You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1698 lines
59KB

  1. /**
  2. * VP8 compatible video decoder
  3. *
  4. * Copyright (C) 2010 David Conrad
  5. * Copyright (C) 2010 Ronald S. Bultje
  6. * Copyright (C) 2010 Jason Garrett-Glaser
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "libavcore/imgutils.h"
  25. #include "avcodec.h"
  26. #include "vp56.h"
  27. #include "vp8data.h"
  28. #include "vp8dsp.h"
  29. #include "h264pred.h"
  30. #include "rectangle.h"
  31. typedef struct {
  32. uint8_t filter_level;
  33. uint8_t inner_limit;
  34. uint8_t inner_filter;
  35. } VP8FilterStrength;
  36. typedef struct {
  37. uint8_t skip;
  38. // todo: make it possible to check for at least (i4x4 or split_mv)
  39. // in one op. are others needed?
  40. uint8_t mode;
  41. uint8_t ref_frame;
  42. uint8_t partitioning;
  43. VP56mv mv;
  44. VP56mv bmv[16];
  45. } VP8Macroblock;
  46. typedef struct {
  47. AVCodecContext *avctx;
  48. DSPContext dsp;
  49. VP8DSPContext vp8dsp;
  50. H264PredContext hpc;
  51. vp8_mc_func put_pixels_tab[3][3][3];
  52. AVFrame frames[4];
  53. AVFrame *framep[4];
  54. uint8_t *edge_emu_buffer;
  55. VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
  56. int profile;
  57. int mb_width; /* number of horizontal MB */
  58. int mb_height; /* number of vertical MB */
  59. int linesize;
  60. int uvlinesize;
  61. int keyframe;
  62. int invisible;
  63. int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
  64. int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
  65. int update_altref;
  66. int deblock_filter;
  67. /**
  68. * If this flag is not set, all the probability updates
  69. * are discarded after this frame is decoded.
  70. */
  71. int update_probabilities;
  72. /**
  73. * All coefficients are contained in separate arith coding contexts.
  74. * There can be 1, 2, 4, or 8 of these after the header context.
  75. */
  76. int num_coeff_partitions;
  77. VP56RangeCoder coeff_partition[8];
  78. VP8Macroblock *macroblocks;
  79. VP8Macroblock *macroblocks_base;
  80. VP8FilterStrength *filter_strength;
  81. int mb_stride;
  82. uint8_t *intra4x4_pred_mode_top;
  83. uint8_t intra4x4_pred_mode_left[4];
  84. uint8_t *segmentation_map;
  85. int b4_stride;
  86. /**
  87. * Cache of the top row needed for intra prediction
  88. * 16 for luma, 8 for each chroma plane
  89. */
  90. uint8_t (*top_border)[16+8+8];
  91. /**
  92. * For coeff decode, we need to know whether the above block had non-zero
  93. * coefficients. This means for each macroblock, we need data for 4 luma
  94. * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
  95. * per macroblock. We keep the last row in top_nnz.
  96. */
  97. uint8_t (*top_nnz)[9];
  98. DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
  99. /**
  100. * This is the index plus one of the last non-zero coeff
  101. * for each of the blocks in the current macroblock.
  102. * So, 0 -> no coeffs
  103. * 1 -> dc-only (special transform)
  104. * 2+-> full transform
  105. */
  106. DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
  107. DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
  108. DECLARE_ALIGNED(16, DCTELEM, block_dc)[16];
  109. uint8_t intra4x4_pred_mode_mb[16];
  110. int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock
  111. int segment; ///< segment of the current macroblock
  112. int mbskip_enabled;
  113. int sign_bias[4]; ///< one state [0, 1] per ref frame type
  114. int ref_count[3];
  115. /**
  116. * Base parameters for segmentation, i.e. per-macroblock parameters.
  117. * These must be kept unchanged even if segmentation is not used for
  118. * a frame, since the values persist between interframes.
  119. */
  120. struct {
  121. int enabled;
  122. int absolute_vals;
  123. int update_map;
  124. int8_t base_quant[4];
  125. int8_t filter_level[4]; ///< base loop filter level
  126. } segmentation;
  127. /**
  128. * Macroblocks can have one of 4 different quants in a frame when
  129. * segmentation is enabled.
  130. * If segmentation is disabled, only the first segment's values are used.
  131. */
  132. struct {
  133. // [0] - DC qmul [1] - AC qmul
  134. int16_t luma_qmul[2];
  135. int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
  136. int16_t chroma_qmul[2];
  137. } qmat[4];
  138. struct {
  139. int simple;
  140. int level;
  141. int sharpness;
  142. } filter;
  143. struct {
  144. int enabled; ///< whether each mb can have a different strength based on mode/ref
  145. /**
  146. * filter strength adjustment for the following macroblock modes:
  147. * [0] - i4x4
  148. * [1] - zero mv
  149. * [2] - inter modes except for zero or split mv
  150. * [3] - split mv
  151. * i16x16 modes never have any adjustment
  152. */
  153. int8_t mode[4];
  154. /**
  155. * filter strength adjustment for macroblocks that reference:
  156. * [0] - intra / VP56_FRAME_CURRENT
  157. * [1] - VP56_FRAME_PREVIOUS
  158. * [2] - VP56_FRAME_GOLDEN
  159. * [3] - altref / VP56_FRAME_GOLDEN2
  160. */
  161. int8_t ref[4];
  162. } lf_delta;
  163. /**
  164. * These are all of the updatable probabilities for binary decisions.
  165. * They are only implictly reset on keyframes, making it quite likely
  166. * for an interframe to desync if a prior frame's header was corrupt
  167. * or missing outright!
  168. */
  169. struct {
  170. uint8_t segmentid[3];
  171. uint8_t mbskip;
  172. uint8_t intra;
  173. uint8_t last;
  174. uint8_t golden;
  175. uint8_t pred16x16[4];
  176. uint8_t pred8x8c[3];
  177. /* Padded to allow overreads */
  178. uint8_t token[4][17][3][NUM_DCT_TOKENS-1];
  179. uint8_t mvc[2][19];
  180. } prob[2];
  181. } VP8Context;
  182. static void vp8_decode_flush(AVCodecContext *avctx)
  183. {
  184. VP8Context *s = avctx->priv_data;
  185. int i;
  186. for (i = 0; i < 4; i++)
  187. if (s->frames[i].data[0])
  188. avctx->release_buffer(avctx, &s->frames[i]);
  189. memset(s->framep, 0, sizeof(s->framep));
  190. av_freep(&s->macroblocks_base);
  191. av_freep(&s->filter_strength);
  192. av_freep(&s->intra4x4_pred_mode_top);
  193. av_freep(&s->top_nnz);
  194. av_freep(&s->edge_emu_buffer);
  195. av_freep(&s->top_border);
  196. av_freep(&s->segmentation_map);
  197. s->macroblocks = NULL;
  198. }
  199. static int update_dimensions(VP8Context *s, int width, int height)
  200. {
  201. if (av_check_image_size(width, height, 0, s->avctx))
  202. return AVERROR_INVALIDDATA;
  203. vp8_decode_flush(s->avctx);
  204. avcodec_set_dimensions(s->avctx, width, height);
  205. s->mb_width = (s->avctx->coded_width +15) / 16;
  206. s->mb_height = (s->avctx->coded_height+15) / 16;
  207. // we allocate a border around the top/left of intra4x4 modes
  208. // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
  209. s->mb_stride = s->mb_width+1;
  210. s->b4_stride = 4*s->mb_stride;
  211. s->macroblocks_base = av_mallocz((s->mb_stride+s->mb_height*2+2)*sizeof(*s->macroblocks));
  212. s->filter_strength = av_mallocz(s->mb_stride*sizeof(*s->filter_strength));
  213. s->intra4x4_pred_mode_top = av_mallocz(s->b4_stride*4);
  214. s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
  215. s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
  216. s->segmentation_map = av_mallocz(s->mb_stride*s->mb_height);
  217. if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_top ||
  218. !s->top_nnz || !s->top_border || !s->segmentation_map)
  219. return AVERROR(ENOMEM);
  220. s->macroblocks = s->macroblocks_base + 1;
  221. return 0;
  222. }
  223. static void parse_segment_info(VP8Context *s)
  224. {
  225. VP56RangeCoder *c = &s->c;
  226. int i;
  227. s->segmentation.update_map = vp8_rac_get(c);
  228. if (vp8_rac_get(c)) { // update segment feature data
  229. s->segmentation.absolute_vals = vp8_rac_get(c);
  230. for (i = 0; i < 4; i++)
  231. s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
  232. for (i = 0; i < 4; i++)
  233. s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
  234. }
  235. if (s->segmentation.update_map)
  236. for (i = 0; i < 3; i++)
  237. s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
  238. }
  239. static void update_lf_deltas(VP8Context *s)
  240. {
  241. VP56RangeCoder *c = &s->c;
  242. int i;
  243. for (i = 0; i < 4; i++)
  244. s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
  245. for (i = 0; i < 4; i++)
  246. s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
  247. }
  248. static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
  249. {
  250. const uint8_t *sizes = buf;
  251. int i;
  252. s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
  253. buf += 3*(s->num_coeff_partitions-1);
  254. buf_size -= 3*(s->num_coeff_partitions-1);
  255. if (buf_size < 0)
  256. return -1;
  257. for (i = 0; i < s->num_coeff_partitions-1; i++) {
  258. int size = AV_RL24(sizes + 3*i);
  259. if (buf_size - size < 0)
  260. return -1;
  261. ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
  262. buf += size;
  263. buf_size -= size;
  264. }
  265. ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
  266. return 0;
  267. }
  268. static void get_quants(VP8Context *s)
  269. {
  270. VP56RangeCoder *c = &s->c;
  271. int i, base_qi;
  272. int yac_qi = vp8_rac_get_uint(c, 7);
  273. int ydc_delta = vp8_rac_get_sint(c, 4);
  274. int y2dc_delta = vp8_rac_get_sint(c, 4);
  275. int y2ac_delta = vp8_rac_get_sint(c, 4);
  276. int uvdc_delta = vp8_rac_get_sint(c, 4);
  277. int uvac_delta = vp8_rac_get_sint(c, 4);
  278. for (i = 0; i < 4; i++) {
  279. if (s->segmentation.enabled) {
  280. base_qi = s->segmentation.base_quant[i];
  281. if (!s->segmentation.absolute_vals)
  282. base_qi += yac_qi;
  283. } else
  284. base_qi = yac_qi;
  285. s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
  286. s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)];
  287. s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
  288. s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
  289. s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
  290. s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
  291. s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
  292. s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
  293. }
  294. }
  295. /**
  296. * Determine which buffers golden and altref should be updated with after this frame.
  297. * The spec isn't clear here, so I'm going by my understanding of what libvpx does
  298. *
  299. * Intra frames update all 3 references
  300. * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
  301. * If the update (golden|altref) flag is set, it's updated with the current frame
  302. * if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
  303. * If the flag is not set, the number read means:
  304. * 0: no update
  305. * 1: VP56_FRAME_PREVIOUS
  306. * 2: update golden with altref, or update altref with golden
  307. */
  308. static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
  309. {
  310. VP56RangeCoder *c = &s->c;
  311. if (update)
  312. return VP56_FRAME_CURRENT;
  313. switch (vp8_rac_get_uint(c, 2)) {
  314. case 1:
  315. return VP56_FRAME_PREVIOUS;
  316. case 2:
  317. return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
  318. }
  319. return VP56_FRAME_NONE;
  320. }
  321. static void update_refs(VP8Context *s)
  322. {
  323. VP56RangeCoder *c = &s->c;
  324. int update_golden = vp8_rac_get(c);
  325. int update_altref = vp8_rac_get(c);
  326. s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
  327. s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
  328. }
  329. static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
  330. {
  331. VP56RangeCoder *c = &s->c;
  332. int header_size, hscale, vscale, i, j, k, l, m, ret;
  333. int width = s->avctx->width;
  334. int height = s->avctx->height;
  335. s->keyframe = !(buf[0] & 1);
  336. s->profile = (buf[0]>>1) & 7;
  337. s->invisible = !(buf[0] & 0x10);
  338. header_size = AV_RL24(buf) >> 5;
  339. buf += 3;
  340. buf_size -= 3;
  341. if (s->profile > 3)
  342. av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
  343. if (!s->profile)
  344. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
  345. else // profile 1-3 use bilinear, 4+ aren't defined so whatever
  346. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
  347. if (header_size > buf_size - 7*s->keyframe) {
  348. av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
  349. return AVERROR_INVALIDDATA;
  350. }
  351. if (s->keyframe) {
  352. if (AV_RL24(buf) != 0x2a019d) {
  353. av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
  354. return AVERROR_INVALIDDATA;
  355. }
  356. width = AV_RL16(buf+3) & 0x3fff;
  357. height = AV_RL16(buf+5) & 0x3fff;
  358. hscale = buf[4] >> 6;
  359. vscale = buf[6] >> 6;
  360. buf += 7;
  361. buf_size -= 7;
  362. if (hscale || vscale)
  363. av_log_missing_feature(s->avctx, "Upscaling", 1);
  364. s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
  365. for (i = 0; i < 4; i++)
  366. for (j = 0; j < 16; j++)
  367. memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
  368. sizeof(s->prob->token[i][j]));
  369. memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
  370. memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
  371. memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
  372. memset(&s->segmentation, 0, sizeof(s->segmentation));
  373. }
  374. if (!s->macroblocks_base || /* first frame */
  375. width != s->avctx->width || height != s->avctx->height) {
  376. if ((ret = update_dimensions(s, width, height) < 0))
  377. return ret;
  378. }
  379. ff_vp56_init_range_decoder(c, buf, header_size);
  380. buf += header_size;
  381. buf_size -= header_size;
  382. if (s->keyframe) {
  383. if (vp8_rac_get(c))
  384. av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
  385. vp8_rac_get(c); // whether we can skip clamping in dsp functions
  386. }
  387. if ((s->segmentation.enabled = vp8_rac_get(c)))
  388. parse_segment_info(s);
  389. else
  390. s->segmentation.update_map = 0; // FIXME: move this to some init function?
  391. s->filter.simple = vp8_rac_get(c);
  392. s->filter.level = vp8_rac_get_uint(c, 6);
  393. s->filter.sharpness = vp8_rac_get_uint(c, 3);
  394. if ((s->lf_delta.enabled = vp8_rac_get(c)))
  395. if (vp8_rac_get(c))
  396. update_lf_deltas(s);
  397. if (setup_partitions(s, buf, buf_size)) {
  398. av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
  399. return AVERROR_INVALIDDATA;
  400. }
  401. get_quants(s);
  402. if (!s->keyframe) {
  403. update_refs(s);
  404. s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
  405. s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
  406. }
  407. // if we aren't saving this frame's probabilities for future frames,
  408. // make a copy of the current probabilities
  409. if (!(s->update_probabilities = vp8_rac_get(c)))
  410. s->prob[1] = s->prob[0];
  411. s->update_last = s->keyframe || vp8_rac_get(c);
  412. for (i = 0; i < 4; i++)
  413. for (j = 0; j < 8; j++)
  414. for (k = 0; k < 3; k++)
  415. for (l = 0; l < NUM_DCT_TOKENS-1; l++)
  416. if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
  417. int prob = vp8_rac_get_uint(c, 8);
  418. for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
  419. s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
  420. }
  421. if ((s->mbskip_enabled = vp8_rac_get(c)))
  422. s->prob->mbskip = vp8_rac_get_uint(c, 8);
  423. if (!s->keyframe) {
  424. s->prob->intra = vp8_rac_get_uint(c, 8);
  425. s->prob->last = vp8_rac_get_uint(c, 8);
  426. s->prob->golden = vp8_rac_get_uint(c, 8);
  427. if (vp8_rac_get(c))
  428. for (i = 0; i < 4; i++)
  429. s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
  430. if (vp8_rac_get(c))
  431. for (i = 0; i < 3; i++)
  432. s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
  433. // 17.2 MV probability update
  434. for (i = 0; i < 2; i++)
  435. for (j = 0; j < 19; j++)
  436. if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
  437. s->prob->mvc[i][j] = vp8_rac_get_nn(c);
  438. }
  439. return 0;
  440. }
  441. static av_always_inline
  442. void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, int mb_x, int mb_y)
  443. {
  444. #define MARGIN (16 << 2)
  445. dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
  446. ((s->mb_width - 1 - mb_x) << 6) + MARGIN);
  447. dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
  448. ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
  449. }
  450. static av_always_inline
  451. void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
  452. VP56mv near[2], VP56mv *best, uint8_t cnt[4])
  453. {
  454. VP8Macroblock *mb_edge[3] = { mb + 2 /* top */,
  455. mb - 1 /* left */,
  456. mb + 1 /* top-left */ };
  457. enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
  458. VP56mv near_mv[4] = {{ 0 }};
  459. enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
  460. int idx = CNT_ZERO;
  461. int best_idx = CNT_ZERO;
  462. int cur_sign_bias = s->sign_bias[mb->ref_frame];
  463. int *sign_bias = s->sign_bias;
  464. /* Process MB on top, left and top-left */
  465. #define MV_EDGE_CHECK(n)\
  466. {\
  467. VP8Macroblock *edge = mb_edge[n];\
  468. int edge_ref = edge->ref_frame;\
  469. if (edge_ref != VP56_FRAME_CURRENT) {\
  470. uint32_t mv = AV_RN32A(&edge->mv);\
  471. if (mv) {\
  472. if (cur_sign_bias != sign_bias[edge_ref]) {\
  473. /* SWAR negate of the values in mv. */\
  474. mv = ~mv;\
  475. mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\
  476. }\
  477. if (!n || mv != AV_RN32A(&near_mv[idx]))\
  478. AV_WN32A(&near_mv[++idx], mv);\
  479. cnt[idx] += 1 + (n != 2);\
  480. } else\
  481. cnt[CNT_ZERO] += 1 + (n != 2);\
  482. }\
  483. }
  484. MV_EDGE_CHECK(0)
  485. MV_EDGE_CHECK(1)
  486. MV_EDGE_CHECK(2)
  487. /* If we have three distinct MVs, merge first and last if they're the same */
  488. if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT]))
  489. cnt[CNT_NEAREST] += 1;
  490. cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
  491. (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
  492. (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
  493. /* Swap near and nearest if necessary */
  494. if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
  495. FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
  496. FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
  497. }
  498. /* Choose the best mv out of 0,0 and the nearest mv */
  499. if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
  500. best_idx = CNT_NEAREST;
  501. mb->mv = near_mv[best_idx];
  502. near[0] = near_mv[CNT_NEAREST];
  503. near[1] = near_mv[CNT_NEAR];
  504. }
  505. /**
  506. * Motion vector coding, 17.1.
  507. */
  508. static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
  509. {
  510. int bit, x = 0;
  511. if (vp56_rac_get_prob_branchy(c, p[0])) {
  512. int i;
  513. for (i = 0; i < 3; i++)
  514. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  515. for (i = 9; i > 3; i--)
  516. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  517. if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
  518. x += 8;
  519. } else {
  520. // small_mvtree
  521. const uint8_t *ps = p+2;
  522. bit = vp56_rac_get_prob(c, *ps);
  523. ps += 1 + 3*bit;
  524. x += 4*bit;
  525. bit = vp56_rac_get_prob(c, *ps);
  526. ps += 1 + bit;
  527. x += 2*bit;
  528. x += vp56_rac_get_prob(c, *ps);
  529. }
  530. return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
  531. }
  532. static av_always_inline
  533. const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
  534. {
  535. if (left == top)
  536. return vp8_submv_prob[4-!!left];
  537. if (!top)
  538. return vp8_submv_prob[2];
  539. return vp8_submv_prob[1-!!left];
  540. }
  541. /**
  542. * Split motion vector prediction, 16.4.
  543. * @returns the number of motion vectors parsed (2, 4 or 16)
  544. */
  545. static av_always_inline
  546. int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb)
  547. {
  548. int part_idx;
  549. int n, num;
  550. VP8Macroblock *top_mb = &mb[2];
  551. VP8Macroblock *left_mb = &mb[-1];
  552. const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
  553. *mbsplits_top = vp8_mbsplits[top_mb->partitioning],
  554. *mbsplits_cur, *firstidx;
  555. VP56mv *top_mv = top_mb->bmv;
  556. VP56mv *left_mv = left_mb->bmv;
  557. VP56mv *cur_mv = mb->bmv;
  558. if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
  559. if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) {
  560. part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
  561. } else {
  562. part_idx = VP8_SPLITMVMODE_8x8;
  563. }
  564. } else {
  565. part_idx = VP8_SPLITMVMODE_4x4;
  566. }
  567. num = vp8_mbsplit_count[part_idx];
  568. mbsplits_cur = vp8_mbsplits[part_idx],
  569. firstidx = vp8_mbfirstidx[part_idx];
  570. mb->partitioning = part_idx;
  571. for (n = 0; n < num; n++) {
  572. int k = firstidx[n];
  573. uint32_t left, above;
  574. const uint8_t *submv_prob;
  575. if (!(k & 3))
  576. left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
  577. else
  578. left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
  579. if (k <= 3)
  580. above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
  581. else
  582. above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
  583. submv_prob = get_submv_prob(left, above);
  584. if (vp56_rac_get_prob_branchy(c, submv_prob[0])) {
  585. if (vp56_rac_get_prob_branchy(c, submv_prob[1])) {
  586. if (vp56_rac_get_prob_branchy(c, submv_prob[2])) {
  587. mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
  588. mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
  589. } else {
  590. AV_ZERO32(&mb->bmv[n]);
  591. }
  592. } else {
  593. AV_WN32A(&mb->bmv[n], above);
  594. }
  595. } else {
  596. AV_WN32A(&mb->bmv[n], left);
  597. }
  598. }
  599. return num;
  600. }
  601. static av_always_inline
  602. void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c,
  603. int mb_x, int keyframe)
  604. {
  605. uint8_t *intra4x4 = s->intra4x4_pred_mode_mb;
  606. if (keyframe) {
  607. int x, y;
  608. uint8_t* const top = s->intra4x4_pred_mode_top + 4 * mb_x;
  609. uint8_t* const left = s->intra4x4_pred_mode_left;
  610. for (y = 0; y < 4; y++) {
  611. for (x = 0; x < 4; x++) {
  612. const uint8_t *ctx;
  613. ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
  614. *intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
  615. left[y] = top[x] = *intra4x4;
  616. intra4x4++;
  617. }
  618. }
  619. } else {
  620. int i;
  621. for (i = 0; i < 16; i++)
  622. intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
  623. }
  624. }
  625. static av_always_inline
  626. void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment)
  627. {
  628. VP56RangeCoder *c = &s->c;
  629. if (s->segmentation.update_map)
  630. *segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
  631. s->segment = *segment;
  632. mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
  633. if (s->keyframe) {
  634. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
  635. if (mb->mode == MODE_I4x4) {
  636. decode_intra4x4_modes(s, c, mb_x, 1);
  637. } else {
  638. const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u;
  639. AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
  640. AV_WN32A(s->intra4x4_pred_mode_left, modes);
  641. }
  642. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
  643. mb->ref_frame = VP56_FRAME_CURRENT;
  644. } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
  645. VP56mv near[2], best;
  646. uint8_t cnt[4] = { 0 };
  647. // inter MB, 16.2
  648. if (vp56_rac_get_prob_branchy(c, s->prob->last))
  649. mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
  650. VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
  651. else
  652. mb->ref_frame = VP56_FRAME_PREVIOUS;
  653. s->ref_count[mb->ref_frame-1]++;
  654. // motion vectors, 16.3
  655. find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
  656. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[0]][0])) {
  657. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[1]][1])) {
  658. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[2]][2])) {
  659. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[3]][3])) {
  660. mb->mode = VP8_MVMODE_SPLIT;
  661. clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
  662. mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1];
  663. } else {
  664. mb->mode = VP8_MVMODE_NEW;
  665. clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
  666. mb->mv.y += + read_mv_component(c, s->prob->mvc[0]);
  667. mb->mv.x += + read_mv_component(c, s->prob->mvc[1]);
  668. }
  669. } else {
  670. mb->mode = VP8_MVMODE_NEAR;
  671. clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
  672. }
  673. } else {
  674. mb->mode = VP8_MVMODE_NEAREST;
  675. clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
  676. }
  677. } else {
  678. mb->mode = VP8_MVMODE_ZERO;
  679. AV_ZERO32(&mb->mv);
  680. }
  681. if (mb->mode != VP8_MVMODE_SPLIT) {
  682. mb->partitioning = VP8_SPLITMVMODE_NONE;
  683. mb->bmv[0] = mb->mv;
  684. }
  685. } else {
  686. // intra MB, 16.1
  687. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
  688. if (mb->mode == MODE_I4x4)
  689. decode_intra4x4_modes(s, c, mb_x, 0);
  690. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
  691. mb->ref_frame = VP56_FRAME_CURRENT;
  692. mb->partitioning = VP8_SPLITMVMODE_NONE;
  693. AV_ZERO32(&mb->bmv[0]);
  694. }
  695. }
  696. /**
  697. * @param c arithmetic bitstream reader context
  698. * @param block destination for block coefficients
  699. * @param probs probabilities to use when reading trees from the bitstream
  700. * @param i initial coeff index, 0 unless a separate DC block is coded
  701. * @param zero_nhood the initial prediction context for number of surrounding
  702. * all-zero blocks (only left/top, so 0-2)
  703. * @param qmul array holding the dc/ac dequant factor at position 0/1
  704. * @return 0 if no coeffs were decoded
  705. * otherwise, the index of the last coeff decoded plus one
  706. */
  707. static int decode_block_coeffs_internal(VP56RangeCoder *c, DCTELEM block[16],
  708. uint8_t probs[8][3][NUM_DCT_TOKENS-1],
  709. int i, uint8_t *token_prob, int16_t qmul[2])
  710. {
  711. goto skip_eob;
  712. do {
  713. int coeff;
  714. if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
  715. return i;
  716. skip_eob:
  717. if (!vp56_rac_get_prob_branchy(c, token_prob[1])) { // DCT_0
  718. if (++i == 16)
  719. return i; // invalid input; blocks should end with EOB
  720. token_prob = probs[i][0];
  721. goto skip_eob;
  722. }
  723. if (!vp56_rac_get_prob_branchy(c, token_prob[2])) { // DCT_1
  724. coeff = 1;
  725. token_prob = probs[i+1][1];
  726. } else {
  727. if (!vp56_rac_get_prob_branchy(c, token_prob[3])) { // DCT 2,3,4
  728. coeff = vp56_rac_get_prob_branchy(c, token_prob[4]);
  729. if (coeff)
  730. coeff += vp56_rac_get_prob(c, token_prob[5]);
  731. coeff += 2;
  732. } else {
  733. // DCT_CAT*
  734. if (!vp56_rac_get_prob_branchy(c, token_prob[6])) {
  735. if (!vp56_rac_get_prob_branchy(c, token_prob[7])) { // DCT_CAT1
  736. coeff = 5 + vp56_rac_get_prob(c, vp8_dct_cat1_prob[0]);
  737. } else { // DCT_CAT2
  738. coeff = 7;
  739. coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[0]) << 1;
  740. coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[1]);
  741. }
  742. } else { // DCT_CAT3 and up
  743. int a = vp56_rac_get_prob(c, token_prob[8]);
  744. int b = vp56_rac_get_prob(c, token_prob[9+a]);
  745. int cat = (a<<1) + b;
  746. coeff = 3 + (8<<cat);
  747. coeff += vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
  748. }
  749. }
  750. token_prob = probs[i+1][2];
  751. }
  752. block[zigzag_scan[i]] = (vp8_rac_get(c) ? -coeff : coeff) * qmul[!!i];
  753. } while (++i < 16);
  754. return i;
  755. }
  756. static av_always_inline
  757. int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
  758. uint8_t probs[8][3][NUM_DCT_TOKENS-1],
  759. int i, int zero_nhood, int16_t qmul[2])
  760. {
  761. uint8_t *token_prob = probs[i][zero_nhood];
  762. if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
  763. return 0;
  764. return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul);
  765. }
  766. static av_always_inline
  767. void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
  768. uint8_t t_nnz[9], uint8_t l_nnz[9])
  769. {
  770. int i, x, y, luma_start = 0, luma_ctx = 3;
  771. int nnz_pred, nnz, nnz_total = 0;
  772. int segment = s->segment;
  773. int block_dc = 0;
  774. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  775. nnz_pred = t_nnz[8] + l_nnz[8];
  776. // decode DC values and do hadamard
  777. nnz = decode_block_coeffs(c, s->block_dc, s->prob->token[1], 0, nnz_pred,
  778. s->qmat[segment].luma_dc_qmul);
  779. l_nnz[8] = t_nnz[8] = !!nnz;
  780. if (nnz) {
  781. nnz_total += nnz;
  782. block_dc = 1;
  783. if (nnz == 1)
  784. s->vp8dsp.vp8_luma_dc_wht_dc(s->block, s->block_dc);
  785. else
  786. s->vp8dsp.vp8_luma_dc_wht(s->block, s->block_dc);
  787. }
  788. luma_start = 1;
  789. luma_ctx = 0;
  790. }
  791. // luma blocks
  792. for (y = 0; y < 4; y++)
  793. for (x = 0; x < 4; x++) {
  794. nnz_pred = l_nnz[y] + t_nnz[x];
  795. nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
  796. nnz_pred, s->qmat[segment].luma_qmul);
  797. // nnz+block_dc may be one more than the actual last index, but we don't care
  798. s->non_zero_count_cache[y][x] = nnz + block_dc;
  799. t_nnz[x] = l_nnz[y] = !!nnz;
  800. nnz_total += nnz;
  801. }
  802. // chroma blocks
  803. // TODO: what to do about dimensions? 2nd dim for luma is x,
  804. // but for chroma it's (y<<1)|x
  805. for (i = 4; i < 6; i++)
  806. for (y = 0; y < 2; y++)
  807. for (x = 0; x < 2; x++) {
  808. nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
  809. nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
  810. nnz_pred, s->qmat[segment].chroma_qmul);
  811. s->non_zero_count_cache[i][(y<<1)+x] = nnz;
  812. t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
  813. nnz_total += nnz;
  814. }
  815. // if there were no coded coeffs despite the macroblock not being marked skip,
  816. // we MUST not do the inner loop filter and should not do IDCT
  817. // Since skip isn't used for bitstream prediction, just manually set it.
  818. if (!nnz_total)
  819. mb->skip = 1;
  820. }
  821. static av_always_inline
  822. void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  823. int linesize, int uvlinesize, int simple)
  824. {
  825. AV_COPY128(top_border, src_y + 15*linesize);
  826. if (!simple) {
  827. AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
  828. AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
  829. }
  830. }
  831. static av_always_inline
  832. void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  833. int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
  834. int simple, int xchg)
  835. {
  836. uint8_t *top_border_m1 = top_border-32; // for TL prediction
  837. src_y -= linesize;
  838. src_cb -= uvlinesize;
  839. src_cr -= uvlinesize;
  840. #define XCHG(a,b,xchg) do { \
  841. if (xchg) AV_SWAP64(b,a); \
  842. else AV_COPY64(b,a); \
  843. } while (0)
  844. XCHG(top_border_m1+8, src_y-8, xchg);
  845. XCHG(top_border, src_y, xchg);
  846. XCHG(top_border+8, src_y+8, 1);
  847. if (mb_x < mb_width-1)
  848. XCHG(top_border+32, src_y+16, 1);
  849. // only copy chroma for normal loop filter
  850. // or to initialize the top row to 127
  851. if (!simple || !mb_y) {
  852. XCHG(top_border_m1+16, src_cb-8, xchg);
  853. XCHG(top_border_m1+24, src_cr-8, xchg);
  854. XCHG(top_border+16, src_cb, 1);
  855. XCHG(top_border+24, src_cr, 1);
  856. }
  857. }
  858. static av_always_inline
  859. int check_intra_pred_mode(int mode, int mb_x, int mb_y)
  860. {
  861. if (mode == DC_PRED8x8) {
  862. if (!mb_x) {
  863. mode = mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
  864. } else if (!mb_y) {
  865. mode = LEFT_DC_PRED8x8;
  866. }
  867. }
  868. return mode;
  869. }
  870. static av_always_inline
  871. void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  872. int mb_x, int mb_y)
  873. {
  874. int x, y, mode, nnz, tr;
  875. // for the first row, we need to run xchg_mb_border to init the top edge to 127
  876. // otherwise, skip it if we aren't going to deblock
  877. if (s->deblock_filter || !mb_y)
  878. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  879. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  880. s->filter.simple, 1);
  881. if (mb->mode < MODE_I4x4) {
  882. mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
  883. s->hpc.pred16x16[mode](dst[0], s->linesize);
  884. } else {
  885. uint8_t *ptr = dst[0];
  886. uint8_t *intra4x4 = s->intra4x4_pred_mode_mb;
  887. // all blocks on the right edge of the macroblock use bottom edge
  888. // the top macroblock for their topright edge
  889. uint8_t *tr_right = ptr - s->linesize + 16;
  890. // if we're on the right edge of the frame, said edge is extended
  891. // from the top macroblock
  892. if (mb_x == s->mb_width-1) {
  893. tr = tr_right[-1]*0x01010101;
  894. tr_right = (uint8_t *)&tr;
  895. }
  896. if (mb->skip)
  897. AV_ZERO128(s->non_zero_count_cache);
  898. for (y = 0; y < 4; y++) {
  899. uint8_t *topright = ptr + 4 - s->linesize;
  900. for (x = 0; x < 4; x++) {
  901. if (x == 3)
  902. topright = tr_right;
  903. s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
  904. nnz = s->non_zero_count_cache[y][x];
  905. if (nnz) {
  906. if (nnz == 1)
  907. s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
  908. else
  909. s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
  910. }
  911. topright += 4;
  912. }
  913. ptr += 4*s->linesize;
  914. intra4x4 += 4;
  915. }
  916. }
  917. mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
  918. s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
  919. s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
  920. if (s->deblock_filter || !mb_y)
  921. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  922. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  923. s->filter.simple, 0);
  924. }
  925. /**
  926. * Generic MC function.
  927. *
  928. * @param s VP8 decoding context
  929. * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
  930. * @param dst target buffer for block data at block position
  931. * @param src reference picture buffer at origin (0, 0)
  932. * @param mv motion vector (relative to block position) to get pixel data from
  933. * @param x_off horizontal position of block from origin (0, 0)
  934. * @param y_off vertical position of block from origin (0, 0)
  935. * @param block_w width of block (16, 8 or 4)
  936. * @param block_h height of block (always same as block_w)
  937. * @param width width of src/dst plane data
  938. * @param height height of src/dst plane data
  939. * @param linesize size of a single line of plane data, including padding
  940. * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
  941. */
  942. static av_always_inline
  943. void vp8_mc(VP8Context *s, int luma,
  944. uint8_t *dst, uint8_t *src, const VP56mv *mv,
  945. int x_off, int y_off, int block_w, int block_h,
  946. int width, int height, int linesize,
  947. vp8_mc_func mc_func[3][3])
  948. {
  949. if (AV_RN32A(mv)) {
  950. static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
  951. int mx = (mv->x << luma)&7, mx_idx = idx[mx];
  952. int my = (mv->y << luma)&7, my_idx = idx[my];
  953. x_off += mv->x >> (3 - luma);
  954. y_off += mv->y >> (3 - luma);
  955. // edge emulation
  956. src += y_off * linesize + x_off;
  957. if (x_off < 2 || x_off >= width - block_w - 3 ||
  958. y_off < 2 || y_off >= height - block_h - 3) {
  959. ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
  960. block_w + 5, block_h + 5,
  961. x_off - 2, y_off - 2, width, height);
  962. src = s->edge_emu_buffer + 2 + linesize * 2;
  963. }
  964. mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
  965. } else
  966. mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
  967. }
  968. static av_always_inline
  969. void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
  970. AVFrame *ref_frame, int x_off, int y_off,
  971. int bx_off, int by_off,
  972. int block_w, int block_h,
  973. int width, int height, VP56mv *mv)
  974. {
  975. VP56mv uvmv = *mv;
  976. /* Y */
  977. vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
  978. ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
  979. block_w, block_h, width, height, s->linesize,
  980. s->put_pixels_tab[block_w == 8]);
  981. /* U/V */
  982. if (s->profile == 3) {
  983. uvmv.x &= ~7;
  984. uvmv.y &= ~7;
  985. }
  986. x_off >>= 1; y_off >>= 1;
  987. bx_off >>= 1; by_off >>= 1;
  988. width >>= 1; height >>= 1;
  989. block_w >>= 1; block_h >>= 1;
  990. vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
  991. ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
  992. block_w, block_h, width, height, s->uvlinesize,
  993. s->put_pixels_tab[1 + (block_w == 4)]);
  994. vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
  995. ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
  996. block_w, block_h, width, height, s->uvlinesize,
  997. s->put_pixels_tab[1 + (block_w == 4)]);
  998. }
  999. /* Fetch pixels for estimated mv 4 macroblocks ahead.
  1000. * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
  1001. static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
  1002. {
  1003. /* Don't prefetch refs that haven't been used very often this frame. */
  1004. if (s->ref_count[ref-1] > (mb_xy >> 5)) {
  1005. int x_off = mb_x << 4, y_off = mb_y << 4;
  1006. int mx = (mb->mv.x>>2) + x_off + 8;
  1007. int my = (mb->mv.y>>2) + y_off;
  1008. uint8_t **src= s->framep[ref]->data;
  1009. int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
  1010. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1011. off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
  1012. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1013. }
  1014. }
  1015. /**
  1016. * Apply motion vectors to prediction buffer, chapter 18.
  1017. */
  1018. static av_always_inline
  1019. void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  1020. int mb_x, int mb_y)
  1021. {
  1022. int x_off = mb_x << 4, y_off = mb_y << 4;
  1023. int width = 16*s->mb_width, height = 16*s->mb_height;
  1024. AVFrame *ref = s->framep[mb->ref_frame];
  1025. VP56mv *bmv = mb->bmv;
  1026. if (mb->mode < VP8_MVMODE_SPLIT) {
  1027. vp8_mc_part(s, dst, ref, x_off, y_off,
  1028. 0, 0, 16, 16, width, height, &mb->mv);
  1029. } else switch (mb->partitioning) {
  1030. case VP8_SPLITMVMODE_4x4: {
  1031. int x, y;
  1032. VP56mv uvmv;
  1033. /* Y */
  1034. for (y = 0; y < 4; y++) {
  1035. for (x = 0; x < 4; x++) {
  1036. vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
  1037. ref->data[0], &bmv[4*y + x],
  1038. 4*x + x_off, 4*y + y_off, 4, 4,
  1039. width, height, s->linesize,
  1040. s->put_pixels_tab[2]);
  1041. }
  1042. }
  1043. /* U/V */
  1044. x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
  1045. for (y = 0; y < 2; y++) {
  1046. for (x = 0; x < 2; x++) {
  1047. uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
  1048. mb->bmv[ 2*y * 4 + 2*x+1].x +
  1049. mb->bmv[(2*y+1) * 4 + 2*x ].x +
  1050. mb->bmv[(2*y+1) * 4 + 2*x+1].x;
  1051. uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
  1052. mb->bmv[ 2*y * 4 + 2*x+1].y +
  1053. mb->bmv[(2*y+1) * 4 + 2*x ].y +
  1054. mb->bmv[(2*y+1) * 4 + 2*x+1].y;
  1055. uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
  1056. uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
  1057. if (s->profile == 3) {
  1058. uvmv.x &= ~7;
  1059. uvmv.y &= ~7;
  1060. }
  1061. vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
  1062. ref->data[1], &uvmv,
  1063. 4*x + x_off, 4*y + y_off, 4, 4,
  1064. width, height, s->uvlinesize,
  1065. s->put_pixels_tab[2]);
  1066. vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
  1067. ref->data[2], &uvmv,
  1068. 4*x + x_off, 4*y + y_off, 4, 4,
  1069. width, height, s->uvlinesize,
  1070. s->put_pixels_tab[2]);
  1071. }
  1072. }
  1073. break;
  1074. }
  1075. case VP8_SPLITMVMODE_16x8:
  1076. vp8_mc_part(s, dst, ref, x_off, y_off,
  1077. 0, 0, 16, 8, width, height, &bmv[0]);
  1078. vp8_mc_part(s, dst, ref, x_off, y_off,
  1079. 0, 8, 16, 8, width, height, &bmv[1]);
  1080. break;
  1081. case VP8_SPLITMVMODE_8x16:
  1082. vp8_mc_part(s, dst, ref, x_off, y_off,
  1083. 0, 0, 8, 16, width, height, &bmv[0]);
  1084. vp8_mc_part(s, dst, ref, x_off, y_off,
  1085. 8, 0, 8, 16, width, height, &bmv[1]);
  1086. break;
  1087. case VP8_SPLITMVMODE_8x8:
  1088. vp8_mc_part(s, dst, ref, x_off, y_off,
  1089. 0, 0, 8, 8, width, height, &bmv[0]);
  1090. vp8_mc_part(s, dst, ref, x_off, y_off,
  1091. 8, 0, 8, 8, width, height, &bmv[1]);
  1092. vp8_mc_part(s, dst, ref, x_off, y_off,
  1093. 0, 8, 8, 8, width, height, &bmv[2]);
  1094. vp8_mc_part(s, dst, ref, x_off, y_off,
  1095. 8, 8, 8, 8, width, height, &bmv[3]);
  1096. break;
  1097. }
  1098. }
  1099. static av_always_inline void idct_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb)
  1100. {
  1101. int x, y, ch;
  1102. if (mb->mode != MODE_I4x4) {
  1103. uint8_t *y_dst = dst[0];
  1104. for (y = 0; y < 4; y++) {
  1105. uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[y]);
  1106. if (nnz4) {
  1107. if (nnz4&~0x01010101) {
  1108. for (x = 0; x < 4; x++) {
  1109. int nnz = s->non_zero_count_cache[y][x];
  1110. if (nnz) {
  1111. if (nnz == 1)
  1112. s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
  1113. else
  1114. s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
  1115. }
  1116. }
  1117. } else {
  1118. s->vp8dsp.vp8_idct_dc_add4y(y_dst, s->block[y], s->linesize);
  1119. }
  1120. }
  1121. y_dst += 4*s->linesize;
  1122. }
  1123. }
  1124. for (ch = 0; ch < 2; ch++) {
  1125. uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[4+ch]);
  1126. if (nnz4) {
  1127. uint8_t *ch_dst = dst[1+ch];
  1128. if (nnz4&~0x01010101) {
  1129. for (y = 0; y < 2; y++) {
  1130. for (x = 0; x < 2; x++) {
  1131. int nnz = s->non_zero_count_cache[4+ch][(y<<1)+x];
  1132. if (nnz) {
  1133. if (nnz == 1)
  1134. s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
  1135. else
  1136. s->vp8dsp.vp8_idct_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
  1137. }
  1138. }
  1139. ch_dst += 4*s->uvlinesize;
  1140. }
  1141. } else {
  1142. s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, s->block[4+ch], s->uvlinesize);
  1143. }
  1144. }
  1145. }
  1146. }
  1147. static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
  1148. {
  1149. int interior_limit, filter_level;
  1150. if (s->segmentation.enabled) {
  1151. filter_level = s->segmentation.filter_level[s->segment];
  1152. if (!s->segmentation.absolute_vals)
  1153. filter_level += s->filter.level;
  1154. } else
  1155. filter_level = s->filter.level;
  1156. if (s->lf_delta.enabled) {
  1157. filter_level += s->lf_delta.ref[mb->ref_frame];
  1158. if (mb->ref_frame == VP56_FRAME_CURRENT) {
  1159. if (mb->mode == MODE_I4x4)
  1160. filter_level += s->lf_delta.mode[0];
  1161. } else {
  1162. if (mb->mode == VP8_MVMODE_ZERO)
  1163. filter_level += s->lf_delta.mode[1];
  1164. else if (mb->mode == VP8_MVMODE_SPLIT)
  1165. filter_level += s->lf_delta.mode[3];
  1166. else
  1167. filter_level += s->lf_delta.mode[2];
  1168. }
  1169. }
  1170. filter_level = av_clip(filter_level, 0, 63);
  1171. interior_limit = filter_level;
  1172. if (s->filter.sharpness) {
  1173. interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
  1174. interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
  1175. }
  1176. interior_limit = FFMAX(interior_limit, 1);
  1177. f->filter_level = filter_level;
  1178. f->inner_limit = interior_limit;
  1179. f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
  1180. }
  1181. static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
  1182. {
  1183. int mbedge_lim, bedge_lim, hev_thresh;
  1184. int filter_level = f->filter_level;
  1185. int inner_limit = f->inner_limit;
  1186. int inner_filter = f->inner_filter;
  1187. int linesize = s->linesize;
  1188. int uvlinesize = s->uvlinesize;
  1189. if (!filter_level)
  1190. return;
  1191. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1192. bedge_lim = 2* filter_level + inner_limit;
  1193. hev_thresh = filter_level >= 15;
  1194. if (s->keyframe) {
  1195. if (filter_level >= 40)
  1196. hev_thresh = 2;
  1197. } else {
  1198. if (filter_level >= 40)
  1199. hev_thresh = 3;
  1200. else if (filter_level >= 20)
  1201. hev_thresh = 2;
  1202. }
  1203. if (mb_x) {
  1204. s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
  1205. mbedge_lim, inner_limit, hev_thresh);
  1206. s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
  1207. mbedge_lim, inner_limit, hev_thresh);
  1208. }
  1209. if (inner_filter) {
  1210. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim,
  1211. inner_limit, hev_thresh);
  1212. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim,
  1213. inner_limit, hev_thresh);
  1214. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim,
  1215. inner_limit, hev_thresh);
  1216. s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
  1217. uvlinesize, bedge_lim,
  1218. inner_limit, hev_thresh);
  1219. }
  1220. if (mb_y) {
  1221. s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
  1222. mbedge_lim, inner_limit, hev_thresh);
  1223. s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
  1224. mbedge_lim, inner_limit, hev_thresh);
  1225. }
  1226. if (inner_filter) {
  1227. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize,
  1228. linesize, bedge_lim,
  1229. inner_limit, hev_thresh);
  1230. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize,
  1231. linesize, bedge_lim,
  1232. inner_limit, hev_thresh);
  1233. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize,
  1234. linesize, bedge_lim,
  1235. inner_limit, hev_thresh);
  1236. s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
  1237. dst[2] + 4 * uvlinesize,
  1238. uvlinesize, bedge_lim,
  1239. inner_limit, hev_thresh);
  1240. }
  1241. }
  1242. static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
  1243. {
  1244. int mbedge_lim, bedge_lim;
  1245. int filter_level = f->filter_level;
  1246. int inner_limit = f->inner_limit;
  1247. int inner_filter = f->inner_filter;
  1248. int linesize = s->linesize;
  1249. if (!filter_level)
  1250. return;
  1251. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1252. bedge_lim = 2* filter_level + inner_limit;
  1253. if (mb_x)
  1254. s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
  1255. if (inner_filter) {
  1256. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
  1257. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
  1258. s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
  1259. }
  1260. if (mb_y)
  1261. s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
  1262. if (inner_filter) {
  1263. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
  1264. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
  1265. s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
  1266. }
  1267. }
  1268. static void filter_mb_row(VP8Context *s, int mb_y)
  1269. {
  1270. VP8FilterStrength *f = s->filter_strength;
  1271. uint8_t *dst[3] = {
  1272. s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
  1273. s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize,
  1274. s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize
  1275. };
  1276. int mb_x;
  1277. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1278. backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
  1279. filter_mb(s, dst, f++, mb_x, mb_y);
  1280. dst[0] += 16;
  1281. dst[1] += 8;
  1282. dst[2] += 8;
  1283. }
  1284. }
  1285. static void filter_mb_row_simple(VP8Context *s, int mb_y)
  1286. {
  1287. VP8FilterStrength *f = s->filter_strength;
  1288. uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
  1289. int mb_x;
  1290. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1291. backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
  1292. filter_mb_simple(s, dst, f++, mb_x, mb_y);
  1293. dst += 16;
  1294. }
  1295. }
  1296. static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  1297. AVPacket *avpkt)
  1298. {
  1299. VP8Context *s = avctx->priv_data;
  1300. int ret, mb_x, mb_y, i, y, referenced;
  1301. enum AVDiscard skip_thresh;
  1302. AVFrame *av_uninit(curframe);
  1303. if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
  1304. return ret;
  1305. referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
  1306. || s->update_altref == VP56_FRAME_CURRENT;
  1307. skip_thresh = !referenced ? AVDISCARD_NONREF :
  1308. !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
  1309. if (avctx->skip_frame >= skip_thresh) {
  1310. s->invisible = 1;
  1311. goto skip_decode;
  1312. }
  1313. s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
  1314. for (i = 0; i < 4; i++)
  1315. if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1316. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1317. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
  1318. curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
  1319. break;
  1320. }
  1321. if (curframe->data[0])
  1322. avctx->release_buffer(avctx, curframe);
  1323. curframe->key_frame = s->keyframe;
  1324. curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
  1325. curframe->reference = referenced ? 3 : 0;
  1326. if ((ret = avctx->get_buffer(avctx, curframe))) {
  1327. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
  1328. return ret;
  1329. }
  1330. // Given that arithmetic probabilities are updated every frame, it's quite likely
  1331. // that the values we have on a random interframe are complete junk if we didn't
  1332. // start decode on a keyframe. So just don't display anything rather than junk.
  1333. if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
  1334. !s->framep[VP56_FRAME_GOLDEN] ||
  1335. !s->framep[VP56_FRAME_GOLDEN2])) {
  1336. av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
  1337. return AVERROR_INVALIDDATA;
  1338. }
  1339. s->linesize = curframe->linesize[0];
  1340. s->uvlinesize = curframe->linesize[1];
  1341. if (!s->edge_emu_buffer)
  1342. s->edge_emu_buffer = av_malloc(21*s->linesize);
  1343. memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
  1344. /* Zero macroblock structures for top/left prediction from outside the frame. */
  1345. memset(s->macroblocks, 0, (s->mb_width + s->mb_height*2)*sizeof(*s->macroblocks));
  1346. // top edge of 127 for intra prediction
  1347. memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
  1348. memset(s->ref_count, 0, sizeof(s->ref_count));
  1349. if (s->keyframe)
  1350. memset(s->intra4x4_pred_mode_top, DC_PRED, s->b4_stride*4);
  1351. for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
  1352. VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
  1353. VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
  1354. uint8_t *segment_map = s->segmentation_map + mb_y*s->mb_stride;
  1355. int mb_xy = mb_y * s->mb_stride;
  1356. uint8_t *dst[3] = {
  1357. curframe->data[0] + 16*mb_y*s->linesize,
  1358. curframe->data[1] + 8*mb_y*s->uvlinesize,
  1359. curframe->data[2] + 8*mb_y*s->uvlinesize
  1360. };
  1361. memset(s->left_nnz, 0, sizeof(s->left_nnz));
  1362. AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
  1363. // left edge of 129 for intra prediction
  1364. if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
  1365. for (i = 0; i < 3; i++)
  1366. for (y = 0; y < 16>>!!i; y++)
  1367. dst[i][y*curframe->linesize[i]-1] = 129;
  1368. if (mb_y)
  1369. memset(s->top_border, 129, sizeof(*s->top_border));
  1370. for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
  1371. uint8_t *segment_mb = segment_map+mb_x;
  1372. /* Prefetch the current frame, 4 MBs ahead */
  1373. s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  1374. s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
  1375. decode_mb_mode(s, mb, mb_x, mb_y, segment_mb);
  1376. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
  1377. if (!mb->skip)
  1378. decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
  1379. if (mb->mode <= MODE_I4x4)
  1380. intra_predict(s, dst, mb, mb_x, mb_y);
  1381. else
  1382. inter_predict(s, dst, mb, mb_x, mb_y);
  1383. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
  1384. if (!mb->skip) {
  1385. idct_mb(s, dst, mb);
  1386. } else {
  1387. AV_ZERO64(s->left_nnz);
  1388. AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
  1389. // Reset DC block predictors if they would exist if the mb had coefficients
  1390. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  1391. s->left_nnz[8] = 0;
  1392. s->top_nnz[mb_x][8] = 0;
  1393. }
  1394. }
  1395. if (s->deblock_filter)
  1396. filter_level_for_mb(s, mb, &s->filter_strength[mb_x]);
  1397. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
  1398. dst[0] += 16;
  1399. dst[1] += 8;
  1400. dst[2] += 8;
  1401. }
  1402. if (s->deblock_filter) {
  1403. if (s->filter.simple)
  1404. filter_mb_row_simple(s, mb_y);
  1405. else
  1406. filter_mb_row(s, mb_y);
  1407. }
  1408. }
  1409. skip_decode:
  1410. // if future frames don't use the updated probabilities,
  1411. // reset them to the values we saved
  1412. if (!s->update_probabilities)
  1413. s->prob[0] = s->prob[1];
  1414. // check if golden and altref are swapped
  1415. if (s->update_altref == VP56_FRAME_GOLDEN &&
  1416. s->update_golden == VP56_FRAME_GOLDEN2)
  1417. FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
  1418. else {
  1419. if (s->update_altref != VP56_FRAME_NONE)
  1420. s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
  1421. if (s->update_golden != VP56_FRAME_NONE)
  1422. s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
  1423. }
  1424. if (s->update_last) // move cur->prev
  1425. s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
  1426. // release no longer referenced frames
  1427. for (i = 0; i < 4; i++)
  1428. if (s->frames[i].data[0] &&
  1429. &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
  1430. &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1431. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1432. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
  1433. avctx->release_buffer(avctx, &s->frames[i]);
  1434. if (!s->invisible) {
  1435. *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
  1436. *data_size = sizeof(AVFrame);
  1437. }
  1438. return avpkt->size;
  1439. }
  1440. static av_cold int vp8_decode_init(AVCodecContext *avctx)
  1441. {
  1442. VP8Context *s = avctx->priv_data;
  1443. s->avctx = avctx;
  1444. avctx->pix_fmt = PIX_FMT_YUV420P;
  1445. dsputil_init(&s->dsp, avctx);
  1446. ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
  1447. ff_vp8dsp_init(&s->vp8dsp);
  1448. // intra pred needs edge emulation among other things
  1449. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  1450. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
  1451. return AVERROR_PATCHWELCOME;
  1452. }
  1453. return 0;
  1454. }
  1455. static av_cold int vp8_decode_free(AVCodecContext *avctx)
  1456. {
  1457. vp8_decode_flush(avctx);
  1458. return 0;
  1459. }
  1460. AVCodec vp8_decoder = {
  1461. "vp8",
  1462. AVMEDIA_TYPE_VIDEO,
  1463. CODEC_ID_VP8,
  1464. sizeof(VP8Context),
  1465. vp8_decode_init,
  1466. NULL,
  1467. vp8_decode_free,
  1468. vp8_decode_frame,
  1469. CODEC_CAP_DR1,
  1470. .flush = vp8_decode_flush,
  1471. .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
  1472. };