You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

267 lines
7.6KB

  1. /*
  2. * RealAudio 2.0 (28.8K)
  3. * Copyright (c) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #define ALT_BITSTREAM_READER_LE
  23. #include "bitstream.h"
  24. #include "ra288.h"
  25. typedef struct {
  26. float sp_lpc[36]; ///< LPC coefficients for speech data (spec: A)
  27. float gain_lpc[10]; ///< LPC coefficients for gain (spec: GB)
  28. float sp_hist[111]; ///< Speech data history (spec: SB)
  29. /** Speech part of the gain autocorrelation (spec: REXP) */
  30. float sp_rec[37];
  31. float gain_hist[38]; ///< Log-gain history (spec: SBLG)
  32. /** Recursive part of the gain autocorrelation (spec: REXPLG) */
  33. float gain_rec[11];
  34. float sp_block[41]; ///< Speech data of four blocks (spec: STTMP)
  35. float gain_block[10]; ///< Gain data of four blocks (spec: GSTATE)
  36. } RA288Context;
  37. static inline float scalar_product_float(const float * v1, const float * v2,
  38. int size)
  39. {
  40. float res = 0.;
  41. while (size--)
  42. res += *v1++ * *v2++;
  43. return res;
  44. }
  45. static void colmult(float *tgt, const float *m1, const float *m2, int n)
  46. {
  47. while (n--)
  48. *tgt++ = *m1++ * *m2++;
  49. }
  50. static void decode(RA288Context *ractx, float gain, int cb_coef)
  51. {
  52. int i, j;
  53. double sumsum;
  54. float sum, buffer[5];
  55. memmove(ractx->sp_block + 5, ractx->sp_block, 36*sizeof(*ractx->sp_block));
  56. for (i=4; i >= 0; i--)
  57. ractx->sp_block[i] = -scalar_product_float(ractx->sp_block + i + 1,
  58. ractx->sp_lpc, 36);
  59. /* block 46 of G.728 spec */
  60. sum = 32. - scalar_product_float(ractx->gain_lpc, ractx->gain_block, 10);
  61. /* block 47 of G.728 spec */
  62. sum = av_clipf(sum, 0, 60);
  63. /* block 48 of G.728 spec */
  64. sumsum = exp(sum * 0.1151292546497) * gain; /* pow(10.0,sum/20)*gain */
  65. for (i=0; i < 5; i++)
  66. buffer[i] = codetable[cb_coef][i] * sumsum;
  67. sum = scalar_product_float(buffer, buffer, 5) / 5;
  68. sum = FFMAX(sum, 1);
  69. /* shift and store */
  70. memmove(ractx->gain_block, ractx->gain_block - 1,
  71. 10 * sizeof(*ractx->gain_block));
  72. *ractx->gain_block = 10 * log10(sum) - 32;
  73. for (i=1; i < 5; i++)
  74. for (j=i-1; j >= 0; j--)
  75. buffer[i] -= ractx->sp_lpc[i-j-1] * buffer[j];
  76. /* output */
  77. for (i=0; i < 5; i++)
  78. ractx->sp_block[4-i] =
  79. av_clipf(ractx->sp_block[4-i] + buffer[i], -4095, 4095);
  80. }
  81. /**
  82. * Converts autocorrelation coefficients to LPC coefficients using the
  83. * Levinson-Durbin algorithm. See blocks 37 and 50 of the G.728 specification.
  84. *
  85. * @return 0 if success, -1 if fail
  86. */
  87. static int eval_lpc_coeffs(const float *in, float *tgt, int n)
  88. {
  89. int i, j;
  90. double f0, f1, f2;
  91. if (in[n] == 0)
  92. return -1;
  93. if ((f0 = *in) <= 0)
  94. return -1;
  95. in--; // To avoid a -1 subtraction in the inner loop
  96. for (i=1; i <= n; i++) {
  97. f1 = in[i+1];
  98. for (j=0; j < i - 1; j++)
  99. f1 += in[i-j]*tgt[j];
  100. tgt[i-1] = f2 = -f1/f0;
  101. for (j=0; j < i >> 1; j++) {
  102. float temp = tgt[j] + tgt[i-j-2]*f2;
  103. tgt[i-j-2] += tgt[j]*f2;
  104. tgt[j] = temp;
  105. }
  106. if ((f0 += f1*f2) < 0)
  107. return -1;
  108. }
  109. return 0;
  110. }
  111. static void prodsum(float *tgt, const float *src, int len, int n)
  112. {
  113. for (; n >= 0; n--)
  114. tgt[n] = scalar_product_float(src, src - n, len);
  115. }
  116. /**
  117. * Hybrid window filtering. See blocks 36 and 49 of the G.728 specification.
  118. *
  119. * @note This function is slightly different from that described in the spec.
  120. * It expects in[0] to be the newest sample and in[n-1] to be the oldest
  121. * one stored. The spec has in the more ordinary way (in[0] the oldest
  122. * and in[n-1] the newest).
  123. *
  124. * @param order the order of the filter
  125. * @param n the length of the input
  126. * @param non_rec the number of non-recursive samples
  127. * @param out the filter output
  128. * @param in pointer to the input of the filter
  129. * @param hist pointer to the input history of the filter. It is updated by
  130. * this function.
  131. * @param out pointer to the non-recursive part of the output
  132. * @param out2 pointer to the recursive part of the output
  133. * @param window pointer to the windowing function table
  134. */
  135. static void do_hybrid_window(int order, int n, int non_rec, const float *in,
  136. float *out, float *hist, float *out2,
  137. const float *window)
  138. {
  139. int i;
  140. float buffer1[order + 1];
  141. float buffer2[order + 1];
  142. float work[order + n + non_rec];
  143. /* update history */
  144. memmove(hist, hist + n, (order + non_rec)*sizeof(*hist));
  145. for (i=0; i < n; i++)
  146. hist[order + non_rec + i] = in[n-i-1];
  147. colmult(work, window, hist, order + n + non_rec);
  148. prodsum(buffer1, work + order , n , order);
  149. prodsum(buffer2, work + order + n, non_rec, order);
  150. for (i=0; i <= order; i++) {
  151. out2[i] = out2[i] * 0.5625 + buffer1[i];
  152. out [i] = out2[i] + buffer2[i];
  153. }
  154. /* Multiply by the white noise correcting factor (WNCF) */
  155. *out *= 257./256.;
  156. }
  157. /**
  158. * Backward synthesis filter. Find the LPC coefficients from past speech data.
  159. */
  160. static void backward_filter(RA288Context *ractx)
  161. {
  162. float temp1[37]; // RTMP in the spec
  163. float temp2[11]; // GPTPMP in the spec
  164. do_hybrid_window(36, 40, 35, ractx->sp_block, temp1, ractx->sp_hist,
  165. ractx->sp_rec, syn_window);
  166. if (!eval_lpc_coeffs(temp1, ractx->sp_lpc, 36))
  167. colmult(ractx->sp_lpc, ractx->sp_lpc, syn_bw_tab, 36);
  168. do_hybrid_window(10, 8, 20, ractx->gain_block, temp2, ractx->gain_hist,
  169. ractx->gain_rec, gain_window);
  170. if (!eval_lpc_coeffs(temp2, ractx->gain_lpc, 10))
  171. colmult(ractx->gain_lpc, ractx->gain_lpc, gain_bw_tab, 10);
  172. }
  173. static int ra288_decode_frame(AVCodecContext * avctx, void *data,
  174. int *data_size, const uint8_t * buf,
  175. int buf_size)
  176. {
  177. int16_t *out = data;
  178. int i, j;
  179. RA288Context *ractx = avctx->priv_data;
  180. GetBitContext gb;
  181. if (buf_size < avctx->block_align) {
  182. av_log(avctx, AV_LOG_ERROR,
  183. "Error! Input buffer is too small [%d<%d]\n",
  184. buf_size, avctx->block_align);
  185. return 0;
  186. }
  187. init_get_bits(&gb, buf, avctx->block_align * 8);
  188. for (i=0; i < 32; i++) {
  189. float gain = amptable[get_bits(&gb, 3)];
  190. int cb_coef = get_bits(&gb, 6 + (i&1));
  191. decode(ractx, gain, cb_coef);
  192. for (j=0; j < 5; j++)
  193. *(out++) = 8 * ractx->sp_block[4 - j];
  194. if ((i & 7) == 3)
  195. backward_filter(ractx);
  196. }
  197. *data_size = (char *)out - (char *)data;
  198. return avctx->block_align;
  199. }
  200. AVCodec ra_288_decoder =
  201. {
  202. "real_288",
  203. CODEC_TYPE_AUDIO,
  204. CODEC_ID_RA_288,
  205. sizeof(RA288Context),
  206. NULL,
  207. NULL,
  208. NULL,
  209. ra288_decode_frame,
  210. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 2.0 (28.8K)"),
  211. };