av_freep(&s->plane[i].idwt_tmp);
  325. }
  326. av_freep(&s->sbsplit);
  327. av_freep(&s->blmotion);
  328. av_freep(&s->edge_emu_buffer_base);
  329. av_freep(&s->mctmp);
  330. av_freep(&s->mcscratch);
  331. }
  332. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  333. {
  334. DiracContext *s = avctx->priv_data;
  335. s->avctx = avctx;
  336. s->frame_number = -1;
  337. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  338. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported!\n");
  339. return AVERROR_PATCHWELCOME;
  340. }
  341. ff_dsputil_init(&s->dsp, avctx);
  342. ff_diracdsp_init(&s->diracdsp);
  343. return 0;
  344. }
  345. static void dirac_decode_flush(AVCodecContext *avctx)
  346. {
  347. DiracContext *s = avctx->priv_data;
  348. free_sequence_buffers(s);
  349. s->seen_sequence_header = 0;
  350. s->frame_number = -1;
  351. }
  352. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  353. {
  354. dirac_decode_flush(avctx);
  355. return 0;
  356. }
  357. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  358. static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
  359. SubBand *b, IDWTELEM *buf, int x, int y)
  360. {
  361. int coeff, sign;
  362. int sign_pred = 0;
  363. int pred_ctx = CTX_ZPZN_F1;
  364. /* Check if the parent subband has a 0 in the corresponding position */
  365. if (b->parent)
  366. pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
  367. if (b->orientation == subband_hl)
  368. sign_pred = buf[-b->stride];
  369. /* Determine if the pixel has only zeros in its neighbourhood */
  370. if (x) {
  371. pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
  372. if (b->orientation == subband_lh)
  373. sign_pred = buf[-1];
  374. } else {
  375. pred_ctx += !buf[-b->stride];
  376. }
  377. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
  378. if (coeff) {
  379. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  380. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
  381. coeff = (coeff ^ -sign) + sign;
  382. }
  383. *buf = coeff;
  384. }
  385. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  386. {
  387. int sign, coeff;
  388. coeff = svq3_get_ue_golomb(gb);
  389. if (coeff) {
  390. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  391. sign = get_bits1(gb);
  392. coeff = (coeff ^ -sign) + sign;
  393. }
  394. return coeff;
  395. }
  396. /**
  397. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  398. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  399. */
  400. static inline void codeblock(DiracContext *s, SubBand *b,
  401. GetBitContext *gb, DiracArith *c,
  402. int left, int right, int top, int bottom,
  403. int blockcnt_one, int is_arith)
  404. {
  405. int x, y, zero_block;
  406. int qoffset, qfactor;
  407. IDWTELEM *buf;
  408. /* check for any coded coefficients in this codeblock */
  409. if (!blockcnt_one) {
  410. if (is_arith)
  411. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  412. else
  413. zero_block = get_bits1(gb);
  414. if (zero_block)
  415. return;
  416. }
  417. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  418. int quant = b->quant;
  419. if (is_arith)
  420. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  421. else
  422. quant += dirac_get_se_golomb(gb);
  423. if (quant < 0) {
  424. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  425. return;
  426. }
  427. b->quant = quant;
  428. }
  429. b->quant = FFMIN(b->quant, MAX_QUANT);
  430. qfactor = qscale_tab[b->quant];
  431. /* TODO: context pointer? */
  432. if (!s->num_refs)
  433. qoffset = qoffset_intra_tab[b->quant];
  434. else
  435. qoffset = qoffset_inter_tab[b->quant];
  436. buf = b->ibuf + top * b->stride;
  437. for (y = top; y < bottom; y++) {
  438. for (x = left; x < right; x++) {
  439. /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
  440. if (is_arith)
  441. coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
  442. else
  443. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  444. }
  445. buf += b->stride;
  446. }
  447. }
  448. /**
  449. * Dirac Specification ->
  450. * 13.3 intra_dc_prediction(band)
  451. */
  452. static inline void intra_dc_prediction(SubBand *b)
  453. {
  454. IDWTELEM *buf = b->ibuf;
  455. int x, y;
  456. for (x = 1; x < b->width; x++)
  457. buf[x] += buf[x-1];
  458. buf += b->stride;
  459. for (y = 1; y < b->height; y++) {
  460. buf[0] += buf[-b->stride];
  461. for (x = 1; x < b->width; x++) {
  462. int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
  463. buf[x] += divide3(pred);
  464. }
  465. buf += b->stride;
  466. }
  467. }
  468. /**
  469. * Dirac Specification ->
  470. * 13.4.2 Non-skipped subbands. subband_coeffs()
  471. */
  472. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  473. {
  474. int cb_x, cb_y, left, right, top, bottom;
  475. DiracArith c;
  476. GetBitContext gb;
  477. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  478. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  479. int blockcnt_one = (cb_width + cb_height) == 2;
  480. if (!b->length)
  481. return;
  482. init_get_bits(&gb, b->coeff_data, b->length*8);
  483. if (is_arith)
  484. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  485. top = 0;
  486. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  487. bottom = (b->height * (cb_y+1)) / cb_height;
  488. left = 0;
  489. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  490. right = (b->width * (cb_x+1)) / cb_width;
  491. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  492. left = right;
  493. }
  494. top = bottom;
  495. }
  496. if (b->orientation == subband_ll && s->num_refs == 0)
  497. intra_dc_prediction(b);
  498. }
  499. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  500. {
  501. DiracContext *s = avctx->priv_data;
  502. decode_subband_internal(s, b, 1);
  503. return 0;
  504. }
  505. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  506. {
  507. DiracContext *s = avctx->priv_data;
  508. SubBand **b = arg;
  509. decode_subband_internal(s, *b, 0);
  510. return 0;
  511. }
  512. /**
  513. * Dirac Specification ->
  514. * [DIRAC_STD] 13.4.1 core_transform_data()
  515. */
  516. static void decode_component(DiracContext *s, int comp)
  517. {
  518. AVCodecContext *avctx = s->avctx;
  519. SubBand *bands[3*MAX_DWT_LEVELS+1];
  520. enum dirac_subband orientation;
  521. int level, num_bands = 0;
  522. /* Unpack all subbands at all levels. */
  523. for (level = 0; level < s->wavelet_depth; level++) {
  524. for (orientation = !!level; orientation < 4; orientation++) {
  525. SubBand *b = &s->plane[comp].band[level][orientation];
  526. bands[num_bands++] = b;
  527. align_get_bits(&s->gb);
  528. /* [DIRAC_STD] 13.4.2 subband() */
  529. b->length = svq3_get_ue_golomb(&s->gb);
  530. if (b->length) {
  531. b->quant = svq3_get_ue_golomb(&s->gb);
  532. align_get_bits(&s->gb);
  533. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  534. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  535. skip_bits_long(&s->gb, b->length*8);
  536. }
  537. }
  538. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  539. if (s->is_arith)
  540. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  541. NULL, 4-!!level, sizeof(SubBand));
  542. }
  543. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  544. if (!s->is_arith)
  545. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  546. }
  547. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  548. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  549. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  550. int slice_x, int slice_y, int bits_end,
  551. SubBand *b1, SubBand *b2)
  552. {
  553. int left = b1->width * slice_x / s->lowdelay.num_x;
  554. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  555. int top = b1->height * slice_y / s->lowdelay.num_y;
  556. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  557. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  558. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  559. IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
  560. IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
  561. int x, y;
  562. /* we have to constantly check for overread since the spec explictly
  563. requires this, with the meaning that all remaining coeffs are set to 0 */
  564. if (get_bits_count(gb) >= bits_end)
  565. return;
  566. for (y = top; y < bottom; y++) {
  567. for (x = left; x < right; x++) {
  568. buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  569. if (get_bits_count(gb) >= bits_end)
  570. return;
  571. if (buf2) {
  572. buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  573. if (get_bits_count(gb) >= bits_end)
  574. return;
  575. }
  576. }
  577. buf1 += b1->stride;
  578. if (buf2)
  579. buf2 += b2->stride;
  580. }
  581. }
  582. struct lowdelay_slice {
  583. GetBitContext gb;
  584. int slice_x;
  585. int slice_y;
  586. int bytes;
  587. };
  588. /**
  589. * Dirac Specification ->
  590. * 13.5.2 Slices. slice(sx,sy)
  591. */
  592. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  593. {
  594. DiracContext *s = avctx->priv_data;
  595. struct lowdelay_slice *slice = arg;
  596. GetBitContext *gb = &slice->gb;
  597. enum dirac_subband orientation;
  598. int level, quant, chroma_bits, chroma_end;
  599. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  600. int length_bits = av_log2(8 * slice->bytes)+1;
  601. int luma_bits = get_bits_long(gb, length_bits);
  602. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  603. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  604. for (level = 0; level < s->wavelet_depth; level++)
  605. for (orientation = !!level; orientation < 4; orientation++) {
  606. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  607. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  608. &s->plane[0].band[level][orientation], NULL);
  609. }
  610. /* consume any unused bits from luma */
  611. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  612. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  613. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  614. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  615. for (level = 0; level < s->wavelet_depth; level++)
  616. for (orientation = !!level; orientation < 4; orientation++) {
  617. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  618. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  619. &s->plane[1].band[level][orientation],
  620. &s->plane[2].band[level][orientation]);
  621. }
  622. return 0;
  623. }
  624. /**
  625. * Dirac Specification ->
  626. * 13.5.1 low_delay_transform_data()
  627. */
  628. static void decode_lowdelay(DiracContext *s)
  629. {
  630. AVCodecContext *avctx = s->avctx;
  631. int slice_x, slice_y, bytes, bufsize;
  632. const uint8_t *buf;
  633. struct lowdelay_slice *slices;
  634. int slice_num = 0;
  635. slices = av_mallocz(s->lowdelay.num_x * s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  636. align_get_bits(&s->gb);
  637. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  638. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  639. bufsize = get_bits_left(&s->gb);
  640. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  641. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  642. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  643. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  644. slices[slice_num].bytes = bytes;
  645. slices[slice_num].slice_x = slice_x;
  646. slices[slice_num].slice_y = slice_y;
  647. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  648. slice_num++;
  649. buf += bytes;
  650. bufsize -= bytes*8;
  651. }
  652. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  653. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  654. intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  655. intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  656. intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  657. av_free(slices);
  658. }
  659. static void init_planes(DiracContext *s)
  660. {
  661. int i, w, h, level, orientation;
  662. for (i = 0; i < 3; i++) {
  663. Plane *p = &s->plane[i];
  664. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  665. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  666. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  667. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  668. p->idwt_stride = FFALIGN(p->idwt_width, 8);
  669. for (level = s->wavelet_depth-1; level >= 0; level--) {
  670. w = w>>1;
  671. h = h>>1;
  672. for (orientation = !!level; orientation < 4; orientation++) {
  673. SubBand *b = &p->band[level][orientation];
  674. b->ibuf = p->idwt_buf;
  675. b->level = level;
  676. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  677. b->width = w;
  678. b->height = h;
  679. b->orientation = orientation;
  680. if (orientation & 1)
  681. b->ibuf += w;
  682. if (orientation > 1)
  683. b->ibuf += b->stride>>1;
  684. if (level)
  685. b->parent = &p->band[level-1][orientation];
  686. }
  687. }
  688. if (i > 0) {
  689. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  690. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  691. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  692. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  693. }
  694. p->xoffset = (p->xblen - p->xbsep)/2;
  695. p->yoffset = (p->yblen - p->ybsep)/2;
  696. }
  697. }
  698. /**
  699. * Unpack the motion compensation parameters
  700. * Dirac Specification ->
  701. * 11.2 Picture prediction data. picture_prediction()
  702. */
  703. static int dirac_unpack_prediction_parameters(DiracContext *s)
  704. {
  705. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  706. static const uint8_t default_bsep[] = { 4, 8, 12, 16 };
  707. GetBitContext *gb = &s->gb;
  708. unsigned idx, ref;
  709. align_get_bits(gb);
  710. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  711. /* Luma and Chroma are equal. 11.2.3 */
  712. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  713. if (idx > 4) {
  714. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  715. return -1;
  716. }
  717. if (idx == 0) {
  718. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  719. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  720. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  721. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  722. } else {
  723. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  724. s->plane[0].xblen = default_blen[idx-1];
  725. s->plane[0].yblen = default_blen[idx-1];
  726. s->plane[0].xbsep = default_bsep[idx-1];
  727. s->plane[0].ybsep = default_bsep[idx-1];
  728. }
  729. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  730. Calculated in function dirac_unpack_block_motion_data */
  731. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  732. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  733. return -1;
  734. }
  735. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  736. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  737. return -1;
  738. }
  739. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  740. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  741. return -1;
  742. }
  743. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  744. Read motion vector precision */
  745. s->mv_precision = svq3_get_ue_golomb(gb);
  746. if (s->mv_precision > 3) {
  747. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  748. return -1;
  749. }
  750. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  751. Read the global motion compensation parameters */
  752. s->globalmc_flag = get_bits1(gb);
  753. if (s->globalmc_flag) {
  754. memset(s->globalmc, 0, sizeof(s->globalmc));
  755. /* [DIRAC_STD] pan_tilt(gparams) */
  756. for (ref = 0; ref < s->num_refs; ref++) {
  757. if (get_bits1(gb)) {
  758. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  759. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  760. }
  761. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  762. zoom/rotation/shear parameters */
  763. if (get_bits1(gb)) {
  764. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  765. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  766. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  767. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  768. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  769. } else {
  770. s->globalmc[ref].zrs[0][0] = 1;
  771. s->globalmc[ref].zrs[1][1] = 1;
  772. }
  773. /* [DIRAC_STD] perspective(gparams) */
  774. if (get_bits1(gb)) {
  775. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  776. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  777. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  778. }
  779. }
  780. }
  781. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  782. Picture prediction mode, not currently used. */
  783. if (svq3_get_ue_golomb(gb)) {
  784. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  785. return -1;
  786. }
  787. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  788. just data read, weight calculation will be done later on. */
  789. s->weight_log2denom = 1;
  790. s->weight[0] = 1;
  791. s->weight[1] = 1;
  792. if (get_bits1(gb)) {
  793. s->weight_log2denom = svq3_get_ue_golomb(gb);
  794. s->weight[0] = dirac_get_se_golomb(gb);
  795. if (s->num_refs == 2)
  796. s->weight[1] = dirac_get_se_golomb(gb);
  797. }
  798. return 0;
  799. }
  800. /**
  801. * Dirac Specification ->
  802. * 11.3 Wavelet transform data. wavelet_transform()
  803. */
  804. static int dirac_unpack_idwt_params(DiracContext *s)
  805. {
  806. GetBitContext *gb = &s->gb;
  807. int i, level;
  808. unsigned tmp;
  809. #define CHECKEDREAD(dst, cond, errmsg) \
  810. tmp = svq3_get_ue_golomb(gb); \
  811. if (cond) { \
  812. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  813. return -1; \
  814. }\
  815. dst = tmp;
  816. align_get_bits(gb);
  817. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  818. if (s->zero_res)
  819. return 0;
  820. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  821. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  822. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  823. if (!s->low_delay) {
  824. /* Codeblock parameters (core syntax only) */
  825. if (get_bits1(gb)) {
  826. for (i = 0; i <= s->wavelet_depth; i++) {
  827. CHECKEDREAD(s->codeblock[i].width , tmp < 1, "codeblock width invalid\n")
  828. CHECKEDREAD(s->codeblock[i].height, tmp < 1, "codeblock height invalid\n")
  829. }
  830. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  831. } else
  832. for (i = 0; i <= s->wavelet_depth; i++)
  833. s->codeblock[i].width = s->codeblock[i].height = 1;
  834. } else {
  835. /* Slice parameters + quantization matrix*/
  836. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  837. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  838. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  839. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  840. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  841. if (s->lowdelay.bytes.den <= 0) {
  842. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  843. return AVERROR_INVALIDDATA;
  844. }
  845. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  846. if (get_bits1(gb)) {
  847. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  848. /* custom quantization matrix */
  849. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  850. for (level = 0; level < s->wavelet_depth; level++) {
  851. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  852. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  853. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  854. }
  855. } else {
  856. if (s->wavelet_depth > 4) {
  857. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  858. return AVERROR_INVALIDDATA;
  859. }
  860. /* default quantization matrix */
  861. for (level = 0; level < s->wavelet_depth; level++)
  862. for (i = 0; i < 4; i++) {
  863. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  864. /* haar with no shift differs for different depths */
  865. if (s->wavelet_idx == 3)
  866. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  867. }
  868. }
  869. }
  870. return 0;
  871. }
  872. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  873. {
  874. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  875. if (!(x|y))
  876. return 0;
  877. else if (!y)
  878. return sbsplit[-1];
  879. else if (!x)
  880. return sbsplit[-stride];
  881. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  882. }
  883. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  884. {
  885. int pred;
  886. if (!(x|y))
  887. return 0;
  888. else if (!y)
  889. return block[-1].ref & refmask;
  890. else if (!x)
  891. return block[-stride].ref & refmask;
  892. /* return the majority */
  893. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  894. return (pred >> 1) & refmask;
  895. }
  896. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  897. {
  898. int i, n = 0;
  899. memset(block->u.dc, 0, sizeof(block->u.dc));
  900. if (x && !(block[-1].ref & 3)) {
  901. for (i = 0; i < 3; i++)
  902. block->u.dc[i] += block[-1].u.dc[i];
  903. n++;
  904. }
  905. if (y && !(block[-stride].ref & 3)) {
  906. for (i = 0; i < 3; i++)
  907. block->u.dc[i] += block[-stride].u.dc[i];
  908. n++;
  909. }
  910. if (x && y && !(block[-1-stride].ref & 3)) {
  911. for (i = 0; i < 3; i++)
  912. block->u.dc[i] += block[-1-stride].u.dc[i];
  913. n++;
  914. }
  915. if (n == 2) {
  916. for (i = 0; i < 3; i++)
  917. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  918. } else if (n == 3) {
  919. for (i = 0; i < 3; i++)
  920. block->u.dc[i] = divide3(block->u.dc[i]);
  921. }
  922. }
  923. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  924. {
  925. int16_t *pred[3];
  926. int refmask = ref+1;
  927. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  928. int n = 0;
  929. if (x && (block[-1].ref & mask) == refmask)
  930. pred[n++] = block[-1].u.mv[ref];
  931. if (y && (block[-stride].ref & mask) == refmask)
  932. pred[n++] = block[-stride].u.mv[ref];
  933. if (x && y && (block[-stride-1].ref & mask) == refmask)
  934. pred[n++] = block[-stride-1].u.mv[ref];
  935. switch (n) {
  936. case 0:
  937. block->u.mv[ref][0] = 0;
  938. block->u.mv[ref][1] = 0;
  939. break;
  940. case 1:
  941. block->u.mv[ref][0] = pred[0][0];
  942. block->u.mv[ref][1] = pred[0][1];
  943. break;
  944. case 2:
  945. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  946. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  947. break;
  948. case 3:
  949. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  950. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  951. break;
  952. }
  953. }
  954. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  955. {
  956. int ez = s->globalmc[ref].zrs_exp;
  957. int ep = s->globalmc[ref].perspective_exp;
  958. int (*A)[2] = s->globalmc[ref].zrs;
  959. int *b = s->globalmc[ref].pan_tilt;
  960. int *c = s->globalmc[ref].perspective;
  961. int m = (1<<ep) - (c[0]*x + c[1]*y);
  962. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  963. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  964. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  965. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  966. }
  967. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  968. int stride, int x, int y)
  969. {
  970. int i;
  971. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  972. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  973. if (s->num_refs == 2) {
  974. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  975. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  976. }
  977. if (!block->ref) {
  978. pred_block_dc(block, stride, x, y);
  979. for (i = 0; i < 3; i++)
  980. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  981. return;
  982. }
  983. if (s->globalmc_flag) {
  984. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  985. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  986. }
  987. for (i = 0; i < s->num_refs; i++)
  988. if (block->ref & (i+1)) {
  989. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  990. global_mv(s, block, x, y, i);
  991. } else {
  992. pred_mv(block, stride, x, y, i);
  993. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  994. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  995. }
  996. }
  997. }
  998. /**
  999. * Copies the current block to the other blocks covered by the current superblock split mode
  1000. */
  1001. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1002. {
  1003. int x, y;
  1004. DiracBlock *dst = block;
  1005. for (x = 1; x < size; x++)
  1006. dst[x] = *block;
  1007. for (y = 1; y < size; y++) {
  1008. dst += stride;
  1009. for (x = 0; x < size; x++)
  1010. dst[x] = *block;
  1011. }
  1012. }
  1013. /**
  1014. * Dirac Specification ->
  1015. * 12. Block motion data syntax
  1016. */
  1017. static int dirac_unpack_block_motion_data(DiracContext *s)
  1018. {
  1019. GetBitContext *gb = &s->gb;
  1020. uint8_t *sbsplit = s->sbsplit;
  1021. int i, x, y, q, p;
  1022. DiracArith arith[8];
  1023. align_get_bits(gb);
  1024. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1025. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1026. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1027. s->blwidth = 4 * s->sbwidth;
  1028. s->blheight = 4 * s->sbheight;
  1029. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1030. decode superblock split modes */
  1031. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1032. for (y = 0; y < s->sbheight; y++) {
  1033. for (x = 0; x < s->sbwidth; x++) {
  1034. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1035. if (split > 2)
  1036. return -1;
  1037. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1038. }
  1039. sbsplit += s->sbwidth;
  1040. }
  1041. /* setup arith decoding */
  1042. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1043. for (i = 0; i < s->num_refs; i++) {
  1044. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1045. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1046. }
  1047. for (i = 0; i < 3; i++)
  1048. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1049. for (y = 0; y < s->sbheight; y++)
  1050. for (x = 0; x < s->sbwidth; x++) {
  1051. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1052. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1053. for (q = 0; q < blkcnt; q++)
  1054. for (p = 0; p < blkcnt; p++) {
  1055. int bx = 4 * x + p*step;
  1056. int by = 4 * y + q*step;
  1057. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1058. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1059. propagate_block_data(block, s->blwidth, step);
  1060. }
  1061. }
  1062. return 0;
  1063. }
  1064. static int weight(int i, int blen, int offset)
  1065. {
  1066. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1067. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1068. if (i < 2*offset)
  1069. return ROLLOFF(i);
  1070. else if (i > blen-1 - 2*offset)
  1071. return ROLLOFF(blen-1 - i);
  1072. return 8;
  1073. }
  1074. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1075. int left, int right, int wy)
  1076. {
  1077. int x;
  1078. for (x = 0; left && x < p->xblen >> 1; x++)
  1079. obmc_weight[x] = wy*8;
  1080. for (; x < p->xblen >> right; x++)
  1081. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1082. for (; x < p->xblen; x++)
  1083. obmc_weight[x] = wy*8;
  1084. for (; x < stride; x++)
  1085. obmc_weight[x] = 0;
  1086. }
  1087. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1088. int left, int right, int top, int bottom)
  1089. {
  1090. int y;
  1091. for (y = 0; top && y < p->yblen >> 1; y++) {
  1092. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1093. obmc_weight += stride;
  1094. }
  1095. for (; y < p->yblen >> bottom; y++) {
  1096. int wy = weight(y, p->yblen, p->yoffset);
  1097. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1098. obmc_weight += stride;
  1099. }
  1100. for (; y < p->yblen; y++) {
  1101. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1102. obmc_weight += stride;
  1103. }
  1104. }
  1105. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1106. {
  1107. int top = !by;
  1108. int bottom = by == s->blheight-1;
  1109. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1110. if (top || bottom || by == 1) {
  1111. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1112. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1113. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1114. }
  1115. }
  1116. static const uint8_t epel_weights[4][4][4] = {
  1117. {{ 16, 0, 0, 0 },
  1118. { 12, 4, 0, 0 },
  1119. { 8, 8, 0, 0 },
  1120. { 4, 12, 0, 0 }},
  1121. {{ 12, 0, 4, 0 },
  1122. { 9, 3, 3, 1 },
  1123. { 6, 6, 2, 2 },
  1124. { 3, 9, 1, 3 }},
  1125. {{ 8, 0, 8, 0 },
  1126. { 6, 2, 6, 2 },
  1127. { 4, 4, 4, 4 },
  1128. { 2, 6, 2, 6 }},
  1129. {{ 4, 0, 12, 0 },
  1130. { 3, 1, 9, 3 },
  1131. { 2, 2, 6, 6 },
  1132. { 1, 3, 3, 9 }}
  1133. };
  1134. /**
  1135. * For block x,y, determine which of the hpel planes to do bilinear
  1136. * interpolation from and set src[] to the location in each hpel plane
  1137. * to MC from.
  1138. *
  1139. * @return the index of the put_dirac_pixels_tab function to use
  1140. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1141. */
  1142. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1143. int x, int y, int ref, int plane)
  1144. {
  1145. Plane *p = &s->plane[plane];
  1146. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1147. int motion_x = block->u.mv[ref][0];
  1148. int motion_y = block->u.mv[ref][1];
  1149. int mx, my, i, epel, nplanes = 0;
  1150. if (plane) {
  1151. motion_x >>= s->chroma_x_shift;
  1152. motion_y >>= s->chroma_y_shift;
  1153. }
  1154. mx = motion_x & ~(-1 << s->mv_precision);
  1155. my = motion_y & ~(-1 << s->mv_precision);
  1156. motion_x >>= s->mv_precision;
  1157. motion_y >>= s->mv_precision;
  1158. /* normalize subpel coordinates to epel */
  1159. /* TODO: template this function? */
  1160. mx <<= 3 - s->mv_precision;
  1161. my <<= 3 - s->mv_precision;
  1162. x += motion_x;
  1163. y += motion_y;
  1164. epel = (mx|my)&1;
  1165. /* hpel position */
  1166. if (!((mx|my)&3)) {
  1167. nplanes = 1;
  1168. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1169. } else {
  1170. /* qpel or epel */
  1171. nplanes = 4;
  1172. for (i = 0; i < 4; i++)
  1173. src[i] = ref_hpel[i] + y*p->stride + x;
  1174. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1175. we increment x/y because the edge changes for half of the pixels */
  1176. if (mx > 4) {
  1177. src[0] += 1;
  1178. src[2] += 1;
  1179. x++;
  1180. }
  1181. if (my > 4) {
  1182. src[0] += p->stride;
  1183. src[1] += p->stride;
  1184. y++;
  1185. }
  1186. /* hpel planes are:
  1187. [0]: F [1]: H
  1188. [2]: V [3]: C */
  1189. if (!epel) {
  1190. /* check if we really only need 2 planes since either mx or my is
  1191. a hpel position. (epel weights of 0 handle this there) */
  1192. if (!(mx&3)) {
  1193. /* mx == 0: average [0] and [2]
  1194. mx == 4: average [1] and [3] */
  1195. src[!mx] = src[2 + !!mx];
  1196. nplanes = 2;
  1197. } else if (!(my&3)) {
  1198. src[0] = src[(my>>1) ];
  1199. src[1] = src[(my>>1)+1];
  1200. nplanes = 2;
  1201. }
  1202. } else {
  1203. /* adjust the ordering if needed so the weights work */
  1204. if (mx > 4) {
  1205. FFSWAP(const uint8_t *, src[0], src[1]);
  1206. FFSWAP(const uint8_t *, src[2], src[3]);
  1207. }
  1208. if (my > 4) {
  1209. FFSWAP(const uint8_t *, src[0], src[2]);
  1210. FFSWAP(const uint8_t *, src[1], src[3]);
  1211. }
  1212. src[4] = epel_weights[my&3][mx&3];
  1213. }
  1214. }
  1215. /* fixme: v/h _edge_pos */
  1216. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1217. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1218. x < 0 || y < 0) {
  1219. for (i = 0; i < nplanes; i++) {
  1220. ff_emulated_edge_mc(s->edge_emu_buffer[i], src[i], p->stride,
  1221. p->xblen, p->yblen, x, y,
  1222. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1223. src[i] = s->edge_emu_buffer[i];
  1224. }
  1225. }
  1226. return (nplanes>>1) + epel;
  1227. }
  1228. static void add_dc(uint16_t *dst, int dc, int stride,
  1229. uint8_t *obmc_weight, int xblen, int yblen)
  1230. {
  1231. int x, y;
  1232. dc += 128;
  1233. for (y = 0; y < yblen; y++) {
  1234. for (x = 0; x < xblen; x += 2) {
  1235. dst[x ] += dc * obmc_weight[x ];
  1236. dst[x+1] += dc * obmc_weight[x+1];
  1237. }
  1238. dst += stride;
  1239. obmc_weight += MAX_BLOCKSIZE;
  1240. }
  1241. }
  1242. static void block_mc(DiracContext *s, DiracBlock *block,
  1243. uint16_t *mctmp, uint8_t *obmc_weight,
  1244. int plane, int dstx, int dsty)
  1245. {
  1246. Plane *p = &s->plane[plane];
  1247. const uint8_t *src[5];
  1248. int idx;
  1249. switch (block->ref&3) {
  1250. case 0: /* DC */
  1251. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1252. return;
  1253. case 1:
  1254. case 2:
  1255. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1256. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1257. if (s->weight_func)
  1258. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1259. s->weight[0] + s->weight[1], p->yblen);
  1260. break;
  1261. case 3:
  1262. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1263. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1264. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1265. if (s->biweight_func) {
  1266. /* fixme: +32 is a quick hack */
  1267. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1268. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1269. s->weight[0], s->weight[1], p->yblen);
  1270. } else
  1271. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1272. break;
  1273. }
  1274. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1275. }
  1276. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1277. {
  1278. Plane *p = &s->plane[plane];
  1279. int x, dstx = p->xbsep - p->xoffset;
  1280. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1281. mctmp += p->xbsep;
  1282. for (x = 1; x < s->blwidth-1; x++) {
  1283. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1284. dstx += p->xbsep;
  1285. mctmp += p->xbsep;
  1286. }
  1287. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1288. }
  1289. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1290. {
  1291. int idx = 0;
  1292. if (xblen > 8)
  1293. idx = 1;
  1294. if (xblen > 16)
  1295. idx = 2;
  1296. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1297. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1298. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1299. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1300. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1301. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1302. } else {
  1303. s->weight_func = NULL;
  1304. s->biweight_func = NULL;
  1305. }
  1306. }
  1307. static void interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1308. {
  1309. /* chroma allocates an edge of 8 when subsampled
  1310. which for 4:2:2 means an h edge of 16 and v edge of 8
  1311. just use 8 for everything for the moment */
  1312. int i, edge = EDGE_WIDTH/2;
  1313. ref->hpel[plane][0] = ref->avframe.data[plane];
  1314. s->dsp.draw_edges(ref->hpel[plane][0], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1315. /* no need for hpel if we only have fpel vectors */
  1316. if (!s->mv_precision)
  1317. return;
  1318. for (i = 1; i < 4; i++) {
  1319. if (!ref->hpel_base[plane][i])
  1320. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe.linesize[plane] + 32);
  1321. /* we need to be 16-byte aligned even for chroma */
  1322. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe.linesize[plane] + 16;
  1323. }
  1324. if (!ref->interpolated[plane]) {
  1325. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1326. ref->hpel[plane][3], ref->hpel[plane][0],
  1327. ref->avframe.linesize[plane], width, height);
  1328. s->dsp.draw_edges(ref->hpel[plane][1], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1329. s->dsp.draw_edges(ref->hpel[plane][2], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1330. s->dsp.draw_edges(ref->hpel[plane][3], ref->avframe.linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1331. }
  1332. ref->interpolated[plane] = 1;
  1333. }
  1334. /**
  1335. * Dirac Specification ->
  1336. * 13.0 Transform data syntax. transform_data()
  1337. */
  1338. static int dirac_decode_frame_internal(DiracContext *s)
  1339. {
  1340. DWTContext d;
  1341. int y, i, comp, dsty;
  1342. if (s->low_delay) {
  1343. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1344. for (comp = 0; comp < 3; comp++) {
  1345. Plane *p = &s->plane[comp];
  1346. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1347. }
  1348. if (!s->zero_res)
  1349. decode_lowdelay(s);
  1350. }
  1351. for (comp = 0; comp < 3; comp++) {
  1352. Plane *p = &s->plane[comp];
  1353. uint8_t *frame = s->current_picture->avframe.data[comp];
  1354. /* FIXME: small resolutions */
  1355. for (i = 0; i < 4; i++)
  1356. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1357. if (!s->zero_res && !s->low_delay)
  1358. {
  1359. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1360. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1361. }
  1362. if (ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1363. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp))
  1364. return -1;
  1365. if (!s->num_refs) { /* intra */
  1366. for (y = 0; y < p->height; y += 16) {
  1367. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1368. s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
  1369. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1370. }
  1371. } else { /* inter */
  1372. int rowheight = p->ybsep*p->stride;
  1373. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1374. for (i = 0; i < s->num_refs; i++)
  1375. interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1376. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1377. dsty = -p->yoffset;
  1378. for (y = 0; y < s->blheight; y++) {
  1379. int h = 0,
  1380. start = FFMAX(dsty, 0);
  1381. uint16_t *mctmp = s->mctmp + y*rowheight;
  1382. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1383. init_obmc_weights(s, p, y);
  1384. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1385. h = p->height - start;
  1386. else
  1387. h = p->ybsep - (start - dsty);
  1388. if (h < 0)
  1389. break;
  1390. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1391. mc_row(s, blocks, mctmp, comp, dsty);
  1392. mctmp += (start - dsty)*p->stride + p->xoffset;
  1393. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1394. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1395. p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
  1396. dsty += p->ybsep;
  1397. }
  1398. }
  1399. }
  1400. return 0;
  1401. }
  1402. /**
  1403. * Dirac Specification ->
  1404. * 11.1.1 Picture Header. picture_header()
  1405. */
  1406. static int dirac_decode_picture_header(DiracContext *s)
  1407. {
  1408. int retire, picnum;
  1409. int i, j, refnum, refdist;
  1410. GetBitContext *gb = &s->gb;
  1411. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1412. picnum = s->current_picture->avframe.display_picture_number = get_bits_long(gb, 32);
  1413. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1414. /* if this is the first keyframe after a sequence header, start our
  1415. reordering from here */
  1416. if (s->frame_number < 0)
  1417. s->frame_number = picnum;
  1418. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1419. for (i = 0; i < s->num_refs; i++) {
  1420. refnum = picnum + dirac_get_se_golomb(gb);
  1421. refdist = INT_MAX;
  1422. /* find the closest reference to the one we want */
  1423. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1424. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1425. if (s->ref_frames[j]
  1426. && FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum) < refdist) {
  1427. s->ref_pics[i] = s->ref_frames[j];
  1428. refdist = FFABS(s->ref_frames[j]->avframe.display_picture_number - refnum);
  1429. }
  1430. if (!s->ref_pics[i] || refdist)
  1431. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1432. /* if there were no references at all, allocate one */
  1433. if (!s->ref_pics[i])
  1434. for (j = 0; j < MAX_FRAMES; j++)
  1435. if (!s->all_frames[j].avframe.data[0]) {
  1436. s->ref_pics[i] = &s->all_frames[j];
  1437. ff_get_buffer(s->avctx, &s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1438. break;
  1439. }
  1440. }
  1441. /* retire the reference frames that are not used anymore */
  1442. if (s->current_picture->avframe.reference) {
  1443. retire = picnum + dirac_get_se_golomb(gb);
  1444. if (retire != picnum) {
  1445. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1446. if (retire_pic)
  1447. retire_pic->avframe.reference &= DELAYED_PIC_REF;
  1448. else
  1449. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1450. }
  1451. /* if reference array is full, remove the oldest as per the spec */
  1452. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1453. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1454. remove_frame(s->ref_frames, s->ref_frames[0]->avframe.display_picture_number)->avframe.reference &= DELAYED_PIC_REF;
  1455. }
  1456. }
  1457. if (s->num_refs) {
  1458. if (dirac_unpack_prediction_parameters(s)) /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1459. return -1;
  1460. if (dirac_unpack_block_motion_data(s)) /* [DIRAC_STD] 12. Block motion data syntax */
  1461. return -1;
  1462. }
  1463. if (dirac_unpack_idwt_params(s)) /* [DIRAC_STD] 11.3 Wavelet transform data */
  1464. return -1;
  1465. init_planes(s);
  1466. return 0;
  1467. }
  1468. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1469. {
  1470. DiracFrame *out = s->delay_frames[0];
  1471. int i, out_idx = 0;
  1472. int ret;
  1473. /* find frame with lowest picture number */
  1474. for (i = 1; s->delay_frames[i]; i++)
  1475. if (s->delay_frames[i]->avframe.display_picture_number < out->avframe.display_picture_number) {
  1476. out = s->delay_frames[i];
  1477. out_idx = i;
  1478. }
  1479. for (i = out_idx; s->delay_frames[i]; i++)
  1480. s->delay_frames[i] = s->delay_frames[i+1];
  1481. if (out) {
  1482. out->avframe.reference ^= DELAYED_PIC_REF;
  1483. *got_frame = 1;
  1484. if((ret = av_frame_ref(picture, &out->avframe)) < 0)
  1485. return ret;
  1486. }
  1487. return 0;
  1488. }
  1489. /**
  1490. * Dirac Specification ->
  1491. * 9.6 Parse Info Header Syntax. parse_info()
  1492. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1493. */
  1494. #define DATA_UNIT_HEADER_SIZE 13
  1495. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1496. inside the function parse_sequence() */
  1497. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1498. {
  1499. DiracContext *s = avctx->priv_data;
  1500. DiracFrame *pic = NULL;
  1501. int i, parse_code = buf[4];
  1502. unsigned tmp;
  1503. if (size < DATA_UNIT_HEADER_SIZE)
  1504. return -1;
  1505. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1506. if (parse_code == pc_seq_header) {
  1507. if (s->seen_sequence_header)
  1508. return 0;
  1509. /* [DIRAC_STD] 10. Sequence header */
  1510. if (avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source))
  1511. return -1;
  1512. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1513. if (alloc_sequence_buffers(s))
  1514. return -1;
  1515. s->seen_sequence_header = 1;
  1516. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1517. free_sequence_buffers(s);
  1518. s->seen_sequence_header = 0;
  1519. } else if (parse_code == pc_aux_data) {
  1520. if (buf[13] == 1) { /* encoder implementation/version */
  1521. int ver[3];
  1522. /* versions older than 1.0.8 don't store quant delta for
  1523. subbands with only one codeblock */
  1524. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1525. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1526. s->old_delta_quant = 1;
  1527. }
  1528. } else if (parse_code & 0x8) { /* picture data unit */
  1529. if (!s->seen_sequence_header) {
  1530. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1531. return -1;
  1532. }
  1533. /* find an unused frame */
  1534. for (i = 0; i < MAX_FRAMES; i++)
  1535. if (s->all_frames[i].avframe.data[0] == NULL)
  1536. pic = &s->all_frames[i];
  1537. if (!pic) {
  1538. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1539. return -1;
  1540. }
  1541. avcodec_get_frame_defaults(&pic->avframe);
  1542. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1543. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1544. if (tmp > 2) {
  1545. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1546. return -1;
  1547. }
  1548. s->num_refs = tmp;
  1549. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1550. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1551. pic->avframe.reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1552. pic->avframe.key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1553. pic->avframe.pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1554. if (ff_get_buffer(avctx, &pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0) < 0) {
  1555. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1556. return -1;
  1557. }
  1558. s->current_picture = pic;
  1559. s->plane[0].stride = pic->avframe.linesize[0];
  1560. s->plane[1].stride = pic->avframe.linesize[1];
  1561. s->plane[2].stride = pic->avframe.linesize[2];
  1562. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1563. if (dirac_decode_picture_header(s))
  1564. return -1;
  1565. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1566. if (dirac_decode_frame_internal(s))
  1567. return -1;
  1568. }
  1569. return 0;
  1570. }
  1571. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1572. {
  1573. DiracContext *s = avctx->priv_data;
  1574. DiracFrame *picture = data;
  1575. uint8_t *buf = pkt->data;
  1576. int buf_size = pkt->size;
  1577. int i, data_unit_size, buf_idx = 0;
  1578. int ret;
  1579. /* release unused frames */
  1580. for (i = 0; i < MAX_FRAMES; i++)
  1581. if (s->all_frames[i].avframe.data[0] && !s->all_frames[i].avframe.reference) {
  1582. av_frame_unref(&s->all_frames[i].avframe);
  1583. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1584. }
  1585. s->current_picture = NULL;
  1586. *got_frame = 0;
  1587. /* end of stream, so flush delayed pics */
  1588. if (buf_size == 0)
  1589. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1590. for (;;) {
  1591. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1592. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1593. BBCD start code search */
  1594. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1595. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1596. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1597. break;
  1598. }
  1599. /* BBCD found or end of data */
  1600. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1601. break;
  1602. data_unit_size = AV_RB32(buf+buf_idx+5);
  1603. if (buf_idx + data_unit_size > buf_size || !data_unit_size) {
  1604. if(buf_idx + data_unit_size > buf_size)
  1605. av_log(s->avctx, AV_LOG_ERROR,
  1606. "Data unit with size %d is larger than input buffer, discarding\n",
  1607. data_unit_size);
  1608. buf_idx += 4;
  1609. continue;
  1610. }
  1611. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1612. if (dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size))
  1613. {
  1614. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1615. return -1;
  1616. }
  1617. buf_idx += data_unit_size;
  1618. }
  1619. if (!s->current_picture)
  1620. return buf_size;
  1621. if (s->current_picture->avframe.display_picture_number > s->frame_number) {
  1622. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1623. s->current_picture->avframe.reference |= DELAYED_PIC_REF;
  1624. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1625. int min_num = s->delay_frames[0]->avframe.display_picture_number;
  1626. /* Too many delayed frames, so we display the frame with the lowest pts */
  1627. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1628. delayed_frame = s->delay_frames[0];
  1629. for (i = 1; s->delay_frames[i]; i++)
  1630. if (s->delay_frames[i]->avframe.display_picture_number < min_num)
  1631. min_num = s->delay_frames[i]->avframe.display_picture_number;
  1632. delayed_frame = remove_frame(s->delay_frames, min_num);
  1633. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1634. }
  1635. if (delayed_frame) {
  1636. delayed_frame->avframe.reference ^= DELAYED_PIC_REF;
  1637. if((ret=av_frame_ref(data, &delayed_frame->avframe)) < 0)
  1638. return ret;
  1639. *got_frame = 1;
  1640. }
  1641. } else if (s->current_picture->avframe.display_picture_number == s->frame_number) {
  1642. /* The right frame at the right time :-) */
  1643. if((ret=av_frame_ref(data, &s->current_picture->avframe)) < 0)
  1644. return ret;
  1645. *got_frame = 1;
  1646. }
  1647. if (*got_frame)
  1648. s->frame_number = picture->avframe.display_picture_number + 1;
  1649. return buf_idx;
  1650. }
  1651. AVCodec ff_dirac_decoder = {
  1652. .name = "dirac",
  1653. .type = AVMEDIA_TYPE_VIDEO,
  1654. .id = AV_CODEC_ID_DIRAC,
  1655. .priv_data_size = sizeof(DiracContext),
  1656. .init = dirac_decode_init,
  1657. .close = dirac_decode_end,
  1658. .decode = dirac_decode_frame,
  1659. .capabilities = CODEC_CAP_DELAY,
  1660. .flush = dirac_decode_flush,
  1661. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1662. };