You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2911 lines
87KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. # define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #ifdef ARCH_X86
  40. # define MULL(ra, rb) \
  41. ({ int rt, dummy; asm (\
  42. "imull %3 \n\t"\
  43. "shrdl %4, %%edx, %%eax \n\t"\
  44. : "=a"(rt), "=d"(dummy)\
  45. : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\
  46. rt; })
  47. # define MUL64(ra, rb) \
  48. ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; })
  49. # define MULH(ra, rb) \
  50. ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; })
  51. #elif defined(ARCH_ARMV4L)
  52. # define MULL(a, b) \
  53. ({ int lo, hi;\
  54. asm("smull %0, %1, %2, %3 \n\t"\
  55. "mov %0, %0, lsr %4\n\t"\
  56. "add %1, %0, %1, lsl %5\n\t"\
  57. : "=&r"(lo), "=&r"(hi)\
  58. : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\
  59. hi; })
  60. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  61. # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; })
  62. #else
  63. # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  64. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  65. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  66. static always_inline int MULH(int a, int b){
  67. return ((int64_t)(a) * (int64_t)(b))>>32;
  68. }
  69. #endif
  70. #define FIX(a) ((int)((a) * FRAC_ONE))
  71. /* WARNING: only correct for posititive numbers */
  72. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  73. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  74. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  75. /****************/
  76. #define HEADER_SIZE 4
  77. #define BACKSTEP_SIZE 512
  78. #define EXTRABYTES 24
  79. struct GranuleDef;
  80. typedef struct MPADecodeContext {
  81. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  82. int last_buf_size;
  83. int frame_size;
  84. int free_format_frame_size; /* frame size in case of free format
  85. (zero if currently unknown) */
  86. /* next header (used in free format parsing) */
  87. uint32_t free_format_next_header;
  88. int error_protection;
  89. int layer;
  90. int sample_rate;
  91. int sample_rate_index; /* between 0 and 8 */
  92. int bit_rate;
  93. GetBitContext gb;
  94. GetBitContext in_gb;
  95. int nb_channels;
  96. int mode;
  97. int mode_ext;
  98. int lsf;
  99. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  100. int synth_buf_offset[MPA_MAX_CHANNELS];
  101. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  102. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  103. #ifdef DEBUG
  104. int frame_count;
  105. #endif
  106. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  107. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  108. unsigned int dither_state;
  109. } MPADecodeContext;
  110. /**
  111. * Context for MP3On4 decoder
  112. */
  113. typedef struct MP3On4DecodeContext {
  114. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  115. int chan_cfg; ///< channel config number
  116. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  117. } MP3On4DecodeContext;
  118. /* layer 3 "granule" */
  119. typedef struct GranuleDef {
  120. uint8_t scfsi;
  121. int part2_3_length;
  122. int big_values;
  123. int global_gain;
  124. int scalefac_compress;
  125. uint8_t block_type;
  126. uint8_t switch_point;
  127. int table_select[3];
  128. int subblock_gain[3];
  129. uint8_t scalefac_scale;
  130. uint8_t count1table_select;
  131. int region_size[3]; /* number of huffman codes in each region */
  132. int preflag;
  133. int short_start, long_end; /* long/short band indexes */
  134. uint8_t scale_factors[40];
  135. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  136. } GranuleDef;
  137. #define MODE_EXT_MS_STEREO 2
  138. #define MODE_EXT_I_STEREO 1
  139. /* layer 3 huffman tables */
  140. typedef struct HuffTable {
  141. int xsize;
  142. const uint8_t *bits;
  143. const uint16_t *codes;
  144. } HuffTable;
  145. #include "mpegaudiodectab.h"
  146. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  147. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  148. /* vlc structure for decoding layer 3 huffman tables */
  149. static VLC huff_vlc[16];
  150. static VLC huff_quad_vlc[2];
  151. /* computed from band_size_long */
  152. static uint16_t band_index_long[9][23];
  153. /* XXX: free when all decoders are closed */
  154. #define TABLE_4_3_SIZE (8191 + 16)*4
  155. static int8_t *table_4_3_exp;
  156. static uint32_t *table_4_3_value;
  157. static uint32_t exp_table[512];
  158. static uint32_t expval_table[512][16];
  159. /* intensity stereo coef table */
  160. static int32_t is_table[2][16];
  161. static int32_t is_table_lsf[2][2][16];
  162. static int32_t csa_table[8][4];
  163. static float csa_table_float[8][4];
  164. static int32_t mdct_win[8][36];
  165. /* lower 2 bits: modulo 3, higher bits: shift */
  166. static uint16_t scale_factor_modshift[64];
  167. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  168. static int32_t scale_factor_mult[15][3];
  169. /* mult table for layer 2 group quantization */
  170. #define SCALE_GEN(v) \
  171. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  172. static const int32_t scale_factor_mult2[3][3] = {
  173. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  174. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  175. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  176. };
  177. static MPA_INT window[512] __attribute__((aligned(16)));
  178. /* layer 1 unscaling */
  179. /* n = number of bits of the mantissa minus 1 */
  180. static inline int l1_unscale(int n, int mant, int scale_factor)
  181. {
  182. int shift, mod;
  183. int64_t val;
  184. shift = scale_factor_modshift[scale_factor];
  185. mod = shift & 3;
  186. shift >>= 2;
  187. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  188. shift += n;
  189. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  190. return (int)((val + (1LL << (shift - 1))) >> shift);
  191. }
  192. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  193. {
  194. int shift, mod, val;
  195. shift = scale_factor_modshift[scale_factor];
  196. mod = shift & 3;
  197. shift >>= 2;
  198. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  199. /* NOTE: at this point, 0 <= shift <= 21 */
  200. if (shift > 0)
  201. val = (val + (1 << (shift - 1))) >> shift;
  202. return val;
  203. }
  204. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  205. static inline int l3_unscale(int value, int exponent)
  206. {
  207. unsigned int m;
  208. int e;
  209. e = table_4_3_exp [4*value + (exponent&3)];
  210. m = table_4_3_value[4*value + (exponent&3)];
  211. e -= (exponent >> 2);
  212. assert(e>=1);
  213. if (e > 31)
  214. return 0;
  215. m = (m + (1 << (e-1))) >> e;
  216. return m;
  217. }
  218. /* all integer n^(4/3) computation code */
  219. #define DEV_ORDER 13
  220. #define POW_FRAC_BITS 24
  221. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  222. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  223. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  224. static int dev_4_3_coefs[DEV_ORDER];
  225. #if 0 /* unused */
  226. static int pow_mult3[3] = {
  227. POW_FIX(1.0),
  228. POW_FIX(1.25992104989487316476),
  229. POW_FIX(1.58740105196819947474),
  230. };
  231. #endif
  232. static void int_pow_init(void)
  233. {
  234. int i, a;
  235. a = POW_FIX(1.0);
  236. for(i=0;i<DEV_ORDER;i++) {
  237. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  238. dev_4_3_coefs[i] = a;
  239. }
  240. }
  241. #if 0 /* unused, remove? */
  242. /* return the mantissa and the binary exponent */
  243. static int int_pow(int i, int *exp_ptr)
  244. {
  245. int e, er, eq, j;
  246. int a, a1;
  247. /* renormalize */
  248. a = i;
  249. e = POW_FRAC_BITS;
  250. while (a < (1 << (POW_FRAC_BITS - 1))) {
  251. a = a << 1;
  252. e--;
  253. }
  254. a -= (1 << POW_FRAC_BITS);
  255. a1 = 0;
  256. for(j = DEV_ORDER - 1; j >= 0; j--)
  257. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  258. a = (1 << POW_FRAC_BITS) + a1;
  259. /* exponent compute (exact) */
  260. e = e * 4;
  261. er = e % 3;
  262. eq = e / 3;
  263. a = POW_MULL(a, pow_mult3[er]);
  264. while (a >= 2 * POW_FRAC_ONE) {
  265. a = a >> 1;
  266. eq++;
  267. }
  268. /* convert to float */
  269. while (a < POW_FRAC_ONE) {
  270. a = a << 1;
  271. eq--;
  272. }
  273. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  274. #if POW_FRAC_BITS > FRAC_BITS
  275. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  276. /* correct overflow */
  277. if (a >= 2 * (1 << FRAC_BITS)) {
  278. a = a >> 1;
  279. eq++;
  280. }
  281. #endif
  282. *exp_ptr = eq;
  283. return a;
  284. }
  285. #endif
  286. static int decode_init(AVCodecContext * avctx)
  287. {
  288. MPADecodeContext *s = avctx->priv_data;
  289. static int init=0;
  290. int i, j, k;
  291. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  292. avctx->sample_fmt= SAMPLE_FMT_S32;
  293. #else
  294. avctx->sample_fmt= SAMPLE_FMT_S16;
  295. #endif
  296. if(avctx->antialias_algo != FF_AA_FLOAT)
  297. s->compute_antialias= compute_antialias_integer;
  298. else
  299. s->compute_antialias= compute_antialias_float;
  300. if (!init && !avctx->parse_only) {
  301. /* scale factors table for layer 1/2 */
  302. for(i=0;i<64;i++) {
  303. int shift, mod;
  304. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  305. shift = (i / 3);
  306. mod = i % 3;
  307. scale_factor_modshift[i] = mod | (shift << 2);
  308. }
  309. /* scale factor multiply for layer 1 */
  310. for(i=0;i<15;i++) {
  311. int n, norm;
  312. n = i + 2;
  313. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  314. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  315. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  316. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  317. dprintf("%d: norm=%x s=%x %x %x\n",
  318. i, norm,
  319. scale_factor_mult[i][0],
  320. scale_factor_mult[i][1],
  321. scale_factor_mult[i][2]);
  322. }
  323. ff_mpa_synth_init(window);
  324. /* huffman decode tables */
  325. for(i=1;i<16;i++) {
  326. const HuffTable *h = &mpa_huff_tables[i];
  327. int xsize, x, y;
  328. unsigned int n;
  329. uint8_t tmp_bits [512];
  330. uint16_t tmp_codes[512];
  331. memset(tmp_bits , 0, sizeof(tmp_bits ));
  332. memset(tmp_codes, 0, sizeof(tmp_codes));
  333. xsize = h->xsize;
  334. n = xsize * xsize;
  335. j = 0;
  336. for(x=0;x<xsize;x++) {
  337. for(y=0;y<xsize;y++){
  338. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  339. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  340. }
  341. }
  342. /* XXX: fail test */
  343. init_vlc(&huff_vlc[i], 7, 512,
  344. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  345. }
  346. for(i=0;i<2;i++) {
  347. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  348. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  349. }
  350. for(i=0;i<9;i++) {
  351. k = 0;
  352. for(j=0;j<22;j++) {
  353. band_index_long[i][j] = k;
  354. k += band_size_long[i][j];
  355. }
  356. band_index_long[i][22] = k;
  357. }
  358. /* compute n ^ (4/3) and store it in mantissa/exp format */
  359. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  360. if(!table_4_3_exp)
  361. return -1;
  362. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  363. if(!table_4_3_value)
  364. return -1;
  365. int_pow_init();
  366. for(i=1;i<TABLE_4_3_SIZE;i++) {
  367. double f, fm;
  368. int e, m;
  369. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  370. fm = frexp(f, &e);
  371. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  372. e+= FRAC_BITS - 31 + 5 - 100;
  373. /* normalized to FRAC_BITS */
  374. table_4_3_value[i] = m;
  375. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  376. table_4_3_exp[i] = -e;
  377. }
  378. for(i=0; i<512*16; i++){
  379. int exponent= (i>>4);
  380. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  381. expval_table[exponent][i&15]= lrintf(f);
  382. if((i&15)==1)
  383. exp_table[exponent]= lrintf(f);
  384. }
  385. for(i=0;i<7;i++) {
  386. float f;
  387. int v;
  388. if (i != 6) {
  389. f = tan((double)i * M_PI / 12.0);
  390. v = FIXR(f / (1.0 + f));
  391. } else {
  392. v = FIXR(1.0);
  393. }
  394. is_table[0][i] = v;
  395. is_table[1][6 - i] = v;
  396. }
  397. /* invalid values */
  398. for(i=7;i<16;i++)
  399. is_table[0][i] = is_table[1][i] = 0.0;
  400. for(i=0;i<16;i++) {
  401. double f;
  402. int e, k;
  403. for(j=0;j<2;j++) {
  404. e = -(j + 1) * ((i + 1) >> 1);
  405. f = pow(2.0, e / 4.0);
  406. k = i & 1;
  407. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  408. is_table_lsf[j][k][i] = FIXR(1.0);
  409. dprintf("is_table_lsf %d %d: %x %x\n",
  410. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  411. }
  412. }
  413. for(i=0;i<8;i++) {
  414. float ci, cs, ca;
  415. ci = ci_table[i];
  416. cs = 1.0 / sqrt(1.0 + ci * ci);
  417. ca = cs * ci;
  418. csa_table[i][0] = FIXHR(cs/4);
  419. csa_table[i][1] = FIXHR(ca/4);
  420. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  421. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  422. csa_table_float[i][0] = cs;
  423. csa_table_float[i][1] = ca;
  424. csa_table_float[i][2] = ca + cs;
  425. csa_table_float[i][3] = ca - cs;
  426. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  427. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  428. }
  429. /* compute mdct windows */
  430. for(i=0;i<36;i++) {
  431. for(j=0; j<4; j++){
  432. double d;
  433. if(j==2 && i%3 != 1)
  434. continue;
  435. d= sin(M_PI * (i + 0.5) / 36.0);
  436. if(j==1){
  437. if (i>=30) d= 0;
  438. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  439. else if(i>=18) d= 1;
  440. }else if(j==3){
  441. if (i< 6) d= 0;
  442. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  443. else if(i< 18) d= 1;
  444. }
  445. //merge last stage of imdct into the window coefficients
  446. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  447. if(j==2)
  448. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  449. else
  450. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  451. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  452. }
  453. }
  454. /* NOTE: we do frequency inversion adter the MDCT by changing
  455. the sign of the right window coefs */
  456. for(j=0;j<4;j++) {
  457. for(i=0;i<36;i+=2) {
  458. mdct_win[j + 4][i] = mdct_win[j][i];
  459. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  460. }
  461. }
  462. #if defined(DEBUG)
  463. for(j=0;j<8;j++) {
  464. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  465. for(i=0;i<36;i++)
  466. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  467. av_log(avctx, AV_LOG_DEBUG, "\n");
  468. }
  469. #endif
  470. init = 1;
  471. }
  472. #ifdef DEBUG
  473. s->frame_count = 0;
  474. #endif
  475. if (avctx->codec_id == CODEC_ID_MP3ADU)
  476. s->adu_mode = 1;
  477. return 0;
  478. }
  479. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  480. /* cos(i*pi/64) */
  481. #define COS0_0 FIXHR(0.50060299823519630134/2)
  482. #define COS0_1 FIXHR(0.50547095989754365998/2)
  483. #define COS0_2 FIXHR(0.51544730992262454697/2)
  484. #define COS0_3 FIXHR(0.53104259108978417447/2)
  485. #define COS0_4 FIXHR(0.55310389603444452782/2)
  486. #define COS0_5 FIXHR(0.58293496820613387367/2)
  487. #define COS0_6 FIXHR(0.62250412303566481615/2)
  488. #define COS0_7 FIXHR(0.67480834145500574602/2)
  489. #define COS0_8 FIXHR(0.74453627100229844977/2)
  490. #define COS0_9 FIXHR(0.83934964541552703873/2)
  491. #define COS0_10 FIXHR(0.97256823786196069369/2)
  492. #define COS0_11 FIXHR(1.16943993343288495515/4)
  493. #define COS0_12 FIXHR(1.48416461631416627724/4)
  494. #define COS0_13 FIXHR(2.05778100995341155085/8)
  495. #define COS0_14 FIXHR(3.40760841846871878570/8)
  496. #define COS0_15 FIXHR(10.19000812354805681150/32)
  497. #define COS1_0 FIXHR(0.50241928618815570551/2)
  498. #define COS1_1 FIXHR(0.52249861493968888062/2)
  499. #define COS1_2 FIXHR(0.56694403481635770368/2)
  500. #define COS1_3 FIXHR(0.64682178335999012954/2)
  501. #define COS1_4 FIXHR(0.78815462345125022473/2)
  502. #define COS1_5 FIXHR(1.06067768599034747134/4)
  503. #define COS1_6 FIXHR(1.72244709823833392782/4)
  504. #define COS1_7 FIXHR(5.10114861868916385802/16)
  505. #define COS2_0 FIXHR(0.50979557910415916894/2)
  506. #define COS2_1 FIXHR(0.60134488693504528054/2)
  507. #define COS2_2 FIXHR(0.89997622313641570463/2)
  508. #define COS2_3 FIXHR(2.56291544774150617881/8)
  509. #define COS3_0 FIXHR(0.54119610014619698439/2)
  510. #define COS3_1 FIXHR(1.30656296487637652785/4)
  511. #define COS4_0 FIXHR(0.70710678118654752439/2)
  512. /* butterfly operator */
  513. #define BF(a, b, c, s)\
  514. {\
  515. tmp0 = tab[a] + tab[b];\
  516. tmp1 = tab[a] - tab[b];\
  517. tab[a] = tmp0;\
  518. tab[b] = MULH(tmp1<<(s), c);\
  519. }
  520. #define BF1(a, b, c, d)\
  521. {\
  522. BF(a, b, COS4_0, 1);\
  523. BF(c, d,-COS4_0, 1);\
  524. tab[c] += tab[d];\
  525. }
  526. #define BF2(a, b, c, d)\
  527. {\
  528. BF(a, b, COS4_0, 1);\
  529. BF(c, d,-COS4_0, 1);\
  530. tab[c] += tab[d];\
  531. tab[a] += tab[c];\
  532. tab[c] += tab[b];\
  533. tab[b] += tab[d];\
  534. }
  535. #define ADD(a, b) tab[a] += tab[b]
  536. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  537. static void dct32(int32_t *out, int32_t *tab)
  538. {
  539. int tmp0, tmp1;
  540. /* pass 1 */
  541. BF( 0, 31, COS0_0 , 1);
  542. BF(15, 16, COS0_15, 5);
  543. /* pass 2 */
  544. BF( 0, 15, COS1_0 , 1);
  545. BF(16, 31,-COS1_0 , 1);
  546. /* pass 1 */
  547. BF( 7, 24, COS0_7 , 1);
  548. BF( 8, 23, COS0_8 , 1);
  549. /* pass 2 */
  550. BF( 7, 8, COS1_7 , 4);
  551. BF(23, 24,-COS1_7 , 4);
  552. /* pass 3 */
  553. BF( 0, 7, COS2_0 , 1);
  554. BF( 8, 15,-COS2_0 , 1);
  555. BF(16, 23, COS2_0 , 1);
  556. BF(24, 31,-COS2_0 , 1);
  557. /* pass 1 */
  558. BF( 3, 28, COS0_3 , 1);
  559. BF(12, 19, COS0_12, 2);
  560. /* pass 2 */
  561. BF( 3, 12, COS1_3 , 1);
  562. BF(19, 28,-COS1_3 , 1);
  563. /* pass 1 */
  564. BF( 4, 27, COS0_4 , 1);
  565. BF(11, 20, COS0_11, 2);
  566. /* pass 2 */
  567. BF( 4, 11, COS1_4 , 1);
  568. BF(20, 27,-COS1_4 , 1);
  569. /* pass 3 */
  570. BF( 3, 4, COS2_3 , 3);
  571. BF(11, 12,-COS2_3 , 3);
  572. BF(19, 20, COS2_3 , 3);
  573. BF(27, 28,-COS2_3 , 3);
  574. /* pass 4 */
  575. BF( 0, 3, COS3_0 , 1);
  576. BF( 4, 7,-COS3_0 , 1);
  577. BF( 8, 11, COS3_0 , 1);
  578. BF(12, 15,-COS3_0 , 1);
  579. BF(16, 19, COS3_0 , 1);
  580. BF(20, 23,-COS3_0 , 1);
  581. BF(24, 27, COS3_0 , 1);
  582. BF(28, 31,-COS3_0 , 1);
  583. /* pass 1 */
  584. BF( 1, 30, COS0_1 , 1);
  585. BF(14, 17, COS0_14, 3);
  586. /* pass 2 */
  587. BF( 1, 14, COS1_1 , 1);
  588. BF(17, 30,-COS1_1 , 1);
  589. /* pass 1 */
  590. BF( 6, 25, COS0_6 , 1);
  591. BF( 9, 22, COS0_9 , 1);
  592. /* pass 2 */
  593. BF( 6, 9, COS1_6 , 2);
  594. BF(22, 25,-COS1_6 , 2);
  595. /* pass 3 */
  596. BF( 1, 6, COS2_1 , 1);
  597. BF( 9, 14,-COS2_1 , 1);
  598. BF(17, 22, COS2_1 , 1);
  599. BF(25, 30,-COS2_1 , 1);
  600. /* pass 1 */
  601. BF( 2, 29, COS0_2 , 1);
  602. BF(13, 18, COS0_13, 3);
  603. /* pass 2 */
  604. BF( 2, 13, COS1_2 , 1);
  605. BF(18, 29,-COS1_2 , 1);
  606. /* pass 1 */
  607. BF( 5, 26, COS0_5 , 1);
  608. BF(10, 21, COS0_10, 1);
  609. /* pass 2 */
  610. BF( 5, 10, COS1_5 , 2);
  611. BF(21, 26,-COS1_5 , 2);
  612. /* pass 3 */
  613. BF( 2, 5, COS2_2 , 1);
  614. BF(10, 13,-COS2_2 , 1);
  615. BF(18, 21, COS2_2 , 1);
  616. BF(26, 29,-COS2_2 , 1);
  617. /* pass 4 */
  618. BF( 1, 2, COS3_1 , 2);
  619. BF( 5, 6,-COS3_1 , 2);
  620. BF( 9, 10, COS3_1 , 2);
  621. BF(13, 14,-COS3_1 , 2);
  622. BF(17, 18, COS3_1 , 2);
  623. BF(21, 22,-COS3_1 , 2);
  624. BF(25, 26, COS3_1 , 2);
  625. BF(29, 30,-COS3_1 , 2);
  626. /* pass 5 */
  627. BF1( 0, 1, 2, 3);
  628. BF2( 4, 5, 6, 7);
  629. BF1( 8, 9, 10, 11);
  630. BF2(12, 13, 14, 15);
  631. BF1(16, 17, 18, 19);
  632. BF2(20, 21, 22, 23);
  633. BF1(24, 25, 26, 27);
  634. BF2(28, 29, 30, 31);
  635. /* pass 6 */
  636. ADD( 8, 12);
  637. ADD(12, 10);
  638. ADD(10, 14);
  639. ADD(14, 9);
  640. ADD( 9, 13);
  641. ADD(13, 11);
  642. ADD(11, 15);
  643. out[ 0] = tab[0];
  644. out[16] = tab[1];
  645. out[ 8] = tab[2];
  646. out[24] = tab[3];
  647. out[ 4] = tab[4];
  648. out[20] = tab[5];
  649. out[12] = tab[6];
  650. out[28] = tab[7];
  651. out[ 2] = tab[8];
  652. out[18] = tab[9];
  653. out[10] = tab[10];
  654. out[26] = tab[11];
  655. out[ 6] = tab[12];
  656. out[22] = tab[13];
  657. out[14] = tab[14];
  658. out[30] = tab[15];
  659. ADD(24, 28);
  660. ADD(28, 26);
  661. ADD(26, 30);
  662. ADD(30, 25);
  663. ADD(25, 29);
  664. ADD(29, 27);
  665. ADD(27, 31);
  666. out[ 1] = tab[16] + tab[24];
  667. out[17] = tab[17] + tab[25];
  668. out[ 9] = tab[18] + tab[26];
  669. out[25] = tab[19] + tab[27];
  670. out[ 5] = tab[20] + tab[28];
  671. out[21] = tab[21] + tab[29];
  672. out[13] = tab[22] + tab[30];
  673. out[29] = tab[23] + tab[31];
  674. out[ 3] = tab[24] + tab[20];
  675. out[19] = tab[25] + tab[21];
  676. out[11] = tab[26] + tab[22];
  677. out[27] = tab[27] + tab[23];
  678. out[ 7] = tab[28] + tab[18];
  679. out[23] = tab[29] + tab[19];
  680. out[15] = tab[30] + tab[17];
  681. out[31] = tab[31];
  682. }
  683. #if FRAC_BITS <= 15
  684. static inline int round_sample(int *sum)
  685. {
  686. int sum1;
  687. sum1 = (*sum) >> OUT_SHIFT;
  688. *sum &= (1<<OUT_SHIFT)-1;
  689. if (sum1 < OUT_MIN)
  690. sum1 = OUT_MIN;
  691. else if (sum1 > OUT_MAX)
  692. sum1 = OUT_MAX;
  693. return sum1;
  694. }
  695. # if defined(ARCH_POWERPC_405)
  696. /* signed 16x16 -> 32 multiply add accumulate */
  697. # define MACS(rt, ra, rb) \
  698. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  699. /* signed 16x16 -> 32 multiply */
  700. # define MULS(ra, rb) \
  701. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  702. # elif defined(HAVE_ARMV5TE)
  703. /* signed 16x16 -> 32 multiply add accumulate */
  704. # define MACS(rt, ra, rb) \
  705. asm ("smlabb %0, %2, %3, %0" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  706. /* signed 16x16 -> 32 multiply */
  707. # define MULS(ra, rb) \
  708. ({ int __rt; asm ("smulbb %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  709. # else
  710. /* signed 16x16 -> 32 multiply add accumulate */
  711. # define MACS(rt, ra, rb) rt += (ra) * (rb)
  712. /* signed 16x16 -> 32 multiply */
  713. # define MULS(ra, rb) ((ra) * (rb))
  714. # endif
  715. #else
  716. static inline int round_sample(int64_t *sum)
  717. {
  718. int sum1;
  719. sum1 = (int)((*sum) >> OUT_SHIFT);
  720. *sum &= (1<<OUT_SHIFT)-1;
  721. if (sum1 < OUT_MIN)
  722. sum1 = OUT_MIN;
  723. else if (sum1 > OUT_MAX)
  724. sum1 = OUT_MAX;
  725. return sum1;
  726. }
  727. # define MULS(ra, rb) MUL64(ra, rb)
  728. #endif
  729. #define SUM8(sum, op, w, p) \
  730. { \
  731. sum op MULS((w)[0 * 64], p[0 * 64]);\
  732. sum op MULS((w)[1 * 64], p[1 * 64]);\
  733. sum op MULS((w)[2 * 64], p[2 * 64]);\
  734. sum op MULS((w)[3 * 64], p[3 * 64]);\
  735. sum op MULS((w)[4 * 64], p[4 * 64]);\
  736. sum op MULS((w)[5 * 64], p[5 * 64]);\
  737. sum op MULS((w)[6 * 64], p[6 * 64]);\
  738. sum op MULS((w)[7 * 64], p[7 * 64]);\
  739. }
  740. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  741. { \
  742. int tmp;\
  743. tmp = p[0 * 64];\
  744. sum1 op1 MULS((w1)[0 * 64], tmp);\
  745. sum2 op2 MULS((w2)[0 * 64], tmp);\
  746. tmp = p[1 * 64];\
  747. sum1 op1 MULS((w1)[1 * 64], tmp);\
  748. sum2 op2 MULS((w2)[1 * 64], tmp);\
  749. tmp = p[2 * 64];\
  750. sum1 op1 MULS((w1)[2 * 64], tmp);\
  751. sum2 op2 MULS((w2)[2 * 64], tmp);\
  752. tmp = p[3 * 64];\
  753. sum1 op1 MULS((w1)[3 * 64], tmp);\
  754. sum2 op2 MULS((w2)[3 * 64], tmp);\
  755. tmp = p[4 * 64];\
  756. sum1 op1 MULS((w1)[4 * 64], tmp);\
  757. sum2 op2 MULS((w2)[4 * 64], tmp);\
  758. tmp = p[5 * 64];\
  759. sum1 op1 MULS((w1)[5 * 64], tmp);\
  760. sum2 op2 MULS((w2)[5 * 64], tmp);\
  761. tmp = p[6 * 64];\
  762. sum1 op1 MULS((w1)[6 * 64], tmp);\
  763. sum2 op2 MULS((w2)[6 * 64], tmp);\
  764. tmp = p[7 * 64];\
  765. sum1 op1 MULS((w1)[7 * 64], tmp);\
  766. sum2 op2 MULS((w2)[7 * 64], tmp);\
  767. }
  768. void ff_mpa_synth_init(MPA_INT *window)
  769. {
  770. int i;
  771. /* max = 18760, max sum over all 16 coefs : 44736 */
  772. for(i=0;i<257;i++) {
  773. int v;
  774. v = mpa_enwindow[i];
  775. #if WFRAC_BITS < 16
  776. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  777. #endif
  778. window[i] = v;
  779. if ((i & 63) != 0)
  780. v = -v;
  781. if (i != 0)
  782. window[512 - i] = v;
  783. }
  784. }
  785. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  786. 32 samples. */
  787. /* XXX: optimize by avoiding ring buffer usage */
  788. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  789. MPA_INT *window, int *dither_state,
  790. OUT_INT *samples, int incr,
  791. int32_t sb_samples[SBLIMIT])
  792. {
  793. int32_t tmp[32];
  794. register MPA_INT *synth_buf;
  795. register const MPA_INT *w, *w2, *p;
  796. int j, offset, v;
  797. OUT_INT *samples2;
  798. #if FRAC_BITS <= 15
  799. int sum, sum2;
  800. #else
  801. int64_t sum, sum2;
  802. #endif
  803. dct32(tmp, sb_samples);
  804. offset = *synth_buf_offset;
  805. synth_buf = synth_buf_ptr + offset;
  806. for(j=0;j<32;j++) {
  807. v = tmp[j];
  808. #if FRAC_BITS <= 15
  809. /* NOTE: can cause a loss in precision if very high amplitude
  810. sound */
  811. if (v > 32767)
  812. v = 32767;
  813. else if (v < -32768)
  814. v = -32768;
  815. #endif
  816. synth_buf[j] = v;
  817. }
  818. /* copy to avoid wrap */
  819. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  820. samples2 = samples + 31 * incr;
  821. w = window;
  822. w2 = window + 31;
  823. sum = *dither_state;
  824. p = synth_buf + 16;
  825. SUM8(sum, +=, w, p);
  826. p = synth_buf + 48;
  827. SUM8(sum, -=, w + 32, p);
  828. *samples = round_sample(&sum);
  829. samples += incr;
  830. w++;
  831. /* we calculate two samples at the same time to avoid one memory
  832. access per two sample */
  833. for(j=1;j<16;j++) {
  834. sum2 = 0;
  835. p = synth_buf + 16 + j;
  836. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  837. p = synth_buf + 48 - j;
  838. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  839. *samples = round_sample(&sum);
  840. samples += incr;
  841. sum += sum2;
  842. *samples2 = round_sample(&sum);
  843. samples2 -= incr;
  844. w++;
  845. w2--;
  846. }
  847. p = synth_buf + 32;
  848. SUM8(sum, -=, w + 32, p);
  849. *samples = round_sample(&sum);
  850. *dither_state= sum;
  851. offset = (offset - 32) & 511;
  852. *synth_buf_offset = offset;
  853. }
  854. #define C3 FIXHR(0.86602540378443864676/2)
  855. /* 0.5 / cos(pi*(2*i+1)/36) */
  856. static const int icos36[9] = {
  857. FIXR(0.50190991877167369479),
  858. FIXR(0.51763809020504152469), //0
  859. FIXR(0.55168895948124587824),
  860. FIXR(0.61038729438072803416),
  861. FIXR(0.70710678118654752439), //1
  862. FIXR(0.87172339781054900991),
  863. FIXR(1.18310079157624925896),
  864. FIXR(1.93185165257813657349), //2
  865. FIXR(5.73685662283492756461),
  866. };
  867. /* 0.5 / cos(pi*(2*i+1)/36) */
  868. static const int icos36h[9] = {
  869. FIXHR(0.50190991877167369479/2),
  870. FIXHR(0.51763809020504152469/2), //0
  871. FIXHR(0.55168895948124587824/2),
  872. FIXHR(0.61038729438072803416/2),
  873. FIXHR(0.70710678118654752439/2), //1
  874. FIXHR(0.87172339781054900991/2),
  875. FIXHR(1.18310079157624925896/4),
  876. FIXHR(1.93185165257813657349/4), //2
  877. // FIXHR(5.73685662283492756461),
  878. };
  879. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  880. cases. */
  881. static void imdct12(int *out, int *in)
  882. {
  883. int in0, in1, in2, in3, in4, in5, t1, t2;
  884. in0= in[0*3];
  885. in1= in[1*3] + in[0*3];
  886. in2= in[2*3] + in[1*3];
  887. in3= in[3*3] + in[2*3];
  888. in4= in[4*3] + in[3*3];
  889. in5= in[5*3] + in[4*3];
  890. in5 += in3;
  891. in3 += in1;
  892. in2= MULH(2*in2, C3);
  893. in3= MULH(4*in3, C3);
  894. t1 = in0 - in4;
  895. t2 = MULH(2*(in1 - in5), icos36h[4]);
  896. out[ 7]=
  897. out[10]= t1 + t2;
  898. out[ 1]=
  899. out[ 4]= t1 - t2;
  900. in0 += in4>>1;
  901. in4 = in0 + in2;
  902. in5 += 2*in1;
  903. in1 = MULH(in5 + in3, icos36h[1]);
  904. out[ 8]=
  905. out[ 9]= in4 + in1;
  906. out[ 2]=
  907. out[ 3]= in4 - in1;
  908. in0 -= in2;
  909. in5 = MULH(2*(in5 - in3), icos36h[7]);
  910. out[ 0]=
  911. out[ 5]= in0 - in5;
  912. out[ 6]=
  913. out[11]= in0 + in5;
  914. }
  915. /* cos(pi*i/18) */
  916. #define C1 FIXHR(0.98480775301220805936/2)
  917. #define C2 FIXHR(0.93969262078590838405/2)
  918. #define C3 FIXHR(0.86602540378443864676/2)
  919. #define C4 FIXHR(0.76604444311897803520/2)
  920. #define C5 FIXHR(0.64278760968653932632/2)
  921. #define C6 FIXHR(0.5/2)
  922. #define C7 FIXHR(0.34202014332566873304/2)
  923. #define C8 FIXHR(0.17364817766693034885/2)
  924. /* using Lee like decomposition followed by hand coded 9 points DCT */
  925. static void imdct36(int *out, int *buf, int *in, int *win)
  926. {
  927. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  928. int tmp[18], *tmp1, *in1;
  929. for(i=17;i>=1;i--)
  930. in[i] += in[i-1];
  931. for(i=17;i>=3;i-=2)
  932. in[i] += in[i-2];
  933. for(j=0;j<2;j++) {
  934. tmp1 = tmp + j;
  935. in1 = in + j;
  936. #if 0
  937. //more accurate but slower
  938. int64_t t0, t1, t2, t3;
  939. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  940. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  941. t1 = in1[2*0] - in1[2*6];
  942. tmp1[ 6] = t1 - (t2>>1);
  943. tmp1[16] = t1 + t2;
  944. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  945. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  946. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  947. tmp1[10] = (t3 - t0 - t2) >> 32;
  948. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  949. tmp1[14] = (t3 + t2 - t1) >> 32;
  950. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  951. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  952. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  953. t0 = MUL64(2*in1[2*3], C3);
  954. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  955. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  956. tmp1[12] = (t2 + t1 - t0) >> 32;
  957. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  958. #else
  959. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  960. t3 = in1[2*0] + (in1[2*6]>>1);
  961. t1 = in1[2*0] - in1[2*6];
  962. tmp1[ 6] = t1 - (t2>>1);
  963. tmp1[16] = t1 + t2;
  964. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  965. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  966. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  967. tmp1[10] = t3 - t0 - t2;
  968. tmp1[ 2] = t3 + t0 + t1;
  969. tmp1[14] = t3 + t2 - t1;
  970. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  971. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  972. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  973. t0 = MULH(2*in1[2*3], C3);
  974. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  975. tmp1[ 0] = t2 + t3 + t0;
  976. tmp1[12] = t2 + t1 - t0;
  977. tmp1[ 8] = t3 - t1 - t0;
  978. #endif
  979. }
  980. i = 0;
  981. for(j=0;j<4;j++) {
  982. t0 = tmp[i];
  983. t1 = tmp[i + 2];
  984. s0 = t1 + t0;
  985. s2 = t1 - t0;
  986. t2 = tmp[i + 1];
  987. t3 = tmp[i + 3];
  988. s1 = MULH(2*(t3 + t2), icos36h[j]);
  989. s3 = MULL(t3 - t2, icos36[8 - j]);
  990. t0 = s0 + s1;
  991. t1 = s0 - s1;
  992. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  993. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  994. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  995. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  996. t0 = s2 + s3;
  997. t1 = s2 - s3;
  998. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  999. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  1000. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  1001. buf[ + j] = MULH(t0, win[18 + j]);
  1002. i += 4;
  1003. }
  1004. s0 = tmp[16];
  1005. s1 = MULH(2*tmp[17], icos36h[4]);
  1006. t0 = s0 + s1;
  1007. t1 = s0 - s1;
  1008. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  1009. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  1010. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  1011. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  1012. }
  1013. /* header decoding. MUST check the header before because no
  1014. consistency check is done there. Return 1 if free format found and
  1015. that the frame size must be computed externally */
  1016. static int decode_header(MPADecodeContext *s, uint32_t header)
  1017. {
  1018. int sample_rate, frame_size, mpeg25, padding;
  1019. int sample_rate_index, bitrate_index;
  1020. if (header & (1<<20)) {
  1021. s->lsf = (header & (1<<19)) ? 0 : 1;
  1022. mpeg25 = 0;
  1023. } else {
  1024. s->lsf = 1;
  1025. mpeg25 = 1;
  1026. }
  1027. s->layer = 4 - ((header >> 17) & 3);
  1028. /* extract frequency */
  1029. sample_rate_index = (header >> 10) & 3;
  1030. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1031. sample_rate_index += 3 * (s->lsf + mpeg25);
  1032. s->sample_rate_index = sample_rate_index;
  1033. s->error_protection = ((header >> 16) & 1) ^ 1;
  1034. s->sample_rate = sample_rate;
  1035. bitrate_index = (header >> 12) & 0xf;
  1036. padding = (header >> 9) & 1;
  1037. //extension = (header >> 8) & 1;
  1038. s->mode = (header >> 6) & 3;
  1039. s->mode_ext = (header >> 4) & 3;
  1040. //copyright = (header >> 3) & 1;
  1041. //original = (header >> 2) & 1;
  1042. //emphasis = header & 3;
  1043. if (s->mode == MPA_MONO)
  1044. s->nb_channels = 1;
  1045. else
  1046. s->nb_channels = 2;
  1047. if (bitrate_index != 0) {
  1048. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1049. s->bit_rate = frame_size * 1000;
  1050. switch(s->layer) {
  1051. case 1:
  1052. frame_size = (frame_size * 12000) / sample_rate;
  1053. frame_size = (frame_size + padding) * 4;
  1054. break;
  1055. case 2:
  1056. frame_size = (frame_size * 144000) / sample_rate;
  1057. frame_size += padding;
  1058. break;
  1059. default:
  1060. case 3:
  1061. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1062. frame_size += padding;
  1063. break;
  1064. }
  1065. s->frame_size = frame_size;
  1066. } else {
  1067. /* if no frame size computed, signal it */
  1068. if (!s->free_format_frame_size)
  1069. return 1;
  1070. /* free format: compute bitrate and real frame size from the
  1071. frame size we extracted by reading the bitstream */
  1072. s->frame_size = s->free_format_frame_size;
  1073. switch(s->layer) {
  1074. case 1:
  1075. s->frame_size += padding * 4;
  1076. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1077. break;
  1078. case 2:
  1079. s->frame_size += padding;
  1080. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1081. break;
  1082. default:
  1083. case 3:
  1084. s->frame_size += padding;
  1085. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1086. break;
  1087. }
  1088. }
  1089. #if defined(DEBUG)
  1090. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1091. s->layer, s->sample_rate, s->bit_rate);
  1092. if (s->nb_channels == 2) {
  1093. if (s->layer == 3) {
  1094. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1095. dprintf("ms-");
  1096. if (s->mode_ext & MODE_EXT_I_STEREO)
  1097. dprintf("i-");
  1098. }
  1099. dprintf("stereo");
  1100. } else {
  1101. dprintf("mono");
  1102. }
  1103. dprintf("\n");
  1104. #endif
  1105. return 0;
  1106. }
  1107. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1108. header, otherwise the coded frame size in bytes */
  1109. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1110. {
  1111. MPADecodeContext s1, *s = &s1;
  1112. if (ff_mpa_check_header(head) != 0)
  1113. return -1;
  1114. if (decode_header(s, head) != 0) {
  1115. return -1;
  1116. }
  1117. switch(s->layer) {
  1118. case 1:
  1119. avctx->frame_size = 384;
  1120. break;
  1121. case 2:
  1122. avctx->frame_size = 1152;
  1123. break;
  1124. default:
  1125. case 3:
  1126. if (s->lsf)
  1127. avctx->frame_size = 576;
  1128. else
  1129. avctx->frame_size = 1152;
  1130. break;
  1131. }
  1132. avctx->sample_rate = s->sample_rate;
  1133. avctx->channels = s->nb_channels;
  1134. avctx->bit_rate = s->bit_rate;
  1135. avctx->sub_id = s->layer;
  1136. return s->frame_size;
  1137. }
  1138. /* return the number of decoded frames */
  1139. static int mp_decode_layer1(MPADecodeContext *s)
  1140. {
  1141. int bound, i, v, n, ch, j, mant;
  1142. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1143. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1144. if (s->mode == MPA_JSTEREO)
  1145. bound = (s->mode_ext + 1) * 4;
  1146. else
  1147. bound = SBLIMIT;
  1148. /* allocation bits */
  1149. for(i=0;i<bound;i++) {
  1150. for(ch=0;ch<s->nb_channels;ch++) {
  1151. allocation[ch][i] = get_bits(&s->gb, 4);
  1152. }
  1153. }
  1154. for(i=bound;i<SBLIMIT;i++) {
  1155. allocation[0][i] = get_bits(&s->gb, 4);
  1156. }
  1157. /* scale factors */
  1158. for(i=0;i<bound;i++) {
  1159. for(ch=0;ch<s->nb_channels;ch++) {
  1160. if (allocation[ch][i])
  1161. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1162. }
  1163. }
  1164. for(i=bound;i<SBLIMIT;i++) {
  1165. if (allocation[0][i]) {
  1166. scale_factors[0][i] = get_bits(&s->gb, 6);
  1167. scale_factors[1][i] = get_bits(&s->gb, 6);
  1168. }
  1169. }
  1170. /* compute samples */
  1171. for(j=0;j<12;j++) {
  1172. for(i=0;i<bound;i++) {
  1173. for(ch=0;ch<s->nb_channels;ch++) {
  1174. n = allocation[ch][i];
  1175. if (n) {
  1176. mant = get_bits(&s->gb, n + 1);
  1177. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1178. } else {
  1179. v = 0;
  1180. }
  1181. s->sb_samples[ch][j][i] = v;
  1182. }
  1183. }
  1184. for(i=bound;i<SBLIMIT;i++) {
  1185. n = allocation[0][i];
  1186. if (n) {
  1187. mant = get_bits(&s->gb, n + 1);
  1188. v = l1_unscale(n, mant, scale_factors[0][i]);
  1189. s->sb_samples[0][j][i] = v;
  1190. v = l1_unscale(n, mant, scale_factors[1][i]);
  1191. s->sb_samples[1][j][i] = v;
  1192. } else {
  1193. s->sb_samples[0][j][i] = 0;
  1194. s->sb_samples[1][j][i] = 0;
  1195. }
  1196. }
  1197. }
  1198. return 12;
  1199. }
  1200. /* bitrate is in kb/s */
  1201. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1202. {
  1203. int ch_bitrate, table;
  1204. ch_bitrate = bitrate / nb_channels;
  1205. if (!lsf) {
  1206. if ((freq == 48000 && ch_bitrate >= 56) ||
  1207. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1208. table = 0;
  1209. else if (freq != 48000 && ch_bitrate >= 96)
  1210. table = 1;
  1211. else if (freq != 32000 && ch_bitrate <= 48)
  1212. table = 2;
  1213. else
  1214. table = 3;
  1215. } else {
  1216. table = 4;
  1217. }
  1218. return table;
  1219. }
  1220. static int mp_decode_layer2(MPADecodeContext *s)
  1221. {
  1222. int sblimit; /* number of used subbands */
  1223. const unsigned char *alloc_table;
  1224. int table, bit_alloc_bits, i, j, ch, bound, v;
  1225. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1226. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1227. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1228. int scale, qindex, bits, steps, k, l, m, b;
  1229. /* select decoding table */
  1230. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1231. s->sample_rate, s->lsf);
  1232. sblimit = sblimit_table[table];
  1233. alloc_table = alloc_tables[table];
  1234. if (s->mode == MPA_JSTEREO)
  1235. bound = (s->mode_ext + 1) * 4;
  1236. else
  1237. bound = sblimit;
  1238. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1239. /* sanity check */
  1240. if( bound > sblimit ) bound = sblimit;
  1241. /* parse bit allocation */
  1242. j = 0;
  1243. for(i=0;i<bound;i++) {
  1244. bit_alloc_bits = alloc_table[j];
  1245. for(ch=0;ch<s->nb_channels;ch++) {
  1246. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1247. }
  1248. j += 1 << bit_alloc_bits;
  1249. }
  1250. for(i=bound;i<sblimit;i++) {
  1251. bit_alloc_bits = alloc_table[j];
  1252. v = get_bits(&s->gb, bit_alloc_bits);
  1253. bit_alloc[0][i] = v;
  1254. bit_alloc[1][i] = v;
  1255. j += 1 << bit_alloc_bits;
  1256. }
  1257. #ifdef DEBUG
  1258. {
  1259. for(ch=0;ch<s->nb_channels;ch++) {
  1260. for(i=0;i<sblimit;i++)
  1261. dprintf(" %d", bit_alloc[ch][i]);
  1262. dprintf("\n");
  1263. }
  1264. }
  1265. #endif
  1266. /* scale codes */
  1267. for(i=0;i<sblimit;i++) {
  1268. for(ch=0;ch<s->nb_channels;ch++) {
  1269. if (bit_alloc[ch][i])
  1270. scale_code[ch][i] = get_bits(&s->gb, 2);
  1271. }
  1272. }
  1273. /* scale factors */
  1274. for(i=0;i<sblimit;i++) {
  1275. for(ch=0;ch<s->nb_channels;ch++) {
  1276. if (bit_alloc[ch][i]) {
  1277. sf = scale_factors[ch][i];
  1278. switch(scale_code[ch][i]) {
  1279. default:
  1280. case 0:
  1281. sf[0] = get_bits(&s->gb, 6);
  1282. sf[1] = get_bits(&s->gb, 6);
  1283. sf[2] = get_bits(&s->gb, 6);
  1284. break;
  1285. case 2:
  1286. sf[0] = get_bits(&s->gb, 6);
  1287. sf[1] = sf[0];
  1288. sf[2] = sf[0];
  1289. break;
  1290. case 1:
  1291. sf[0] = get_bits(&s->gb, 6);
  1292. sf[2] = get_bits(&s->gb, 6);
  1293. sf[1] = sf[0];
  1294. break;
  1295. case 3:
  1296. sf[0] = get_bits(&s->gb, 6);
  1297. sf[2] = get_bits(&s->gb, 6);
  1298. sf[1] = sf[2];
  1299. break;
  1300. }
  1301. }
  1302. }
  1303. }
  1304. #ifdef DEBUG
  1305. for(ch=0;ch<s->nb_channels;ch++) {
  1306. for(i=0;i<sblimit;i++) {
  1307. if (bit_alloc[ch][i]) {
  1308. sf = scale_factors[ch][i];
  1309. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1310. } else {
  1311. dprintf(" -");
  1312. }
  1313. }
  1314. dprintf("\n");
  1315. }
  1316. #endif
  1317. /* samples */
  1318. for(k=0;k<3;k++) {
  1319. for(l=0;l<12;l+=3) {
  1320. j = 0;
  1321. for(i=0;i<bound;i++) {
  1322. bit_alloc_bits = alloc_table[j];
  1323. for(ch=0;ch<s->nb_channels;ch++) {
  1324. b = bit_alloc[ch][i];
  1325. if (b) {
  1326. scale = scale_factors[ch][i][k];
  1327. qindex = alloc_table[j+b];
  1328. bits = quant_bits[qindex];
  1329. if (bits < 0) {
  1330. /* 3 values at the same time */
  1331. v = get_bits(&s->gb, -bits);
  1332. steps = quant_steps[qindex];
  1333. s->sb_samples[ch][k * 12 + l + 0][i] =
  1334. l2_unscale_group(steps, v % steps, scale);
  1335. v = v / steps;
  1336. s->sb_samples[ch][k * 12 + l + 1][i] =
  1337. l2_unscale_group(steps, v % steps, scale);
  1338. v = v / steps;
  1339. s->sb_samples[ch][k * 12 + l + 2][i] =
  1340. l2_unscale_group(steps, v, scale);
  1341. } else {
  1342. for(m=0;m<3;m++) {
  1343. v = get_bits(&s->gb, bits);
  1344. v = l1_unscale(bits - 1, v, scale);
  1345. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1346. }
  1347. }
  1348. } else {
  1349. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1350. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1351. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1352. }
  1353. }
  1354. /* next subband in alloc table */
  1355. j += 1 << bit_alloc_bits;
  1356. }
  1357. /* XXX: find a way to avoid this duplication of code */
  1358. for(i=bound;i<sblimit;i++) {
  1359. bit_alloc_bits = alloc_table[j];
  1360. b = bit_alloc[0][i];
  1361. if (b) {
  1362. int mant, scale0, scale1;
  1363. scale0 = scale_factors[0][i][k];
  1364. scale1 = scale_factors[1][i][k];
  1365. qindex = alloc_table[j+b];
  1366. bits = quant_bits[qindex];
  1367. if (bits < 0) {
  1368. /* 3 values at the same time */
  1369. v = get_bits(&s->gb, -bits);
  1370. steps = quant_steps[qindex];
  1371. mant = v % steps;
  1372. v = v / steps;
  1373. s->sb_samples[0][k * 12 + l + 0][i] =
  1374. l2_unscale_group(steps, mant, scale0);
  1375. s->sb_samples[1][k * 12 + l + 0][i] =
  1376. l2_unscale_group(steps, mant, scale1);
  1377. mant = v % steps;
  1378. v = v / steps;
  1379. s->sb_samples[0][k * 12 + l + 1][i] =
  1380. l2_unscale_group(steps, mant, scale0);
  1381. s->sb_samples[1][k * 12 + l + 1][i] =
  1382. l2_unscale_group(steps, mant, scale1);
  1383. s->sb_samples[0][k * 12 + l + 2][i] =
  1384. l2_unscale_group(steps, v, scale0);
  1385. s->sb_samples[1][k * 12 + l + 2][i] =
  1386. l2_unscale_group(steps, v, scale1);
  1387. } else {
  1388. for(m=0;m<3;m++) {
  1389. mant = get_bits(&s->gb, bits);
  1390. s->sb_samples[0][k * 12 + l + m][i] =
  1391. l1_unscale(bits - 1, mant, scale0);
  1392. s->sb_samples[1][k * 12 + l + m][i] =
  1393. l1_unscale(bits - 1, mant, scale1);
  1394. }
  1395. }
  1396. } else {
  1397. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1398. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1399. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1400. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1401. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1402. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1403. }
  1404. /* next subband in alloc table */
  1405. j += 1 << bit_alloc_bits;
  1406. }
  1407. /* fill remaining samples to zero */
  1408. for(i=sblimit;i<SBLIMIT;i++) {
  1409. for(ch=0;ch<s->nb_channels;ch++) {
  1410. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1411. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1412. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1413. }
  1414. }
  1415. }
  1416. }
  1417. return 3 * 12;
  1418. }
  1419. static inline void lsf_sf_expand(int *slen,
  1420. int sf, int n1, int n2, int n3)
  1421. {
  1422. if (n3) {
  1423. slen[3] = sf % n3;
  1424. sf /= n3;
  1425. } else {
  1426. slen[3] = 0;
  1427. }
  1428. if (n2) {
  1429. slen[2] = sf % n2;
  1430. sf /= n2;
  1431. } else {
  1432. slen[2] = 0;
  1433. }
  1434. slen[1] = sf % n1;
  1435. sf /= n1;
  1436. slen[0] = sf;
  1437. }
  1438. static void exponents_from_scale_factors(MPADecodeContext *s,
  1439. GranuleDef *g,
  1440. int16_t *exponents)
  1441. {
  1442. const uint8_t *bstab, *pretab;
  1443. int len, i, j, k, l, v0, shift, gain, gains[3];
  1444. int16_t *exp_ptr;
  1445. exp_ptr = exponents;
  1446. gain = g->global_gain - 210;
  1447. shift = g->scalefac_scale + 1;
  1448. bstab = band_size_long[s->sample_rate_index];
  1449. pretab = mpa_pretab[g->preflag];
  1450. for(i=0;i<g->long_end;i++) {
  1451. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1452. len = bstab[i];
  1453. for(j=len;j>0;j--)
  1454. *exp_ptr++ = v0;
  1455. }
  1456. if (g->short_start < 13) {
  1457. bstab = band_size_short[s->sample_rate_index];
  1458. gains[0] = gain - (g->subblock_gain[0] << 3);
  1459. gains[1] = gain - (g->subblock_gain[1] << 3);
  1460. gains[2] = gain - (g->subblock_gain[2] << 3);
  1461. k = g->long_end;
  1462. for(i=g->short_start;i<13;i++) {
  1463. len = bstab[i];
  1464. for(l=0;l<3;l++) {
  1465. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1466. for(j=len;j>0;j--)
  1467. *exp_ptr++ = v0;
  1468. }
  1469. }
  1470. }
  1471. }
  1472. /* handle n = 0 too */
  1473. static inline int get_bitsz(GetBitContext *s, int n)
  1474. {
  1475. if (n == 0)
  1476. return 0;
  1477. else
  1478. return get_bits(s, n);
  1479. }
  1480. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1481. int16_t *exponents, int end_pos2)
  1482. {
  1483. int s_index;
  1484. int i;
  1485. int last_pos, bits_left;
  1486. VLC *vlc;
  1487. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1488. /* low frequencies (called big values) */
  1489. s_index = 0;
  1490. for(i=0;i<3;i++) {
  1491. int j, k, l, linbits;
  1492. j = g->region_size[i];
  1493. if (j == 0)
  1494. continue;
  1495. /* select vlc table */
  1496. k = g->table_select[i];
  1497. l = mpa_huff_data[k][0];
  1498. linbits = mpa_huff_data[k][1];
  1499. vlc = &huff_vlc[l];
  1500. if(!l){
  1501. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1502. s_index += 2*j;
  1503. continue;
  1504. }
  1505. /* read huffcode and compute each couple */
  1506. for(;j>0;j--) {
  1507. int exponent, x, y, v;
  1508. int pos= get_bits_count(&s->gb);
  1509. if (pos >= end_pos){
  1510. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1511. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1512. s->gb= s->in_gb;
  1513. s->in_gb.buffer=NULL;
  1514. assert((get_bits_count(&s->gb) & 7) == 0);
  1515. skip_bits_long(&s->gb, pos - end_pos);
  1516. end_pos2=
  1517. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1518. pos= get_bits_count(&s->gb);
  1519. }
  1520. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1521. if(pos >= end_pos)
  1522. break;
  1523. }
  1524. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1525. if(!y){
  1526. g->sb_hybrid[s_index ] =
  1527. g->sb_hybrid[s_index+1] = 0;
  1528. s_index += 2;
  1529. continue;
  1530. }
  1531. exponent= exponents[s_index];
  1532. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1533. i, g->region_size[i] - j, x, y, exponent);
  1534. if(y&16){
  1535. x = y >> 5;
  1536. y = y & 0x0f;
  1537. if (x < 15){
  1538. v = expval_table[ exponent ][ x ];
  1539. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1540. }else{
  1541. x += get_bitsz(&s->gb, linbits);
  1542. v = l3_unscale(x, exponent);
  1543. }
  1544. if (get_bits1(&s->gb))
  1545. v = -v;
  1546. g->sb_hybrid[s_index] = v;
  1547. if (y < 15){
  1548. v = expval_table[ exponent ][ y ];
  1549. }else{
  1550. y += get_bitsz(&s->gb, linbits);
  1551. v = l3_unscale(y, exponent);
  1552. }
  1553. if (get_bits1(&s->gb))
  1554. v = -v;
  1555. g->sb_hybrid[s_index+1] = v;
  1556. }else{
  1557. x = y >> 5;
  1558. y = y & 0x0f;
  1559. x += y;
  1560. if (x < 15){
  1561. v = expval_table[ exponent ][ x ];
  1562. }else{
  1563. x += get_bitsz(&s->gb, linbits);
  1564. v = l3_unscale(x, exponent);
  1565. }
  1566. if (get_bits1(&s->gb))
  1567. v = -v;
  1568. g->sb_hybrid[s_index+!!y] = v;
  1569. g->sb_hybrid[s_index+ !y] = 0;
  1570. }
  1571. s_index+=2;
  1572. }
  1573. }
  1574. /* high frequencies */
  1575. vlc = &huff_quad_vlc[g->count1table_select];
  1576. last_pos=0;
  1577. while (s_index <= 572) {
  1578. int pos, code;
  1579. pos = get_bits_count(&s->gb);
  1580. if (pos >= end_pos) {
  1581. if (pos > end_pos2 && last_pos){
  1582. /* some encoders generate an incorrect size for this
  1583. part. We must go back into the data */
  1584. s_index -= 4;
  1585. skip_bits_long(&s->gb, last_pos - pos);
  1586. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1587. break;
  1588. }
  1589. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1590. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1591. s->gb= s->in_gb;
  1592. s->in_gb.buffer=NULL;
  1593. assert((get_bits_count(&s->gb) & 7) == 0);
  1594. skip_bits_long(&s->gb, pos - end_pos);
  1595. end_pos2=
  1596. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1597. pos= get_bits_count(&s->gb);
  1598. }
  1599. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1600. if(pos >= end_pos)
  1601. break;
  1602. }
  1603. last_pos= pos;
  1604. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1605. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1606. g->sb_hybrid[s_index+0]=
  1607. g->sb_hybrid[s_index+1]=
  1608. g->sb_hybrid[s_index+2]=
  1609. g->sb_hybrid[s_index+3]= 0;
  1610. while(code){
  1611. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1612. int v;
  1613. int pos= s_index+idxtab[code];
  1614. code ^= 8>>idxtab[code];
  1615. v = exp_table[ exponents[pos] ];
  1616. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1617. if(get_bits1(&s->gb))
  1618. v = -v;
  1619. g->sb_hybrid[pos] = v;
  1620. }
  1621. s_index+=4;
  1622. }
  1623. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1624. /* skip extension bits */
  1625. bits_left = end_pos - get_bits_count(&s->gb);
  1626. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1627. if (bits_left < 0) {
  1628. dprintf("bits_left=%d\n", bits_left);
  1629. return -1;
  1630. }
  1631. skip_bits_long(&s->gb, bits_left);
  1632. return 0;
  1633. }
  1634. /* Reorder short blocks from bitstream order to interleaved order. It
  1635. would be faster to do it in parsing, but the code would be far more
  1636. complicated */
  1637. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1638. {
  1639. int i, j, len;
  1640. int32_t *ptr, *dst, *ptr1;
  1641. int32_t tmp[576];
  1642. if (g->block_type != 2)
  1643. return;
  1644. if (g->switch_point) {
  1645. if (s->sample_rate_index != 8) {
  1646. ptr = g->sb_hybrid + 36;
  1647. } else {
  1648. ptr = g->sb_hybrid + 48;
  1649. }
  1650. } else {
  1651. ptr = g->sb_hybrid;
  1652. }
  1653. for(i=g->short_start;i<13;i++) {
  1654. len = band_size_short[s->sample_rate_index][i];
  1655. ptr1 = ptr;
  1656. dst = tmp;
  1657. for(j=len;j>0;j--) {
  1658. *dst++ = ptr[0*len];
  1659. *dst++ = ptr[1*len];
  1660. *dst++ = ptr[2*len];
  1661. ptr++;
  1662. }
  1663. ptr+=2*len;
  1664. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1665. }
  1666. }
  1667. #define ISQRT2 FIXR(0.70710678118654752440)
  1668. static void compute_stereo(MPADecodeContext *s,
  1669. GranuleDef *g0, GranuleDef *g1)
  1670. {
  1671. int i, j, k, l;
  1672. int32_t v1, v2;
  1673. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1674. int32_t (*is_tab)[16];
  1675. int32_t *tab0, *tab1;
  1676. int non_zero_found_short[3];
  1677. /* intensity stereo */
  1678. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1679. if (!s->lsf) {
  1680. is_tab = is_table;
  1681. sf_max = 7;
  1682. } else {
  1683. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1684. sf_max = 16;
  1685. }
  1686. tab0 = g0->sb_hybrid + 576;
  1687. tab1 = g1->sb_hybrid + 576;
  1688. non_zero_found_short[0] = 0;
  1689. non_zero_found_short[1] = 0;
  1690. non_zero_found_short[2] = 0;
  1691. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1692. for(i = 12;i >= g1->short_start;i--) {
  1693. /* for last band, use previous scale factor */
  1694. if (i != 11)
  1695. k -= 3;
  1696. len = band_size_short[s->sample_rate_index][i];
  1697. for(l=2;l>=0;l--) {
  1698. tab0 -= len;
  1699. tab1 -= len;
  1700. if (!non_zero_found_short[l]) {
  1701. /* test if non zero band. if so, stop doing i-stereo */
  1702. for(j=0;j<len;j++) {
  1703. if (tab1[j] != 0) {
  1704. non_zero_found_short[l] = 1;
  1705. goto found1;
  1706. }
  1707. }
  1708. sf = g1->scale_factors[k + l];
  1709. if (sf >= sf_max)
  1710. goto found1;
  1711. v1 = is_tab[0][sf];
  1712. v2 = is_tab[1][sf];
  1713. for(j=0;j<len;j++) {
  1714. tmp0 = tab0[j];
  1715. tab0[j] = MULL(tmp0, v1);
  1716. tab1[j] = MULL(tmp0, v2);
  1717. }
  1718. } else {
  1719. found1:
  1720. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1721. /* lower part of the spectrum : do ms stereo
  1722. if enabled */
  1723. for(j=0;j<len;j++) {
  1724. tmp0 = tab0[j];
  1725. tmp1 = tab1[j];
  1726. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1727. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1728. }
  1729. }
  1730. }
  1731. }
  1732. }
  1733. non_zero_found = non_zero_found_short[0] |
  1734. non_zero_found_short[1] |
  1735. non_zero_found_short[2];
  1736. for(i = g1->long_end - 1;i >= 0;i--) {
  1737. len = band_size_long[s->sample_rate_index][i];
  1738. tab0 -= len;
  1739. tab1 -= len;
  1740. /* test if non zero band. if so, stop doing i-stereo */
  1741. if (!non_zero_found) {
  1742. for(j=0;j<len;j++) {
  1743. if (tab1[j] != 0) {
  1744. non_zero_found = 1;
  1745. goto found2;
  1746. }
  1747. }
  1748. /* for last band, use previous scale factor */
  1749. k = (i == 21) ? 20 : i;
  1750. sf = g1->scale_factors[k];
  1751. if (sf >= sf_max)
  1752. goto found2;
  1753. v1 = is_tab[0][sf];
  1754. v2 = is_tab[1][sf];
  1755. for(j=0;j<len;j++) {
  1756. tmp0 = tab0[j];
  1757. tab0[j] = MULL(tmp0, v1);
  1758. tab1[j] = MULL(tmp0, v2);
  1759. }
  1760. } else {
  1761. found2:
  1762. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1763. /* lower part of the spectrum : do ms stereo
  1764. if enabled */
  1765. for(j=0;j<len;j++) {
  1766. tmp0 = tab0[j];
  1767. tmp1 = tab1[j];
  1768. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1769. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1770. }
  1771. }
  1772. }
  1773. }
  1774. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1775. /* ms stereo ONLY */
  1776. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1777. global gain */
  1778. tab0 = g0->sb_hybrid;
  1779. tab1 = g1->sb_hybrid;
  1780. for(i=0;i<576;i++) {
  1781. tmp0 = tab0[i];
  1782. tmp1 = tab1[i];
  1783. tab0[i] = tmp0 + tmp1;
  1784. tab1[i] = tmp0 - tmp1;
  1785. }
  1786. }
  1787. }
  1788. static void compute_antialias_integer(MPADecodeContext *s,
  1789. GranuleDef *g)
  1790. {
  1791. int32_t *ptr, *csa;
  1792. int n, i;
  1793. /* we antialias only "long" bands */
  1794. if (g->block_type == 2) {
  1795. if (!g->switch_point)
  1796. return;
  1797. /* XXX: check this for 8000Hz case */
  1798. n = 1;
  1799. } else {
  1800. n = SBLIMIT - 1;
  1801. }
  1802. ptr = g->sb_hybrid + 18;
  1803. for(i = n;i > 0;i--) {
  1804. int tmp0, tmp1, tmp2;
  1805. csa = &csa_table[0][0];
  1806. #define INT_AA(j) \
  1807. tmp0 = ptr[-1-j];\
  1808. tmp1 = ptr[ j];\
  1809. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1810. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1811. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1812. INT_AA(0)
  1813. INT_AA(1)
  1814. INT_AA(2)
  1815. INT_AA(3)
  1816. INT_AA(4)
  1817. INT_AA(5)
  1818. INT_AA(6)
  1819. INT_AA(7)
  1820. ptr += 18;
  1821. }
  1822. }
  1823. static void compute_antialias_float(MPADecodeContext *s,
  1824. GranuleDef *g)
  1825. {
  1826. int32_t *ptr;
  1827. int n, i;
  1828. /* we antialias only "long" bands */
  1829. if (g->block_type == 2) {
  1830. if (!g->switch_point)
  1831. return;
  1832. /* XXX: check this for 8000Hz case */
  1833. n = 1;
  1834. } else {
  1835. n = SBLIMIT - 1;
  1836. }
  1837. ptr = g->sb_hybrid + 18;
  1838. for(i = n;i > 0;i--) {
  1839. float tmp0, tmp1;
  1840. float *csa = &csa_table_float[0][0];
  1841. #define FLOAT_AA(j)\
  1842. tmp0= ptr[-1-j];\
  1843. tmp1= ptr[ j];\
  1844. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1845. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1846. FLOAT_AA(0)
  1847. FLOAT_AA(1)
  1848. FLOAT_AA(2)
  1849. FLOAT_AA(3)
  1850. FLOAT_AA(4)
  1851. FLOAT_AA(5)
  1852. FLOAT_AA(6)
  1853. FLOAT_AA(7)
  1854. ptr += 18;
  1855. }
  1856. }
  1857. static void compute_imdct(MPADecodeContext *s,
  1858. GranuleDef *g,
  1859. int32_t *sb_samples,
  1860. int32_t *mdct_buf)
  1861. {
  1862. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1863. int32_t out2[12];
  1864. int i, j, mdct_long_end, v, sblimit;
  1865. /* find last non zero block */
  1866. ptr = g->sb_hybrid + 576;
  1867. ptr1 = g->sb_hybrid + 2 * 18;
  1868. while (ptr >= ptr1) {
  1869. ptr -= 6;
  1870. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1871. if (v != 0)
  1872. break;
  1873. }
  1874. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1875. if (g->block_type == 2) {
  1876. /* XXX: check for 8000 Hz */
  1877. if (g->switch_point)
  1878. mdct_long_end = 2;
  1879. else
  1880. mdct_long_end = 0;
  1881. } else {
  1882. mdct_long_end = sblimit;
  1883. }
  1884. buf = mdct_buf;
  1885. ptr = g->sb_hybrid;
  1886. for(j=0;j<mdct_long_end;j++) {
  1887. /* apply window & overlap with previous buffer */
  1888. out_ptr = sb_samples + j;
  1889. /* select window */
  1890. if (g->switch_point && j < 2)
  1891. win1 = mdct_win[0];
  1892. else
  1893. win1 = mdct_win[g->block_type];
  1894. /* select frequency inversion */
  1895. win = win1 + ((4 * 36) & -(j & 1));
  1896. imdct36(out_ptr, buf, ptr, win);
  1897. out_ptr += 18*SBLIMIT;
  1898. ptr += 18;
  1899. buf += 18;
  1900. }
  1901. for(j=mdct_long_end;j<sblimit;j++) {
  1902. /* select frequency inversion */
  1903. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1904. out_ptr = sb_samples + j;
  1905. for(i=0; i<6; i++){
  1906. *out_ptr = buf[i];
  1907. out_ptr += SBLIMIT;
  1908. }
  1909. imdct12(out2, ptr + 0);
  1910. for(i=0;i<6;i++) {
  1911. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1912. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1913. out_ptr += SBLIMIT;
  1914. }
  1915. imdct12(out2, ptr + 1);
  1916. for(i=0;i<6;i++) {
  1917. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1918. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1919. out_ptr += SBLIMIT;
  1920. }
  1921. imdct12(out2, ptr + 2);
  1922. for(i=0;i<6;i++) {
  1923. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1924. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1925. buf[i + 6*2] = 0;
  1926. }
  1927. ptr += 18;
  1928. buf += 18;
  1929. }
  1930. /* zero bands */
  1931. for(j=sblimit;j<SBLIMIT;j++) {
  1932. /* overlap */
  1933. out_ptr = sb_samples + j;
  1934. for(i=0;i<18;i++) {
  1935. *out_ptr = buf[i];
  1936. buf[i] = 0;
  1937. out_ptr += SBLIMIT;
  1938. }
  1939. buf += 18;
  1940. }
  1941. }
  1942. #if defined(DEBUG)
  1943. void sample_dump(int fnum, int32_t *tab, int n)
  1944. {
  1945. static FILE *files[16], *f;
  1946. char buf[512];
  1947. int i;
  1948. int32_t v;
  1949. f = files[fnum];
  1950. if (!f) {
  1951. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1952. fnum,
  1953. #ifdef USE_HIGHPRECISION
  1954. "hp"
  1955. #else
  1956. "lp"
  1957. #endif
  1958. );
  1959. f = fopen(buf, "w");
  1960. if (!f)
  1961. return;
  1962. files[fnum] = f;
  1963. }
  1964. if (fnum == 0) {
  1965. static int pos = 0;
  1966. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1967. for(i=0;i<n;i++) {
  1968. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1969. if ((i % 18) == 17)
  1970. av_log(NULL, AV_LOG_DEBUG, "\n");
  1971. }
  1972. pos += n;
  1973. }
  1974. for(i=0;i<n;i++) {
  1975. /* normalize to 23 frac bits */
  1976. v = tab[i] << (23 - FRAC_BITS);
  1977. fwrite(&v, 1, sizeof(int32_t), f);
  1978. }
  1979. }
  1980. #endif
  1981. /* main layer3 decoding function */
  1982. static int mp_decode_layer3(MPADecodeContext *s)
  1983. {
  1984. int nb_granules, main_data_begin, private_bits;
  1985. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1986. GranuleDef granules[2][2], *g;
  1987. int16_t exponents[576];
  1988. /* read side info */
  1989. if (s->lsf) {
  1990. main_data_begin = get_bits(&s->gb, 8);
  1991. private_bits = get_bits(&s->gb, s->nb_channels);
  1992. nb_granules = 1;
  1993. } else {
  1994. main_data_begin = get_bits(&s->gb, 9);
  1995. if (s->nb_channels == 2)
  1996. private_bits = get_bits(&s->gb, 3);
  1997. else
  1998. private_bits = get_bits(&s->gb, 5);
  1999. nb_granules = 2;
  2000. for(ch=0;ch<s->nb_channels;ch++) {
  2001. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  2002. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  2003. }
  2004. }
  2005. for(gr=0;gr<nb_granules;gr++) {
  2006. for(ch=0;ch<s->nb_channels;ch++) {
  2007. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  2008. g = &granules[ch][gr];
  2009. g->part2_3_length = get_bits(&s->gb, 12);
  2010. g->big_values = get_bits(&s->gb, 9);
  2011. g->global_gain = get_bits(&s->gb, 8);
  2012. /* if MS stereo only is selected, we precompute the
  2013. 1/sqrt(2) renormalization factor */
  2014. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  2015. MODE_EXT_MS_STEREO)
  2016. g->global_gain -= 2;
  2017. if (s->lsf)
  2018. g->scalefac_compress = get_bits(&s->gb, 9);
  2019. else
  2020. g->scalefac_compress = get_bits(&s->gb, 4);
  2021. blocksplit_flag = get_bits(&s->gb, 1);
  2022. if (blocksplit_flag) {
  2023. g->block_type = get_bits(&s->gb, 2);
  2024. if (g->block_type == 0)
  2025. return -1;
  2026. g->switch_point = get_bits(&s->gb, 1);
  2027. for(i=0;i<2;i++)
  2028. g->table_select[i] = get_bits(&s->gb, 5);
  2029. for(i=0;i<3;i++)
  2030. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2031. /* compute huffman coded region sizes */
  2032. if (g->block_type == 2)
  2033. g->region_size[0] = (36 / 2);
  2034. else {
  2035. if (s->sample_rate_index <= 2)
  2036. g->region_size[0] = (36 / 2);
  2037. else if (s->sample_rate_index != 8)
  2038. g->region_size[0] = (54 / 2);
  2039. else
  2040. g->region_size[0] = (108 / 2);
  2041. }
  2042. g->region_size[1] = (576 / 2);
  2043. } else {
  2044. int region_address1, region_address2, l;
  2045. g->block_type = 0;
  2046. g->switch_point = 0;
  2047. for(i=0;i<3;i++)
  2048. g->table_select[i] = get_bits(&s->gb, 5);
  2049. /* compute huffman coded region sizes */
  2050. region_address1 = get_bits(&s->gb, 4);
  2051. region_address2 = get_bits(&s->gb, 3);
  2052. dprintf("region1=%d region2=%d\n",
  2053. region_address1, region_address2);
  2054. g->region_size[0] =
  2055. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2056. l = region_address1 + region_address2 + 2;
  2057. /* should not overflow */
  2058. if (l > 22)
  2059. l = 22;
  2060. g->region_size[1] =
  2061. band_index_long[s->sample_rate_index][l] >> 1;
  2062. }
  2063. /* convert region offsets to region sizes and truncate
  2064. size to big_values */
  2065. g->region_size[2] = (576 / 2);
  2066. j = 0;
  2067. for(i=0;i<3;i++) {
  2068. k = FFMIN(g->region_size[i], g->big_values);
  2069. g->region_size[i] = k - j;
  2070. j = k;
  2071. }
  2072. /* compute band indexes */
  2073. if (g->block_type == 2) {
  2074. if (g->switch_point) {
  2075. /* if switched mode, we handle the 36 first samples as
  2076. long blocks. For 8000Hz, we handle the 48 first
  2077. exponents as long blocks (XXX: check this!) */
  2078. if (s->sample_rate_index <= 2)
  2079. g->long_end = 8;
  2080. else if (s->sample_rate_index != 8)
  2081. g->long_end = 6;
  2082. else
  2083. g->long_end = 4; /* 8000 Hz */
  2084. g->short_start = 2 + (s->sample_rate_index != 8);
  2085. } else {
  2086. g->long_end = 0;
  2087. g->short_start = 0;
  2088. }
  2089. } else {
  2090. g->short_start = 13;
  2091. g->long_end = 22;
  2092. }
  2093. g->preflag = 0;
  2094. if (!s->lsf)
  2095. g->preflag = get_bits(&s->gb, 1);
  2096. g->scalefac_scale = get_bits(&s->gb, 1);
  2097. g->count1table_select = get_bits(&s->gb, 1);
  2098. dprintf("block_type=%d switch_point=%d\n",
  2099. g->block_type, g->switch_point);
  2100. }
  2101. }
  2102. if (!s->adu_mode) {
  2103. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2104. assert((get_bits_count(&s->gb) & 7) == 0);
  2105. /* now we get bits from the main_data_begin offset */
  2106. dprintf("seekback: %d\n", main_data_begin);
  2107. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2108. if(main_data_begin > s->last_buf_size){
  2109. av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2110. s->last_buf_size= main_data_begin;
  2111. }
  2112. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2113. s->in_gb= s->gb;
  2114. init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8);
  2115. }
  2116. for(gr=0;gr<nb_granules;gr++) {
  2117. for(ch=0;ch<s->nb_channels;ch++) {
  2118. g = &granules[ch][gr];
  2119. bits_pos = get_bits_count(&s->gb);
  2120. if (!s->lsf) {
  2121. uint8_t *sc;
  2122. int slen, slen1, slen2;
  2123. /* MPEG1 scale factors */
  2124. slen1 = slen_table[0][g->scalefac_compress];
  2125. slen2 = slen_table[1][g->scalefac_compress];
  2126. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2127. if (g->block_type == 2) {
  2128. n = g->switch_point ? 17 : 18;
  2129. j = 0;
  2130. if(slen1){
  2131. for(i=0;i<n;i++)
  2132. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2133. }else{
  2134. for(i=0;i<n;i++)
  2135. g->scale_factors[j++] = 0;
  2136. }
  2137. if(slen2){
  2138. for(i=0;i<18;i++)
  2139. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2140. for(i=0;i<3;i++)
  2141. g->scale_factors[j++] = 0;
  2142. }else{
  2143. for(i=0;i<21;i++)
  2144. g->scale_factors[j++] = 0;
  2145. }
  2146. } else {
  2147. sc = granules[ch][0].scale_factors;
  2148. j = 0;
  2149. for(k=0;k<4;k++) {
  2150. n = (k == 0 ? 6 : 5);
  2151. if ((g->scfsi & (0x8 >> k)) == 0) {
  2152. slen = (k < 2) ? slen1 : slen2;
  2153. if(slen){
  2154. for(i=0;i<n;i++)
  2155. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2156. }else{
  2157. for(i=0;i<n;i++)
  2158. g->scale_factors[j++] = 0;
  2159. }
  2160. } else {
  2161. /* simply copy from last granule */
  2162. for(i=0;i<n;i++) {
  2163. g->scale_factors[j] = sc[j];
  2164. j++;
  2165. }
  2166. }
  2167. }
  2168. g->scale_factors[j++] = 0;
  2169. }
  2170. #if defined(DEBUG)
  2171. {
  2172. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2173. g->scfsi, gr, ch);
  2174. for(i=0;i<j;i++)
  2175. dprintf(" %d", g->scale_factors[i]);
  2176. dprintf("\n");
  2177. }
  2178. #endif
  2179. } else {
  2180. int tindex, tindex2, slen[4], sl, sf;
  2181. /* LSF scale factors */
  2182. if (g->block_type == 2) {
  2183. tindex = g->switch_point ? 2 : 1;
  2184. } else {
  2185. tindex = 0;
  2186. }
  2187. sf = g->scalefac_compress;
  2188. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2189. /* intensity stereo case */
  2190. sf >>= 1;
  2191. if (sf < 180) {
  2192. lsf_sf_expand(slen, sf, 6, 6, 0);
  2193. tindex2 = 3;
  2194. } else if (sf < 244) {
  2195. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2196. tindex2 = 4;
  2197. } else {
  2198. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2199. tindex2 = 5;
  2200. }
  2201. } else {
  2202. /* normal case */
  2203. if (sf < 400) {
  2204. lsf_sf_expand(slen, sf, 5, 4, 4);
  2205. tindex2 = 0;
  2206. } else if (sf < 500) {
  2207. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2208. tindex2 = 1;
  2209. } else {
  2210. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2211. tindex2 = 2;
  2212. g->preflag = 1;
  2213. }
  2214. }
  2215. j = 0;
  2216. for(k=0;k<4;k++) {
  2217. n = lsf_nsf_table[tindex2][tindex][k];
  2218. sl = slen[k];
  2219. if(sl){
  2220. for(i=0;i<n;i++)
  2221. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2222. }else{
  2223. for(i=0;i<n;i++)
  2224. g->scale_factors[j++] = 0;
  2225. }
  2226. }
  2227. /* XXX: should compute exact size */
  2228. for(;j<40;j++)
  2229. g->scale_factors[j] = 0;
  2230. #if defined(DEBUG)
  2231. {
  2232. dprintf("gr=%d ch=%d scale_factors:\n",
  2233. gr, ch);
  2234. for(i=0;i<40;i++)
  2235. dprintf(" %d", g->scale_factors[i]);
  2236. dprintf("\n");
  2237. }
  2238. #endif
  2239. }
  2240. exponents_from_scale_factors(s, g, exponents);
  2241. /* read Huffman coded residue */
  2242. if (huffman_decode(s, g, exponents,
  2243. bits_pos + g->part2_3_length) < 0)
  2244. return -1;
  2245. #if defined(DEBUG)
  2246. sample_dump(0, g->sb_hybrid, 576);
  2247. #endif
  2248. } /* ch */
  2249. if (s->nb_channels == 2)
  2250. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2251. for(ch=0;ch<s->nb_channels;ch++) {
  2252. g = &granules[ch][gr];
  2253. reorder_block(s, g);
  2254. #if defined(DEBUG)
  2255. sample_dump(0, g->sb_hybrid, 576);
  2256. #endif
  2257. s->compute_antialias(s, g);
  2258. #if defined(DEBUG)
  2259. sample_dump(1, g->sb_hybrid, 576);
  2260. #endif
  2261. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2262. #if defined(DEBUG)
  2263. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2264. #endif
  2265. }
  2266. } /* gr */
  2267. return nb_granules * 18;
  2268. }
  2269. static int mp_decode_frame(MPADecodeContext *s,
  2270. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2271. {
  2272. int i, nb_frames, ch;
  2273. OUT_INT *samples_ptr;
  2274. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2275. /* skip error protection field */
  2276. if (s->error_protection)
  2277. get_bits(&s->gb, 16);
  2278. dprintf("frame %d:\n", s->frame_count);
  2279. switch(s->layer) {
  2280. case 1:
  2281. nb_frames = mp_decode_layer1(s);
  2282. break;
  2283. case 2:
  2284. nb_frames = mp_decode_layer2(s);
  2285. break;
  2286. case 3:
  2287. default:
  2288. nb_frames = mp_decode_layer3(s);
  2289. s->last_buf_size=0;
  2290. if(s->in_gb.buffer){
  2291. align_get_bits(&s->gb);
  2292. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2293. if(i >= 0 && i <= BACKSTEP_SIZE){
  2294. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2295. s->last_buf_size=i;
  2296. }else
  2297. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2298. s->gb= s->in_gb;
  2299. }
  2300. align_get_bits(&s->gb);
  2301. assert((get_bits_count(&s->gb) & 7) == 0);
  2302. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2303. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2304. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2305. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2306. }
  2307. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2308. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2309. s->last_buf_size += i;
  2310. break;
  2311. }
  2312. #if defined(DEBUG)
  2313. for(i=0;i<nb_frames;i++) {
  2314. for(ch=0;ch<s->nb_channels;ch++) {
  2315. int j;
  2316. dprintf("%d-%d:", i, ch);
  2317. for(j=0;j<SBLIMIT;j++)
  2318. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2319. dprintf("\n");
  2320. }
  2321. }
  2322. #endif
  2323. /* apply the synthesis filter */
  2324. for(ch=0;ch<s->nb_channels;ch++) {
  2325. samples_ptr = samples + ch;
  2326. for(i=0;i<nb_frames;i++) {
  2327. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2328. window, &s->dither_state,
  2329. samples_ptr, s->nb_channels,
  2330. s->sb_samples[ch][i]);
  2331. samples_ptr += 32 * s->nb_channels;
  2332. }
  2333. }
  2334. #ifdef DEBUG
  2335. s->frame_count++;
  2336. #endif
  2337. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2338. }
  2339. static int decode_frame(AVCodecContext * avctx,
  2340. void *data, int *data_size,
  2341. uint8_t * buf, int buf_size)
  2342. {
  2343. MPADecodeContext *s = avctx->priv_data;
  2344. uint32_t header;
  2345. int out_size;
  2346. OUT_INT *out_samples = data;
  2347. retry:
  2348. if(buf_size < HEADER_SIZE)
  2349. return -1;
  2350. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2351. if(ff_mpa_check_header(header) < 0){
  2352. buf++;
  2353. // buf_size--;
  2354. av_log(avctx, AV_LOG_ERROR, "header missing skiping one byte\n");
  2355. goto retry;
  2356. }
  2357. if (decode_header(s, header) == 1) {
  2358. /* free format: prepare to compute frame size */
  2359. s->frame_size = -1;
  2360. return -1;
  2361. }
  2362. /* update codec info */
  2363. avctx->sample_rate = s->sample_rate;
  2364. avctx->channels = s->nb_channels;
  2365. avctx->bit_rate = s->bit_rate;
  2366. avctx->sub_id = s->layer;
  2367. switch(s->layer) {
  2368. case 1:
  2369. avctx->frame_size = 384;
  2370. break;
  2371. case 2:
  2372. avctx->frame_size = 1152;
  2373. break;
  2374. case 3:
  2375. if (s->lsf)
  2376. avctx->frame_size = 576;
  2377. else
  2378. avctx->frame_size = 1152;
  2379. break;
  2380. }
  2381. if(s->frame_size<=0 || s->frame_size > buf_size){
  2382. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2383. return -1;
  2384. }else if(s->frame_size < buf_size){
  2385. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2386. }
  2387. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2388. if(out_size>=0)
  2389. *data_size = out_size;
  2390. else
  2391. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2392. s->frame_size = 0;
  2393. return buf_size;
  2394. }
  2395. static int decode_frame_adu(AVCodecContext * avctx,
  2396. void *data, int *data_size,
  2397. uint8_t * buf, int buf_size)
  2398. {
  2399. MPADecodeContext *s = avctx->priv_data;
  2400. uint32_t header;
  2401. int len, out_size;
  2402. OUT_INT *out_samples = data;
  2403. len = buf_size;
  2404. // Discard too short frames
  2405. if (buf_size < HEADER_SIZE) {
  2406. *data_size = 0;
  2407. return buf_size;
  2408. }
  2409. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2410. len = MPA_MAX_CODED_FRAME_SIZE;
  2411. // Get header and restore sync word
  2412. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2413. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2414. *data_size = 0;
  2415. return buf_size;
  2416. }
  2417. decode_header(s, header);
  2418. /* update codec info */
  2419. avctx->sample_rate = s->sample_rate;
  2420. avctx->channels = s->nb_channels;
  2421. avctx->bit_rate = s->bit_rate;
  2422. avctx->sub_id = s->layer;
  2423. avctx->frame_size=s->frame_size = len;
  2424. if (avctx->parse_only) {
  2425. out_size = buf_size;
  2426. } else {
  2427. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2428. }
  2429. *data_size = out_size;
  2430. return buf_size;
  2431. }
  2432. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2433. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2434. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2435. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2436. static int chan_offset[9][5] = {
  2437. {0},
  2438. {0}, // C
  2439. {0}, // FLR
  2440. {2,0}, // C FLR
  2441. {2,0,3}, // C FLR BS
  2442. {4,0,2}, // C FLR BLRS
  2443. {4,0,2,5}, // C FLR BLRS LFE
  2444. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2445. {0,2} // FLR BLRS
  2446. };
  2447. static int decode_init_mp3on4(AVCodecContext * avctx)
  2448. {
  2449. MP3On4DecodeContext *s = avctx->priv_data;
  2450. int i;
  2451. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2452. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2453. return -1;
  2454. }
  2455. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2456. s->frames = mp3Frames[s->chan_cfg];
  2457. if(!s->frames) {
  2458. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2459. return -1;
  2460. }
  2461. avctx->channels = mp3Channels[s->chan_cfg];
  2462. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2463. * We replace avctx->priv_data with the context of the first decoder so that
  2464. * decode_init() does not have to be changed.
  2465. * Other decoders will be inited here copying data from the first context
  2466. */
  2467. // Allocate zeroed memory for the first decoder context
  2468. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2469. // Put decoder context in place to make init_decode() happy
  2470. avctx->priv_data = s->mp3decctx[0];
  2471. decode_init(avctx);
  2472. // Restore mp3on4 context pointer
  2473. avctx->priv_data = s;
  2474. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2475. /* Create a separate codec/context for each frame (first is already ok).
  2476. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2477. */
  2478. for (i = 1; i < s->frames; i++) {
  2479. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2480. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2481. s->mp3decctx[i]->adu_mode = 1;
  2482. }
  2483. return 0;
  2484. }
  2485. static int decode_close_mp3on4(AVCodecContext * avctx)
  2486. {
  2487. MP3On4DecodeContext *s = avctx->priv_data;
  2488. int i;
  2489. for (i = 0; i < s->frames; i++)
  2490. if (s->mp3decctx[i])
  2491. av_free(s->mp3decctx[i]);
  2492. return 0;
  2493. }
  2494. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2495. void *data, int *data_size,
  2496. uint8_t * buf, int buf_size)
  2497. {
  2498. MP3On4DecodeContext *s = avctx->priv_data;
  2499. MPADecodeContext *m;
  2500. int len, out_size = 0;
  2501. uint32_t header;
  2502. OUT_INT *out_samples = data;
  2503. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2504. OUT_INT *outptr, *bp;
  2505. int fsize;
  2506. unsigned char *start2 = buf, *start;
  2507. int fr, i, j, n;
  2508. int off = avctx->channels;
  2509. int *coff = chan_offset[s->chan_cfg];
  2510. len = buf_size;
  2511. // Discard too short frames
  2512. if (buf_size < HEADER_SIZE) {
  2513. *data_size = 0;
  2514. return buf_size;
  2515. }
  2516. // If only one decoder interleave is not needed
  2517. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2518. for (fr = 0; fr < s->frames; fr++) {
  2519. start = start2;
  2520. fsize = (start[0] << 4) | (start[1] >> 4);
  2521. start2 += fsize;
  2522. if (fsize > len)
  2523. fsize = len;
  2524. len -= fsize;
  2525. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2526. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2527. m = s->mp3decctx[fr];
  2528. assert (m != NULL);
  2529. // Get header
  2530. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2531. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2532. *data_size = 0;
  2533. return buf_size;
  2534. }
  2535. decode_header(m, header);
  2536. mp_decode_frame(m, decoded_buf, start, fsize);
  2537. n = MPA_FRAME_SIZE * m->nb_channels;
  2538. out_size += n * sizeof(OUT_INT);
  2539. if(s->frames > 1) {
  2540. /* interleave output data */
  2541. bp = out_samples + coff[fr];
  2542. if(m->nb_channels == 1) {
  2543. for(j = 0; j < n; j++) {
  2544. *bp = decoded_buf[j];
  2545. bp += off;
  2546. }
  2547. } else {
  2548. for(j = 0; j < n; j++) {
  2549. bp[0] = decoded_buf[j++];
  2550. bp[1] = decoded_buf[j];
  2551. bp += off;
  2552. }
  2553. }
  2554. }
  2555. }
  2556. /* update codec info */
  2557. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2558. avctx->frame_size= buf_size;
  2559. avctx->bit_rate = 0;
  2560. for (i = 0; i < s->frames; i++)
  2561. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2562. *data_size = out_size;
  2563. return buf_size;
  2564. }
  2565. AVCodec mp2_decoder =
  2566. {
  2567. "mp2",
  2568. CODEC_TYPE_AUDIO,
  2569. CODEC_ID_MP2,
  2570. sizeof(MPADecodeContext),
  2571. decode_init,
  2572. NULL,
  2573. NULL,
  2574. decode_frame,
  2575. CODEC_CAP_PARSE_ONLY,
  2576. };
  2577. AVCodec mp3_decoder =
  2578. {
  2579. "mp3",
  2580. CODEC_TYPE_AUDIO,
  2581. CODEC_ID_MP3,
  2582. sizeof(MPADecodeContext),
  2583. decode_init,
  2584. NULL,
  2585. NULL,
  2586. decode_frame,
  2587. CODEC_CAP_PARSE_ONLY,
  2588. };
  2589. AVCodec mp3adu_decoder =
  2590. {
  2591. "mp3adu",
  2592. CODEC_TYPE_AUDIO,
  2593. CODEC_ID_MP3ADU,
  2594. sizeof(MPADecodeContext),
  2595. decode_init,
  2596. NULL,
  2597. NULL,
  2598. decode_frame_adu,
  2599. CODEC_CAP_PARSE_ONLY,
  2600. };
  2601. AVCodec mp3on4_decoder =
  2602. {
  2603. "mp3on4",
  2604. CODEC_TYPE_AUDIO,
  2605. CODEC_ID_MP3ON4,
  2606. sizeof(MP3On4DecodeContext),
  2607. decode_init_mp3on4,
  2608. NULL,
  2609. decode_close_mp3on4,
  2610. decode_frame_mp3on4,
  2611. 0
  2612. };