You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

567 lines
16KB

  1. /*
  2. * (c) 2001 Fabrice Bellard
  3. * 2007 Marc Hoffman <marc.hoffman@analog.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * DCT test (c) 2001 Fabrice Bellard
  24. * Started from sample code by Juan J. Sierralta P.
  25. */
  26. #include <stdlib.h>
  27. #include <stdio.h>
  28. #include <string.h>
  29. #include <sys/time.h>
  30. #include <unistd.h>
  31. #include <math.h>
  32. #include "libavutil/cpu.h"
  33. #include "libavutil/common.h"
  34. #include "libavutil/lfg.h"
  35. #include "simple_idct.h"
  36. #include "aandcttab.h"
  37. #include "faandct.h"
  38. #include "faanidct.h"
  39. #include "x86/idct_xvid.h"
  40. #include "dctref.h"
  41. #undef printf
  42. void ff_mmx_idct(DCTELEM *data);
  43. void ff_mmxext_idct(DCTELEM *data);
  44. void odivx_idct_c(short *block);
  45. // BFIN
  46. void ff_bfin_idct(DCTELEM *block);
  47. void ff_bfin_fdct(DCTELEM *block);
  48. // ALTIVEC
  49. void fdct_altivec(DCTELEM *block);
  50. //void idct_altivec(DCTELEM *block);?? no routine
  51. // ARM
  52. void ff_j_rev_dct_arm(DCTELEM *data);
  53. void ff_simple_idct_arm(DCTELEM *data);
  54. void ff_simple_idct_armv5te(DCTELEM *data);
  55. void ff_simple_idct_armv6(DCTELEM *data);
  56. void ff_simple_idct_neon(DCTELEM *data);
  57. void ff_simple_idct_axp(DCTELEM *data);
  58. struct algo {
  59. const char *name;
  60. void (*func)(DCTELEM *block);
  61. void (*ref) (DCTELEM *block);
  62. enum formattag { NO_PERM, MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM,
  63. SSE2_PERM, PARTTRANS_PERM } format;
  64. int mm_support;
  65. };
  66. #ifndef FAAN_POSTSCALE
  67. #define FAAN_SCALE SCALE_PERM
  68. #else
  69. #define FAAN_SCALE NO_PERM
  70. #endif
  71. static int cpu_flags;
  72. static const struct algo fdct_tab[] = {
  73. {"REF-DBL", ff_ref_fdct, ff_ref_fdct, NO_PERM},
  74. {"FAAN", ff_faandct, ff_ref_fdct, FAAN_SCALE},
  75. {"IJG-AAN-INT", fdct_ifast, ff_ref_fdct, SCALE_PERM},
  76. {"IJG-LLM-INT", ff_jpeg_fdct_islow, ff_ref_fdct, NO_PERM},
  77. #if HAVE_MMX
  78. {"MMX", ff_fdct_mmx, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_MMX},
  79. {"MMX2", ff_fdct_mmx2, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_MMX2},
  80. {"SSE2", ff_fdct_sse2, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_SSE2},
  81. #endif
  82. #if HAVE_ALTIVEC
  83. {"altivecfdct", fdct_altivec, ff_ref_fdct, NO_PERM, AV_CPU_FLAG_ALTIVEC},
  84. #endif
  85. #if ARCH_BFIN
  86. {"BFINfdct", ff_bfin_fdct, ff_ref_fdct, NO_PERM},
  87. #endif
  88. { 0 }
  89. };
  90. static const struct algo idct_tab[] = {
  91. {"FAANI", ff_faanidct, ff_ref_idct, NO_PERM},
  92. {"REF-DBL", ff_ref_idct, ff_ref_idct, NO_PERM},
  93. {"INT", j_rev_dct, ff_ref_idct, MMX_PERM},
  94. {"SIMPLE-C", ff_simple_idct, ff_ref_idct, NO_PERM},
  95. #if HAVE_MMX
  96. #if CONFIG_GPL
  97. {"LIBMPEG2-MMX", ff_mmx_idct, ff_ref_idct, MMX_PERM, AV_CPU_FLAG_MMX},
  98. {"LIBMPEG2-MMX2", ff_mmxext_idct, ff_ref_idct, MMX_PERM, AV_CPU_FLAG_MMX2},
  99. #endif
  100. {"SIMPLE-MMX", ff_simple_idct_mmx, ff_ref_idct, MMX_SIMPLE_PERM, AV_CPU_FLAG_MMX},
  101. {"XVID-MMX", ff_idct_xvid_mmx, ff_ref_idct, NO_PERM, AV_CPU_FLAG_MMX},
  102. {"XVID-MMX2", ff_idct_xvid_mmx2, ff_ref_idct, NO_PERM, AV_CPU_FLAG_MMX2},
  103. {"XVID-SSE2", ff_idct_xvid_sse2, ff_ref_idct, SSE2_PERM, AV_CPU_FLAG_SSE2},
  104. #endif
  105. #if ARCH_BFIN
  106. {"BFINidct", ff_bfin_idct, ff_ref_idct, NO_PERM},
  107. #endif
  108. #if ARCH_ARM
  109. {"SIMPLE-ARM", ff_simple_idct_arm, ff_ref_idct, NO_PERM },
  110. {"INT-ARM", ff_j_rev_dct_arm, ff_ref_idct, MMX_PERM },
  111. #endif
  112. #if HAVE_ARMV5TE
  113. {"SIMPLE-ARMV5TE", ff_simple_idct_armv5te, ff_ref_idct, NO_PERM },
  114. #endif
  115. #if HAVE_ARMV6
  116. {"SIMPLE-ARMV6", ff_simple_idct_armv6, ff_ref_idct, MMX_PERM },
  117. #endif
  118. #if HAVE_NEON
  119. {"SIMPLE-NEON", ff_simple_idct_neon, ff_ref_idct, PARTTRANS_PERM },
  120. #endif
  121. #if ARCH_ALPHA
  122. {"SIMPLE-ALPHA", ff_simple_idct_axp, ff_ref_idct, NO_PERM },
  123. #endif
  124. { 0 }
  125. };
  126. #define AANSCALE_BITS 12
  127. uint8_t cropTbl[256 + 2 * MAX_NEG_CROP];
  128. static int64_t gettime(void)
  129. {
  130. struct timeval tv;
  131. gettimeofday(&tv, NULL);
  132. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  133. }
  134. #define NB_ITS 20000
  135. #define NB_ITS_SPEED 50000
  136. static short idct_mmx_perm[64];
  137. static short idct_simple_mmx_perm[64] = {
  138. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  139. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  140. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  141. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  142. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  143. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  144. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  145. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  146. };
  147. static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
  148. static void idct_mmx_init(void)
  149. {
  150. int i;
  151. /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */
  152. for (i = 0; i < 64; i++) {
  153. idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  154. }
  155. }
  156. DECLARE_ALIGNED(16, static DCTELEM, block)[64];
  157. DECLARE_ALIGNED(8, static DCTELEM, block1)[64];
  158. DECLARE_ALIGNED(8, static DCTELEM, block_org)[64];
  159. static inline void mmx_emms(void)
  160. {
  161. #if HAVE_MMX
  162. if (cpu_flags & AV_CPU_FLAG_MMX)
  163. __asm__ volatile ("emms\n\t");
  164. #endif
  165. }
  166. static void dct_error(const struct algo *dct, int test, int is_idct, int speed)
  167. {
  168. int it, i, scale;
  169. int err_inf, v;
  170. int64_t err2, ti, ti1, it1;
  171. int64_t sysErr[64], sysErrMax = 0;
  172. int maxout = 0;
  173. int blockSumErrMax = 0, blockSumErr;
  174. AVLFG prng;
  175. av_lfg_init(&prng, 1);
  176. err_inf = 0;
  177. err2 = 0;
  178. for (i = 0; i < 64; i++)
  179. sysErr[i] = 0;
  180. for (it = 0; it < NB_ITS; it++) {
  181. for (i = 0; i < 64; i++)
  182. block1[i] = 0;
  183. switch (test) {
  184. case 0:
  185. for (i = 0; i < 64; i++)
  186. block1[i] = (av_lfg_get(&prng) % 512) - 256;
  187. if (is_idct) {
  188. ff_ref_fdct(block1);
  189. for (i = 0; i < 64; i++)
  190. block1[i] >>= 3;
  191. }
  192. break;
  193. case 1: {
  194. int num = av_lfg_get(&prng) % 10 + 1;
  195. for (i = 0; i < num; i++)
  196. block1[av_lfg_get(&prng) % 64] =
  197. av_lfg_get(&prng) % 512 - 256;
  198. }
  199. break;
  200. case 2:
  201. block1[0] = av_lfg_get(&prng) % 4096 - 2048;
  202. block1[63] = (block1[0] & 1) ^ 1;
  203. break;
  204. }
  205. for (i = 0; i < 64; i++)
  206. block_org[i] = block1[i];
  207. if (dct->format == MMX_PERM) {
  208. for (i = 0; i < 64; i++)
  209. block[idct_mmx_perm[i]] = block1[i];
  210. } else if (dct->format == MMX_SIMPLE_PERM) {
  211. for (i = 0; i < 64; i++)
  212. block[idct_simple_mmx_perm[i]] = block1[i];
  213. } else if (dct->format == SSE2_PERM) {
  214. for (i = 0; i < 64; i++)
  215. block[(i & 0x38) | idct_sse2_row_perm[i & 7]] = block1[i];
  216. } else if (dct->format == PARTTRANS_PERM) {
  217. for (i = 0; i < 64; i++)
  218. block[(i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3)] = block1[i];
  219. } else {
  220. for (i = 0; i < 64; i++)
  221. block[i] = block1[i];
  222. }
  223. dct->func(block);
  224. mmx_emms();
  225. if (dct->format == SCALE_PERM) {
  226. for (i = 0; i < 64; i++) {
  227. scale = 8 * (1 << (AANSCALE_BITS + 11)) / ff_aanscales[i];
  228. block[i] = (block[i] * scale) >> AANSCALE_BITS;
  229. }
  230. }
  231. dct->ref(block1);
  232. blockSumErr = 0;
  233. for (i = 0; i < 64; i++) {
  234. v = abs(block[i] - block1[i]);
  235. if (v > err_inf)
  236. err_inf = v;
  237. err2 += v * v;
  238. sysErr[i] += block[i] - block1[i];
  239. blockSumErr += v;
  240. if (abs(block[i]) > maxout)
  241. maxout = abs(block[i]);
  242. }
  243. if (blockSumErrMax < blockSumErr)
  244. blockSumErrMax = blockSumErr;
  245. }
  246. for (i = 0; i < 64; i++)
  247. sysErrMax = FFMAX(sysErrMax, FFABS(sysErr[i]));
  248. for (i = 0; i < 64; i++) {
  249. if (i % 8 == 0)
  250. printf("\n");
  251. printf("%7d ", (int) sysErr[i]);
  252. }
  253. printf("\n");
  254. printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n",
  255. is_idct ? "IDCT" : "DCT", dct->name, err_inf,
  256. (double) err2 / NB_ITS / 64.0, (double) sysErrMax / NB_ITS,
  257. maxout, blockSumErrMax);
  258. if (!speed)
  259. return;
  260. /* speed test */
  261. for (i = 0; i < 64; i++)
  262. block1[i] = 0;
  263. switch (test) {
  264. case 0:
  265. for (i = 0; i < 64; i++)
  266. block1[i] = av_lfg_get(&prng) % 512 - 256;
  267. if (is_idct) {
  268. ff_ref_fdct(block1);
  269. for (i = 0; i < 64; i++)
  270. block1[i] >>= 3;
  271. }
  272. break;
  273. case 1:
  274. case 2:
  275. block1[0] = av_lfg_get(&prng) % 512 - 256;
  276. block1[1] = av_lfg_get(&prng) % 512 - 256;
  277. block1[2] = av_lfg_get(&prng) % 512 - 256;
  278. block1[3] = av_lfg_get(&prng) % 512 - 256;
  279. break;
  280. }
  281. if (dct->format == MMX_PERM) {
  282. for (i = 0; i < 64; i++)
  283. block[idct_mmx_perm[i]] = block1[i];
  284. } else if (dct->format == MMX_SIMPLE_PERM) {
  285. for (i = 0; i < 64; i++)
  286. block[idct_simple_mmx_perm[i]] = block1[i];
  287. } else {
  288. for (i = 0; i < 64; i++)
  289. block[i] = block1[i];
  290. }
  291. ti = gettime();
  292. it1 = 0;
  293. do {
  294. for (it = 0; it < NB_ITS_SPEED; it++) {
  295. for (i = 0; i < 64; i++)
  296. block[i] = block1[i];
  297. dct->func(block);
  298. }
  299. it1 += NB_ITS_SPEED;
  300. ti1 = gettime() - ti;
  301. } while (ti1 < 1000000);
  302. mmx_emms();
  303. printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", dct->name,
  304. (double) it1 * 1000.0 / (double) ti1);
  305. }
  306. DECLARE_ALIGNED(8, static uint8_t, img_dest)[64];
  307. DECLARE_ALIGNED(8, static uint8_t, img_dest1)[64];
  308. static void idct248_ref(uint8_t *dest, int linesize, int16_t *block)
  309. {
  310. static int init;
  311. static double c8[8][8];
  312. static double c4[4][4];
  313. double block1[64], block2[64], block3[64];
  314. double s, sum, v;
  315. int i, j, k;
  316. if (!init) {
  317. init = 1;
  318. for (i = 0; i < 8; i++) {
  319. sum = 0;
  320. for (j = 0; j < 8; j++) {
  321. s = (i == 0) ? sqrt(1.0 / 8.0) : sqrt(1.0 / 4.0);
  322. c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0);
  323. sum += c8[i][j] * c8[i][j];
  324. }
  325. }
  326. for (i = 0; i < 4; i++) {
  327. sum = 0;
  328. for (j = 0; j < 4; j++) {
  329. s = (i == 0) ? sqrt(1.0 / 4.0) : sqrt(1.0 / 2.0);
  330. c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0);
  331. sum += c4[i][j] * c4[i][j];
  332. }
  333. }
  334. }
  335. /* butterfly */
  336. s = 0.5 * sqrt(2.0);
  337. for (i = 0; i < 4; i++) {
  338. for (j = 0; j < 8; j++) {
  339. block1[8 * (2 * i) + j] =
  340. (block[8 * (2 * i) + j] + block[8 * (2 * i + 1) + j]) * s;
  341. block1[8 * (2 * i + 1) + j] =
  342. (block[8 * (2 * i) + j] - block[8 * (2 * i + 1) + j]) * s;
  343. }
  344. }
  345. /* idct8 on lines */
  346. for (i = 0; i < 8; i++) {
  347. for (j = 0; j < 8; j++) {
  348. sum = 0;
  349. for (k = 0; k < 8; k++)
  350. sum += c8[k][j] * block1[8 * i + k];
  351. block2[8 * i + j] = sum;
  352. }
  353. }
  354. /* idct4 */
  355. for (i = 0; i < 8; i++) {
  356. for (j = 0; j < 4; j++) {
  357. /* top */
  358. sum = 0;
  359. for (k = 0; k < 4; k++)
  360. sum += c4[k][j] * block2[8 * (2 * k) + i];
  361. block3[8 * (2 * j) + i] = sum;
  362. /* bottom */
  363. sum = 0;
  364. for (k = 0; k < 4; k++)
  365. sum += c4[k][j] * block2[8 * (2 * k + 1) + i];
  366. block3[8 * (2 * j + 1) + i] = sum;
  367. }
  368. }
  369. /* clamp and store the result */
  370. for (i = 0; i < 8; i++) {
  371. for (j = 0; j < 8; j++) {
  372. v = block3[8 * i + j];
  373. if (v < 0) v = 0;
  374. else if (v > 255) v = 255;
  375. dest[i * linesize + j] = (int) rint(v);
  376. }
  377. }
  378. }
  379. static void idct248_error(const char *name,
  380. void (*idct248_put)(uint8_t *dest, int line_size,
  381. int16_t *block),
  382. int speed)
  383. {
  384. int it, i, it1, ti, ti1, err_max, v;
  385. AVLFG prng;
  386. av_lfg_init(&prng, 1);
  387. /* just one test to see if code is correct (precision is less
  388. important here) */
  389. err_max = 0;
  390. for (it = 0; it < NB_ITS; it++) {
  391. /* XXX: use forward transform to generate values */
  392. for (i = 0; i < 64; i++)
  393. block1[i] = av_lfg_get(&prng) % 256 - 128;
  394. block1[0] += 1024;
  395. for (i = 0; i < 64; i++)
  396. block[i] = block1[i];
  397. idct248_ref(img_dest1, 8, block);
  398. for (i = 0; i < 64; i++)
  399. block[i] = block1[i];
  400. idct248_put(img_dest, 8, block);
  401. for (i = 0; i < 64; i++) {
  402. v = abs((int) img_dest[i] - (int) img_dest1[i]);
  403. if (v == 255)
  404. printf("%d %d\n", img_dest[i], img_dest1[i]);
  405. if (v > err_max)
  406. err_max = v;
  407. }
  408. }
  409. printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max);
  410. if (!speed)
  411. return;
  412. ti = gettime();
  413. it1 = 0;
  414. do {
  415. for (it = 0; it < NB_ITS_SPEED; it++) {
  416. for (i = 0; i < 64; i++)
  417. block[i] = block1[i];
  418. idct248_put(img_dest, 8, block);
  419. }
  420. it1 += NB_ITS_SPEED;
  421. ti1 = gettime() - ti;
  422. } while (ti1 < 1000000);
  423. mmx_emms();
  424. printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name,
  425. (double) it1 * 1000.0 / (double) ti1);
  426. }
  427. static void help(void)
  428. {
  429. printf("dct-test [-i] [<test-number>]\n"
  430. "test-number 0 -> test with random matrixes\n"
  431. " 1 -> test with random sparse matrixes\n"
  432. " 2 -> do 3. test from mpeg4 std\n"
  433. "-i test IDCT implementations\n"
  434. "-4 test IDCT248 implementations\n"
  435. "-t speed test\n");
  436. }
  437. int main(int argc, char **argv)
  438. {
  439. int test_idct = 0, test_248_dct = 0;
  440. int c, i;
  441. int test = 1;
  442. int speed = 0;
  443. cpu_flags = av_get_cpu_flags();
  444. ff_ref_dct_init();
  445. idct_mmx_init();
  446. for (i = 0; i < 256; i++)
  447. cropTbl[i + MAX_NEG_CROP] = i;
  448. for (i = 0; i < MAX_NEG_CROP; i++) {
  449. cropTbl[i] = 0;
  450. cropTbl[i + MAX_NEG_CROP + 256] = 255;
  451. }
  452. for (;;) {
  453. c = getopt(argc, argv, "ih4t");
  454. if (c == -1)
  455. break;
  456. switch (c) {
  457. case 'i':
  458. test_idct = 1;
  459. break;
  460. case '4':
  461. test_248_dct = 1;
  462. break;
  463. case 't':
  464. speed = 1;
  465. break;
  466. default:
  467. case 'h':
  468. help();
  469. return 0;
  470. }
  471. }
  472. if (optind < argc)
  473. test = atoi(argv[optind]);
  474. printf("ffmpeg DCT/IDCT test\n");
  475. if (test_248_dct) {
  476. idct248_error("SIMPLE-C", ff_simple_idct248_put, speed);
  477. } else {
  478. const struct algo *algos = test_idct ? idct_tab : fdct_tab;
  479. for (i = 0; algos[i].name; i++)
  480. if (!(~cpu_flags & algos[i].mm_support)) {
  481. dct_error(&algos[i], test, test_idct, speed);
  482. }
  483. }
  484. return 0;
  485. }