You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1282 lines
47KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/lfg.h"
  29. #include "avcodec.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "celp_math.h"
  33. #include "acelp_filters.h"
  34. #include "acelp_vectors.h"
  35. #include "acelp_pitch_delay.h"
  36. #include "internal.h"
  37. #define AMR_USE_16BIT_TABLES
  38. #include "amr.h"
  39. #include "amrwbdata.h"
  40. #include "mips/amrwbdec_mips.h"
  41. typedef struct {
  42. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  43. enum Mode fr_cur_mode; ///< mode index of current frame
  44. uint8_t fr_quality; ///< frame quality index (FQI)
  45. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  46. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  47. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  48. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  49. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  50. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  51. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  52. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  53. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  54. float *excitation; ///< points to current excitation in excitation_buf[]
  55. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  56. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  57. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  58. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  59. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  60. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  61. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  62. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  63. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  64. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  65. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  66. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  67. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  68. float demph_mem[1]; ///< previous value in the de-emphasis filter
  69. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  70. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  71. AVLFG prng; ///< random number generator for white noise excitation
  72. uint8_t first_frame; ///< flag active during decoding of the first frame
  73. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  74. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  75. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  76. CELPMContext celpm_ctx; ///< context for fixed point math operations
  77. } AMRWBContext;
  78. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  79. {
  80. AMRWBContext *ctx = avctx->priv_data;
  81. int i;
  82. if (avctx->channels > 1) {
  83. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  84. return AVERROR_PATCHWELCOME;
  85. }
  86. avctx->channels = 1;
  87. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  88. if (!avctx->sample_rate)
  89. avctx->sample_rate = 16000;
  90. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  91. av_lfg_init(&ctx->prng, 1);
  92. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  93. ctx->first_frame = 1;
  94. for (i = 0; i < LP_ORDER; i++)
  95. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  96. for (i = 0; i < 4; i++)
  97. ctx->prediction_error[i] = MIN_ENERGY;
  98. ff_acelp_filter_init(&ctx->acelpf_ctx);
  99. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  100. ff_celp_filter_init(&ctx->celpf_ctx);
  101. ff_celp_math_init(&ctx->celpm_ctx);
  102. return 0;
  103. }
  104. /**
  105. * Decode the frame header in the "MIME/storage" format. This format
  106. * is simpler and does not carry the auxiliary frame information.
  107. *
  108. * @param[in] ctx The Context
  109. * @param[in] buf Pointer to the input buffer
  110. *
  111. * @return The decoded header length in bytes
  112. */
  113. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  114. {
  115. /* Decode frame header (1st octet) */
  116. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  117. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  118. return 1;
  119. }
  120. /**
  121. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  122. *
  123. * @param[in] ind Array of 5 indexes
  124. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  125. *
  126. */
  127. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  128. {
  129. int i;
  130. for (i = 0; i < 9; i++)
  131. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  132. for (i = 0; i < 7; i++)
  133. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  134. for (i = 0; i < 5; i++)
  135. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  136. for (i = 0; i < 4; i++)
  137. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  138. for (i = 0; i < 7; i++)
  139. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  140. }
  141. /**
  142. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  143. *
  144. * @param[in] ind Array of 7 indexes
  145. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  146. *
  147. */
  148. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  149. {
  150. int i;
  151. for (i = 0; i < 9; i++)
  152. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  153. for (i = 0; i < 7; i++)
  154. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  155. for (i = 0; i < 3; i++)
  156. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  157. for (i = 0; i < 3; i++)
  158. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  159. for (i = 0; i < 3; i++)
  160. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  161. for (i = 0; i < 3; i++)
  162. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  163. for (i = 0; i < 4; i++)
  164. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  165. }
  166. /**
  167. * Apply mean and past ISF values using the prediction factor.
  168. * Updates past ISF vector.
  169. *
  170. * @param[in,out] isf_q Current quantized ISF
  171. * @param[in,out] isf_past Past quantized ISF
  172. *
  173. */
  174. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  175. {
  176. int i;
  177. float tmp;
  178. for (i = 0; i < LP_ORDER; i++) {
  179. tmp = isf_q[i];
  180. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  181. isf_q[i] += PRED_FACTOR * isf_past[i];
  182. isf_past[i] = tmp;
  183. }
  184. }
  185. /**
  186. * Interpolate the fourth ISP vector from current and past frames
  187. * to obtain an ISP vector for each subframe.
  188. *
  189. * @param[in,out] isp_q ISPs for each subframe
  190. * @param[in] isp4_past Past ISP for subframe 4
  191. */
  192. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  193. {
  194. int i, k;
  195. for (k = 0; k < 3; k++) {
  196. float c = isfp_inter[k];
  197. for (i = 0; i < LP_ORDER; i++)
  198. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  199. }
  200. }
  201. /**
  202. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  203. * Calculate integer lag and fractional lag always using 1/4 resolution.
  204. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  205. *
  206. * @param[out] lag_int Decoded integer pitch lag
  207. * @param[out] lag_frac Decoded fractional pitch lag
  208. * @param[in] pitch_index Adaptive codebook pitch index
  209. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  210. * @param[in] subframe Current subframe index (0 to 3)
  211. */
  212. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  213. uint8_t *base_lag_int, int subframe)
  214. {
  215. if (subframe == 0 || subframe == 2) {
  216. if (pitch_index < 376) {
  217. *lag_int = (pitch_index + 137) >> 2;
  218. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  219. } else if (pitch_index < 440) {
  220. *lag_int = (pitch_index + 257 - 376) >> 1;
  221. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  222. /* the actual resolution is 1/2 but expressed as 1/4 */
  223. } else {
  224. *lag_int = pitch_index - 280;
  225. *lag_frac = 0;
  226. }
  227. /* minimum lag for next subframe */
  228. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  229. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  230. // XXX: the spec states clearly that *base_lag_int should be
  231. // the nearest integer to *lag_int (minus 8), but the ref code
  232. // actually always uses its floor, I'm following the latter
  233. } else {
  234. *lag_int = (pitch_index + 1) >> 2;
  235. *lag_frac = pitch_index - (*lag_int << 2);
  236. *lag_int += *base_lag_int;
  237. }
  238. }
  239. /**
  240. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  241. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  242. * relative index is used for all subframes except the first.
  243. */
  244. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  245. uint8_t *base_lag_int, int subframe, enum Mode mode)
  246. {
  247. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  248. if (pitch_index < 116) {
  249. *lag_int = (pitch_index + 69) >> 1;
  250. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  251. } else {
  252. *lag_int = pitch_index - 24;
  253. *lag_frac = 0;
  254. }
  255. // XXX: same problem as before
  256. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  257. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  258. } else {
  259. *lag_int = (pitch_index + 1) >> 1;
  260. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  261. *lag_int += *base_lag_int;
  262. }
  263. }
  264. /**
  265. * Find the pitch vector by interpolating the past excitation at the
  266. * pitch delay, which is obtained in this function.
  267. *
  268. * @param[in,out] ctx The context
  269. * @param[in] amr_subframe Current subframe data
  270. * @param[in] subframe Current subframe index (0 to 3)
  271. */
  272. static void decode_pitch_vector(AMRWBContext *ctx,
  273. const AMRWBSubFrame *amr_subframe,
  274. const int subframe)
  275. {
  276. int pitch_lag_int, pitch_lag_frac;
  277. int i;
  278. float *exc = ctx->excitation;
  279. enum Mode mode = ctx->fr_cur_mode;
  280. if (mode <= MODE_8k85) {
  281. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  282. &ctx->base_pitch_lag, subframe, mode);
  283. } else
  284. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  285. &ctx->base_pitch_lag, subframe);
  286. ctx->pitch_lag_int = pitch_lag_int;
  287. pitch_lag_int += pitch_lag_frac > 0;
  288. /* Calculate the pitch vector by interpolating the past excitation at the
  289. pitch lag using a hamming windowed sinc function */
  290. ctx->acelpf_ctx.acelp_interpolatef(exc,
  291. exc + 1 - pitch_lag_int,
  292. ac_inter, 4,
  293. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  294. LP_ORDER, AMRWB_SFR_SIZE + 1);
  295. /* Check which pitch signal path should be used
  296. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  297. if (amr_subframe->ltp) {
  298. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  299. } else {
  300. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  301. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  302. 0.18 * exc[i + 1];
  303. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  304. }
  305. }
  306. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  307. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  308. /** Get the bit at specified position */
  309. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  310. /**
  311. * The next six functions decode_[i]p_track decode exactly i pulses
  312. * positions and amplitudes (-1 or 1) in a subframe track using
  313. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  314. *
  315. * The results are given in out[], in which a negative number means
  316. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  317. *
  318. * @param[out] out Output buffer (writes i elements)
  319. * @param[in] code Pulse index (no. of bits varies, see below)
  320. * @param[in] m (log2) Number of potential positions
  321. * @param[in] off Offset for decoded positions
  322. */
  323. static inline void decode_1p_track(int *out, int code, int m, int off)
  324. {
  325. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  326. out[0] = BIT_POS(code, m) ? -pos : pos;
  327. }
  328. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  329. {
  330. int pos0 = BIT_STR(code, m, m) + off;
  331. int pos1 = BIT_STR(code, 0, m) + off;
  332. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  333. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  334. out[1] = pos0 > pos1 ? -out[1] : out[1];
  335. }
  336. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  337. {
  338. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  339. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  340. m - 1, off + half_2p);
  341. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  342. }
  343. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  344. {
  345. int half_4p, subhalf_2p;
  346. int b_offset = 1 << (m - 1);
  347. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  348. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  349. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  350. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  351. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  352. m - 2, off + half_4p + subhalf_2p);
  353. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  354. m - 1, off + half_4p);
  355. break;
  356. case 1: /* 1 pulse in A, 3 pulses in B */
  357. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  358. m - 1, off);
  359. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  360. m - 1, off + b_offset);
  361. break;
  362. case 2: /* 2 pulses in each half */
  363. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  364. m - 1, off);
  365. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  366. m - 1, off + b_offset);
  367. break;
  368. case 3: /* 3 pulses in A, 1 pulse in B */
  369. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  370. m - 1, off);
  371. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  372. m - 1, off + b_offset);
  373. break;
  374. }
  375. }
  376. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  377. {
  378. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  379. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  380. m - 1, off + half_3p);
  381. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  382. }
  383. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  384. {
  385. int b_offset = 1 << (m - 1);
  386. /* which half has more pulses in cases 0 to 2 */
  387. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  388. int half_other = b_offset - half_more;
  389. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  390. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  391. decode_1p_track(out, BIT_STR(code, 0, m),
  392. m - 1, off + half_more);
  393. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  394. m - 1, off + half_more);
  395. break;
  396. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  397. decode_1p_track(out, BIT_STR(code, 0, m),
  398. m - 1, off + half_other);
  399. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  400. m - 1, off + half_more);
  401. break;
  402. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  403. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  404. m - 1, off + half_other);
  405. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  406. m - 1, off + half_more);
  407. break;
  408. case 3: /* 3 pulses in A, 3 pulses in B */
  409. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  410. m - 1, off);
  411. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  412. m - 1, off + b_offset);
  413. break;
  414. }
  415. }
  416. /**
  417. * Decode the algebraic codebook index to pulse positions and signs,
  418. * then construct the algebraic codebook vector.
  419. *
  420. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  421. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  422. * @param[in] pulse_lo LSBs part of the pulse index array
  423. * @param[in] mode Mode of the current frame
  424. */
  425. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  426. const uint16_t *pulse_lo, const enum Mode mode)
  427. {
  428. /* sig_pos stores for each track the decoded pulse position indexes
  429. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  430. int sig_pos[4][6];
  431. int spacing = (mode == MODE_6k60) ? 2 : 4;
  432. int i, j;
  433. switch (mode) {
  434. case MODE_6k60:
  435. for (i = 0; i < 2; i++)
  436. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  437. break;
  438. case MODE_8k85:
  439. for (i = 0; i < 4; i++)
  440. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  441. break;
  442. case MODE_12k65:
  443. for (i = 0; i < 4; i++)
  444. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  445. break;
  446. case MODE_14k25:
  447. for (i = 0; i < 2; i++)
  448. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  449. for (i = 2; i < 4; i++)
  450. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  451. break;
  452. case MODE_15k85:
  453. for (i = 0; i < 4; i++)
  454. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  455. break;
  456. case MODE_18k25:
  457. for (i = 0; i < 4; i++)
  458. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  459. ((int) pulse_hi[i] << 14), 4, 1);
  460. break;
  461. case MODE_19k85:
  462. for (i = 0; i < 2; i++)
  463. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  464. ((int) pulse_hi[i] << 10), 4, 1);
  465. for (i = 2; i < 4; i++)
  466. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  467. ((int) pulse_hi[i] << 14), 4, 1);
  468. break;
  469. case MODE_23k05:
  470. case MODE_23k85:
  471. for (i = 0; i < 4; i++)
  472. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  473. ((int) pulse_hi[i] << 11), 4, 1);
  474. break;
  475. }
  476. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  477. for (i = 0; i < 4; i++)
  478. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  479. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  480. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  481. }
  482. }
  483. /**
  484. * Decode pitch gain and fixed gain correction factor.
  485. *
  486. * @param[in] vq_gain Vector-quantized index for gains
  487. * @param[in] mode Mode of the current frame
  488. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  489. * @param[out] pitch_gain Decoded pitch gain
  490. */
  491. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  492. float *fixed_gain_factor, float *pitch_gain)
  493. {
  494. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  495. qua_gain_7b[vq_gain]);
  496. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  497. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  498. }
  499. /**
  500. * Apply pitch sharpening filters to the fixed codebook vector.
  501. *
  502. * @param[in] ctx The context
  503. * @param[in,out] fixed_vector Fixed codebook excitation
  504. */
  505. // XXX: Spec states this procedure should be applied when the pitch
  506. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  507. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  508. {
  509. int i;
  510. /* Tilt part */
  511. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  512. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  513. /* Periodicity enhancement part */
  514. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  515. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  516. }
  517. /**
  518. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  519. *
  520. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  521. * @param[in] p_gain, f_gain Pitch and fixed gains
  522. * @param[in] ctx The context
  523. */
  524. // XXX: There is something wrong with the precision here! The magnitudes
  525. // of the energies are not correct. Please check the reference code carefully
  526. static float voice_factor(float *p_vector, float p_gain,
  527. float *f_vector, float f_gain,
  528. CELPMContext *ctx)
  529. {
  530. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  531. AMRWB_SFR_SIZE) *
  532. p_gain * p_gain;
  533. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  534. AMRWB_SFR_SIZE) *
  535. f_gain * f_gain;
  536. return (p_ener - f_ener) / (p_ener + f_ener);
  537. }
  538. /**
  539. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  540. * also known as "adaptive phase dispersion".
  541. *
  542. * @param[in] ctx The context
  543. * @param[in,out] fixed_vector Unfiltered fixed vector
  544. * @param[out] buf Space for modified vector if necessary
  545. *
  546. * @return The potentially overwritten filtered fixed vector address
  547. */
  548. static float *anti_sparseness(AMRWBContext *ctx,
  549. float *fixed_vector, float *buf)
  550. {
  551. int ir_filter_nr;
  552. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  553. return fixed_vector;
  554. if (ctx->pitch_gain[0] < 0.6) {
  555. ir_filter_nr = 0; // strong filtering
  556. } else if (ctx->pitch_gain[0] < 0.9) {
  557. ir_filter_nr = 1; // medium filtering
  558. } else
  559. ir_filter_nr = 2; // no filtering
  560. /* detect 'onset' */
  561. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  562. if (ir_filter_nr < 2)
  563. ir_filter_nr++;
  564. } else {
  565. int i, count = 0;
  566. for (i = 0; i < 6; i++)
  567. if (ctx->pitch_gain[i] < 0.6)
  568. count++;
  569. if (count > 2)
  570. ir_filter_nr = 0;
  571. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  572. ir_filter_nr--;
  573. }
  574. /* update ir filter strength history */
  575. ctx->prev_ir_filter_nr = ir_filter_nr;
  576. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  577. if (ir_filter_nr < 2) {
  578. int i;
  579. const float *coef = ir_filters_lookup[ir_filter_nr];
  580. /* Circular convolution code in the reference
  581. * decoder was modified to avoid using one
  582. * extra array. The filtered vector is given by:
  583. *
  584. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  585. */
  586. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  587. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  588. if (fixed_vector[i])
  589. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  590. AMRWB_SFR_SIZE);
  591. fixed_vector = buf;
  592. }
  593. return fixed_vector;
  594. }
  595. /**
  596. * Calculate a stability factor {teta} based on distance between
  597. * current and past isf. A value of 1 shows maximum signal stability.
  598. */
  599. static float stability_factor(const float *isf, const float *isf_past)
  600. {
  601. int i;
  602. float acc = 0.0;
  603. for (i = 0; i < LP_ORDER - 1; i++)
  604. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  605. // XXX: This part is not so clear from the reference code
  606. // the result is more accurate changing the "/ 256" to "* 512"
  607. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  608. }
  609. /**
  610. * Apply a non-linear fixed gain smoothing in order to reduce
  611. * fluctuation in the energy of excitation.
  612. *
  613. * @param[in] fixed_gain Unsmoothed fixed gain
  614. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  615. * @param[in] voice_fac Frame voicing factor
  616. * @param[in] stab_fac Frame stability factor
  617. *
  618. * @return The smoothed gain
  619. */
  620. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  621. float voice_fac, float stab_fac)
  622. {
  623. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  624. float g0;
  625. // XXX: the following fixed-point constants used to in(de)crement
  626. // gain by 1.5dB were taken from the reference code, maybe it could
  627. // be simpler
  628. if (fixed_gain < *prev_tr_gain) {
  629. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  630. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  631. } else
  632. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  633. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  634. *prev_tr_gain = g0; // update next frame threshold
  635. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  636. }
  637. /**
  638. * Filter the fixed_vector to emphasize the higher frequencies.
  639. *
  640. * @param[in,out] fixed_vector Fixed codebook vector
  641. * @param[in] voice_fac Frame voicing factor
  642. */
  643. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  644. {
  645. int i;
  646. float cpe = 0.125 * (1 + voice_fac);
  647. float last = fixed_vector[0]; // holds c(i - 1)
  648. fixed_vector[0] -= cpe * fixed_vector[1];
  649. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  650. float cur = fixed_vector[i];
  651. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  652. last = cur;
  653. }
  654. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  655. }
  656. /**
  657. * Conduct 16th order linear predictive coding synthesis from excitation.
  658. *
  659. * @param[in] ctx Pointer to the AMRWBContext
  660. * @param[in] lpc Pointer to the LPC coefficients
  661. * @param[out] excitation Buffer for synthesis final excitation
  662. * @param[in] fixed_gain Fixed codebook gain for synthesis
  663. * @param[in] fixed_vector Algebraic codebook vector
  664. * @param[in,out] samples Pointer to the output samples and memory
  665. */
  666. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  667. float fixed_gain, const float *fixed_vector,
  668. float *samples)
  669. {
  670. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  671. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  672. /* emphasize pitch vector contribution in low bitrate modes */
  673. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  674. int i;
  675. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  676. AMRWB_SFR_SIZE);
  677. // XXX: Weird part in both ref code and spec. A unknown parameter
  678. // {beta} seems to be identical to the current pitch gain
  679. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  680. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  681. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  682. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  683. energy, AMRWB_SFR_SIZE);
  684. }
  685. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  686. AMRWB_SFR_SIZE, LP_ORDER);
  687. }
  688. /**
  689. * Apply to synthesis a de-emphasis filter of the form:
  690. * H(z) = 1 / (1 - m * z^-1)
  691. *
  692. * @param[out] out Output buffer
  693. * @param[in] in Input samples array with in[-1]
  694. * @param[in] m Filter coefficient
  695. * @param[in,out] mem State from last filtering
  696. */
  697. static void de_emphasis(float *out, float *in, float m, float mem[1])
  698. {
  699. int i;
  700. out[0] = in[0] + m * mem[0];
  701. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  702. out[i] = in[i] + out[i - 1] * m;
  703. mem[0] = out[AMRWB_SFR_SIZE - 1];
  704. }
  705. /**
  706. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  707. * a FIR interpolation filter. Uses past data from before *in address.
  708. *
  709. * @param[out] out Buffer for interpolated signal
  710. * @param[in] in Current signal data (length 0.8*o_size)
  711. * @param[in] o_size Output signal length
  712. * @param[in] ctx The context
  713. */
  714. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  715. {
  716. const float *in0 = in - UPS_FIR_SIZE + 1;
  717. int i, j, k;
  718. int int_part = 0, frac_part;
  719. i = 0;
  720. for (j = 0; j < o_size / 5; j++) {
  721. out[i] = in[int_part];
  722. frac_part = 4;
  723. i++;
  724. for (k = 1; k < 5; k++) {
  725. out[i] = ctx->dot_productf(in0 + int_part,
  726. upsample_fir[4 - frac_part],
  727. UPS_MEM_SIZE);
  728. int_part++;
  729. frac_part--;
  730. i++;
  731. }
  732. }
  733. }
  734. /**
  735. * Calculate the high-band gain based on encoded index (23k85 mode) or
  736. * on the low-band speech signal and the Voice Activity Detection flag.
  737. *
  738. * @param[in] ctx The context
  739. * @param[in] synth LB speech synthesis at 12.8k
  740. * @param[in] hb_idx Gain index for mode 23k85 only
  741. * @param[in] vad VAD flag for the frame
  742. */
  743. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  744. uint16_t hb_idx, uint8_t vad)
  745. {
  746. int wsp = (vad > 0);
  747. float tilt;
  748. if (ctx->fr_cur_mode == MODE_23k85)
  749. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  750. tilt = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  751. ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  752. /* return gain bounded by [0.1, 1.0] */
  753. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  754. }
  755. /**
  756. * Generate the high-band excitation with the same energy from the lower
  757. * one and scaled by the given gain.
  758. *
  759. * @param[in] ctx The context
  760. * @param[out] hb_exc Buffer for the excitation
  761. * @param[in] synth_exc Low-band excitation used for synthesis
  762. * @param[in] hb_gain Wanted excitation gain
  763. */
  764. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  765. const float *synth_exc, float hb_gain)
  766. {
  767. int i;
  768. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc,
  769. AMRWB_SFR_SIZE);
  770. /* Generate a white-noise excitation */
  771. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  772. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  773. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  774. energy * hb_gain * hb_gain,
  775. AMRWB_SFR_SIZE_16k);
  776. }
  777. /**
  778. * Calculate the auto-correlation for the ISF difference vector.
  779. */
  780. static float auto_correlation(float *diff_isf, float mean, int lag)
  781. {
  782. int i;
  783. float sum = 0.0;
  784. for (i = 7; i < LP_ORDER - 2; i++) {
  785. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  786. sum += prod * prod;
  787. }
  788. return sum;
  789. }
  790. /**
  791. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  792. * used at mode 6k60 LP filter for the high frequency band.
  793. *
  794. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  795. * values on input
  796. */
  797. static void extrapolate_isf(float isf[LP_ORDER_16k])
  798. {
  799. float diff_isf[LP_ORDER - 2], diff_mean;
  800. float corr_lag[3];
  801. float est, scale;
  802. int i, j, i_max_corr;
  803. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  804. /* Calculate the difference vector */
  805. for (i = 0; i < LP_ORDER - 2; i++)
  806. diff_isf[i] = isf[i + 1] - isf[i];
  807. diff_mean = 0.0;
  808. for (i = 2; i < LP_ORDER - 2; i++)
  809. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  810. /* Find which is the maximum autocorrelation */
  811. i_max_corr = 0;
  812. for (i = 0; i < 3; i++) {
  813. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  814. if (corr_lag[i] > corr_lag[i_max_corr])
  815. i_max_corr = i;
  816. }
  817. i_max_corr++;
  818. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  819. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  820. - isf[i - 2 - i_max_corr];
  821. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  822. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  823. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  824. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  825. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  826. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  827. /* Stability insurance */
  828. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  829. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  830. if (diff_isf[i] > diff_isf[i - 1]) {
  831. diff_isf[i - 1] = 5.0 - diff_isf[i];
  832. } else
  833. diff_isf[i] = 5.0 - diff_isf[i - 1];
  834. }
  835. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  836. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  837. /* Scale the ISF vector for 16000 Hz */
  838. for (i = 0; i < LP_ORDER_16k - 1; i++)
  839. isf[i] *= 0.8;
  840. }
  841. /**
  842. * Spectral expand the LP coefficients using the equation:
  843. * y[i] = x[i] * (gamma ** i)
  844. *
  845. * @param[out] out Output buffer (may use input array)
  846. * @param[in] lpc LP coefficients array
  847. * @param[in] gamma Weighting factor
  848. * @param[in] size LP array size
  849. */
  850. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  851. {
  852. int i;
  853. float fac = gamma;
  854. for (i = 0; i < size; i++) {
  855. out[i] = lpc[i] * fac;
  856. fac *= gamma;
  857. }
  858. }
  859. /**
  860. * Conduct 20th order linear predictive coding synthesis for the high
  861. * frequency band excitation at 16kHz.
  862. *
  863. * @param[in] ctx The context
  864. * @param[in] subframe Current subframe index (0 to 3)
  865. * @param[in,out] samples Pointer to the output speech samples
  866. * @param[in] exc Generated white-noise scaled excitation
  867. * @param[in] isf Current frame isf vector
  868. * @param[in] isf_past Past frame final isf vector
  869. */
  870. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  871. const float *exc, const float *isf, const float *isf_past)
  872. {
  873. float hb_lpc[LP_ORDER_16k];
  874. enum Mode mode = ctx->fr_cur_mode;
  875. if (mode == MODE_6k60) {
  876. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  877. double e_isp[LP_ORDER_16k];
  878. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  879. 1.0 - isfp_inter[subframe], LP_ORDER);
  880. extrapolate_isf(e_isf);
  881. e_isf[LP_ORDER_16k - 1] *= 2.0;
  882. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  883. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  884. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  885. } else {
  886. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  887. }
  888. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  889. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  890. }
  891. /**
  892. * Apply a 15th order filter to high-band samples.
  893. * The filter characteristic depends on the given coefficients.
  894. *
  895. * @param[out] out Buffer for filtered output
  896. * @param[in] fir_coef Filter coefficients
  897. * @param[in,out] mem State from last filtering (updated)
  898. * @param[in] in Input speech data (high-band)
  899. *
  900. * @remark It is safe to pass the same array in in and out parameters
  901. */
  902. #ifndef hb_fir_filter
  903. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  904. float mem[HB_FIR_SIZE], const float *in)
  905. {
  906. int i, j;
  907. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  908. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  909. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  910. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  911. out[i] = 0.0;
  912. for (j = 0; j <= HB_FIR_SIZE; j++)
  913. out[i] += data[i + j] * fir_coef[j];
  914. }
  915. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  916. }
  917. #endif /* hb_fir_filter */
  918. /**
  919. * Update context state before the next subframe.
  920. */
  921. static void update_sub_state(AMRWBContext *ctx)
  922. {
  923. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  924. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  925. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  926. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  927. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  928. LP_ORDER * sizeof(float));
  929. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  930. UPS_MEM_SIZE * sizeof(float));
  931. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  932. LP_ORDER_16k * sizeof(float));
  933. }
  934. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  935. int *got_frame_ptr, AVPacket *avpkt)
  936. {
  937. AMRWBContext *ctx = avctx->priv_data;
  938. AVFrame *frame = data;
  939. AMRWBFrame *cf = &ctx->frame;
  940. const uint8_t *buf = avpkt->data;
  941. int buf_size = avpkt->size;
  942. int expected_fr_size, header_size;
  943. float *buf_out;
  944. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  945. float fixed_gain_factor; // fixed gain correction factor (gamma)
  946. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  947. float synth_fixed_gain; // the fixed gain that synthesis should use
  948. float voice_fac, stab_fac; // parameters used for gain smoothing
  949. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  950. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  951. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  952. float hb_gain;
  953. int sub, i, ret;
  954. /* get output buffer */
  955. frame->nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  956. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  957. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  958. return ret;
  959. }
  960. buf_out = (float *)frame->data[0];
  961. header_size = decode_mime_header(ctx, buf);
  962. if (ctx->fr_cur_mode > MODE_SID) {
  963. av_log(avctx, AV_LOG_ERROR,
  964. "Invalid mode %d\n", ctx->fr_cur_mode);
  965. return AVERROR_INVALIDDATA;
  966. }
  967. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  968. if (buf_size < expected_fr_size) {
  969. av_log(avctx, AV_LOG_ERROR,
  970. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  971. *got_frame_ptr = 0;
  972. return AVERROR_INVALIDDATA;
  973. }
  974. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  975. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  976. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  977. av_log_missing_feature(avctx, "SID mode", 1);
  978. return AVERROR_PATCHWELCOME;
  979. }
  980. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  981. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  982. /* Decode the quantized ISF vector */
  983. if (ctx->fr_cur_mode == MODE_6k60) {
  984. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  985. } else {
  986. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  987. }
  988. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  989. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  990. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  991. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  992. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  993. /* Generate a ISP vector for each subframe */
  994. if (ctx->first_frame) {
  995. ctx->first_frame = 0;
  996. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  997. }
  998. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  999. for (sub = 0; sub < 4; sub++)
  1000. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  1001. for (sub = 0; sub < 4; sub++) {
  1002. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  1003. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  1004. /* Decode adaptive codebook (pitch vector) */
  1005. decode_pitch_vector(ctx, cur_subframe, sub);
  1006. /* Decode innovative codebook (fixed vector) */
  1007. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  1008. cur_subframe->pul_il, ctx->fr_cur_mode);
  1009. pitch_sharpening(ctx, ctx->fixed_vector);
  1010. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  1011. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1012. ctx->fixed_gain[0] =
  1013. ff_amr_set_fixed_gain(fixed_gain_factor,
  1014. ctx->celpm_ctx.dot_productf(ctx->fixed_vector,
  1015. ctx->fixed_vector,
  1016. AMRWB_SFR_SIZE) /
  1017. AMRWB_SFR_SIZE,
  1018. ctx->prediction_error,
  1019. ENERGY_MEAN, energy_pred_fac);
  1020. /* Calculate voice factor and store tilt for next subframe */
  1021. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1022. ctx->fixed_vector, ctx->fixed_gain[0],
  1023. &ctx->celpm_ctx);
  1024. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1025. /* Construct current excitation */
  1026. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1027. ctx->excitation[i] *= ctx->pitch_gain[0];
  1028. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1029. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1030. }
  1031. /* Post-processing of excitation elements */
  1032. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1033. voice_fac, stab_fac);
  1034. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1035. spare_vector);
  1036. pitch_enhancer(synth_fixed_vector, voice_fac);
  1037. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1038. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1039. /* Synthesis speech post-processing */
  1040. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1041. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1042. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1043. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1044. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1045. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1046. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1047. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1048. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1049. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1050. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1051. hb_gain = find_hb_gain(ctx, hb_samples,
  1052. cur_subframe->hb_gain, cf->vad);
  1053. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1054. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1055. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1056. /* High-band post-processing filters */
  1057. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1058. &ctx->samples_hb[LP_ORDER_16k]);
  1059. if (ctx->fr_cur_mode == MODE_23k85)
  1060. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1061. hb_samples);
  1062. /* Add the low and high frequency bands */
  1063. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1064. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1065. /* Update buffers and history */
  1066. update_sub_state(ctx);
  1067. }
  1068. /* update state for next frame */
  1069. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1070. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1071. *got_frame_ptr = 1;
  1072. return expected_fr_size;
  1073. }
  1074. AVCodec ff_amrwb_decoder = {
  1075. .name = "amrwb",
  1076. .type = AVMEDIA_TYPE_AUDIO,
  1077. .id = AV_CODEC_ID_AMR_WB,
  1078. .priv_data_size = sizeof(AMRWBContext),
  1079. .init = amrwb_decode_init,
  1080. .decode = amrwb_decode_frame,
  1081. .capabilities = CODEC_CAP_DR1,
  1082. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1083. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1084. AV_SAMPLE_FMT_NONE },
  1085. };