You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1328 lines
45KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file rv34.c
  23. * RV30/40 decoder common data
  24. */
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "golomb.h"
  29. #include "rectangle.h"
  30. #include "rv34vlc.h"
  31. #include "rv34data.h"
  32. #include "rv34.h"
  33. //#define DEBUG
  34. /** translation of RV30/40 macroblock types to lavc ones */
  35. static const int rv34_mb_type_to_lavc[12] = {
  36. MB_TYPE_INTRA,
  37. MB_TYPE_INTRA16x16,
  38. MB_TYPE_16x16 | MB_TYPE_L0,
  39. MB_TYPE_8x8 | MB_TYPE_L0,
  40. MB_TYPE_16x16 | MB_TYPE_L0,
  41. MB_TYPE_16x16 | MB_TYPE_L1,
  42. MB_TYPE_SKIP,
  43. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  44. MB_TYPE_16x8 | MB_TYPE_L0,
  45. MB_TYPE_8x16 | MB_TYPE_L0,
  46. MB_TYPE_16x16 | MB_TYPE_L0L1,
  47. MB_TYPE_16x16 | MB_TYPE_L0
  48. };
  49. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  50. /**
  51. * @defgroup vlc RV30/40 VLC generating functions
  52. * @{
  53. */
  54. /**
  55. * Generate VLC from codeword lengths.
  56. * @param bits codeword lengths (zeroes are accepted)
  57. * @param size length of input data
  58. * @param insyms symbols for input codes (NULL for default ones)
  59. */
  60. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms)
  61. {
  62. int i;
  63. int counts[17] = {0}, codes[17];
  64. uint16_t cw[size], syms[size];
  65. uint8_t bits2[size];
  66. int maxbits = 0, realsize = 0;
  67. for(i = 0; i < size; i++){
  68. if(bits[i]){
  69. bits2[realsize] = bits[i];
  70. syms[realsize] = insyms ? insyms[i] : i;
  71. realsize++;
  72. maxbits = FFMAX(maxbits, bits[i]);
  73. counts[bits[i]]++;
  74. }
  75. }
  76. codes[0] = 0;
  77. for(i = 0; i < 16; i++)
  78. codes[i+1] = (codes[i] + counts[i]) << 1;
  79. for(i = 0; i < realsize; i++)
  80. cw[i] = codes[bits2[i]]++;
  81. init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  82. bits2, 1, 1,
  83. cw, 2, 2,
  84. syms, 2, 2, INIT_VLC_USE_STATIC);
  85. }
  86. /**
  87. * Initialize all tables.
  88. */
  89. static av_cold void rv34_init_tables()
  90. {
  91. int i, j, k;
  92. for(i = 0; i < NUM_INTRA_TABLES; i++){
  93. for(j = 0; j < 2; j++){
  94. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL);
  95. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL);
  96. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL);
  97. for(k = 0; k < 4; k++)
  98. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code);
  99. }
  100. for(j = 0; j < 4; j++)
  101. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL);
  102. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL);
  103. }
  104. for(i = 0; i < NUM_INTER_TABLES; i++){
  105. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL);
  106. for(j = 0; j < 4; j++)
  107. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code);
  108. for(j = 0; j < 2; j++){
  109. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL);
  110. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL);
  111. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL);
  112. }
  113. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL);
  114. }
  115. }
  116. /** @} */ // vlc group
  117. /**
  118. * @defgroup transform RV30/40 inverse transform functions
  119. * @{
  120. */
  121. static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
  122. {
  123. int i;
  124. for(i=0; i<4; i++){
  125. const int z0= 13*(block[i+8*0] + block[i+8*2]);
  126. const int z1= 13*(block[i+8*0] - block[i+8*2]);
  127. const int z2= 7* block[i+8*1] - 17*block[i+8*3];
  128. const int z3= 17* block[i+8*1] + 7*block[i+8*3];
  129. temp[4*i+0]= z0+z3;
  130. temp[4*i+1]= z1+z2;
  131. temp[4*i+2]= z1-z2;
  132. temp[4*i+3]= z0-z3;
  133. }
  134. }
  135. /**
  136. * Real Video 3.0/4.0 inverse transform
  137. * Code is almost the same as in SVQ3, only scaling is different.
  138. */
  139. static void rv34_inv_transform(DCTELEM *block){
  140. int temp[16];
  141. int i;
  142. rv34_row_transform(temp, block);
  143. for(i=0; i<4; i++){
  144. const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
  145. const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
  146. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  147. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  148. block[i*8+0]= (z0 + z3)>>10;
  149. block[i*8+1]= (z1 + z2)>>10;
  150. block[i*8+2]= (z1 - z2)>>10;
  151. block[i*8+3]= (z0 - z3)>>10;
  152. }
  153. }
  154. /**
  155. * RealVideo 3.0/4.0 inverse transform for DC block
  156. *
  157. * Code is almost the same as rv34_inv_transform()
  158. * but final coefficients are multiplied by 1.5 and have no rounding.
  159. */
  160. static void rv34_inv_transform_noround(DCTELEM *block){
  161. int temp[16];
  162. int i;
  163. rv34_row_transform(temp, block);
  164. for(i=0; i<4; i++){
  165. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  166. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  167. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  168. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  169. block[i*8+0]= ((z0 + z3)*3)>>11;
  170. block[i*8+1]= ((z1 + z2)*3)>>11;
  171. block[i*8+2]= ((z1 - z2)*3)>>11;
  172. block[i*8+3]= ((z0 - z3)*3)>>11;
  173. }
  174. }
  175. /** @} */ // transform
  176. /**
  177. * @defgroup block RV30/40 4x4 block decoding functions
  178. * @{
  179. */
  180. /**
  181. * Decode coded block pattern.
  182. */
  183. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  184. {
  185. int pattern, code, cbp=0;
  186. int ones;
  187. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  188. static const int shifts[4] = { 0, 2, 8, 10 };
  189. int *curshift = shifts;
  190. int i, t, mask;
  191. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  192. pattern = code & 0xF;
  193. code >>= 4;
  194. ones = rv34_count_ones[pattern];
  195. for(mask = 8; mask; mask >>= 1, curshift++){
  196. if(pattern & mask)
  197. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  198. }
  199. for(i = 0; i < 4; i++){
  200. t = modulo_three_table[code][i];
  201. if(t == 1)
  202. cbp |= cbp_masks[get_bits1(gb)] << i;
  203. if(t == 2)
  204. cbp |= cbp_masks[2] << i;
  205. }
  206. return cbp;
  207. }
  208. /**
  209. * Get one coefficient value from the bistream and store it.
  210. */
  211. static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
  212. {
  213. if(coef){
  214. if(coef == esc){
  215. coef = get_vlc2(gb, vlc->table, 9, 2);
  216. if(coef > 23){
  217. coef -= 23;
  218. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  219. }
  220. coef += esc;
  221. }
  222. if(get_bits1(gb))
  223. coef = -coef;
  224. *dst = coef;
  225. }
  226. }
  227. /**
  228. * Decode 2x2 subblock of coefficients.
  229. */
  230. static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
  231. {
  232. int coeffs[4];
  233. coeffs[0] = modulo_three_table[code][0];
  234. coeffs[1] = modulo_three_table[code][1];
  235. coeffs[2] = modulo_three_table[code][2];
  236. coeffs[3] = modulo_three_table[code][3];
  237. decode_coeff(dst , coeffs[0], 3, gb, vlc);
  238. if(is_block2){
  239. decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
  240. decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
  241. }else{
  242. decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
  243. decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
  244. }
  245. decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
  246. }
  247. /**
  248. * Decode coefficients for 4x4 block.
  249. *
  250. * This is done by filling 2x2 subblocks with decoded coefficients
  251. * in this order (the same for subblocks and subblock coefficients):
  252. * o--o
  253. * /
  254. * /
  255. * o--o
  256. */
  257. static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
  258. {
  259. int code, pattern;
  260. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  261. pattern = code & 0x7;
  262. code >>= 3;
  263. decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
  264. if(pattern & 4){
  265. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  266. decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
  267. }
  268. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  269. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  270. decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
  271. }
  272. if(pattern & 1){
  273. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  274. decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
  275. }
  276. }
  277. /**
  278. * Dequantize ordinary 4x4 block.
  279. * @todo optimize
  280. */
  281. static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
  282. {
  283. int i, j;
  284. block[0] = (block[0] * Qdc + 8) >> 4;
  285. for(i = 0; i < 4; i++)
  286. for(j = !i; j < 4; j++)
  287. block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
  288. }
  289. /**
  290. * Dequantize 4x4 block of DC values for 16x16 macroblock.
  291. * @todo optimize
  292. */
  293. static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
  294. {
  295. int i;
  296. for(i = 0; i < 3; i++)
  297. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
  298. for(; i < 16; i++)
  299. block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
  300. }
  301. /** @} */ //block functions
  302. /**
  303. * @defgroup bitstream RV30/40 bitstream parsing
  304. * @{
  305. */
  306. /**
  307. * Decode starting slice position.
  308. * @todo Maybe replace with ff_h263_decode_mba() ?
  309. */
  310. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  311. {
  312. int i;
  313. for(i = 0; i < 5; i++)
  314. if(rv34_mb_max_sizes[i] > mb_size)
  315. break;
  316. return rv34_mb_bits_sizes[i];
  317. }
  318. /**
  319. * Select VLC set for decoding from current quantizer, modifier and frame type.
  320. */
  321. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  322. {
  323. if(mod == 2 && quant < 19) quant += 10;
  324. else if(mod && quant < 26) quant += 5;
  325. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  326. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  327. }
  328. /**
  329. * Decode quantizer difference and return modified quantizer.
  330. */
  331. static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
  332. {
  333. if(get_bits1(gb))
  334. return rv34_dquant_tab[get_bits1(gb)][quant];
  335. else
  336. return get_bits(gb, 5);
  337. }
  338. /** @} */ //bitstream functions
  339. /**
  340. * @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
  341. * @{
  342. */
  343. /** macroblock partition width in 8x8 blocks */
  344. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  345. /** macroblock partition height in 8x8 blocks */
  346. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  347. /** availability index for subblocks */
  348. static const uint8_t avail_indexes[4] = { 5, 6, 9, 10 };
  349. /**
  350. * motion vector prediction
  351. *
  352. * Motion prediction performed for the block by using median prediction of
  353. * motion vectors from the left, top and right top blocks but in corner cases
  354. * some other vectors may be used instead.
  355. */
  356. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  357. {
  358. MpegEncContext *s = &r->s;
  359. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  360. int A[2] = {0}, B[2], C[2];
  361. int i, j;
  362. int mx, my;
  363. int avail_index = avail_indexes[subblock_no];
  364. int c_off = part_sizes_w[block_type];
  365. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  366. if(subblock_no == 3)
  367. c_off = -1;
  368. if(r->avail_cache[avail_index - 1]){
  369. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  370. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  371. }
  372. if(r->avail_cache[avail_index - 4]){
  373. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  374. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  375. }else{
  376. B[0] = A[0];
  377. B[1] = A[1];
  378. }
  379. if(!r->avail_cache[avail_index - 4 + c_off]){
  380. if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
  381. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  382. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  383. }else{
  384. C[0] = A[0];
  385. C[1] = A[1];
  386. }
  387. }else{
  388. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  389. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  390. }
  391. mx = mid_pred(A[0], B[0], C[0]);
  392. my = mid_pred(A[1], B[1], C[1]);
  393. mx += r->dmv[dmv_no][0];
  394. my += r->dmv[dmv_no][1];
  395. for(j = 0; j < part_sizes_h[block_type]; j++){
  396. for(i = 0; i < part_sizes_w[block_type]; i++){
  397. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  398. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  399. }
  400. }
  401. }
  402. /**
  403. * Calculate motion vector component that should be added for direct blocks.
  404. */
  405. static int calc_add_mv(MpegEncContext *s, int dir, int component)
  406. {
  407. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  408. int sum;
  409. sum = (s->next_picture_ptr->motion_val[0][mv_pos][component] +
  410. s->next_picture_ptr->motion_val[0][mv_pos + 1][component] +
  411. s->next_picture_ptr->motion_val[0][mv_pos + s->b8_stride][component] +
  412. s->next_picture_ptr->motion_val[0][mv_pos + s->b8_stride + 1][component]) >> 2;
  413. return dir ? -(sum >> 1) : ((sum + 1) >> 1);
  414. }
  415. /**
  416. * Predict motion vector for B-frame macroblock.
  417. */
  418. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  419. int A_avail, int B_avail, int C_avail,
  420. int *mx, int *my)
  421. {
  422. if(A_avail + B_avail + C_avail != 3){
  423. *mx = A[0] + B[0] + C[0];
  424. *my = A[1] + B[1] + C[1];
  425. if(A_avail + B_avail + C_avail == 2){
  426. *mx /= 2;
  427. *my /= 2;
  428. }
  429. }else{
  430. *mx = mid_pred(A[0], B[0], C[0]);
  431. *my = mid_pred(A[1], B[1], C[1]);
  432. }
  433. }
  434. /**
  435. * motion vector prediction for B-frames
  436. */
  437. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  438. {
  439. MpegEncContext *s = &r->s;
  440. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  441. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  442. int A[2], B[2], C[2];
  443. int has_A = 0, has_B = 0, has_C = 0;
  444. int mx, my;
  445. int i, j;
  446. Picture *cur_pic = s->current_picture_ptr;
  447. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  448. int type = cur_pic->mb_type[mb_pos];
  449. memset(A, 0, sizeof(A));
  450. memset(B, 0, sizeof(B));
  451. memset(C, 0, sizeof(C));
  452. if((r->avail_cache[5-1] & type) & mask){
  453. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  454. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  455. has_A = 1;
  456. }
  457. if((r->avail_cache[5-4] & type) & mask){
  458. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  459. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  460. has_B = 1;
  461. }
  462. if((r->avail_cache[5-2] & type) & mask){
  463. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  464. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  465. has_C = 1;
  466. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[5-5] & type) & mask){
  467. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  468. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  469. has_C = 1;
  470. }
  471. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  472. mx += r->dmv[dir][0];
  473. my += r->dmv[dir][1];
  474. if(block_type == RV34_MB_B_DIRECT){
  475. mx += calc_add_mv(s, dir, 0);
  476. my += calc_add_mv(s, dir, 1);
  477. }
  478. for(j = 0; j < 2; j++){
  479. for(i = 0; i < 2; i++){
  480. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  481. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  482. }
  483. }
  484. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD)
  485. fill_rectangle(cur_pic->motion_val[!dir][mv_pos], 2, 2, s->b8_stride, 0, 4);
  486. }
  487. static const int chroma_coeffs[3] = { 8, 5, 3 };
  488. /**
  489. * generic motion compensation function
  490. *
  491. * @param r decoder context
  492. * @param block_type type of the current block
  493. * @param xoff horizontal offset from the start of the current block
  494. * @param yoff vertical offset from the start of the current block
  495. * @param mv_off offset to the motion vector information
  496. * @param width width of the current partition in 8x8 blocks
  497. * @param height height of the current partition in 8x8 blocks
  498. */
  499. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  500. const int xoff, const int yoff, int mv_off,
  501. const int width, const int height, int dir,
  502. const int thirdpel,
  503. qpel_mc_func (*qpel_mc)[16],
  504. h264_chroma_mc_func (*chroma_mc))
  505. {
  506. MpegEncContext *s = &r->s;
  507. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  508. int dxy, mx, my, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  509. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  510. int is16x16 = 1;
  511. if(thirdpel){
  512. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  513. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  514. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  515. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  516. uvmx = chroma_coeffs[(3*(mx&1) + lx) >> 1];
  517. uvmy = chroma_coeffs[(3*(my&1) + ly) >> 1];
  518. }else{
  519. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  520. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  521. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  522. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  523. uvmx = mx & 6;
  524. uvmy = my & 6;
  525. }
  526. dxy = ly*4 + lx;
  527. srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
  528. srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
  529. srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
  530. src_x = s->mb_x * 16 + xoff + mx;
  531. src_y = s->mb_y * 16 + yoff + my;
  532. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + (mx >> 1);
  533. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + (my >> 1);
  534. srcY += src_y * s->linesize + src_x;
  535. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  536. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  537. if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 3
  538. || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 3){
  539. uint8_t *uvbuf= s->edge_emu_buffer + 20 * s->linesize;
  540. srcY -= 2 + 2*s->linesize;
  541. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+4, (height<<3)+4,
  542. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  543. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  544. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  545. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  546. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
  547. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  548. srcU = uvbuf;
  549. srcV = uvbuf + 16;
  550. }
  551. Y = s->dest[0] + xoff + yoff *s->linesize;
  552. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  553. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  554. if(block_type == RV34_MB_P_16x8){
  555. qpel_mc[1][dxy](Y, srcY, s->linesize);
  556. Y += 8;
  557. srcY += 8;
  558. }else if(block_type == RV34_MB_P_8x16){
  559. qpel_mc[1][dxy](Y, srcY, s->linesize);
  560. Y += 8 * s->linesize;
  561. srcY += 8 * s->linesize;
  562. }
  563. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  564. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  565. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  566. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  567. }
  568. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  569. const int xoff, const int yoff, int mv_off,
  570. const int width, const int height, int dir)
  571. {
  572. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
  573. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  574. : r->s.dsp.put_h264_qpel_pixels_tab,
  575. r->s.dsp.put_h264_chroma_pixels_tab);
  576. }
  577. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  578. {
  579. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
  580. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  581. : r->s.dsp.put_h264_qpel_pixels_tab,
  582. r->s.dsp.put_h264_chroma_pixels_tab);
  583. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
  584. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  585. : r->s.dsp.avg_h264_qpel_pixels_tab,
  586. r->s.dsp.avg_h264_chroma_pixels_tab);
  587. }
  588. static void rv34_mc_2mv_skip(RV34DecContext *r)
  589. {
  590. int i, j, k;
  591. for(j = 0; j < 2; j++)
  592. for(i = 0; i < 2; i++){
  593. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  594. r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
  595. : r->s.dsp.put_h264_qpel_pixels_tab,
  596. r->s.dsp.put_h264_chroma_pixels_tab);
  597. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  598. r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
  599. : r->s.dsp.avg_h264_qpel_pixels_tab,
  600. r->s.dsp.avg_h264_chroma_pixels_tab);
  601. }
  602. }
  603. /** number of motion vectors in each macroblock type */
  604. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  605. /**
  606. * Decode motion vector differences
  607. * and perform motion vector reconstruction and motion compensation.
  608. */
  609. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  610. {
  611. MpegEncContext *s = &r->s;
  612. GetBitContext *gb = &s->gb;
  613. int i, j, k;
  614. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  615. int next_bt;
  616. memset(r->dmv, 0, sizeof(r->dmv));
  617. for(i = 0; i < num_mvs[block_type]; i++){
  618. r->dmv[i][0] = svq3_get_se_golomb(gb);
  619. r->dmv[i][1] = svq3_get_se_golomb(gb);
  620. }
  621. switch(block_type){
  622. case RV34_MB_TYPE_INTRA:
  623. case RV34_MB_TYPE_INTRA16x16:
  624. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  625. return 0;
  626. case RV34_MB_SKIP:
  627. if(s->pict_type == FF_P_TYPE){
  628. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  629. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  630. break;
  631. }
  632. case RV34_MB_B_DIRECT:
  633. //surprisingly, it uses motion scheme from next reference frame
  634. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  635. for(j = 0; j < 2; j++)
  636. for(i = 0; i < 2; i++)
  637. for(k = 0; k < 2; k++){
  638. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k] = (s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k] + 1) >> 1;
  639. s->current_picture_ptr->motion_val[1][mv_pos + i + j*s->b8_stride][k] = -(s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k] >> 1);
  640. }
  641. if(IS_16X16(next_bt)) //we can use whole macroblock MC
  642. rv34_mc_2mv(r, block_type);
  643. else
  644. rv34_mc_2mv_skip(r);
  645. fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
  646. break;
  647. case RV34_MB_P_16x16:
  648. case RV34_MB_P_MIX16x16:
  649. rv34_pred_mv(r, block_type, 0, 0);
  650. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  651. break;
  652. case RV34_MB_B_FORWARD:
  653. case RV34_MB_B_BACKWARD:
  654. r->dmv[1][0] = r->dmv[0][0];
  655. r->dmv[1][1] = r->dmv[0][1];
  656. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  657. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  658. break;
  659. case RV34_MB_P_16x8:
  660. case RV34_MB_P_8x16:
  661. rv34_pred_mv(r, block_type, 0, 0);
  662. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  663. if(block_type == RV34_MB_P_16x8){
  664. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  665. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  666. }
  667. if(block_type == RV34_MB_P_8x16){
  668. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  669. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  670. }
  671. break;
  672. case RV34_MB_B_BIDIR:
  673. rv34_pred_mv_b (r, block_type, 0);
  674. rv34_pred_mv_b (r, block_type, 1);
  675. rv34_mc_2mv (r, block_type);
  676. break;
  677. case RV34_MB_P_8x8:
  678. for(i=0;i< 4;i++){
  679. rv34_pred_mv(r, block_type, i, i);
  680. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  681. }
  682. break;
  683. }
  684. return 0;
  685. }
  686. /** @} */ // mv group
  687. /**
  688. * @defgroup recons Macroblock reconstruction functions
  689. * @{
  690. */
  691. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  692. static const int ittrans[9] = {
  693. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  694. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  695. };
  696. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  697. static const int ittrans16[4] = {
  698. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  699. };
  700. /**
  701. * Perform 4x4 intra prediction.
  702. */
  703. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  704. {
  705. uint8_t *prev = dst - stride + 4;
  706. uint32_t topleft;
  707. if(!up && !left)
  708. itype = DC_128_PRED;
  709. else if(!up){
  710. if(itype == VERT_PRED) itype = HOR_PRED;
  711. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  712. }else if(!left){
  713. if(itype == HOR_PRED) itype = VERT_PRED;
  714. if(itype == DC_PRED) itype = TOP_DC_PRED;
  715. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  716. }
  717. if(!down){
  718. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  719. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  720. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  721. }
  722. if(!right && up){
  723. topleft = dst[-stride + 3] * 0x01010101;
  724. prev = &topleft;
  725. }
  726. r->h.pred4x4[itype](dst, prev, stride);
  727. }
  728. /** add_pixels_clamped for 4x4 block */
  729. static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
  730. {
  731. int x, y;
  732. for(y = 0; y < 4; y++)
  733. for(x = 0; x < 4; x++)
  734. dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
  735. }
  736. static inline int adjust_pred16(int itype, int up, int left)
  737. {
  738. if(!up && !left)
  739. itype = DC_128_PRED8x8;
  740. else if(!up){
  741. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  742. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  743. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  744. }else if(!left){
  745. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  746. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  747. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  748. }
  749. return itype;
  750. }
  751. static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
  752. {
  753. MpegEncContext *s = &r->s;
  754. DSPContext *dsp = &s->dsp;
  755. int i, j;
  756. uint8_t *Y, *U, *V;
  757. int itype;
  758. int avail[6*8] = {0};
  759. int idx;
  760. // Set neighbour information.
  761. if(r->avail_cache[0])
  762. avail[0] = 1;
  763. if(r->avail_cache[1])
  764. avail[1] = avail[2] = 1;
  765. if(r->avail_cache[2])
  766. avail[3] = avail[4] = 1;
  767. if(r->avail_cache[3])
  768. avail[5] = 1;
  769. if(r->avail_cache[4])
  770. avail[8] = avail[16] = 1;
  771. if(r->avail_cache[8])
  772. avail[24] = avail[32] = 1;
  773. Y = s->dest[0];
  774. U = s->dest[1];
  775. V = s->dest[2];
  776. if(!is16){
  777. for(j = 0; j < 4; j++){
  778. idx = 9 + j*8;
  779. for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
  780. rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  781. avail[idx] = 1;
  782. if(cbp & 1)
  783. rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
  784. }
  785. Y += s->linesize * 4 - 4*4;
  786. intra_types += s->b4_stride;
  787. }
  788. intra_types -= s->b4_stride * 4;
  789. fill_rectangle(r->avail_cache + 5, 2, 2, 4, 0, 4);
  790. for(j = 0; j < 2; j++){
  791. idx = 5 + j*4;
  792. for(i = 0; i < 2; i++, cbp >>= 1, idx++){
  793. rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  794. rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
  795. r->avail_cache[idx] = 1;
  796. if(cbp & 0x01)
  797. rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
  798. if(cbp & 0x10)
  799. rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
  800. }
  801. }
  802. }else{
  803. itype = ittrans16[intra_types[0]];
  804. itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
  805. r->h.pred16x16[itype](Y, s->linesize);
  806. dsp->add_pixels_clamped(s->block[0], Y, s->current_picture.linesize[0]);
  807. dsp->add_pixels_clamped(s->block[1], Y + 8, s->current_picture.linesize[0]);
  808. Y += s->current_picture.linesize[0] * 8;
  809. dsp->add_pixels_clamped(s->block[2], Y, s->current_picture.linesize[0]);
  810. dsp->add_pixels_clamped(s->block[3], Y + 8, s->current_picture.linesize[0]);
  811. itype = ittrans16[intra_types[0]];
  812. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  813. itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
  814. r->h.pred8x8[itype](U, s->uvlinesize);
  815. dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
  816. r->h.pred8x8[itype](V, s->uvlinesize);
  817. dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
  818. }
  819. }
  820. /** @} */ // recons group
  821. /**
  822. * @addtogroup bitstream
  823. * Decode macroblock header and return CBP in case of success, -1 otherwise.
  824. */
  825. static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
  826. {
  827. MpegEncContext *s = &r->s;
  828. GetBitContext *gb = &s->gb;
  829. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  830. int i, t;
  831. if(!r->si.type){
  832. r->is16 = get_bits1(gb);
  833. if(!r->is16 && !r->rv30){
  834. if(!get_bits1(gb))
  835. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  836. }
  837. s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
  838. r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
  839. }else{
  840. r->block_type = r->decode_mb_info(r);
  841. if(r->block_type == -1)
  842. return -1;
  843. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  844. r->mb_type[mb_pos] = r->block_type;
  845. if(r->block_type == RV34_MB_SKIP){
  846. if(s->pict_type == FF_P_TYPE)
  847. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  848. if(s->pict_type == FF_B_TYPE)
  849. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  850. }
  851. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  852. rv34_decode_mv(r, r->block_type);
  853. if(r->block_type == RV34_MB_SKIP){
  854. fill_rectangle(intra_types, 4, 4, s->b4_stride, 0, sizeof(intra_types[0]));
  855. return 0;
  856. }
  857. r->chroma_vlc = 1;
  858. r->luma_vlc = 0;
  859. }
  860. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  861. if(r->is16){
  862. t = get_bits(gb, 2);
  863. fill_rectangle(intra_types, 4, 4, s->b4_stride, t, sizeof(intra_types[0]));
  864. r->luma_vlc = 2;
  865. }else{
  866. if(r->decode_intra_types(r, gb, intra_types) < 0)
  867. return -1;
  868. r->luma_vlc = 1;
  869. }
  870. r->chroma_vlc = 0;
  871. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  872. }else{
  873. for(i = 0; i < 16; i++)
  874. intra_types[(i & 3) + (i>>2) * s->b4_stride] = 0;
  875. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  876. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  877. r->is16 = 1;
  878. r->chroma_vlc = 1;
  879. r->luma_vlc = 2;
  880. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  881. }
  882. }
  883. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  884. }
  885. /**
  886. * @addtogroup recons
  887. * @{
  888. */
  889. /**
  890. * mask for retrieving all bits in coded block pattern
  891. * corresponding to one 8x8 block
  892. */
  893. #define LUMA_CBP_BLOCK_MASK 0x303
  894. #define U_CBP_MASK 0x0F0000
  895. #define V_CBP_MASK 0xF00000
  896. static void rv34_apply_differences(RV34DecContext *r, int cbp)
  897. {
  898. static const int shifts[4] = { 0, 2, 8, 10 };
  899. MpegEncContext *s = &r->s;
  900. int i;
  901. for(i = 0; i < 4; i++)
  902. if(cbp & (LUMA_CBP_BLOCK_MASK << shifts[i]))
  903. s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
  904. if(cbp & U_CBP_MASK)
  905. s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
  906. if(cbp & V_CBP_MASK)
  907. s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
  908. }
  909. static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
  910. {
  911. MpegEncContext *s = &r->s;
  912. GetBitContext *gb = &s->gb;
  913. int cbp, cbp2;
  914. int i, blknum, blkoff;
  915. DCTELEM block16[64];
  916. int luma_dc_quant;
  917. int dist;
  918. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  919. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  920. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  921. fill_rectangle(r->avail_cache + 5, 2, 2, 4, 1, 4);
  922. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  923. if(s->mb_x && dist)
  924. r->avail_cache[4] =
  925. r->avail_cache[8] = s->current_picture_ptr->mb_type[mb_pos - 1];
  926. if(dist >= s->mb_width)
  927. r->avail_cache[1] =
  928. r->avail_cache[2] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  929. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  930. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  931. if(s->mb_x && dist > s->mb_width)
  932. r->avail_cache[0] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  933. s->qscale = r->si.quant;
  934. cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
  935. r->cbp_luma [s->mb_x + s->mb_y * s->mb_stride] = cbp;
  936. r->cbp_chroma[s->mb_x + s->mb_y * s->mb_stride] = cbp >> 16;
  937. s->current_picture.qscale_table[s->mb_x + s->mb_y * s->mb_stride] = s->qscale;
  938. if(cbp == -1)
  939. return -1;
  940. luma_dc_quant = r->si.type ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
  941. if(r->is16){
  942. memset(block16, 0, sizeof(block16));
  943. rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
  944. rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
  945. rv34_inv_transform_noround(block16);
  946. }
  947. for(i = 0; i < 16; i++, cbp >>= 1){
  948. if(!r->is16 && !(cbp & 1)) continue;
  949. blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
  950. blkoff = ((i & 1) << 2) + ((i & 4) << 3);
  951. if(cbp & 1)
  952. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
  953. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
  954. if(r->is16) //FIXME: optimize
  955. s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
  956. rv34_inv_transform(s->block[blknum] + blkoff);
  957. }
  958. if(r->block_type == RV34_MB_P_MIX16x16)
  959. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  960. for(; i < 24; i++, cbp >>= 1){
  961. if(!(cbp & 1)) continue;
  962. blknum = ((i & 4) >> 2) + 4;
  963. blkoff = ((i & 1) << 2) + ((i & 2) << 4);
  964. rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
  965. rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
  966. rv34_inv_transform(s->block[blknum] + blkoff);
  967. }
  968. if(IS_INTRA(s->current_picture_ptr->mb_type[s->mb_x + s->mb_y*s->mb_stride]))
  969. rv34_output_macroblock(r, intra_types, cbp2, r->is16);
  970. else
  971. rv34_apply_differences(r, cbp2);
  972. return 0;
  973. }
  974. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  975. {
  976. int bits;
  977. if(s->mb_y >= s->mb_height)
  978. return 1;
  979. if(!s->mb_num_left)
  980. return 1;
  981. if(r->s.mb_skip_run > 1)
  982. return 0;
  983. bits = r->bits - get_bits_count(&s->gb);
  984. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  985. return 1;
  986. return 0;
  987. }
  988. static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
  989. {
  990. return si1->type != si2->type ||
  991. si1->start >= si2->start ||
  992. si1->width != si2->width ||
  993. si1->height != si2->height;
  994. }
  995. static int rv34_decode_slice(RV34DecContext *r, int end, uint8_t* buf, int buf_size)
  996. {
  997. MpegEncContext *s = &r->s;
  998. GetBitContext *gb = &s->gb;
  999. int mb_pos;
  1000. int res;
  1001. init_get_bits(&r->s.gb, buf, buf_size*8);
  1002. res = r->parse_slice_header(r, gb, &r->si);
  1003. if(res < 0){
  1004. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1005. return -1;
  1006. }
  1007. if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
  1008. if(s->width != r->si.width || s->height != r->si.height){
  1009. av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
  1010. MPV_common_end(s);
  1011. s->width = r->si.width;
  1012. s->height = r->si.height;
  1013. if(MPV_common_init(s) < 0)
  1014. return -1;
  1015. r->intra_types_hist = av_realloc(r->intra_types_hist, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1016. r->intra_types = r->intra_types_hist + s->b4_stride * 4;
  1017. r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1018. r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1019. r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1020. }
  1021. s->pict_type = r->si.type ? r->si.type : FF_I_TYPE;
  1022. if(MPV_frame_start(s, s->avctx) < 0)
  1023. return -1;
  1024. ff_er_frame_start(s);
  1025. s->current_picture_ptr = &s->current_picture;
  1026. s->mb_x = s->mb_y = 0;
  1027. }
  1028. r->si.end = end;
  1029. s->qscale = r->si.quant;
  1030. r->bits = buf_size*8;
  1031. s->mb_num_left = r->si.end - r->si.start;
  1032. r->s.mb_skip_run = 0;
  1033. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1034. if(r->si.start != mb_pos){
  1035. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1036. s->mb_x = r->si.start % s->mb_width;
  1037. s->mb_y = r->si.start / s->mb_width;
  1038. }
  1039. memset(r->intra_types_hist, -1, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1040. s->first_slice_line = 1;
  1041. s->resync_mb_x= s->mb_x;
  1042. s->resync_mb_y= s->mb_y;
  1043. ff_init_block_index(s);
  1044. while(!check_slice_end(r, s)) {
  1045. ff_update_block_index(s);
  1046. s->dsp.clear_blocks(s->block[0]);
  1047. if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 1) < 0){
  1048. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
  1049. return -1;
  1050. }
  1051. if (++s->mb_x == s->mb_width) {
  1052. s->mb_x = 0;
  1053. s->mb_y++;
  1054. ff_init_block_index(s);
  1055. memmove(r->intra_types_hist, r->intra_types, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
  1056. memset(r->intra_types, -1, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
  1057. }
  1058. if(s->mb_x == s->resync_mb_x)
  1059. s->first_slice_line=0;
  1060. s->mb_num_left--;
  1061. }
  1062. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
  1063. return (s->mb_y == s->mb_height);
  1064. }
  1065. /** @} */ // recons group end
  1066. /**
  1067. * Initialize decoder.
  1068. */
  1069. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1070. {
  1071. RV34DecContext *r = avctx->priv_data;
  1072. MpegEncContext *s = &r->s;
  1073. MPV_decode_defaults(s);
  1074. s->avctx= avctx;
  1075. s->out_format = FMT_H263;
  1076. s->codec_id= avctx->codec_id;
  1077. s->width = avctx->width;
  1078. s->height = avctx->height;
  1079. r->s.avctx = avctx;
  1080. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  1081. r->s.flags |= CODEC_FLAG_EMU_EDGE;
  1082. avctx->pix_fmt = PIX_FMT_YUV420P;
  1083. avctx->has_b_frames = 1;
  1084. s->low_delay = 0;
  1085. if (MPV_common_init(s) < 0)
  1086. return -1;
  1087. ff_h264_pred_init(&r->h, CODEC_ID_RV40);
  1088. r->intra_types_hist = av_malloc(s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1089. r->intra_types = r->intra_types_hist + s->b4_stride * 4;
  1090. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
  1091. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
  1092. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
  1093. if(!intra_vlcs[0].cbppattern[0].bits)
  1094. rv34_init_tables();
  1095. return 0;
  1096. }
  1097. static int get_slice_offset(AVCodecContext *avctx, uint8_t *buf, int n)
  1098. {
  1099. if(avctx->slice_count) return avctx->slice_offset[n];
  1100. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1101. }
  1102. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1103. void *data, int *data_size,
  1104. uint8_t *buf, int buf_size)
  1105. {
  1106. RV34DecContext *r = avctx->priv_data;
  1107. MpegEncContext *s = &r->s;
  1108. AVFrame *pict = data;
  1109. SliceInfo si;
  1110. int i;
  1111. int slice_count;
  1112. uint8_t *slices_hdr = NULL;
  1113. int last = 0;
  1114. /* no supplementary picture */
  1115. if (buf_size == 0) {
  1116. /* special case for last picture */
  1117. if (s->low_delay==0 && s->next_picture_ptr) {
  1118. *pict= *(AVFrame*)s->next_picture_ptr;
  1119. s->next_picture_ptr= NULL;
  1120. *data_size = sizeof(AVFrame);
  1121. }
  1122. return 0;
  1123. }
  1124. if(!avctx->slice_count){
  1125. slice_count = (*buf++) + 1;
  1126. slices_hdr = buf + 4;
  1127. buf += 8 * slice_count;
  1128. }else
  1129. slice_count = avctx->slice_count;
  1130. for(i=0; i<slice_count; i++){
  1131. int offset= get_slice_offset(avctx, slices_hdr, i);
  1132. int size;
  1133. if(i+1 == slice_count)
  1134. size= buf_size - offset;
  1135. else
  1136. size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1137. r->si.end = s->mb_width * s->mb_height;
  1138. if(i+1 < slice_count){
  1139. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1140. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1141. if(i+2 < slice_count)
  1142. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1143. else
  1144. size = buf_size - offset;
  1145. }else
  1146. r->si.end = si.start;
  1147. }
  1148. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1149. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1150. if(last)
  1151. break;
  1152. }
  1153. if(last){
  1154. if(r->loop_filter)
  1155. r->loop_filter(r);
  1156. ff_er_frame_end(s);
  1157. MPV_frame_end(s);
  1158. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  1159. *pict= *(AVFrame*)s->current_picture_ptr;
  1160. } else if (s->last_picture_ptr != NULL) {
  1161. *pict= *(AVFrame*)s->last_picture_ptr;
  1162. }
  1163. if(s->last_picture_ptr || s->low_delay){
  1164. *data_size = sizeof(AVFrame);
  1165. ff_print_debug_info(s, pict);
  1166. }
  1167. s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
  1168. }
  1169. return buf_size;
  1170. }
  1171. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1172. {
  1173. RV34DecContext *r = avctx->priv_data;
  1174. MPV_common_end(&r->s);
  1175. av_freep(&r->intra_types_hist);
  1176. r->intra_types = NULL;
  1177. av_freep(&r->mb_type);
  1178. return 0;
  1179. }