You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

899 lines
40KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  85. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  86. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  87. {"precision" , "set soxr resampling precision (in bits)"
  88. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  89. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  90. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  91. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  92. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  93. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  94. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  95. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  96. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  97. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  99. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  100. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  102. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  103. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  104. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  105. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  106. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  107. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  108. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  109. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  110. {0}
  111. };
  112. static const char* context_to_name(void* ptr) {
  113. return "SWR";
  114. }
  115. static const AVClass av_class = {
  116. .class_name = "SWResampler",
  117. .item_name = context_to_name,
  118. .option = options,
  119. .version = LIBAVUTIL_VERSION_INT,
  120. .log_level_offset_offset = OFFSET(log_level_offset),
  121. .parent_log_context_offset = OFFSET(log_ctx),
  122. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  123. };
  124. unsigned swresample_version(void)
  125. {
  126. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  127. return LIBSWRESAMPLE_VERSION_INT;
  128. }
  129. const char *swresample_configuration(void)
  130. {
  131. return FFMPEG_CONFIGURATION;
  132. }
  133. const char *swresample_license(void)
  134. {
  135. #define LICENSE_PREFIX "libswresample license: "
  136. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  137. }
  138. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  139. if(!s || s->in_convert) // s needs to be allocated but not initialized
  140. return AVERROR(EINVAL);
  141. s->channel_map = channel_map;
  142. return 0;
  143. }
  144. const AVClass *swr_get_class(void)
  145. {
  146. return &av_class;
  147. }
  148. av_cold struct SwrContext *swr_alloc(void){
  149. SwrContext *s= av_mallocz(sizeof(SwrContext));
  150. if(s){
  151. s->av_class= &av_class;
  152. av_opt_set_defaults(s);
  153. }
  154. return s;
  155. }
  156. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  157. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  158. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  159. int log_offset, void *log_ctx){
  160. if(!s) s= swr_alloc();
  161. if(!s) return NULL;
  162. s->log_level_offset= log_offset;
  163. s->log_ctx= log_ctx;
  164. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  165. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  166. av_opt_set_int(s, "osr", out_sample_rate, 0);
  167. av_opt_set_int(s, "icl", in_ch_layout, 0);
  168. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  169. av_opt_set_int(s, "isr", in_sample_rate, 0);
  170. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  171. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  172. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  173. av_opt_set_int(s, "uch", 0, 0);
  174. return s;
  175. }
  176. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  177. a->fmt = fmt;
  178. a->bps = av_get_bytes_per_sample(fmt);
  179. a->planar= av_sample_fmt_is_planar(fmt);
  180. }
  181. static void free_temp(AudioData *a){
  182. av_free(a->data);
  183. memset(a, 0, sizeof(*a));
  184. }
  185. av_cold void swr_free(SwrContext **ss){
  186. SwrContext *s= *ss;
  187. if(s){
  188. free_temp(&s->postin);
  189. free_temp(&s->midbuf);
  190. free_temp(&s->preout);
  191. free_temp(&s->in_buffer);
  192. free_temp(&s->silence);
  193. free_temp(&s->drop_temp);
  194. free_temp(&s->dither.noise);
  195. free_temp(&s->dither.temp);
  196. swri_audio_convert_free(&s-> in_convert);
  197. swri_audio_convert_free(&s->out_convert);
  198. swri_audio_convert_free(&s->full_convert);
  199. if (s->resampler)
  200. s->resampler->free(&s->resample);
  201. swri_rematrix_free(s);
  202. }
  203. av_freep(ss);
  204. }
  205. av_cold int swr_init(struct SwrContext *s){
  206. int ret;
  207. s->in_buffer_index= 0;
  208. s->in_buffer_count= 0;
  209. s->resample_in_constraint= 0;
  210. free_temp(&s->postin);
  211. free_temp(&s->midbuf);
  212. free_temp(&s->preout);
  213. free_temp(&s->in_buffer);
  214. free_temp(&s->silence);
  215. free_temp(&s->drop_temp);
  216. free_temp(&s->dither.noise);
  217. free_temp(&s->dither.temp);
  218. memset(s->in.ch, 0, sizeof(s->in.ch));
  219. memset(s->out.ch, 0, sizeof(s->out.ch));
  220. swri_audio_convert_free(&s-> in_convert);
  221. swri_audio_convert_free(&s->out_convert);
  222. swri_audio_convert_free(&s->full_convert);
  223. swri_rematrix_free(s);
  224. s->flushed = 0;
  225. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  226. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  227. return AVERROR(EINVAL);
  228. }
  229. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  230. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  231. return AVERROR(EINVAL);
  232. }
  233. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  234. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  235. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  236. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  237. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  238. }else{
  239. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  240. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  241. }
  242. }
  243. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  244. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  245. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  246. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  247. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  248. return AVERROR(EINVAL);
  249. }
  250. switch(s->engine){
  251. #if CONFIG_LIBSOXR
  252. extern struct Resampler const soxr_resampler;
  253. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  254. #endif
  255. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  256. default:
  257. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  258. return AVERROR(EINVAL);
  259. }
  260. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  261. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  262. if (s->async) {
  263. if (s->min_compensation >= FLT_MAX/2)
  264. s->min_compensation = 0.001;
  265. if (s->async > 1.0001) {
  266. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  267. }
  268. }
  269. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  270. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  271. }else
  272. s->resampler->free(&s->resample);
  273. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  274. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  275. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  276. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  277. && s->resample){
  278. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  279. return -1;
  280. }
  281. if(!s->used_ch_count)
  282. s->used_ch_count= s->in.ch_count;
  283. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  284. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  285. s-> in_ch_layout= 0;
  286. }
  287. if(!s-> in_ch_layout)
  288. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  289. if(!s->out_ch_layout)
  290. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  291. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  292. s->rematrix_custom;
  293. #define RSC 1 //FIXME finetune
  294. if(!s-> in.ch_count)
  295. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  296. if(!s->used_ch_count)
  297. s->used_ch_count= s->in.ch_count;
  298. if(!s->out.ch_count)
  299. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  300. if(!s-> in.ch_count){
  301. av_assert0(!s->in_ch_layout);
  302. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  303. return -1;
  304. }
  305. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  306. char l1[1024], l2[1024];
  307. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  308. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  309. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  310. "but there is not enough information to do it\n", l1, l2);
  311. return -1;
  312. }
  313. av_assert0(s->used_ch_count);
  314. av_assert0(s->out.ch_count);
  315. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  316. s->in_buffer= s->in;
  317. s->silence = s->in;
  318. s->drop_temp= s->out;
  319. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  320. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  321. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  322. return 0;
  323. }
  324. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  325. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  326. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  327. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  328. if (!s->in_convert || !s->out_convert)
  329. return AVERROR(ENOMEM);
  330. s->postin= s->in;
  331. s->preout= s->out;
  332. s->midbuf= s->in;
  333. if(s->channel_map){
  334. s->postin.ch_count=
  335. s->midbuf.ch_count= s->used_ch_count;
  336. if(s->resample)
  337. s->in_buffer.ch_count= s->used_ch_count;
  338. }
  339. if(!s->resample_first){
  340. s->midbuf.ch_count= s->out.ch_count;
  341. if(s->resample)
  342. s->in_buffer.ch_count = s->out.ch_count;
  343. }
  344. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  345. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  346. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  347. if(s->resample){
  348. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  349. }
  350. if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
  351. return ret;
  352. if(s->rematrix || s->dither.method)
  353. return swri_rematrix_init(s);
  354. return 0;
  355. }
  356. int swri_realloc_audio(AudioData *a, int count){
  357. int i, countb;
  358. AudioData old;
  359. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  360. return AVERROR(EINVAL);
  361. if(a->count >= count)
  362. return 0;
  363. count*=2;
  364. countb= FFALIGN(count*a->bps, ALIGN);
  365. old= *a;
  366. av_assert0(a->bps);
  367. av_assert0(a->ch_count);
  368. a->data= av_mallocz(countb*a->ch_count);
  369. if(!a->data)
  370. return AVERROR(ENOMEM);
  371. for(i=0; i<a->ch_count; i++){
  372. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  373. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  374. }
  375. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  376. av_free(old.data);
  377. a->count= count;
  378. return 1;
  379. }
  380. static void copy(AudioData *out, AudioData *in,
  381. int count){
  382. av_assert0(out->planar == in->planar);
  383. av_assert0(out->bps == in->bps);
  384. av_assert0(out->ch_count == in->ch_count);
  385. if(out->planar){
  386. int ch;
  387. for(ch=0; ch<out->ch_count; ch++)
  388. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  389. }else
  390. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  391. }
  392. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  393. int i;
  394. if(!in_arg){
  395. memset(out->ch, 0, sizeof(out->ch));
  396. }else if(out->planar){
  397. for(i=0; i<out->ch_count; i++)
  398. out->ch[i]= in_arg[i];
  399. }else{
  400. for(i=0; i<out->ch_count; i++)
  401. out->ch[i]= in_arg[0] + i*out->bps;
  402. }
  403. }
  404. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  405. int i;
  406. if(out->planar){
  407. for(i=0; i<out->ch_count; i++)
  408. in_arg[i]= out->ch[i];
  409. }else{
  410. in_arg[0]= out->ch[0];
  411. }
  412. }
  413. /**
  414. *
  415. * out may be equal in.
  416. */
  417. static void buf_set(AudioData *out, AudioData *in, int count){
  418. int ch;
  419. if(in->planar){
  420. for(ch=0; ch<out->ch_count; ch++)
  421. out->ch[ch]= in->ch[ch] + count*out->bps;
  422. }else{
  423. for(ch=out->ch_count-1; ch>=0; ch--)
  424. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  425. }
  426. }
  427. /**
  428. *
  429. * @return number of samples output per channel
  430. */
  431. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  432. const AudioData * in_param, int in_count){
  433. AudioData in, out, tmp;
  434. int ret_sum=0;
  435. int border=0;
  436. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  437. av_assert1(s->in_buffer.planar == in_param->planar);
  438. av_assert1(s->in_buffer.fmt == in_param->fmt);
  439. tmp=out=*out_param;
  440. in = *in_param;
  441. do{
  442. int ret, size, consumed;
  443. if(!s->resample_in_constraint && s->in_buffer_count){
  444. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  445. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  446. out_count -= ret;
  447. ret_sum += ret;
  448. buf_set(&out, &out, ret);
  449. s->in_buffer_count -= consumed;
  450. s->in_buffer_index += consumed;
  451. if(!in_count)
  452. break;
  453. if(s->in_buffer_count <= border){
  454. buf_set(&in, &in, -s->in_buffer_count);
  455. in_count += s->in_buffer_count;
  456. s->in_buffer_count=0;
  457. s->in_buffer_index=0;
  458. border = 0;
  459. }
  460. }
  461. if((s->flushed || in_count) && !s->in_buffer_count){
  462. s->in_buffer_index=0;
  463. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  464. out_count -= ret;
  465. ret_sum += ret;
  466. buf_set(&out, &out, ret);
  467. in_count -= consumed;
  468. buf_set(&in, &in, consumed);
  469. }
  470. //TODO is this check sane considering the advanced copy avoidance below
  471. size= s->in_buffer_index + s->in_buffer_count + in_count;
  472. if( size > s->in_buffer.count
  473. && s->in_buffer_count + in_count <= s->in_buffer_index){
  474. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  475. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  476. s->in_buffer_index=0;
  477. }else
  478. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  479. return ret;
  480. if(in_count){
  481. int count= in_count;
  482. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  483. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  484. copy(&tmp, &in, /*in_*/count);
  485. s->in_buffer_count += count;
  486. in_count -= count;
  487. border += count;
  488. buf_set(&in, &in, count);
  489. s->resample_in_constraint= 0;
  490. if(s->in_buffer_count != count || in_count)
  491. continue;
  492. }
  493. break;
  494. }while(1);
  495. s->resample_in_constraint= !!out_count;
  496. return ret_sum;
  497. }
  498. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  499. AudioData *in , int in_count){
  500. AudioData *postin, *midbuf, *preout;
  501. int ret/*, in_max*/;
  502. AudioData preout_tmp, midbuf_tmp;
  503. if(s->full_convert){
  504. av_assert0(!s->resample);
  505. swri_audio_convert(s->full_convert, out, in, in_count);
  506. return out_count;
  507. }
  508. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  509. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  510. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  511. return ret;
  512. if(s->resample_first){
  513. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  514. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  515. return ret;
  516. }else{
  517. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  518. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  519. return ret;
  520. }
  521. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  522. return ret;
  523. postin= &s->postin;
  524. midbuf_tmp= s->midbuf;
  525. midbuf= &midbuf_tmp;
  526. preout_tmp= s->preout;
  527. preout= &preout_tmp;
  528. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  529. postin= in;
  530. if(s->resample_first ? !s->resample : !s->rematrix)
  531. midbuf= postin;
  532. if(s->resample_first ? !s->rematrix : !s->resample)
  533. preout= midbuf;
  534. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  535. if(preout==in){
  536. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  537. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  538. copy(out, in, out_count);
  539. return out_count;
  540. }
  541. else if(preout==postin) preout= midbuf= postin= out;
  542. else if(preout==midbuf) preout= midbuf= out;
  543. else preout= out;
  544. }
  545. if(in != postin){
  546. swri_audio_convert(s->in_convert, postin, in, in_count);
  547. }
  548. if(s->resample_first){
  549. if(postin != midbuf)
  550. out_count= resample(s, midbuf, out_count, postin, in_count);
  551. if(midbuf != preout)
  552. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  553. }else{
  554. if(postin != midbuf)
  555. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  556. if(midbuf != preout)
  557. out_count= resample(s, preout, out_count, midbuf, in_count);
  558. }
  559. if(preout != out && out_count){
  560. AudioData *conv_src = preout;
  561. if(s->dither.method){
  562. int ch;
  563. int dither_count= FFMAX(out_count, 1<<16);
  564. if (preout == in) {
  565. conv_src = &s->dither.temp;
  566. if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
  567. return ret;
  568. }
  569. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  570. return ret;
  571. if(ret)
  572. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  573. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->dither.noise.fmt);
  574. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  575. if(s->dither.noise_pos + out_count > s->dither.noise.count)
  576. s->dither.noise_pos = 0;
  577. if (s->dither.method < SWR_DITHER_NS){
  578. if (s->mix_2_1_simd) {
  579. int len1= out_count&~15;
  580. int off = len1 * preout->bps;
  581. if(len1)
  582. for(ch=0; ch<preout->ch_count; ch++)
  583. s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, len1);
  584. if(out_count != len1)
  585. for(ch=0; ch<preout->ch_count; ch++)
  586. s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  587. } else {
  588. for(ch=0; ch<preout->ch_count; ch++)
  589. s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
  590. }
  591. } else {
  592. switch(s->int_sample_fmt) {
  593. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
  594. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
  595. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
  596. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
  597. }
  598. }
  599. s->dither.noise_pos += out_count;
  600. }
  601. //FIXME packed doesnt need more than 1 chan here!
  602. swri_audio_convert(s->out_convert, out, conv_src, out_count);
  603. }
  604. return out_count;
  605. }
  606. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  607. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  608. AudioData * in= &s->in;
  609. AudioData *out= &s->out;
  610. while(s->drop_output > 0){
  611. int ret;
  612. uint8_t *tmp_arg[SWR_CH_MAX];
  613. #define MAX_DROP_STEP 16384
  614. if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
  615. return ret;
  616. reversefill_audiodata(&s->drop_temp, tmp_arg);
  617. s->drop_output *= -1; //FIXME find a less hackish solution
  618. ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  619. s->drop_output *= -1;
  620. in_count = 0;
  621. if(ret>0) {
  622. s->drop_output -= ret;
  623. continue;
  624. }
  625. if(s->drop_output || !out_arg)
  626. return 0;
  627. }
  628. if(!in_arg){
  629. if(s->resample){
  630. if (!s->flushed)
  631. s->resampler->flush(s);
  632. s->resample_in_constraint = 0;
  633. s->flushed = 1;
  634. }else if(!s->in_buffer_count){
  635. return 0;
  636. }
  637. }else
  638. fill_audiodata(in , (void*)in_arg);
  639. fill_audiodata(out, out_arg);
  640. if(s->resample){
  641. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  642. if(ret>0 && !s->drop_output)
  643. s->outpts += ret * (int64_t)s->in_sample_rate;
  644. return ret;
  645. }else{
  646. AudioData tmp= *in;
  647. int ret2=0;
  648. int ret, size;
  649. size = FFMIN(out_count, s->in_buffer_count);
  650. if(size){
  651. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  652. ret= swr_convert_internal(s, out, size, &tmp, size);
  653. if(ret<0)
  654. return ret;
  655. ret2= ret;
  656. s->in_buffer_count -= ret;
  657. s->in_buffer_index += ret;
  658. buf_set(out, out, ret);
  659. out_count -= ret;
  660. if(!s->in_buffer_count)
  661. s->in_buffer_index = 0;
  662. }
  663. if(in_count){
  664. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  665. if(in_count > out_count) { //FIXME move after swr_convert_internal
  666. if( size > s->in_buffer.count
  667. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  668. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  669. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  670. s->in_buffer_index=0;
  671. }else
  672. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  673. return ret;
  674. }
  675. if(out_count){
  676. size = FFMIN(in_count, out_count);
  677. ret= swr_convert_internal(s, out, size, in, size);
  678. if(ret<0)
  679. return ret;
  680. buf_set(in, in, ret);
  681. in_count -= ret;
  682. ret2 += ret;
  683. }
  684. if(in_count){
  685. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  686. copy(&tmp, in, in_count);
  687. s->in_buffer_count += in_count;
  688. }
  689. }
  690. if(ret2>0 && !s->drop_output)
  691. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  692. return ret2;
  693. }
  694. }
  695. int swr_drop_output(struct SwrContext *s, int count){
  696. s->drop_output += count;
  697. if(s->drop_output <= 0)
  698. return 0;
  699. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  700. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  701. }
  702. int swr_inject_silence(struct SwrContext *s, int count){
  703. int ret, i;
  704. uint8_t *tmp_arg[SWR_CH_MAX];
  705. if(count <= 0)
  706. return 0;
  707. #define MAX_SILENCE_STEP 16384
  708. while (count > MAX_SILENCE_STEP) {
  709. if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
  710. return ret;
  711. count -= MAX_SILENCE_STEP;
  712. }
  713. if((ret=swri_realloc_audio(&s->silence, count))<0)
  714. return ret;
  715. if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
  716. memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
  717. } else
  718. memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
  719. reversefill_audiodata(&s->silence, tmp_arg);
  720. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  721. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  722. return ret;
  723. }
  724. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  725. if (s->resampler && s->resample){
  726. return s->resampler->get_delay(s, base);
  727. }else{
  728. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  729. }
  730. }
  731. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  732. int ret;
  733. if (!s || compensation_distance < 0)
  734. return AVERROR(EINVAL);
  735. if (!compensation_distance && sample_delta)
  736. return AVERROR(EINVAL);
  737. if (!s->resample) {
  738. s->flags |= SWR_FLAG_RESAMPLE;
  739. ret = swr_init(s);
  740. if (ret < 0)
  741. return ret;
  742. }
  743. if (!s->resampler->set_compensation){
  744. return AVERROR(EINVAL);
  745. }else{
  746. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  747. }
  748. }
  749. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  750. if(pts == INT64_MIN)
  751. return s->outpts;
  752. if(s->min_compensation >= FLT_MAX) {
  753. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  754. } else {
  755. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
  756. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  757. if(fabs(fdelta) > s->min_compensation) {
  758. if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
  759. int ret;
  760. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  761. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  762. if(ret<0){
  763. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  764. }
  765. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  766. int duration = s->out_sample_rate * s->soft_compensation_duration;
  767. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  768. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  769. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  770. swr_set_compensation(s, comp, duration);
  771. }
  772. }
  773. return s->outpts;
  774. }
  775. }