You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1788 lines
63KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. //#define DEBUG
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "unary.h"
  30. #include "mpeg4audio.h"
  31. #include "bytestream.h"
  32. #include "bgmc.h"
  33. #include "dsputil.h"
  34. #include "internal.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct {
  171. AVCodecContext *avctx;
  172. ALSSpecificConfig sconf;
  173. GetBitContext gb;
  174. DSPContext dsp;
  175. const AVCRC *crc_table;
  176. uint32_t crc_org; ///< CRC value of the original input data
  177. uint32_t crc; ///< CRC value calculated from decoded data
  178. unsigned int cur_frame_length; ///< length of the current frame to decode
  179. unsigned int frame_id; ///< the frame ID / number of the current frame
  180. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  181. unsigned int cs_switch; ///< if true, channel rearrangement is done
  182. unsigned int num_blocks; ///< number of blocks used in the current frame
  183. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  184. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  185. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  186. int ltp_lag_length; ///< number of bits used for ltp lag value
  187. int *const_block; ///< contains const_block flags for all channels
  188. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  189. unsigned int *opt_order; ///< contains opt_order flags for all channels
  190. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  191. int *use_ltp; ///< contains use_ltp flags for all channels
  192. int *ltp_lag; ///< contains ltp lag values for all channels
  193. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  194. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  195. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  196. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  197. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  198. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  199. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  200. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  201. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  202. int *reverted_channels; ///< stores a flag for each reverted channel
  203. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  204. int32_t **raw_samples; ///< decoded raw samples for each channel
  205. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  206. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  207. } ALSDecContext;
  208. typedef struct {
  209. unsigned int block_length; ///< number of samples within the block
  210. unsigned int ra_block; ///< if true, this is a random access block
  211. int *const_block; ///< if true, this is a constant value block
  212. int js_blocks; ///< true if this block contains a difference signal
  213. unsigned int *shift_lsbs; ///< shift of values for this block
  214. unsigned int *opt_order; ///< prediction order of this block
  215. int *store_prev_samples;///< if true, carryover samples have to be stored
  216. int *use_ltp; ///< if true, long-term prediction is used
  217. int *ltp_lag; ///< lag value for long-term prediction
  218. int *ltp_gain; ///< gain values for ltp 5-tap filter
  219. int32_t *quant_cof; ///< quantized parcor coefficients
  220. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  221. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  222. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  223. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  224. } ALSBlockData;
  225. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  226. {
  227. #ifdef DEBUG
  228. AVCodecContext *avctx = ctx->avctx;
  229. ALSSpecificConfig *sconf = &ctx->sconf;
  230. av_dlog(avctx, "resolution = %i\n", sconf->resolution);
  231. av_dlog(avctx, "floating = %i\n", sconf->floating);
  232. av_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  233. av_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  234. av_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  235. av_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  236. av_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  237. av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  238. av_dlog(avctx, "max_order = %i\n", sconf->max_order);
  239. av_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  240. av_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  241. av_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  242. av_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  243. av_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  244. av_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  245. av_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  246. av_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  247. av_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  248. #endif
  249. }
  250. /** Read an ALSSpecificConfig from a buffer into the output struct.
  251. */
  252. static av_cold int read_specific_config(ALSDecContext *ctx)
  253. {
  254. GetBitContext gb;
  255. uint64_t ht_size;
  256. int i, config_offset;
  257. MPEG4AudioConfig m4ac;
  258. ALSSpecificConfig *sconf = &ctx->sconf;
  259. AVCodecContext *avctx = ctx->avctx;
  260. uint32_t als_id, header_size, trailer_size;
  261. int ret;
  262. if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
  263. return ret;
  264. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  265. avctx->extradata_size * 8, 1);
  266. if (config_offset < 0)
  267. return -1;
  268. skip_bits_long(&gb, config_offset);
  269. if (get_bits_left(&gb) < (30 << 3))
  270. return -1;
  271. // read the fixed items
  272. als_id = get_bits_long(&gb, 32);
  273. avctx->sample_rate = m4ac.sample_rate;
  274. skip_bits_long(&gb, 32); // sample rate already known
  275. sconf->samples = get_bits_long(&gb, 32);
  276. avctx->channels = m4ac.channels;
  277. skip_bits(&gb, 16); // number of channels already known
  278. skip_bits(&gb, 3); // skip file_type
  279. sconf->resolution = get_bits(&gb, 3);
  280. sconf->floating = get_bits1(&gb);
  281. sconf->msb_first = get_bits1(&gb);
  282. sconf->frame_length = get_bits(&gb, 16) + 1;
  283. sconf->ra_distance = get_bits(&gb, 8);
  284. sconf->ra_flag = get_bits(&gb, 2);
  285. sconf->adapt_order = get_bits1(&gb);
  286. sconf->coef_table = get_bits(&gb, 2);
  287. sconf->long_term_prediction = get_bits1(&gb);
  288. sconf->max_order = get_bits(&gb, 10);
  289. sconf->block_switching = get_bits(&gb, 2);
  290. sconf->bgmc = get_bits1(&gb);
  291. sconf->sb_part = get_bits1(&gb);
  292. sconf->joint_stereo = get_bits1(&gb);
  293. sconf->mc_coding = get_bits1(&gb);
  294. sconf->chan_config = get_bits1(&gb);
  295. sconf->chan_sort = get_bits1(&gb);
  296. sconf->crc_enabled = get_bits1(&gb);
  297. sconf->rlslms = get_bits1(&gb);
  298. skip_bits(&gb, 5); // skip 5 reserved bits
  299. skip_bits1(&gb); // skip aux_data_enabled
  300. // check for ALSSpecificConfig struct
  301. if (als_id != MKBETAG('A','L','S','\0'))
  302. return -1;
  303. ctx->cur_frame_length = sconf->frame_length;
  304. // read channel config
  305. if (sconf->chan_config)
  306. sconf->chan_config_info = get_bits(&gb, 16);
  307. // TODO: use this to set avctx->channel_layout
  308. // read channel sorting
  309. if (sconf->chan_sort && avctx->channels > 1) {
  310. int chan_pos_bits = av_ceil_log2(avctx->channels);
  311. int bits_needed = avctx->channels * chan_pos_bits + 7;
  312. if (get_bits_left(&gb) < bits_needed)
  313. return -1;
  314. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  315. return AVERROR(ENOMEM);
  316. ctx->cs_switch = 1;
  317. for (i = 0; i < avctx->channels; i++) {
  318. int idx;
  319. idx = get_bits(&gb, chan_pos_bits);
  320. if (idx >= avctx->channels) {
  321. av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
  322. ctx->cs_switch = 0;
  323. break;
  324. }
  325. sconf->chan_pos[idx] = i;
  326. }
  327. align_get_bits(&gb);
  328. }
  329. // read fixed header and trailer sizes,
  330. // if size = 0xFFFFFFFF then there is no data field!
  331. if (get_bits_left(&gb) < 64)
  332. return -1;
  333. header_size = get_bits_long(&gb, 32);
  334. trailer_size = get_bits_long(&gb, 32);
  335. if (header_size == 0xFFFFFFFF)
  336. header_size = 0;
  337. if (trailer_size == 0xFFFFFFFF)
  338. trailer_size = 0;
  339. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  340. // skip the header and trailer data
  341. if (get_bits_left(&gb) < ht_size)
  342. return -1;
  343. if (ht_size > INT32_MAX)
  344. return -1;
  345. skip_bits_long(&gb, ht_size);
  346. // initialize CRC calculation
  347. if (sconf->crc_enabled) {
  348. if (get_bits_left(&gb) < 32)
  349. return -1;
  350. if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
  351. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  352. ctx->crc = 0xFFFFFFFF;
  353. ctx->crc_org = ~get_bits_long(&gb, 32);
  354. } else
  355. skip_bits_long(&gb, 32);
  356. }
  357. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  358. dprint_specific_config(ctx);
  359. return 0;
  360. }
  361. /** Check the ALSSpecificConfig for unsupported features.
  362. */
  363. static int check_specific_config(ALSDecContext *ctx)
  364. {
  365. ALSSpecificConfig *sconf = &ctx->sconf;
  366. int error = 0;
  367. // report unsupported feature and set error value
  368. #define MISSING_ERR(cond, str, errval) \
  369. { \
  370. if (cond) { \
  371. av_log_missing_feature(ctx->avctx, str, 0); \
  372. error = errval; \
  373. } \
  374. }
  375. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  376. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  377. return error;
  378. }
  379. /** Parse the bs_info field to extract the block partitioning used in
  380. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  381. */
  382. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  383. unsigned int div, unsigned int **div_blocks,
  384. unsigned int *num_blocks)
  385. {
  386. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  387. // if the level is valid and the investigated bit n is set
  388. // then recursively check both children at bits (2n+1) and (2n+2)
  389. n *= 2;
  390. div += 1;
  391. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  392. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  393. } else {
  394. // else the bit is not set or the last level has been reached
  395. // (bit implicitly not set)
  396. **div_blocks = div;
  397. (*div_blocks)++;
  398. (*num_blocks)++;
  399. }
  400. }
  401. /** Read and decode a Rice codeword.
  402. */
  403. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  404. {
  405. int max = get_bits_left(gb) - k;
  406. int q = get_unary(gb, 0, max);
  407. int r = k ? get_bits1(gb) : !(q & 1);
  408. if (k > 1) {
  409. q <<= (k - 1);
  410. q += get_bits_long(gb, k - 1);
  411. } else if (!k) {
  412. q >>= 1;
  413. }
  414. return r ? q : ~q;
  415. }
  416. /** Convert PARCOR coefficient k to direct filter coefficient.
  417. */
  418. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  419. {
  420. int i, j;
  421. for (i = 0, j = k - 1; i < j; i++, j--) {
  422. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  423. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  424. cof[i] += tmp1;
  425. }
  426. if (i == j)
  427. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  428. cof[k] = par[k];
  429. }
  430. /** Read block switching field if necessary and set actual block sizes.
  431. * Also assure that the block sizes of the last frame correspond to the
  432. * actual number of samples.
  433. */
  434. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  435. uint32_t *bs_info)
  436. {
  437. ALSSpecificConfig *sconf = &ctx->sconf;
  438. GetBitContext *gb = &ctx->gb;
  439. unsigned int *ptr_div_blocks = div_blocks;
  440. unsigned int b;
  441. if (sconf->block_switching) {
  442. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  443. *bs_info = get_bits_long(gb, bs_info_len);
  444. *bs_info <<= (32 - bs_info_len);
  445. }
  446. ctx->num_blocks = 0;
  447. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  448. // The last frame may have an overdetermined block structure given in
  449. // the bitstream. In that case the defined block structure would need
  450. // more samples than available to be consistent.
  451. // The block structure is actually used but the block sizes are adapted
  452. // to fit the actual number of available samples.
  453. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  454. // This results in the actual block sizes: 2 2 1 0.
  455. // This is not specified in 14496-3 but actually done by the reference
  456. // codec RM22 revision 2.
  457. // This appears to happen in case of an odd number of samples in the last
  458. // frame which is actually not allowed by the block length switching part
  459. // of 14496-3.
  460. // The ALS conformance files feature an odd number of samples in the last
  461. // frame.
  462. for (b = 0; b < ctx->num_blocks; b++)
  463. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  464. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  465. unsigned int remaining = ctx->cur_frame_length;
  466. for (b = 0; b < ctx->num_blocks; b++) {
  467. if (remaining <= div_blocks[b]) {
  468. div_blocks[b] = remaining;
  469. ctx->num_blocks = b + 1;
  470. break;
  471. }
  472. remaining -= div_blocks[b];
  473. }
  474. }
  475. }
  476. /** Read the block data for a constant block
  477. */
  478. static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  479. {
  480. ALSSpecificConfig *sconf = &ctx->sconf;
  481. AVCodecContext *avctx = ctx->avctx;
  482. GetBitContext *gb = &ctx->gb;
  483. if (bd->block_length <= 0)
  484. return AVERROR_INVALIDDATA;
  485. *bd->raw_samples = 0;
  486. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  487. bd->js_blocks = get_bits1(gb);
  488. // skip 5 reserved bits
  489. skip_bits(gb, 5);
  490. if (*bd->const_block) {
  491. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  492. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  493. }
  494. // ensure constant block decoding by reusing this field
  495. *bd->const_block = 1;
  496. return 0;
  497. }
  498. /** Decode the block data for a constant block
  499. */
  500. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  501. {
  502. int smp = bd->block_length - 1;
  503. int32_t val = *bd->raw_samples;
  504. int32_t *dst = bd->raw_samples + 1;
  505. // write raw samples into buffer
  506. for (; smp; smp--)
  507. *dst++ = val;
  508. }
  509. /** Read the block data for a non-constant block
  510. */
  511. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  512. {
  513. ALSSpecificConfig *sconf = &ctx->sconf;
  514. AVCodecContext *avctx = ctx->avctx;
  515. GetBitContext *gb = &ctx->gb;
  516. unsigned int k;
  517. unsigned int s[8];
  518. unsigned int sx[8];
  519. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  520. unsigned int start = 0;
  521. unsigned int opt_order;
  522. int sb;
  523. int32_t *quant_cof = bd->quant_cof;
  524. int32_t *current_res;
  525. // ensure variable block decoding by reusing this field
  526. *bd->const_block = 0;
  527. *bd->opt_order = 1;
  528. bd->js_blocks = get_bits1(gb);
  529. opt_order = *bd->opt_order;
  530. // determine the number of subblocks for entropy decoding
  531. if (!sconf->bgmc && !sconf->sb_part) {
  532. log2_sub_blocks = 0;
  533. } else {
  534. if (sconf->bgmc && sconf->sb_part)
  535. log2_sub_blocks = get_bits(gb, 2);
  536. else
  537. log2_sub_blocks = 2 * get_bits1(gb);
  538. }
  539. sub_blocks = 1 << log2_sub_blocks;
  540. // do not continue in case of a damaged stream since
  541. // block_length must be evenly divisible by sub_blocks
  542. if (bd->block_length & (sub_blocks - 1)) {
  543. av_log(avctx, AV_LOG_WARNING,
  544. "Block length is not evenly divisible by the number of subblocks.\n");
  545. return -1;
  546. }
  547. sb_length = bd->block_length >> log2_sub_blocks;
  548. if (sconf->bgmc) {
  549. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  550. for (k = 1; k < sub_blocks; k++)
  551. s[k] = s[k - 1] + decode_rice(gb, 2);
  552. for (k = 0; k < sub_blocks; k++) {
  553. sx[k] = s[k] & 0x0F;
  554. s [k] >>= 4;
  555. }
  556. } else {
  557. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  558. for (k = 1; k < sub_blocks; k++)
  559. s[k] = s[k - 1] + decode_rice(gb, 0);
  560. }
  561. for (k = 1; k < sub_blocks; k++)
  562. if (s[k] > 32) {
  563. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  564. return AVERROR_INVALIDDATA;
  565. }
  566. if (get_bits1(gb))
  567. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  568. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  569. if (!sconf->rlslms) {
  570. if (sconf->adapt_order) {
  571. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  572. 2, sconf->max_order + 1));
  573. *bd->opt_order = get_bits(gb, opt_order_length);
  574. if (*bd->opt_order > sconf->max_order) {
  575. *bd->opt_order = sconf->max_order;
  576. av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
  577. return AVERROR_INVALIDDATA;
  578. }
  579. } else {
  580. *bd->opt_order = sconf->max_order;
  581. }
  582. opt_order = *bd->opt_order;
  583. if (opt_order) {
  584. int add_base;
  585. if (sconf->coef_table == 3) {
  586. add_base = 0x7F;
  587. // read coefficient 0
  588. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  589. // read coefficient 1
  590. if (opt_order > 1)
  591. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  592. // read coefficients 2 to opt_order
  593. for (k = 2; k < opt_order; k++)
  594. quant_cof[k] = get_bits(gb, 7);
  595. } else {
  596. int k_max;
  597. add_base = 1;
  598. // read coefficient 0 to 19
  599. k_max = FFMIN(opt_order, 20);
  600. for (k = 0; k < k_max; k++) {
  601. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  602. int offset = parcor_rice_table[sconf->coef_table][k][0];
  603. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  604. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  605. av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range.\n", quant_cof[k]);
  606. return AVERROR_INVALIDDATA;
  607. }
  608. }
  609. // read coefficients 20 to 126
  610. k_max = FFMIN(opt_order, 127);
  611. for (; k < k_max; k++)
  612. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  613. // read coefficients 127 to opt_order
  614. for (; k < opt_order; k++)
  615. quant_cof[k] = decode_rice(gb, 1);
  616. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  617. if (opt_order > 1)
  618. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  619. }
  620. for (k = 2; k < opt_order; k++)
  621. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  622. }
  623. }
  624. // read LTP gain and lag values
  625. if (sconf->long_term_prediction) {
  626. *bd->use_ltp = get_bits1(gb);
  627. if (*bd->use_ltp) {
  628. int r, c;
  629. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  630. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  631. r = get_unary(gb, 0, 3);
  632. c = get_bits(gb, 2);
  633. bd->ltp_gain[2] = ltp_gain_values[r][c];
  634. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  635. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  636. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  637. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  638. }
  639. }
  640. // read first value and residuals in case of a random access block
  641. if (bd->ra_block) {
  642. if (opt_order)
  643. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  644. if (opt_order > 1)
  645. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  646. if (opt_order > 2)
  647. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  648. start = FFMIN(opt_order, 3);
  649. }
  650. // read all residuals
  651. if (sconf->bgmc) {
  652. int delta[8];
  653. unsigned int k [8];
  654. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  655. // read most significant bits
  656. unsigned int high;
  657. unsigned int low;
  658. unsigned int value;
  659. ff_bgmc_decode_init(gb, &high, &low, &value);
  660. current_res = bd->raw_samples + start;
  661. for (sb = 0; sb < sub_blocks; sb++) {
  662. unsigned int sb_len = sb_length - (sb ? 0 : start);
  663. k [sb] = s[sb] > b ? s[sb] - b : 0;
  664. delta[sb] = 5 - s[sb] + k[sb];
  665. ff_bgmc_decode(gb, sb_len, current_res,
  666. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  667. current_res += sb_len;
  668. }
  669. ff_bgmc_decode_end(gb);
  670. // read least significant bits and tails
  671. current_res = bd->raw_samples + start;
  672. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  673. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  674. unsigned int cur_k = k[sb];
  675. unsigned int cur_s = s[sb];
  676. for (; start < sb_length; start++) {
  677. int32_t res = *current_res;
  678. if (res == cur_tail_code) {
  679. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  680. << (5 - delta[sb]);
  681. res = decode_rice(gb, cur_s);
  682. if (res >= 0) {
  683. res += (max_msb ) << cur_k;
  684. } else {
  685. res -= (max_msb - 1) << cur_k;
  686. }
  687. } else {
  688. if (res > cur_tail_code)
  689. res--;
  690. if (res & 1)
  691. res = -res;
  692. res >>= 1;
  693. if (cur_k) {
  694. res <<= cur_k;
  695. res |= get_bits_long(gb, cur_k);
  696. }
  697. }
  698. *current_res++ = res;
  699. }
  700. }
  701. } else {
  702. current_res = bd->raw_samples + start;
  703. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  704. for (; start < sb_length; start++)
  705. *current_res++ = decode_rice(gb, s[sb]);
  706. }
  707. if (!sconf->mc_coding || ctx->js_switch)
  708. align_get_bits(gb);
  709. return 0;
  710. }
  711. /** Decode the block data for a non-constant block
  712. */
  713. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  714. {
  715. ALSSpecificConfig *sconf = &ctx->sconf;
  716. unsigned int block_length = bd->block_length;
  717. unsigned int smp = 0;
  718. unsigned int k;
  719. int opt_order = *bd->opt_order;
  720. int sb;
  721. int64_t y;
  722. int32_t *quant_cof = bd->quant_cof;
  723. int32_t *lpc_cof = bd->lpc_cof;
  724. int32_t *raw_samples = bd->raw_samples;
  725. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  726. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  727. // reverse long-term prediction
  728. if (*bd->use_ltp) {
  729. int ltp_smp;
  730. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  731. int center = ltp_smp - *bd->ltp_lag;
  732. int begin = FFMAX(0, center - 2);
  733. int end = center + 3;
  734. int tab = 5 - (end - begin);
  735. int base;
  736. y = 1 << 6;
  737. for (base = begin; base < end; base++, tab++)
  738. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  739. raw_samples[ltp_smp] += y >> 7;
  740. }
  741. }
  742. // reconstruct all samples from residuals
  743. if (bd->ra_block) {
  744. for (smp = 0; smp < opt_order; smp++) {
  745. y = 1 << 19;
  746. for (sb = 0; sb < smp; sb++)
  747. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  748. *raw_samples++ -= y >> 20;
  749. parcor_to_lpc(smp, quant_cof, lpc_cof);
  750. }
  751. } else {
  752. for (k = 0; k < opt_order; k++)
  753. parcor_to_lpc(k, quant_cof, lpc_cof);
  754. // store previous samples in case that they have to be altered
  755. if (*bd->store_prev_samples)
  756. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  757. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  758. // reconstruct difference signal for prediction (joint-stereo)
  759. if (bd->js_blocks && bd->raw_other) {
  760. int32_t *left, *right;
  761. if (bd->raw_other > raw_samples) { // D = R - L
  762. left = raw_samples;
  763. right = bd->raw_other;
  764. } else { // D = R - L
  765. left = bd->raw_other;
  766. right = raw_samples;
  767. }
  768. for (sb = -1; sb >= -sconf->max_order; sb--)
  769. raw_samples[sb] = right[sb] - left[sb];
  770. }
  771. // reconstruct shifted signal
  772. if (*bd->shift_lsbs)
  773. for (sb = -1; sb >= -sconf->max_order; sb--)
  774. raw_samples[sb] >>= *bd->shift_lsbs;
  775. }
  776. // reverse linear prediction coefficients for efficiency
  777. lpc_cof = lpc_cof + opt_order;
  778. for (sb = 0; sb < opt_order; sb++)
  779. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  780. // reconstruct raw samples
  781. raw_samples = bd->raw_samples + smp;
  782. lpc_cof = lpc_cof_reversed + opt_order;
  783. for (; raw_samples < raw_samples_end; raw_samples++) {
  784. y = 1 << 19;
  785. for (sb = -opt_order; sb < 0; sb++)
  786. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  787. *raw_samples -= y >> 20;
  788. }
  789. raw_samples = bd->raw_samples;
  790. // restore previous samples in case that they have been altered
  791. if (*bd->store_prev_samples)
  792. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  793. sizeof(*raw_samples) * sconf->max_order);
  794. return 0;
  795. }
  796. /** Read the block data.
  797. */
  798. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  799. {
  800. GetBitContext *gb = &ctx->gb;
  801. int ret;
  802. *bd->shift_lsbs = 0;
  803. // read block type flag and read the samples accordingly
  804. if (get_bits1(gb)) {
  805. if ((ret = read_var_block_data(ctx, bd)) < 0)
  806. return ret;
  807. } else {
  808. if ((ret = read_const_block_data(ctx, bd)) < 0)
  809. return ret;
  810. }
  811. return 0;
  812. }
  813. /** Decode the block data.
  814. */
  815. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  816. {
  817. unsigned int smp;
  818. // read block type flag and read the samples accordingly
  819. if (*bd->const_block)
  820. decode_const_block_data(ctx, bd);
  821. else if (decode_var_block_data(ctx, bd))
  822. return -1;
  823. // TODO: read RLSLMS extension data
  824. if (*bd->shift_lsbs)
  825. for (smp = 0; smp < bd->block_length; smp++)
  826. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  827. return 0;
  828. }
  829. /** Read and decode block data successively.
  830. */
  831. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  832. {
  833. int ret;
  834. ret = read_block(ctx, bd);
  835. if (ret)
  836. return ret;
  837. ret = decode_block(ctx, bd);
  838. return ret;
  839. }
  840. /** Compute the number of samples left to decode for the current frame and
  841. * sets these samples to zero.
  842. */
  843. static void zero_remaining(unsigned int b, unsigned int b_max,
  844. const unsigned int *div_blocks, int32_t *buf)
  845. {
  846. unsigned int count = 0;
  847. while (b < b_max)
  848. count += div_blocks[b++];
  849. if (count)
  850. memset(buf, 0, sizeof(*buf) * count);
  851. }
  852. /** Decode blocks independently.
  853. */
  854. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  855. unsigned int c, const unsigned int *div_blocks,
  856. unsigned int *js_blocks)
  857. {
  858. unsigned int b;
  859. ALSBlockData bd = { 0 };
  860. bd.ra_block = ra_frame;
  861. bd.const_block = ctx->const_block;
  862. bd.shift_lsbs = ctx->shift_lsbs;
  863. bd.opt_order = ctx->opt_order;
  864. bd.store_prev_samples = ctx->store_prev_samples;
  865. bd.use_ltp = ctx->use_ltp;
  866. bd.ltp_lag = ctx->ltp_lag;
  867. bd.ltp_gain = ctx->ltp_gain[0];
  868. bd.quant_cof = ctx->quant_cof[0];
  869. bd.lpc_cof = ctx->lpc_cof[0];
  870. bd.prev_raw_samples = ctx->prev_raw_samples;
  871. bd.raw_samples = ctx->raw_samples[c];
  872. for (b = 0; b < ctx->num_blocks; b++) {
  873. bd.block_length = div_blocks[b];
  874. if (read_decode_block(ctx, &bd)) {
  875. // damaged block, write zero for the rest of the frame
  876. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  877. return -1;
  878. }
  879. bd.raw_samples += div_blocks[b];
  880. bd.ra_block = 0;
  881. }
  882. return 0;
  883. }
  884. /** Decode blocks dependently.
  885. */
  886. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  887. unsigned int c, const unsigned int *div_blocks,
  888. unsigned int *js_blocks)
  889. {
  890. ALSSpecificConfig *sconf = &ctx->sconf;
  891. unsigned int offset = 0;
  892. unsigned int b;
  893. ALSBlockData bd[2] = { { 0 } };
  894. bd[0].ra_block = ra_frame;
  895. bd[0].const_block = ctx->const_block;
  896. bd[0].shift_lsbs = ctx->shift_lsbs;
  897. bd[0].opt_order = ctx->opt_order;
  898. bd[0].store_prev_samples = ctx->store_prev_samples;
  899. bd[0].use_ltp = ctx->use_ltp;
  900. bd[0].ltp_lag = ctx->ltp_lag;
  901. bd[0].ltp_gain = ctx->ltp_gain[0];
  902. bd[0].quant_cof = ctx->quant_cof[0];
  903. bd[0].lpc_cof = ctx->lpc_cof[0];
  904. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  905. bd[0].js_blocks = *js_blocks;
  906. bd[1].ra_block = ra_frame;
  907. bd[1].const_block = ctx->const_block;
  908. bd[1].shift_lsbs = ctx->shift_lsbs;
  909. bd[1].opt_order = ctx->opt_order;
  910. bd[1].store_prev_samples = ctx->store_prev_samples;
  911. bd[1].use_ltp = ctx->use_ltp;
  912. bd[1].ltp_lag = ctx->ltp_lag;
  913. bd[1].ltp_gain = ctx->ltp_gain[0];
  914. bd[1].quant_cof = ctx->quant_cof[0];
  915. bd[1].lpc_cof = ctx->lpc_cof[0];
  916. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  917. bd[1].js_blocks = *(js_blocks + 1);
  918. // decode all blocks
  919. for (b = 0; b < ctx->num_blocks; b++) {
  920. unsigned int s;
  921. bd[0].block_length = div_blocks[b];
  922. bd[1].block_length = div_blocks[b];
  923. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  924. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  925. bd[0].raw_other = bd[1].raw_samples;
  926. bd[1].raw_other = bd[0].raw_samples;
  927. if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
  928. // damaged block, write zero for the rest of the frame
  929. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  930. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  931. return -1;
  932. }
  933. // reconstruct joint-stereo blocks
  934. if (bd[0].js_blocks) {
  935. if (bd[1].js_blocks)
  936. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
  937. for (s = 0; s < div_blocks[b]; s++)
  938. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  939. } else if (bd[1].js_blocks) {
  940. for (s = 0; s < div_blocks[b]; s++)
  941. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  942. }
  943. offset += div_blocks[b];
  944. bd[0].ra_block = 0;
  945. bd[1].ra_block = 0;
  946. }
  947. // store carryover raw samples,
  948. // the others channel raw samples are stored by the calling function.
  949. memmove(ctx->raw_samples[c] - sconf->max_order,
  950. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  951. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  952. return 0;
  953. }
  954. /** Read the channel data.
  955. */
  956. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  957. {
  958. GetBitContext *gb = &ctx->gb;
  959. ALSChannelData *current = cd;
  960. unsigned int channels = ctx->avctx->channels;
  961. int entries = 0;
  962. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  963. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  964. if (current->master_channel >= channels) {
  965. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
  966. return -1;
  967. }
  968. if (current->master_channel != c) {
  969. current->time_diff_flag = get_bits1(gb);
  970. current->weighting[0] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  971. current->weighting[1] = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 31)];
  972. current->weighting[2] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  973. if (current->time_diff_flag) {
  974. current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  975. current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  976. current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
  977. current->time_diff_sign = get_bits1(gb);
  978. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  979. }
  980. }
  981. current++;
  982. entries++;
  983. }
  984. if (entries == channels) {
  985. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
  986. return -1;
  987. }
  988. align_get_bits(gb);
  989. return 0;
  990. }
  991. /** Recursively reverts the inter-channel correlation for a block.
  992. */
  993. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  994. ALSChannelData **cd, int *reverted,
  995. unsigned int offset, int c)
  996. {
  997. ALSChannelData *ch = cd[c];
  998. unsigned int dep = 0;
  999. unsigned int channels = ctx->avctx->channels;
  1000. if (reverted[c])
  1001. return 0;
  1002. reverted[c] = 1;
  1003. while (dep < channels && !ch[dep].stop_flag) {
  1004. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1005. ch[dep].master_channel);
  1006. dep++;
  1007. }
  1008. if (dep == channels) {
  1009. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
  1010. return -1;
  1011. }
  1012. bd->const_block = ctx->const_block + c;
  1013. bd->shift_lsbs = ctx->shift_lsbs + c;
  1014. bd->opt_order = ctx->opt_order + c;
  1015. bd->store_prev_samples = ctx->store_prev_samples + c;
  1016. bd->use_ltp = ctx->use_ltp + c;
  1017. bd->ltp_lag = ctx->ltp_lag + c;
  1018. bd->ltp_gain = ctx->ltp_gain[c];
  1019. bd->lpc_cof = ctx->lpc_cof[c];
  1020. bd->quant_cof = ctx->quant_cof[c];
  1021. bd->raw_samples = ctx->raw_samples[c] + offset;
  1022. dep = 0;
  1023. while (!ch[dep].stop_flag) {
  1024. unsigned int smp;
  1025. unsigned int begin = 1;
  1026. unsigned int end = bd->block_length - 1;
  1027. int64_t y;
  1028. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1029. if (ch[dep].time_diff_flag) {
  1030. int t = ch[dep].time_diff_index;
  1031. if (ch[dep].time_diff_sign) {
  1032. t = -t;
  1033. begin -= t;
  1034. } else {
  1035. end -= t;
  1036. }
  1037. for (smp = begin; smp < end; smp++) {
  1038. y = (1 << 6) +
  1039. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1040. MUL64(ch[dep].weighting[1], master[smp ]) +
  1041. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1042. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1043. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1044. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1045. bd->raw_samples[smp] += y >> 7;
  1046. }
  1047. } else {
  1048. for (smp = begin; smp < end; smp++) {
  1049. y = (1 << 6) +
  1050. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1051. MUL64(ch[dep].weighting[1], master[smp ]) +
  1052. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1053. bd->raw_samples[smp] += y >> 7;
  1054. }
  1055. }
  1056. dep++;
  1057. }
  1058. return 0;
  1059. }
  1060. /** Read the frame data.
  1061. */
  1062. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1063. {
  1064. ALSSpecificConfig *sconf = &ctx->sconf;
  1065. AVCodecContext *avctx = ctx->avctx;
  1066. GetBitContext *gb = &ctx->gb;
  1067. unsigned int div_blocks[32]; ///< block sizes.
  1068. unsigned int c;
  1069. unsigned int js_blocks[2];
  1070. uint32_t bs_info = 0;
  1071. // skip the size of the ra unit if present in the frame
  1072. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1073. skip_bits_long(gb, 32);
  1074. if (sconf->mc_coding && sconf->joint_stereo) {
  1075. ctx->js_switch = get_bits1(gb);
  1076. align_get_bits(gb);
  1077. }
  1078. if (!sconf->mc_coding || ctx->js_switch) {
  1079. int independent_bs = !sconf->joint_stereo;
  1080. for (c = 0; c < avctx->channels; c++) {
  1081. js_blocks[0] = 0;
  1082. js_blocks[1] = 0;
  1083. get_block_sizes(ctx, div_blocks, &bs_info);
  1084. // if joint_stereo and block_switching is set, independent decoding
  1085. // is signaled via the first bit of bs_info
  1086. if (sconf->joint_stereo && sconf->block_switching)
  1087. if (bs_info >> 31)
  1088. independent_bs = 2;
  1089. // if this is the last channel, it has to be decoded independently
  1090. if (c == avctx->channels - 1)
  1091. independent_bs = 1;
  1092. if (independent_bs) {
  1093. if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
  1094. return -1;
  1095. independent_bs--;
  1096. } else {
  1097. if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
  1098. return -1;
  1099. c++;
  1100. }
  1101. // store carryover raw samples
  1102. memmove(ctx->raw_samples[c] - sconf->max_order,
  1103. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1104. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1105. }
  1106. } else { // multi-channel coding
  1107. ALSBlockData bd = { 0 };
  1108. int b, ret;
  1109. int *reverted_channels = ctx->reverted_channels;
  1110. unsigned int offset = 0;
  1111. for (c = 0; c < avctx->channels; c++)
  1112. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1113. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
  1114. return -1;
  1115. }
  1116. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1117. bd.ra_block = ra_frame;
  1118. bd.prev_raw_samples = ctx->prev_raw_samples;
  1119. get_block_sizes(ctx, div_blocks, &bs_info);
  1120. for (b = 0; b < ctx->num_blocks; b++) {
  1121. bd.block_length = div_blocks[b];
  1122. for (c = 0; c < avctx->channels; c++) {
  1123. bd.const_block = ctx->const_block + c;
  1124. bd.shift_lsbs = ctx->shift_lsbs + c;
  1125. bd.opt_order = ctx->opt_order + c;
  1126. bd.store_prev_samples = ctx->store_prev_samples + c;
  1127. bd.use_ltp = ctx->use_ltp + c;
  1128. bd.ltp_lag = ctx->ltp_lag + c;
  1129. bd.ltp_gain = ctx->ltp_gain[c];
  1130. bd.lpc_cof = ctx->lpc_cof[c];
  1131. bd.quant_cof = ctx->quant_cof[c];
  1132. bd.raw_samples = ctx->raw_samples[c] + offset;
  1133. bd.raw_other = NULL;
  1134. if ((ret = read_block(ctx, &bd)) < 0)
  1135. return ret;
  1136. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1137. return ret;
  1138. }
  1139. for (c = 0; c < avctx->channels; c++)
  1140. if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1141. reverted_channels, offset, c))
  1142. return -1;
  1143. for (c = 0; c < avctx->channels; c++) {
  1144. bd.const_block = ctx->const_block + c;
  1145. bd.shift_lsbs = ctx->shift_lsbs + c;
  1146. bd.opt_order = ctx->opt_order + c;
  1147. bd.store_prev_samples = ctx->store_prev_samples + c;
  1148. bd.use_ltp = ctx->use_ltp + c;
  1149. bd.ltp_lag = ctx->ltp_lag + c;
  1150. bd.ltp_gain = ctx->ltp_gain[c];
  1151. bd.lpc_cof = ctx->lpc_cof[c];
  1152. bd.quant_cof = ctx->quant_cof[c];
  1153. bd.raw_samples = ctx->raw_samples[c] + offset;
  1154. if ((ret = decode_block(ctx, &bd)) < 0)
  1155. return ret;
  1156. }
  1157. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1158. offset += div_blocks[b];
  1159. bd.ra_block = 0;
  1160. }
  1161. // store carryover raw samples
  1162. for (c = 0; c < avctx->channels; c++)
  1163. memmove(ctx->raw_samples[c] - sconf->max_order,
  1164. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1165. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1166. }
  1167. // TODO: read_diff_float_data
  1168. return 0;
  1169. }
  1170. /** Decode an ALS frame.
  1171. */
  1172. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1173. AVPacket *avpkt)
  1174. {
  1175. ALSDecContext *ctx = avctx->priv_data;
  1176. AVFrame *frame = data;
  1177. ALSSpecificConfig *sconf = &ctx->sconf;
  1178. const uint8_t *buffer = avpkt->data;
  1179. int buffer_size = avpkt->size;
  1180. int invalid_frame, ret;
  1181. unsigned int c, sample, ra_frame, bytes_read, shift;
  1182. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1183. // In the case that the distance between random access frames is set to zero
  1184. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1185. // For the first frame, if prediction is used, all samples used from the
  1186. // previous frame are assumed to be zero.
  1187. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1188. // the last frame to decode might have a different length
  1189. if (sconf->samples != 0xFFFFFFFF)
  1190. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1191. sconf->frame_length);
  1192. else
  1193. ctx->cur_frame_length = sconf->frame_length;
  1194. // decode the frame data
  1195. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1196. av_log(ctx->avctx, AV_LOG_WARNING,
  1197. "Reading frame data failed. Skipping RA unit.\n");
  1198. ctx->frame_id++;
  1199. /* get output buffer */
  1200. frame->nb_samples = ctx->cur_frame_length;
  1201. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1202. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed.\n");
  1203. return ret;
  1204. }
  1205. // transform decoded frame into output format
  1206. #define INTERLEAVE_OUTPUT(bps) \
  1207. { \
  1208. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1209. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1210. if (!ctx->cs_switch) { \
  1211. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1212. for (c = 0; c < avctx->channels; c++) \
  1213. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1214. } else { \
  1215. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1216. for (c = 0; c < avctx->channels; c++) \
  1217. *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
  1218. } \
  1219. }
  1220. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1221. INTERLEAVE_OUTPUT(16)
  1222. } else {
  1223. INTERLEAVE_OUTPUT(32)
  1224. }
  1225. // update CRC
  1226. if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1227. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1228. if (ctx->avctx->bits_per_raw_sample == 24) {
  1229. int32_t *src = (int32_t *)frame->data[0];
  1230. for (sample = 0;
  1231. sample < ctx->cur_frame_length * avctx->channels;
  1232. sample++) {
  1233. int32_t v;
  1234. if (swap)
  1235. v = av_bswap32(src[sample]);
  1236. else
  1237. v = src[sample];
  1238. if (!HAVE_BIGENDIAN)
  1239. v >>= 8;
  1240. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1241. }
  1242. } else {
  1243. uint8_t *crc_source;
  1244. if (swap) {
  1245. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1246. int16_t *src = (int16_t*) frame->data[0];
  1247. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1248. for (sample = 0;
  1249. sample < ctx->cur_frame_length * avctx->channels;
  1250. sample++)
  1251. *dest++ = av_bswap16(src[sample]);
  1252. } else {
  1253. ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
  1254. (uint32_t *)frame->data[0],
  1255. ctx->cur_frame_length * avctx->channels);
  1256. }
  1257. crc_source = ctx->crc_buffer;
  1258. } else {
  1259. crc_source = frame->data[0];
  1260. }
  1261. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1262. ctx->cur_frame_length * avctx->channels *
  1263. av_get_bytes_per_sample(avctx->sample_fmt));
  1264. }
  1265. // check CRC sums if this is the last frame
  1266. if (ctx->cur_frame_length != sconf->frame_length &&
  1267. ctx->crc_org != ctx->crc) {
  1268. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1269. }
  1270. }
  1271. *got_frame_ptr = 1;
  1272. bytes_read = invalid_frame ? buffer_size :
  1273. (get_bits_count(&ctx->gb) + 7) >> 3;
  1274. return bytes_read;
  1275. }
  1276. /** Uninitialize the ALS decoder.
  1277. */
  1278. static av_cold int decode_end(AVCodecContext *avctx)
  1279. {
  1280. ALSDecContext *ctx = avctx->priv_data;
  1281. av_freep(&ctx->sconf.chan_pos);
  1282. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1283. av_freep(&ctx->const_block);
  1284. av_freep(&ctx->shift_lsbs);
  1285. av_freep(&ctx->opt_order);
  1286. av_freep(&ctx->store_prev_samples);
  1287. av_freep(&ctx->use_ltp);
  1288. av_freep(&ctx->ltp_lag);
  1289. av_freep(&ctx->ltp_gain);
  1290. av_freep(&ctx->ltp_gain_buffer);
  1291. av_freep(&ctx->quant_cof);
  1292. av_freep(&ctx->lpc_cof);
  1293. av_freep(&ctx->quant_cof_buffer);
  1294. av_freep(&ctx->lpc_cof_buffer);
  1295. av_freep(&ctx->lpc_cof_reversed_buffer);
  1296. av_freep(&ctx->prev_raw_samples);
  1297. av_freep(&ctx->raw_samples);
  1298. av_freep(&ctx->raw_buffer);
  1299. av_freep(&ctx->chan_data);
  1300. av_freep(&ctx->chan_data_buffer);
  1301. av_freep(&ctx->reverted_channels);
  1302. av_freep(&ctx->crc_buffer);
  1303. return 0;
  1304. }
  1305. /** Initialize the ALS decoder.
  1306. */
  1307. static av_cold int decode_init(AVCodecContext *avctx)
  1308. {
  1309. unsigned int c;
  1310. unsigned int channel_size;
  1311. int num_buffers;
  1312. ALSDecContext *ctx = avctx->priv_data;
  1313. ALSSpecificConfig *sconf = &ctx->sconf;
  1314. ctx->avctx = avctx;
  1315. if (!avctx->extradata) {
  1316. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1317. return -1;
  1318. }
  1319. if (read_specific_config(ctx)) {
  1320. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1321. decode_end(avctx);
  1322. return -1;
  1323. }
  1324. if (check_specific_config(ctx)) {
  1325. decode_end(avctx);
  1326. return -1;
  1327. }
  1328. if (sconf->bgmc)
  1329. ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1330. if (sconf->floating) {
  1331. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1332. avctx->bits_per_raw_sample = 32;
  1333. } else {
  1334. avctx->sample_fmt = sconf->resolution > 1
  1335. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1336. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1337. }
  1338. // set maximum Rice parameter for progressive decoding based on resolution
  1339. // This is not specified in 14496-3 but actually done by the reference
  1340. // codec RM22 revision 2.
  1341. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1342. // set lag value for long-term prediction
  1343. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1344. (avctx->sample_rate >= 192000);
  1345. // allocate quantized parcor coefficient buffer
  1346. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1347. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1348. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1349. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1350. num_buffers * sconf->max_order);
  1351. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1352. num_buffers * sconf->max_order);
  1353. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1354. sconf->max_order);
  1355. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1356. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1357. !ctx->lpc_cof_reversed_buffer) {
  1358. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1359. return AVERROR(ENOMEM);
  1360. }
  1361. // assign quantized parcor coefficient buffers
  1362. for (c = 0; c < num_buffers; c++) {
  1363. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1364. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1365. }
  1366. // allocate and assign lag and gain data buffer for ltp mode
  1367. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1368. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1369. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1370. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1371. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1372. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1373. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1374. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1375. num_buffers * 5);
  1376. if (!ctx->const_block || !ctx->shift_lsbs ||
  1377. !ctx->opt_order || !ctx->store_prev_samples ||
  1378. !ctx->use_ltp || !ctx->ltp_lag ||
  1379. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1380. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1381. decode_end(avctx);
  1382. return AVERROR(ENOMEM);
  1383. }
  1384. for (c = 0; c < num_buffers; c++)
  1385. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1386. // allocate and assign channel data buffer for mcc mode
  1387. if (sconf->mc_coding) {
  1388. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1389. num_buffers * num_buffers);
  1390. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1391. num_buffers);
  1392. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1393. num_buffers);
  1394. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1395. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1396. decode_end(avctx);
  1397. return AVERROR(ENOMEM);
  1398. }
  1399. for (c = 0; c < num_buffers; c++)
  1400. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1401. } else {
  1402. ctx->chan_data = NULL;
  1403. ctx->chan_data_buffer = NULL;
  1404. ctx->reverted_channels = NULL;
  1405. }
  1406. channel_size = sconf->frame_length + sconf->max_order;
  1407. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1408. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1409. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1410. // allocate previous raw sample buffer
  1411. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1412. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1413. decode_end(avctx);
  1414. return AVERROR(ENOMEM);
  1415. }
  1416. // assign raw samples buffers
  1417. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1418. for (c = 1; c < avctx->channels; c++)
  1419. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1420. // allocate crc buffer
  1421. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1422. (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
  1423. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1424. ctx->cur_frame_length *
  1425. avctx->channels *
  1426. av_get_bytes_per_sample(avctx->sample_fmt));
  1427. if (!ctx->crc_buffer) {
  1428. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1429. decode_end(avctx);
  1430. return AVERROR(ENOMEM);
  1431. }
  1432. }
  1433. ff_dsputil_init(&ctx->dsp, avctx);
  1434. return 0;
  1435. }
  1436. /** Flush (reset) the frame ID after seeking.
  1437. */
  1438. static av_cold void flush(AVCodecContext *avctx)
  1439. {
  1440. ALSDecContext *ctx = avctx->priv_data;
  1441. ctx->frame_id = 0;
  1442. }
  1443. AVCodec ff_als_decoder = {
  1444. .name = "als",
  1445. .type = AVMEDIA_TYPE_AUDIO,
  1446. .id = AV_CODEC_ID_MP4ALS,
  1447. .priv_data_size = sizeof(ALSDecContext),
  1448. .init = decode_init,
  1449. .close = decode_end,
  1450. .decode = decode_frame,
  1451. .flush = flush,
  1452. .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
  1453. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1454. };