You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3369 lines
111KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** The VC1 Context
  192. * @fixme Change size wherever another size is more efficient
  193. * Many members are only used for Advanced Profile
  194. */
  195. typedef struct VC1Context{
  196. MpegEncContext s;
  197. int bits;
  198. /** Simple/Main Profile sequence header */
  199. //@{
  200. int res_sm; ///< reserved, 2b
  201. int res_x8; ///< reserved
  202. int multires; ///< frame-level RESPIC syntax element present
  203. int res_fasttx; ///< reserved, always 1
  204. int res_transtab; ///< reserved, always 0
  205. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  206. ///< at frame level
  207. int res_rtm_flag; ///< reserved, set to 1
  208. int reserved; ///< reserved
  209. //@}
  210. /** Advanced Profile */
  211. //@{
  212. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  213. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  214. int postprocflag; ///< Per-frame processing suggestion flag present
  215. int broadcast; ///< TFF/RFF present
  216. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  217. int tfcntrflag; ///< TFCNTR present
  218. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  219. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  220. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  221. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  222. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  223. int hrd_param_flag; ///< Presence of Hypothetical Reference
  224. ///< Decoder parameters
  225. //@}
  226. /** Sequence header data for all Profiles
  227. * TODO: choose between ints, uint8_ts and monobit flags
  228. */
  229. //@{
  230. int profile; ///< 2bits, Profile
  231. int frmrtq_postproc; ///< 3bits,
  232. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  233. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  234. int extended_mv; ///< Ext MV in P/B (not in Simple)
  235. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  236. int vstransform; ///< variable-size [48]x[48] transform type + info
  237. int overlap; ///< overlapped transforms in use
  238. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  239. int finterpflag; ///< INTERPFRM present
  240. //@}
  241. /** Frame decoding info for all profiles */
  242. //@{
  243. uint8_t mv_mode; ///< MV coding monde
  244. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  245. int k_x; ///< Number of bits for MVs (depends on MV range)
  246. int k_y; ///< Number of bits for MVs (depends on MV range)
  247. int range_x, range_y; ///< MV range
  248. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  249. /** pquant parameters */
  250. //@{
  251. uint8_t dquantfrm;
  252. uint8_t dqprofile;
  253. uint8_t dqsbedge;
  254. uint8_t dqbilevel;
  255. //@}
  256. /** AC coding set indexes
  257. * @see 8.1.1.10, p(1)10
  258. */
  259. //@{
  260. int c_ac_table_index; ///< Chroma index from ACFRM element
  261. int y_ac_table_index; ///< Luma index from AC2FRM element
  262. //@}
  263. int ttfrm; ///< Transform type info present at frame level
  264. uint8_t ttmbf; ///< Transform type flag
  265. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  266. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  267. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  268. int pqindex; ///< raw pqindex used in coding set selection
  269. int a_avail, c_avail;
  270. uint8_t *mb_type_base, *mb_type[3];
  271. /** Luma compensation parameters */
  272. //@{
  273. uint8_t lumscale;
  274. uint8_t lumshift;
  275. //@}
  276. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  277. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  278. uint8_t respic; ///< Frame-level flag for resized images
  279. int buffer_fullness; ///< HRD info
  280. /** Ranges:
  281. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  282. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  283. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  284. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  285. */
  286. uint8_t mvrange;
  287. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  288. VLC *cbpcy_vlc; ///< CBPCY VLC table
  289. int tt_index; ///< Index for Transform Type tables
  290. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  291. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  292. int mv_type_is_raw; ///< mv type mb plane is not coded
  293. int dmb_is_raw; ///< direct mb plane is raw
  294. int skip_is_raw; ///< skip mb plane is not coded
  295. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  296. int rnd; ///< rounding control
  297. /** Frame decoding info for S/M profiles only */
  298. //@{
  299. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  300. uint8_t interpfrm;
  301. //@}
  302. /** Frame decoding info for Advanced profile */
  303. //@{
  304. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  305. uint8_t numpanscanwin;
  306. uint8_t tfcntr;
  307. uint8_t rptfrm, tff, rff;
  308. uint16_t topleftx;
  309. uint16_t toplefty;
  310. uint16_t bottomrightx;
  311. uint16_t bottomrighty;
  312. uint8_t uvsamp;
  313. uint8_t postproc;
  314. int hrd_num_leaky_buckets;
  315. uint8_t bit_rate_exponent;
  316. uint8_t buffer_size_exponent;
  317. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  318. // BitPlane over_flags_plane; ///< Overflags bitplane
  319. uint8_t condover;
  320. uint16_t *hrd_rate, *hrd_buffer;
  321. uint8_t *hrd_fullness;
  322. uint8_t range_mapy_flag;
  323. uint8_t range_mapuv_flag;
  324. uint8_t range_mapy;
  325. uint8_t range_mapuv;
  326. //@}
  327. } VC1Context;
  328. /**
  329. * Get unary code of limited length
  330. * @fixme FIXME Slow and ugly
  331. * @param gb GetBitContext
  332. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  333. * @param[in] len Maximum length
  334. * @return Unary length/index
  335. */
  336. static int get_prefix(GetBitContext *gb, int stop, int len)
  337. {
  338. #if 1
  339. int i;
  340. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  341. return i;
  342. /* int i = 0, tmp = !stop;
  343. while (i != len && tmp != stop)
  344. {
  345. tmp = get_bits(gb, 1);
  346. i++;
  347. }
  348. if (i == len && tmp != stop) return len+1;
  349. return i;*/
  350. #else
  351. unsigned int buf;
  352. int log;
  353. OPEN_READER(re, gb);
  354. UPDATE_CACHE(re, gb);
  355. buf=GET_CACHE(re, gb); //Still not sure
  356. if (stop) buf = ~buf;
  357. log= av_log2(-buf); //FIXME: -?
  358. if (log < limit){
  359. LAST_SKIP_BITS(re, gb, log+1);
  360. CLOSE_READER(re, gb);
  361. return log;
  362. }
  363. LAST_SKIP_BITS(re, gb, limit);
  364. CLOSE_READER(re, gb);
  365. return limit;
  366. #endif
  367. }
  368. static inline int decode210(GetBitContext *gb){
  369. int n;
  370. n = get_bits1(gb);
  371. if (n == 1)
  372. return 0;
  373. else
  374. return 2 - get_bits1(gb);
  375. }
  376. /**
  377. * Init VC-1 specific tables and VC1Context members
  378. * @param v The VC1Context to initialize
  379. * @return Status
  380. */
  381. static int vc1_init_common(VC1Context *v)
  382. {
  383. static int done = 0;
  384. int i = 0;
  385. v->hrd_rate = v->hrd_buffer = NULL;
  386. /* VLC tables */
  387. if(!done)
  388. {
  389. done = 1;
  390. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  391. vc1_bfraction_bits, 1, 1,
  392. vc1_bfraction_codes, 1, 1, 1);
  393. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  394. vc1_norm2_bits, 1, 1,
  395. vc1_norm2_codes, 1, 1, 1);
  396. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  397. vc1_norm6_bits, 1, 1,
  398. vc1_norm6_codes, 2, 2, 1);
  399. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  400. vc1_imode_bits, 1, 1,
  401. vc1_imode_codes, 1, 1, 1);
  402. for (i=0; i<3; i++)
  403. {
  404. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  405. vc1_ttmb_bits[i], 1, 1,
  406. vc1_ttmb_codes[i], 2, 2, 1);
  407. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  408. vc1_ttblk_bits[i], 1, 1,
  409. vc1_ttblk_codes[i], 1, 1, 1);
  410. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  411. vc1_subblkpat_bits[i], 1, 1,
  412. vc1_subblkpat_codes[i], 1, 1, 1);
  413. }
  414. for(i=0; i<4; i++)
  415. {
  416. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  417. vc1_4mv_block_pattern_bits[i], 1, 1,
  418. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  419. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  420. vc1_cbpcy_p_bits[i], 1, 1,
  421. vc1_cbpcy_p_codes[i], 2, 2, 1);
  422. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  423. vc1_mv_diff_bits[i], 1, 1,
  424. vc1_mv_diff_codes[i], 2, 2, 1);
  425. }
  426. for(i=0; i<8; i++)
  427. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  428. &vc1_ac_tables[i][0][1], 8, 4,
  429. &vc1_ac_tables[i][0][0], 8, 4, 1);
  430. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  431. &ff_msmp4_mb_i_table[0][1], 4, 2,
  432. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  433. }
  434. /* Other defaults */
  435. v->pq = -1;
  436. v->mvrange = 0; /* 7.1.1.18, p80 */
  437. return 0;
  438. }
  439. /***********************************************************************/
  440. /**
  441. * @defgroup bitplane VC9 Bitplane decoding
  442. * @see 8.7, p56
  443. * @{
  444. */
  445. /** @addtogroup bitplane
  446. * Imode types
  447. * @{
  448. */
  449. enum Imode {
  450. IMODE_RAW,
  451. IMODE_NORM2,
  452. IMODE_DIFF2,
  453. IMODE_NORM6,
  454. IMODE_DIFF6,
  455. IMODE_ROWSKIP,
  456. IMODE_COLSKIP
  457. };
  458. /** @} */ //imode defines
  459. /** Decode rows by checking if they are skipped
  460. * @param plane Buffer to store decoded bits
  461. * @param[in] width Width of this buffer
  462. * @param[in] height Height of this buffer
  463. * @param[in] stride of this buffer
  464. */
  465. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  466. int x, y;
  467. for (y=0; y<height; y++){
  468. if (!get_bits(gb, 1)) //rowskip
  469. memset(plane, 0, width);
  470. else
  471. for (x=0; x<width; x++)
  472. plane[x] = get_bits(gb, 1);
  473. plane += stride;
  474. }
  475. }
  476. /** Decode columns by checking if they are skipped
  477. * @param plane Buffer to store decoded bits
  478. * @param[in] width Width of this buffer
  479. * @param[in] height Height of this buffer
  480. * @param[in] stride of this buffer
  481. * @fixme FIXME: Optimize
  482. */
  483. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  484. int x, y;
  485. for (x=0; x<width; x++){
  486. if (!get_bits(gb, 1)) //colskip
  487. for (y=0; y<height; y++)
  488. plane[y*stride] = 0;
  489. else
  490. for (y=0; y<height; y++)
  491. plane[y*stride] = get_bits(gb, 1);
  492. plane ++;
  493. }
  494. }
  495. /** Decode a bitplane's bits
  496. * @param bp Bitplane where to store the decode bits
  497. * @param v VC-1 context for bit reading and logging
  498. * @return Status
  499. * @fixme FIXME: Optimize
  500. * @todo TODO: Decide if a struct is needed
  501. */
  502. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  503. {
  504. GetBitContext *gb = &v->s.gb;
  505. int imode, x, y, code, offset;
  506. uint8_t invert, *planep = data;
  507. int width, height, stride;
  508. width = v->s.mb_width;
  509. height = v->s.mb_height;
  510. stride = v->s.mb_stride;
  511. invert = get_bits(gb, 1);
  512. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  513. *raw_flag = 0;
  514. switch (imode)
  515. {
  516. case IMODE_RAW:
  517. //Data is actually read in the MB layer (same for all tests == "raw")
  518. *raw_flag = 1; //invert ignored
  519. return invert;
  520. case IMODE_DIFF2:
  521. case IMODE_NORM2:
  522. if ((height * width) & 1)
  523. {
  524. *planep++ = get_bits(gb, 1);
  525. offset = 1;
  526. }
  527. else offset = 0;
  528. // decode bitplane as one long line
  529. for (y = offset; y < height * width; y += 2) {
  530. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  531. *planep++ = code & 1;
  532. offset++;
  533. if(offset == width) {
  534. offset = 0;
  535. planep += stride - width;
  536. }
  537. *planep++ = code >> 1;
  538. offset++;
  539. if(offset == width) {
  540. offset = 0;
  541. planep += stride - width;
  542. }
  543. }
  544. break;
  545. case IMODE_DIFF6:
  546. case IMODE_NORM6:
  547. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  548. for(y = 0; y < height; y+= 3) {
  549. for(x = width & 1; x < width; x += 2) {
  550. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  551. if(code < 0){
  552. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  553. return -1;
  554. }
  555. planep[x + 0] = (code >> 0) & 1;
  556. planep[x + 1] = (code >> 1) & 1;
  557. planep[x + 0 + stride] = (code >> 2) & 1;
  558. planep[x + 1 + stride] = (code >> 3) & 1;
  559. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  560. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  561. }
  562. planep += stride * 3;
  563. }
  564. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  565. } else { // 3x2
  566. planep += (height & 1) * stride;
  567. for(y = height & 1; y < height; y += 2) {
  568. for(x = width % 3; x < width; x += 3) {
  569. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  570. if(code < 0){
  571. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  572. return -1;
  573. }
  574. planep[x + 0] = (code >> 0) & 1;
  575. planep[x + 1] = (code >> 1) & 1;
  576. planep[x + 2] = (code >> 2) & 1;
  577. planep[x + 0 + stride] = (code >> 3) & 1;
  578. planep[x + 1 + stride] = (code >> 4) & 1;
  579. planep[x + 2 + stride] = (code >> 5) & 1;
  580. }
  581. planep += stride * 2;
  582. }
  583. x = width % 3;
  584. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  585. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  586. }
  587. break;
  588. case IMODE_ROWSKIP:
  589. decode_rowskip(data, width, height, stride, &v->s.gb);
  590. break;
  591. case IMODE_COLSKIP:
  592. decode_colskip(data, width, height, stride, &v->s.gb);
  593. break;
  594. default: break;
  595. }
  596. /* Applying diff operator */
  597. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  598. {
  599. planep = data;
  600. planep[0] ^= invert;
  601. for (x=1; x<width; x++)
  602. planep[x] ^= planep[x-1];
  603. for (y=1; y<height; y++)
  604. {
  605. planep += stride;
  606. planep[0] ^= planep[-stride];
  607. for (x=1; x<width; x++)
  608. {
  609. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  610. else planep[x] ^= planep[x-1];
  611. }
  612. }
  613. }
  614. else if (invert)
  615. {
  616. planep = data;
  617. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  618. }
  619. return (imode<<1) + invert;
  620. }
  621. /** @} */ //Bitplane group
  622. /***********************************************************************/
  623. /** VOP Dquant decoding
  624. * @param v VC-1 Context
  625. */
  626. static int vop_dquant_decoding(VC1Context *v)
  627. {
  628. GetBitContext *gb = &v->s.gb;
  629. int pqdiff;
  630. //variable size
  631. if (v->dquant == 2)
  632. {
  633. pqdiff = get_bits(gb, 3);
  634. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  635. else v->altpq = v->pq + pqdiff + 1;
  636. }
  637. else
  638. {
  639. v->dquantfrm = get_bits(gb, 1);
  640. if ( v->dquantfrm )
  641. {
  642. v->dqprofile = get_bits(gb, 2);
  643. switch (v->dqprofile)
  644. {
  645. case DQPROFILE_SINGLE_EDGE:
  646. case DQPROFILE_DOUBLE_EDGES:
  647. v->dqsbedge = get_bits(gb, 2);
  648. break;
  649. case DQPROFILE_ALL_MBS:
  650. v->dqbilevel = get_bits(gb, 1);
  651. default: break; //Forbidden ?
  652. }
  653. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  654. {
  655. pqdiff = get_bits(gb, 3);
  656. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  657. else v->altpq = v->pq + pqdiff + 1;
  658. }
  659. }
  660. }
  661. return 0;
  662. }
  663. /** Do inverse transform
  664. */
  665. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  666. {
  667. int i;
  668. register int t1,t2,t3,t4,t5,t6,t7,t8;
  669. DCTELEM *src, *dst;
  670. src = block;
  671. dst = block;
  672. if(M==4){
  673. for(i = 0; i < N; i++){
  674. t1 = 17 * (src[0] + src[2]);
  675. t2 = 17 * (src[0] - src[2]);
  676. t3 = 22 * src[1];
  677. t4 = 22 * src[3];
  678. t5 = 10 * src[1];
  679. t6 = 10 * src[3];
  680. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  681. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  682. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  683. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  684. src += 8;
  685. dst += 8;
  686. }
  687. }else{
  688. for(i = 0; i < N; i++){
  689. t1 = 12 * (src[0] + src[4]);
  690. t2 = 12 * (src[0] - src[4]);
  691. t3 = 16 * src[2] + 6 * src[6];
  692. t4 = 6 * src[2] - 16 * src[6];
  693. t5 = t1 + t3;
  694. t6 = t2 + t4;
  695. t7 = t2 - t4;
  696. t8 = t1 - t3;
  697. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  698. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  699. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  700. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  701. dst[0] = (t5 + t1 + 4) >> 3;
  702. dst[1] = (t6 + t2 + 4) >> 3;
  703. dst[2] = (t7 + t3 + 4) >> 3;
  704. dst[3] = (t8 + t4 + 4) >> 3;
  705. dst[4] = (t8 - t4 + 4) >> 3;
  706. dst[5] = (t7 - t3 + 4) >> 3;
  707. dst[6] = (t6 - t2 + 4) >> 3;
  708. dst[7] = (t5 - t1 + 4) >> 3;
  709. src += 8;
  710. dst += 8;
  711. }
  712. }
  713. src = block;
  714. dst = block;
  715. if(N==4){
  716. for(i = 0; i < M; i++){
  717. t1 = 17 * (src[ 0] + src[16]);
  718. t2 = 17 * (src[ 0] - src[16]);
  719. t3 = 22 * src[ 8];
  720. t4 = 22 * src[24];
  721. t5 = 10 * src[ 8];
  722. t6 = 10 * src[24];
  723. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  724. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  725. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  726. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  727. src ++;
  728. dst ++;
  729. }
  730. }else{
  731. for(i = 0; i < M; i++){
  732. t1 = 12 * (src[ 0] + src[32]);
  733. t2 = 12 * (src[ 0] - src[32]);
  734. t3 = 16 * src[16] + 6 * src[48];
  735. t4 = 6 * src[16] - 16 * src[48];
  736. t5 = t1 + t3;
  737. t6 = t2 + t4;
  738. t7 = t2 - t4;
  739. t8 = t1 - t3;
  740. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  741. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  742. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  743. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  744. dst[ 0] = (t5 + t1 + 64) >> 7;
  745. dst[ 8] = (t6 + t2 + 64) >> 7;
  746. dst[16] = (t7 + t3 + 64) >> 7;
  747. dst[24] = (t8 + t4 + 64) >> 7;
  748. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  749. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  750. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  751. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  752. src++;
  753. dst++;
  754. }
  755. }
  756. }
  757. /** Apply overlap transform to vertical edge
  758. * @todo optimize
  759. * @todo move to DSPContext
  760. */
  761. static void vc1_v_overlap(uint8_t* src, int stride, int rnd)
  762. {
  763. int i;
  764. int a, b, c, d;
  765. for(i = 0; i < 8; i++) {
  766. a = src[-2*stride];
  767. b = src[-stride];
  768. c = src[0];
  769. d = src[stride];
  770. src[-2*stride] = clip_uint8((7*a + d + 4 - rnd) >> 3);
  771. src[-stride] = clip_uint8((-a + 7*b + c + d + 3 + rnd) >> 3);
  772. src[0] = clip_uint8((a + b + 7*c - d + 4 - rnd) >> 3);
  773. src[stride] = clip_uint8((a + 7*d + 3 + rnd) >> 3);
  774. src++;
  775. }
  776. }
  777. /** Apply overlap transform to horizontal edge
  778. * @todo optimize
  779. * @todo move to DSPContext
  780. */
  781. static void vc1_h_overlap(uint8_t* src, int stride, int rnd)
  782. {
  783. int i;
  784. int a, b, c, d;
  785. for(i = 0; i < 8; i++) {
  786. a = src[-2];
  787. b = src[-1];
  788. c = src[0];
  789. d = src[1];
  790. src[-2] = clip_uint8((7*a + d + 4 - rnd) >> 3);
  791. src[-1] = clip_uint8((-a + 7*b + c + d + 3 + rnd) >> 3);
  792. src[0] = clip_uint8((a + b + 7*c - d + 4 - rnd) >> 3);
  793. src[1] = clip_uint8((a + 7*d + 3 + rnd) >> 3);
  794. src += stride;
  795. }
  796. }
  797. /** Put block onto picture
  798. * @todo move to DSPContext
  799. */
  800. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  801. {
  802. uint8_t *Y;
  803. int ys, us, vs;
  804. DSPContext *dsp = &v->s.dsp;
  805. if(v->rangeredfrm) {
  806. int i, j, k;
  807. for(k = 0; k < 6; k++)
  808. for(j = 0; j < 8; j++)
  809. for(i = 0; i < 8; i++)
  810. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  811. }
  812. ys = v->s.current_picture.linesize[0];
  813. us = v->s.current_picture.linesize[1];
  814. vs = v->s.current_picture.linesize[2];
  815. Y = v->s.dest[0];
  816. dsp->put_pixels_clamped(block[0], Y, ys);
  817. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  818. Y += ys * 8;
  819. dsp->put_pixels_clamped(block[2], Y, ys);
  820. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  821. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  822. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  823. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  824. }
  825. }
  826. /** Do motion compensation over 1 macroblock
  827. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  828. */
  829. static void vc1_mc_1mv(VC1Context *v, int dir)
  830. {
  831. MpegEncContext *s = &v->s;
  832. DSPContext *dsp = &v->s.dsp;
  833. uint8_t *srcY, *srcU, *srcV;
  834. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  835. if(!v->s.last_picture.data[0])return;
  836. mx = s->mv[0][0][0];
  837. my = s->mv[0][0][1];
  838. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  839. uvmy = (my + ((my & 3) == 3)) >> 1;
  840. if(!dir) {
  841. srcY = s->last_picture.data[0];
  842. srcU = s->last_picture.data[1];
  843. srcV = s->last_picture.data[2];
  844. } else {
  845. srcY = s->next_picture.data[0];
  846. srcU = s->next_picture.data[1];
  847. srcV = s->next_picture.data[2];
  848. }
  849. src_x = s->mb_x * 16 + (mx >> 2);
  850. src_y = s->mb_y * 16 + (my >> 2);
  851. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  852. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  853. src_x = clip( src_x, -16, s->mb_width * 16);
  854. src_y = clip( src_y, -16, s->mb_height * 16);
  855. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  856. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  857. srcY += src_y * s->linesize + src_x;
  858. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  859. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  860. /* for grayscale we should not try to read from unknown area */
  861. if(s->flags & CODEC_FLAG_GRAY) {
  862. srcU = s->edge_emu_buffer + 18 * s->linesize;
  863. srcV = s->edge_emu_buffer + 18 * s->linesize;
  864. }
  865. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  866. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  867. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  868. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  869. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  870. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  871. srcY = s->edge_emu_buffer;
  872. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  873. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  874. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  875. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  876. srcU = uvbuf;
  877. srcV = uvbuf + 16;
  878. /* if we deal with range reduction we need to scale source blocks */
  879. if(v->rangeredfrm) {
  880. int i, j;
  881. uint8_t *src, *src2;
  882. src = srcY;
  883. for(j = 0; j < 17; j++) {
  884. for(i = 0; i < 17; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  885. src += s->linesize;
  886. }
  887. src = srcU; src2 = srcV;
  888. for(j = 0; j < 9; j++) {
  889. for(i = 0; i < 9; i++) {
  890. src[i] = ((src[i] - 128) >> 1) + 128;
  891. src2[i] = ((src2[i] - 128) >> 1) + 128;
  892. }
  893. src += s->uvlinesize;
  894. src2 += s->uvlinesize;
  895. }
  896. }
  897. /* if we deal with intensity compensation we need to scale source blocks */
  898. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  899. int i, j;
  900. uint8_t *src, *src2;
  901. src = srcY;
  902. for(j = 0; j < 17; j++) {
  903. for(i = 0; i < 17; i++) src[i] = v->luty[src[i]];
  904. src += s->linesize;
  905. }
  906. src = srcU; src2 = srcV;
  907. for(j = 0; j < 9; j++) {
  908. for(i = 0; i < 9; i++) {
  909. src[i] = v->lutuv[src[i]];
  910. src2[i] = v->lutuv[src2[i]];
  911. }
  912. src += s->uvlinesize;
  913. src2 += s->uvlinesize;
  914. }
  915. }
  916. }
  917. if(v->fastuvmc) {
  918. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  919. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  920. }
  921. if(!s->quarter_sample) { // hpel mc
  922. mx >>= 1;
  923. my >>= 1;
  924. dxy = ((my & 1) << 1) | (mx & 1);
  925. if(!v->rnd)
  926. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  927. else
  928. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  929. } else {
  930. dxy = ((my & 3) << 2) | (mx & 3);
  931. if(!v->rnd)
  932. dsp->put_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  933. else
  934. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  935. }
  936. if(s->flags & CODEC_FLAG_GRAY) return;
  937. /* Chroma MC always uses qpel blilinear */
  938. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  939. if(!v->rnd){
  940. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  941. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  942. }else{
  943. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  944. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  945. }
  946. }
  947. /** Do motion compensation for 4-MV macroblock - luminance block
  948. */
  949. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  950. {
  951. MpegEncContext *s = &v->s;
  952. DSPContext *dsp = &v->s.dsp;
  953. uint8_t *srcY;
  954. int dxy, mx, my, src_x, src_y;
  955. int off;
  956. if(!v->s.last_picture.data[0])return;
  957. mx = s->mv[0][n][0];
  958. my = s->mv[0][n][1];
  959. srcY = s->last_picture.data[0];
  960. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  961. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  962. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  963. src_x = clip( src_x, -16, s->mb_width * 16);
  964. src_y = clip( src_y, -16, s->mb_height * 16);
  965. srcY += src_y * s->linesize + src_x;
  966. if(v->rangeredfrm || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  967. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  968. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  969. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  970. srcY = s->edge_emu_buffer;
  971. /* if we deal with range reduction we need to scale source blocks */
  972. if(v->rangeredfrm) {
  973. int i, j;
  974. uint8_t *src;
  975. src = srcY;
  976. for(j = 0; j < 17; j++) {
  977. for(i = 0; i < 17; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  978. src += s->linesize;
  979. }
  980. }
  981. }
  982. if(!s->quarter_sample) { // hpel mc
  983. mx >>= 1;
  984. my >>= 1;
  985. dxy = ((my & 1) << 1) | (mx & 1);
  986. if(!v->rnd)
  987. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  988. else
  989. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  990. } else {
  991. dxy = ((my & 3) << 2) | (mx & 3);
  992. if(!v->rnd)
  993. dsp->put_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  994. else
  995. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  996. }
  997. }
  998. static inline int median4(int a, int b, int c, int d)
  999. {
  1000. if(a < b) {
  1001. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  1002. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  1003. } else {
  1004. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  1005. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  1006. }
  1007. }
  1008. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  1009. */
  1010. static void vc1_mc_4mv_chroma(VC1Context *v)
  1011. {
  1012. MpegEncContext *s = &v->s;
  1013. DSPContext *dsp = &v->s.dsp;
  1014. uint8_t *srcU, *srcV;
  1015. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  1016. int i, idx, tx = 0, ty = 0;
  1017. int mvx[4], mvy[4], intra[4];
  1018. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  1019. if(!v->s.last_picture.data[0])return;
  1020. if(s->flags & CODEC_FLAG_GRAY) return;
  1021. for(i = 0; i < 4; i++) {
  1022. mvx[i] = s->mv[0][i][0];
  1023. mvy[i] = s->mv[0][i][1];
  1024. intra[i] = v->mb_type[0][s->block_index[i]];
  1025. }
  1026. /* calculate chroma MV vector from four luma MVs */
  1027. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  1028. if(!idx) { // all blocks are inter
  1029. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  1030. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  1031. } else if(count[idx] == 1) { // 3 inter blocks
  1032. switch(idx) {
  1033. case 0x1:
  1034. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  1035. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  1036. break;
  1037. case 0x2:
  1038. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  1039. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  1040. break;
  1041. case 0x4:
  1042. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  1043. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  1044. break;
  1045. case 0x8:
  1046. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  1047. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  1048. break;
  1049. }
  1050. } else if(count[idx] == 2) {
  1051. int t1 = 0, t2 = 0;
  1052. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  1053. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  1054. tx = (mvx[t1] + mvx[t2]) / 2;
  1055. ty = (mvy[t1] + mvy[t2]) / 2;
  1056. } else
  1057. return; //no need to do MC for inter blocks
  1058. uvmx = (tx + ((tx&3) == 3)) >> 1;
  1059. uvmy = (ty + ((ty&3) == 3)) >> 1;
  1060. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1061. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1062. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1063. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1064. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1065. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1066. if(v->rangeredfrm || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  1067. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  1068. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1069. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1070. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1071. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1072. srcU = s->edge_emu_buffer;
  1073. srcV = s->edge_emu_buffer + 16;
  1074. /* if we deal with range reduction we need to scale source blocks */
  1075. if(v->rangeredfrm) {
  1076. int i, j;
  1077. uint8_t *src, *src2;
  1078. src = srcU; src2 = srcV;
  1079. for(j = 0; j < 9; j++) {
  1080. for(i = 0; i < 9; i++) {
  1081. src[i] = ((src[i] - 128) >> 1) + 128;
  1082. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1083. }
  1084. src += s->uvlinesize;
  1085. src2 += s->uvlinesize;
  1086. }
  1087. }
  1088. }
  1089. if(v->fastuvmc) {
  1090. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1091. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1092. }
  1093. /* Chroma MC always uses qpel blilinear */
  1094. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1095. if(!v->rnd){
  1096. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1097. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1098. }else{
  1099. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1100. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1101. }
  1102. }
  1103. /**
  1104. * Decode Simple/Main Profiles sequence header
  1105. * @see Figure 7-8, p16-17
  1106. * @param avctx Codec context
  1107. * @param gb GetBit context initialized from Codec context extra_data
  1108. * @return Status
  1109. */
  1110. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1111. {
  1112. VC1Context *v = avctx->priv_data;
  1113. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1114. v->profile = get_bits(gb, 2);
  1115. if (v->profile == 2)
  1116. {
  1117. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1118. return -1;
  1119. }
  1120. if (v->profile == PROFILE_ADVANCED)
  1121. {
  1122. v->level = get_bits(gb, 3);
  1123. if(v->level >= 5)
  1124. {
  1125. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1126. }
  1127. v->chromaformat = get_bits(gb, 2);
  1128. if (v->chromaformat != 1)
  1129. {
  1130. av_log(avctx, AV_LOG_ERROR,
  1131. "Only 4:2:0 chroma format supported\n");
  1132. return -1;
  1133. }
  1134. }
  1135. else
  1136. {
  1137. v->res_sm = get_bits(gb, 2); //reserved
  1138. if (v->res_sm)
  1139. {
  1140. av_log(avctx, AV_LOG_ERROR,
  1141. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1142. return -1;
  1143. }
  1144. }
  1145. // (fps-2)/4 (->30)
  1146. v->frmrtq_postproc = get_bits(gb, 3); //common
  1147. // (bitrate-32kbps)/64kbps
  1148. v->bitrtq_postproc = get_bits(gb, 5); //common
  1149. v->s.loop_filter = get_bits(gb, 1); //common
  1150. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1151. {
  1152. av_log(avctx, AV_LOG_ERROR,
  1153. "LOOPFILTER shell not be enabled in simple profile\n");
  1154. }
  1155. if (v->profile < PROFILE_ADVANCED)
  1156. {
  1157. v->res_x8 = get_bits(gb, 1); //reserved
  1158. if (v->res_x8)
  1159. {
  1160. av_log(avctx, AV_LOG_ERROR,
  1161. "1 for reserved RES_X8 is forbidden\n");
  1162. //return -1;
  1163. }
  1164. v->multires = get_bits(gb, 1);
  1165. v->res_fasttx = get_bits(gb, 1);
  1166. if (!v->res_fasttx)
  1167. {
  1168. av_log(avctx, AV_LOG_ERROR,
  1169. "0 for reserved RES_FASTTX is forbidden\n");
  1170. //return -1;
  1171. }
  1172. }
  1173. v->fastuvmc = get_bits(gb, 1); //common
  1174. if (!v->profile && !v->fastuvmc)
  1175. {
  1176. av_log(avctx, AV_LOG_ERROR,
  1177. "FASTUVMC unavailable in Simple Profile\n");
  1178. return -1;
  1179. }
  1180. v->extended_mv = get_bits(gb, 1); //common
  1181. if (!v->profile && v->extended_mv)
  1182. {
  1183. av_log(avctx, AV_LOG_ERROR,
  1184. "Extended MVs unavailable in Simple Profile\n");
  1185. return -1;
  1186. }
  1187. v->dquant = get_bits(gb, 2); //common
  1188. v->vstransform = get_bits(gb, 1); //common
  1189. if (v->profile < PROFILE_ADVANCED)
  1190. {
  1191. v->res_transtab = get_bits(gb, 1);
  1192. if (v->res_transtab)
  1193. {
  1194. av_log(avctx, AV_LOG_ERROR,
  1195. "1 for reserved RES_TRANSTAB is forbidden\n");
  1196. return -1;
  1197. }
  1198. }
  1199. v->overlap = get_bits(gb, 1); //common
  1200. if (v->profile < PROFILE_ADVANCED)
  1201. {
  1202. v->s.resync_marker = get_bits(gb, 1);
  1203. v->rangered = get_bits(gb, 1);
  1204. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1205. {
  1206. av_log(avctx, AV_LOG_INFO,
  1207. "RANGERED should be set to 0 in simple profile\n");
  1208. }
  1209. }
  1210. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1211. v->quantizer_mode = get_bits(gb, 2); //common
  1212. if (v->profile < PROFILE_ADVANCED)
  1213. {
  1214. v->finterpflag = get_bits(gb, 1); //common
  1215. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1216. if (!v->res_rtm_flag)
  1217. {
  1218. av_log(avctx, AV_LOG_ERROR,
  1219. "0 for reserved RES_RTM_FLAG is forbidden\n");
  1220. //return -1;
  1221. }
  1222. av_log(avctx, AV_LOG_DEBUG,
  1223. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1224. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1225. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1226. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1227. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1228. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1229. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1230. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1231. );
  1232. return 0;
  1233. }
  1234. return -1;
  1235. }
  1236. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1237. {
  1238. int pqindex, lowquant, status;
  1239. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1240. skip_bits(gb, 2); //framecnt unused
  1241. v->rangeredfrm = 0;
  1242. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1243. v->s.pict_type = get_bits(gb, 1);
  1244. if (v->s.avctx->max_b_frames) {
  1245. if (!v->s.pict_type) {
  1246. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1247. else v->s.pict_type = B_TYPE;
  1248. } else v->s.pict_type = P_TYPE;
  1249. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1250. if(v->s.pict_type == I_TYPE)
  1251. get_bits(gb, 7); // skip buffer fullness
  1252. if(v->s.pict_type == B_TYPE) {
  1253. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1254. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1255. if(v->bfraction == -1) {
  1256. v->s.pict_type = BI_TYPE;
  1257. }
  1258. }
  1259. /* calculate RND */
  1260. if(v->s.pict_type == I_TYPE)
  1261. v->rnd = 1;
  1262. if(v->s.pict_type == P_TYPE)
  1263. v->rnd ^= 1;
  1264. /* Quantizer stuff */
  1265. pqindex = get_bits(gb, 5);
  1266. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1267. v->pq = pquant_table[0][pqindex];
  1268. else
  1269. v->pq = pquant_table[1][pqindex];
  1270. v->pquantizer = 1;
  1271. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1272. v->pquantizer = pqindex < 9;
  1273. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1274. v->pquantizer = 0;
  1275. v->pqindex = pqindex;
  1276. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1277. else v->halfpq = 0;
  1278. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1279. v->pquantizer = get_bits(gb, 1);
  1280. v->dquantfrm = 0;
  1281. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1282. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1283. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1284. v->range_x = 1 << (v->k_x - 1);
  1285. v->range_y = 1 << (v->k_y - 1);
  1286. if (v->profile == PROFILE_ADVANCED)
  1287. {
  1288. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1289. }
  1290. else
  1291. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1292. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1293. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1294. //TODO: complete parsing for P/B/BI frames
  1295. switch(v->s.pict_type) {
  1296. case P_TYPE:
  1297. if (v->pq < 5) v->tt_index = 0;
  1298. else if(v->pq < 13) v->tt_index = 1;
  1299. else v->tt_index = 2;
  1300. lowquant = (v->pq > 12) ? 0 : 1;
  1301. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1302. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1303. {
  1304. int scale, shift, i;
  1305. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1306. v->lumscale = get_bits(gb, 6);
  1307. v->lumshift = get_bits(gb, 6);
  1308. /* fill lookup tables for intensity compensation */
  1309. if(!v->lumscale) {
  1310. scale = -64;
  1311. shift = (255 - v->lumshift * 2) << 6;
  1312. if(v->lumshift > 31)
  1313. shift += 128 << 6;
  1314. } else {
  1315. scale = v->lumscale + 32;
  1316. if(v->lumshift > 31)
  1317. shift = (v->lumshift - 64) << 6;
  1318. else
  1319. shift = v->lumshift << 6;
  1320. }
  1321. for(i = 0; i < 256; i++) {
  1322. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1323. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1324. }
  1325. }
  1326. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1327. v->s.quarter_sample = 0;
  1328. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1329. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1330. v->s.quarter_sample = 0;
  1331. else
  1332. v->s.quarter_sample = 1;
  1333. } else
  1334. v->s.quarter_sample = 1;
  1335. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1336. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1337. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1338. || v->mv_mode == MV_PMODE_MIXED_MV)
  1339. {
  1340. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1341. if (status < 0) return -1;
  1342. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1343. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1344. } else {
  1345. v->mv_type_is_raw = 0;
  1346. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1347. }
  1348. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1349. if (status < 0) return -1;
  1350. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1351. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1352. /* Hopefully this is correct for P frames */
  1353. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1354. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1355. if (v->dquant)
  1356. {
  1357. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1358. vop_dquant_decoding(v);
  1359. }
  1360. v->ttfrm = 0; //FIXME Is that so ?
  1361. if (v->vstransform)
  1362. {
  1363. v->ttmbf = get_bits(gb, 1);
  1364. if (v->ttmbf)
  1365. {
  1366. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1367. }
  1368. } else {
  1369. v->ttmbf = 1;
  1370. v->ttfrm = TT_8X8;
  1371. }
  1372. break;
  1373. case B_TYPE:
  1374. if (v->pq < 5) v->tt_index = 0;
  1375. else if(v->pq < 13) v->tt_index = 1;
  1376. else v->tt_index = 2;
  1377. lowquant = (v->pq > 12) ? 0 : 1;
  1378. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1379. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1380. v->s.mspel = v->s.quarter_sample;
  1381. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1382. if (status < 0) return -1;
  1383. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1384. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1385. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1386. if (status < 0) return -1;
  1387. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1388. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1389. v->s.mv_table_index = get_bits(gb, 2);
  1390. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1391. if (v->dquant)
  1392. {
  1393. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1394. vop_dquant_decoding(v);
  1395. }
  1396. v->ttfrm = 0;
  1397. if (v->vstransform)
  1398. {
  1399. v->ttmbf = get_bits(gb, 1);
  1400. if (v->ttmbf)
  1401. {
  1402. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1403. }
  1404. } else {
  1405. v->ttmbf = 1;
  1406. v->ttfrm = TT_8X8;
  1407. }
  1408. break;
  1409. }
  1410. /* AC Syntax */
  1411. v->c_ac_table_index = decode012(gb);
  1412. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1413. {
  1414. v->y_ac_table_index = decode012(gb);
  1415. }
  1416. /* DC Syntax */
  1417. v->s.dc_table_index = get_bits(gb, 1);
  1418. return 0;
  1419. }
  1420. /***********************************************************************/
  1421. /**
  1422. * @defgroup block VC-1 Block-level functions
  1423. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1424. * @todo TODO: Integrate to MpegEncContext facilities
  1425. * @{
  1426. */
  1427. /**
  1428. * @def GET_MQUANT
  1429. * @brief Get macroblock-level quantizer scale
  1430. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1431. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1432. */
  1433. #define GET_MQUANT() \
  1434. if (v->dquantfrm) \
  1435. { \
  1436. int edges = 0; \
  1437. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1438. { \
  1439. if (v->dqbilevel) \
  1440. { \
  1441. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1442. } \
  1443. else \
  1444. { \
  1445. mqdiff = get_bits(gb, 3); \
  1446. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1447. else mquant = get_bits(gb, 5); \
  1448. } \
  1449. } \
  1450. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1451. edges = 1 << v->dqsbedge; \
  1452. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1453. edges = (3 << v->dqsbedge) % 15; \
  1454. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1455. edges = 15; \
  1456. if((edges&1) && !s->mb_x) \
  1457. mquant = v->altpq; \
  1458. if((edges&2) && s->first_slice_line) \
  1459. mquant = v->altpq; \
  1460. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1461. mquant = v->altpq; \
  1462. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1463. mquant = v->altpq; \
  1464. }
  1465. /**
  1466. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1467. * @brief Get MV differentials
  1468. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1469. * @param _dmv_x Horizontal differential for decoded MV
  1470. * @param _dmv_y Vertical differential for decoded MV
  1471. * @todo TODO: Use MpegEncContext arrays to store them
  1472. */
  1473. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1474. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1475. VC1_MV_DIFF_VLC_BITS, 2); \
  1476. if (index > 36) \
  1477. { \
  1478. mb_has_coeffs = 1; \
  1479. index -= 37; \
  1480. } \
  1481. else mb_has_coeffs = 0; \
  1482. s->mb_intra = 0; \
  1483. if (!index) { _dmv_x = _dmv_y = 0; } \
  1484. else if (index == 35) \
  1485. { \
  1486. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1487. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1488. } \
  1489. else if (index == 36) \
  1490. { \
  1491. _dmv_x = 0; \
  1492. _dmv_y = 0; \
  1493. s->mb_intra = 1; \
  1494. } \
  1495. else \
  1496. { \
  1497. index1 = index%6; \
  1498. if (!s->quarter_sample && index1 == 5) val = 1; \
  1499. else val = 0; \
  1500. if(size_table[index1] - val > 0) \
  1501. val = get_bits(gb, size_table[index1] - val); \
  1502. else val = 0; \
  1503. sign = 0 - (val&1); \
  1504. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1505. \
  1506. index1 = index/6; \
  1507. if (!s->quarter_sample && index1 == 5) val = 1; \
  1508. else val = 0; \
  1509. if(size_table[index1] - val > 0) \
  1510. val = get_bits(gb, size_table[index1] - val); \
  1511. else val = 0; \
  1512. sign = 0 - (val&1); \
  1513. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1514. }
  1515. /** Predict and set motion vector
  1516. */
  1517. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1518. {
  1519. int xy, wrap, off = 0;
  1520. int16_t *A, *B, *C;
  1521. int px, py;
  1522. int sum;
  1523. /* scale MV difference to be quad-pel */
  1524. dmv_x <<= 1 - s->quarter_sample;
  1525. dmv_y <<= 1 - s->quarter_sample;
  1526. wrap = s->b8_stride;
  1527. xy = s->block_index[n];
  1528. if(s->mb_intra){
  1529. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1530. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1531. if(mv1) { /* duplicate motion data for 1-MV block */
  1532. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1533. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1534. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1535. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1536. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1537. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1538. }
  1539. return;
  1540. }
  1541. C = s->current_picture.motion_val[0][xy - 1];
  1542. A = s->current_picture.motion_val[0][xy - wrap];
  1543. if(mv1)
  1544. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1545. else {
  1546. //in 4-MV mode different blocks have different B predictor position
  1547. switch(n){
  1548. case 0:
  1549. off = (s->mb_x > 0) ? -1 : 1;
  1550. break;
  1551. case 1:
  1552. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1553. break;
  1554. case 2:
  1555. off = 1;
  1556. break;
  1557. case 3:
  1558. off = -1;
  1559. }
  1560. }
  1561. B = s->current_picture.motion_val[0][xy - wrap + off];
  1562. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1563. if(s->mb_width == 1) {
  1564. px = A[0];
  1565. py = A[1];
  1566. } else {
  1567. px = mid_pred(A[0], B[0], C[0]);
  1568. py = mid_pred(A[1], B[1], C[1]);
  1569. }
  1570. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1571. px = C[0];
  1572. py = C[1];
  1573. } else {
  1574. px = py = 0;
  1575. }
  1576. /* Pullback MV as specified in 8.3.5.3.4 */
  1577. {
  1578. int qx, qy, X, Y;
  1579. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1580. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1581. X = (s->mb_width << 6) - 4;
  1582. Y = (s->mb_height << 6) - 4;
  1583. if(mv1) {
  1584. if(qx + px < -60) px = -60 - qx;
  1585. if(qy + py < -60) py = -60 - qy;
  1586. } else {
  1587. if(qx + px < -28) px = -28 - qx;
  1588. if(qy + py < -28) py = -28 - qy;
  1589. }
  1590. if(qx + px > X) px = X - qx;
  1591. if(qy + py > Y) py = Y - qy;
  1592. }
  1593. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1594. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1595. if(is_intra[xy - wrap])
  1596. sum = ABS(px) + ABS(py);
  1597. else
  1598. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1599. if(sum > 32) {
  1600. if(get_bits1(&s->gb)) {
  1601. px = A[0];
  1602. py = A[1];
  1603. } else {
  1604. px = C[0];
  1605. py = C[1];
  1606. }
  1607. } else {
  1608. if(is_intra[xy - 1])
  1609. sum = ABS(px) + ABS(py);
  1610. else
  1611. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1612. if(sum > 32) {
  1613. if(get_bits1(&s->gb)) {
  1614. px = A[0];
  1615. py = A[1];
  1616. } else {
  1617. px = C[0];
  1618. py = C[1];
  1619. }
  1620. }
  1621. }
  1622. }
  1623. /* store MV using signed modulus of MV range defined in 4.11 */
  1624. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1625. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1626. if(mv1) { /* duplicate motion data for 1-MV block */
  1627. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1628. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1629. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1630. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1631. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1632. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1633. }
  1634. }
  1635. /** Reconstruct motion vector for B-frame and do motion compensation
  1636. */
  1637. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1638. {
  1639. MpegEncContext *s = &v->s;
  1640. int mx[4], my[4], mv_x, mv_y;
  1641. int i;
  1642. /* scale MV difference to be quad-pel */
  1643. dmv_x[0] <<= 1 - s->quarter_sample;
  1644. dmv_y[0] <<= 1 - s->quarter_sample;
  1645. dmv_x[1] <<= 1 - s->quarter_sample;
  1646. dmv_y[1] <<= 1 - s->quarter_sample;
  1647. if(direct || mode == BMV_TYPE_INTERPOLATED) {
  1648. /* TODO */
  1649. return;
  1650. }
  1651. if(mode == BMV_TYPE_BACKWARD) {
  1652. for(i = 0; i < 4; i++) {
  1653. mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
  1654. my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
  1655. }
  1656. } else {
  1657. for(i = 0; i < 4; i++) {
  1658. mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
  1659. my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
  1660. }
  1661. }
  1662. /* XXX: not right but how to determine 4-MV intra/inter in another frame? */
  1663. mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
  1664. mv_y = median4(my[0], my[1], my[2], my[3]);
  1665. s->mv[0][0][0] = mv_x;
  1666. s->mv[0][0][1] = mv_y;
  1667. vc1_mc_1mv(v, (mode == BMV_TYPE_FORWARD));
  1668. }
  1669. /** Get predicted DC value for I-frames only
  1670. * prediction dir: left=0, top=1
  1671. * @param s MpegEncContext
  1672. * @param[in] n block index in the current MB
  1673. * @param dc_val_ptr Pointer to DC predictor
  1674. * @param dir_ptr Prediction direction for use in AC prediction
  1675. */
  1676. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1677. int16_t **dc_val_ptr, int *dir_ptr)
  1678. {
  1679. int a, b, c, wrap, pred, scale;
  1680. int16_t *dc_val;
  1681. static const uint16_t dcpred[32] = {
  1682. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1683. 114, 102, 93, 85, 79, 73, 68, 64,
  1684. 60, 57, 54, 51, 49, 47, 45, 43,
  1685. 41, 39, 38, 37, 35, 34, 33
  1686. };
  1687. /* find prediction - wmv3_dc_scale always used here in fact */
  1688. if (n < 4) scale = s->y_dc_scale;
  1689. else scale = s->c_dc_scale;
  1690. wrap = s->block_wrap[n];
  1691. dc_val= s->dc_val[0] + s->block_index[n];
  1692. /* B A
  1693. * C X
  1694. */
  1695. c = dc_val[ - 1];
  1696. b = dc_val[ - 1 - wrap];
  1697. a = dc_val[ - wrap];
  1698. if (pq < 9 || !overlap)
  1699. {
  1700. /* Set outer values */
  1701. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1702. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1703. }
  1704. else
  1705. {
  1706. /* Set outer values */
  1707. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1708. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1709. }
  1710. if (abs(a - b) <= abs(b - c)) {
  1711. pred = c;
  1712. *dir_ptr = 1;//left
  1713. } else {
  1714. pred = a;
  1715. *dir_ptr = 0;//top
  1716. }
  1717. /* update predictor */
  1718. *dc_val_ptr = &dc_val[0];
  1719. return pred;
  1720. }
  1721. /** Get predicted DC value
  1722. * prediction dir: left=0, top=1
  1723. * @param s MpegEncContext
  1724. * @param[in] n block index in the current MB
  1725. * @param dc_val_ptr Pointer to DC predictor
  1726. * @param dir_ptr Prediction direction for use in AC prediction
  1727. */
  1728. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1729. int a_avail, int c_avail,
  1730. int16_t **dc_val_ptr, int *dir_ptr)
  1731. {
  1732. int a, b, c, wrap, pred, scale;
  1733. int16_t *dc_val;
  1734. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1735. int q1, q2 = 0;
  1736. /* find prediction - wmv3_dc_scale always used here in fact */
  1737. if (n < 4) scale = s->y_dc_scale;
  1738. else scale = s->c_dc_scale;
  1739. wrap = s->block_wrap[n];
  1740. dc_val= s->dc_val[0] + s->block_index[n];
  1741. /* B A
  1742. * C X
  1743. */
  1744. c = dc_val[ - 1];
  1745. b = dc_val[ - 1 - wrap];
  1746. a = dc_val[ - wrap];
  1747. /* scale predictors if needed */
  1748. q1 = s->current_picture.qscale_table[mb_pos];
  1749. if(c_avail && (n!= 1 && n!=3)) {
  1750. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1751. if(q2 && q2 != q1)
  1752. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1753. }
  1754. if(a_avail && (n!= 2 && n!=3)) {
  1755. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1756. if(q2 && q2 != q1)
  1757. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1758. }
  1759. if(a_avail && c_avail && (n!=3)) {
  1760. int off = mb_pos;
  1761. if(n != 1) off--;
  1762. if(n != 2) off -= s->mb_stride;
  1763. q2 = s->current_picture.qscale_table[off];
  1764. if(q2 && q2 != q1)
  1765. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1766. }
  1767. if(a_avail && c_avail) {
  1768. if(abs(a - b) <= abs(b - c)) {
  1769. pred = c;
  1770. *dir_ptr = 1;//left
  1771. } else {
  1772. pred = a;
  1773. *dir_ptr = 0;//top
  1774. }
  1775. } else if(a_avail) {
  1776. pred = a;
  1777. *dir_ptr = 0;//top
  1778. } else if(c_avail) {
  1779. pred = c;
  1780. *dir_ptr = 1;//left
  1781. } else {
  1782. pred = 0;
  1783. *dir_ptr = 1;//left
  1784. }
  1785. /* update predictor */
  1786. *dc_val_ptr = &dc_val[0];
  1787. return pred;
  1788. }
  1789. /**
  1790. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1791. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1792. * @todo TODO: Integrate to MpegEncContext facilities
  1793. * @{
  1794. */
  1795. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1796. {
  1797. int xy, wrap, pred, a, b, c;
  1798. xy = s->block_index[n];
  1799. wrap = s->b8_stride;
  1800. /* B C
  1801. * A X
  1802. */
  1803. a = s->coded_block[xy - 1 ];
  1804. b = s->coded_block[xy - 1 - wrap];
  1805. c = s->coded_block[xy - wrap];
  1806. if (b == c) {
  1807. pred = a;
  1808. } else {
  1809. pred = c;
  1810. }
  1811. /* store value */
  1812. *coded_block_ptr = &s->coded_block[xy];
  1813. return pred;
  1814. }
  1815. /**
  1816. * Decode one AC coefficient
  1817. * @param v The VC1 context
  1818. * @param last Last coefficient
  1819. * @param skip How much zero coefficients to skip
  1820. * @param value Decoded AC coefficient value
  1821. * @see 8.1.3.4
  1822. */
  1823. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1824. {
  1825. GetBitContext *gb = &v->s.gb;
  1826. int index, escape, run = 0, level = 0, lst = 0;
  1827. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1828. if (index != vc1_ac_sizes[codingset] - 1) {
  1829. run = vc1_index_decode_table[codingset][index][0];
  1830. level = vc1_index_decode_table[codingset][index][1];
  1831. lst = index >= vc1_last_decode_table[codingset];
  1832. if(get_bits(gb, 1))
  1833. level = -level;
  1834. } else {
  1835. escape = decode210(gb);
  1836. if (escape != 2) {
  1837. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1838. run = vc1_index_decode_table[codingset][index][0];
  1839. level = vc1_index_decode_table[codingset][index][1];
  1840. lst = index >= vc1_last_decode_table[codingset];
  1841. if(escape == 0) {
  1842. if(lst)
  1843. level += vc1_last_delta_level_table[codingset][run];
  1844. else
  1845. level += vc1_delta_level_table[codingset][run];
  1846. } else {
  1847. if(lst)
  1848. run += vc1_last_delta_run_table[codingset][level] + 1;
  1849. else
  1850. run += vc1_delta_run_table[codingset][level] + 1;
  1851. }
  1852. if(get_bits(gb, 1))
  1853. level = -level;
  1854. } else {
  1855. int sign;
  1856. lst = get_bits(gb, 1);
  1857. if(v->s.esc3_level_length == 0) {
  1858. if(v->pq < 8 || v->dquantfrm) { // table 59
  1859. v->s.esc3_level_length = get_bits(gb, 3);
  1860. if(!v->s.esc3_level_length)
  1861. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1862. } else { //table 60
  1863. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1864. }
  1865. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1866. }
  1867. run = get_bits(gb, v->s.esc3_run_length);
  1868. sign = get_bits(gb, 1);
  1869. level = get_bits(gb, v->s.esc3_level_length);
  1870. if(sign)
  1871. level = -level;
  1872. }
  1873. }
  1874. *last = lst;
  1875. *skip = run;
  1876. *value = level;
  1877. }
  1878. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1879. * @param v VC1Context
  1880. * @param block block to decode
  1881. * @param coded are AC coeffs present or not
  1882. * @param codingset set of VLC to decode data
  1883. */
  1884. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1885. {
  1886. GetBitContext *gb = &v->s.gb;
  1887. MpegEncContext *s = &v->s;
  1888. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1889. int run_diff, i;
  1890. int16_t *dc_val;
  1891. int16_t *ac_val, *ac_val2;
  1892. int dcdiff;
  1893. /* Get DC differential */
  1894. if (n < 4) {
  1895. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1896. } else {
  1897. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1898. }
  1899. if (dcdiff < 0){
  1900. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1901. return -1;
  1902. }
  1903. if (dcdiff)
  1904. {
  1905. if (dcdiff == 119 /* ESC index value */)
  1906. {
  1907. /* TODO: Optimize */
  1908. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1909. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1910. else dcdiff = get_bits(gb, 8);
  1911. }
  1912. else
  1913. {
  1914. if (v->pq == 1)
  1915. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1916. else if (v->pq == 2)
  1917. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1918. }
  1919. if (get_bits(gb, 1))
  1920. dcdiff = -dcdiff;
  1921. }
  1922. /* Prediction */
  1923. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1924. *dc_val = dcdiff;
  1925. /* Store the quantized DC coeff, used for prediction */
  1926. if (n < 4) {
  1927. block[0] = dcdiff * s->y_dc_scale;
  1928. } else {
  1929. block[0] = dcdiff * s->c_dc_scale;
  1930. }
  1931. /* Skip ? */
  1932. run_diff = 0;
  1933. i = 0;
  1934. if (!coded) {
  1935. goto not_coded;
  1936. }
  1937. //AC Decoding
  1938. i = 1;
  1939. {
  1940. int last = 0, skip, value;
  1941. const int8_t *zz_table;
  1942. int scale;
  1943. int k;
  1944. scale = v->pq * 2 + v->halfpq;
  1945. if(v->s.ac_pred) {
  1946. if(!dc_pred_dir)
  1947. zz_table = vc1_horizontal_zz;
  1948. else
  1949. zz_table = vc1_vertical_zz;
  1950. } else
  1951. zz_table = vc1_normal_zz;
  1952. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1953. ac_val2 = ac_val;
  1954. if(dc_pred_dir) //left
  1955. ac_val -= 16;
  1956. else //top
  1957. ac_val -= 16 * s->block_wrap[n];
  1958. while (!last) {
  1959. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1960. i += skip;
  1961. if(i > 63)
  1962. break;
  1963. block[zz_table[i++]] = value;
  1964. }
  1965. /* apply AC prediction if needed */
  1966. if(s->ac_pred) {
  1967. if(dc_pred_dir) { //left
  1968. for(k = 1; k < 8; k++)
  1969. block[k << 3] += ac_val[k];
  1970. } else { //top
  1971. for(k = 1; k < 8; k++)
  1972. block[k] += ac_val[k + 8];
  1973. }
  1974. }
  1975. /* save AC coeffs for further prediction */
  1976. for(k = 1; k < 8; k++) {
  1977. ac_val2[k] = block[k << 3];
  1978. ac_val2[k + 8] = block[k];
  1979. }
  1980. /* scale AC coeffs */
  1981. for(k = 1; k < 64; k++)
  1982. if(block[k]) {
  1983. block[k] *= scale;
  1984. if(!v->pquantizer)
  1985. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1986. }
  1987. if(s->ac_pred) i = 63;
  1988. }
  1989. not_coded:
  1990. if(!coded) {
  1991. int k, scale;
  1992. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1993. ac_val2 = ac_val;
  1994. scale = v->pq * 2 + v->halfpq;
  1995. memset(ac_val2, 0, 16 * 2);
  1996. if(dc_pred_dir) {//left
  1997. ac_val -= 16;
  1998. if(s->ac_pred)
  1999. memcpy(ac_val2, ac_val, 8 * 2);
  2000. } else {//top
  2001. ac_val -= 16 * s->block_wrap[n];
  2002. if(s->ac_pred)
  2003. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2004. }
  2005. /* apply AC prediction if needed */
  2006. if(s->ac_pred) {
  2007. if(dc_pred_dir) { //left
  2008. for(k = 1; k < 8; k++) {
  2009. block[k << 3] = ac_val[k] * scale;
  2010. if(!v->pquantizer && block[k << 3])
  2011. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2012. }
  2013. } else { //top
  2014. for(k = 1; k < 8; k++) {
  2015. block[k] = ac_val[k + 8] * scale;
  2016. if(!v->pquantizer && block[k])
  2017. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2018. }
  2019. }
  2020. i = 63;
  2021. }
  2022. }
  2023. s->block_last_index[n] = i;
  2024. return 0;
  2025. }
  2026. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2027. * @param v VC1Context
  2028. * @param block block to decode
  2029. * @param coded are AC coeffs present or not
  2030. * @param mquant block quantizer
  2031. * @param codingset set of VLC to decode data
  2032. */
  2033. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2034. {
  2035. GetBitContext *gb = &v->s.gb;
  2036. MpegEncContext *s = &v->s;
  2037. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2038. int run_diff, i;
  2039. int16_t *dc_val;
  2040. int16_t *ac_val, *ac_val2;
  2041. int dcdiff;
  2042. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2043. int a_avail = v->a_avail, c_avail = v->c_avail;
  2044. int use_pred = s->ac_pred;
  2045. int scale;
  2046. int q1, q2 = 0;
  2047. /* XXX: Guard against dumb values of mquant */
  2048. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2049. /* Set DC scale - y and c use the same */
  2050. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2051. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2052. /* Get DC differential */
  2053. if (n < 4) {
  2054. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2055. } else {
  2056. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2057. }
  2058. if (dcdiff < 0){
  2059. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2060. return -1;
  2061. }
  2062. if (dcdiff)
  2063. {
  2064. if (dcdiff == 119 /* ESC index value */)
  2065. {
  2066. /* TODO: Optimize */
  2067. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2068. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2069. else dcdiff = get_bits(gb, 8);
  2070. }
  2071. else
  2072. {
  2073. if (mquant == 1)
  2074. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2075. else if (mquant == 2)
  2076. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2077. }
  2078. if (get_bits(gb, 1))
  2079. dcdiff = -dcdiff;
  2080. }
  2081. /* Prediction */
  2082. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2083. *dc_val = dcdiff;
  2084. /* Store the quantized DC coeff, used for prediction */
  2085. if (n < 4) {
  2086. block[0] = dcdiff * s->y_dc_scale;
  2087. } else {
  2088. block[0] = dcdiff * s->c_dc_scale;
  2089. }
  2090. /* Skip ? */
  2091. run_diff = 0;
  2092. i = 0;
  2093. //AC Decoding
  2094. i = 1;
  2095. /* check if AC is needed at all and adjust direction if needed */
  2096. if(!a_avail) dc_pred_dir = 1;
  2097. if(!c_avail) dc_pred_dir = 0;
  2098. if(!a_avail && !c_avail) use_pred = 0;
  2099. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2100. ac_val2 = ac_val;
  2101. scale = mquant * 2 + v->halfpq;
  2102. if(dc_pred_dir) //left
  2103. ac_val -= 16;
  2104. else //top
  2105. ac_val -= 16 * s->block_wrap[n];
  2106. q1 = s->current_picture.qscale_table[mb_pos];
  2107. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2108. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2109. if(n && n<4) q2 = q1;
  2110. if(coded) {
  2111. int last = 0, skip, value;
  2112. const int8_t *zz_table;
  2113. int k;
  2114. zz_table = vc1_simple_progressive_8x8_zz;
  2115. while (!last) {
  2116. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2117. i += skip;
  2118. if(i > 63)
  2119. break;
  2120. block[zz_table[i++]] = value;
  2121. }
  2122. /* apply AC prediction if needed */
  2123. if(use_pred) {
  2124. /* scale predictors if needed*/
  2125. if(q2 && q1!=q2) {
  2126. q1 = q1 * 2 - 1;
  2127. q2 = q2 * 2 - 1;
  2128. if(dc_pred_dir) { //left
  2129. for(k = 1; k < 8; k++)
  2130. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2131. } else { //top
  2132. for(k = 1; k < 8; k++)
  2133. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2134. }
  2135. } else {
  2136. if(dc_pred_dir) { //left
  2137. for(k = 1; k < 8; k++)
  2138. block[k << 3] += ac_val[k];
  2139. } else { //top
  2140. for(k = 1; k < 8; k++)
  2141. block[k] += ac_val[k + 8];
  2142. }
  2143. }
  2144. }
  2145. /* save AC coeffs for further prediction */
  2146. for(k = 1; k < 8; k++) {
  2147. ac_val2[k] = block[k << 3];
  2148. ac_val2[k + 8] = block[k];
  2149. }
  2150. /* scale AC coeffs */
  2151. for(k = 1; k < 64; k++)
  2152. if(block[k]) {
  2153. block[k] *= scale;
  2154. if(!v->pquantizer)
  2155. block[k] += (block[k] < 0) ? -mquant : mquant;
  2156. }
  2157. if(use_pred) i = 63;
  2158. } else { // no AC coeffs
  2159. int k;
  2160. memset(ac_val2, 0, 16 * 2);
  2161. if(dc_pred_dir) {//left
  2162. if(use_pred) {
  2163. memcpy(ac_val2, ac_val, 8 * 2);
  2164. if(q2 && q1!=q2) {
  2165. q1 = q1 * 2 - 1;
  2166. q2 = q2 * 2 - 1;
  2167. for(k = 1; k < 8; k++)
  2168. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2169. }
  2170. }
  2171. } else {//top
  2172. if(use_pred) {
  2173. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2174. if(q2 && q1!=q2) {
  2175. q1 = q1 * 2 - 1;
  2176. q2 = q2 * 2 - 1;
  2177. for(k = 1; k < 8; k++)
  2178. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2179. }
  2180. }
  2181. }
  2182. /* apply AC prediction if needed */
  2183. if(use_pred) {
  2184. if(dc_pred_dir) { //left
  2185. for(k = 1; k < 8; k++) {
  2186. block[k << 3] = ac_val2[k] * scale;
  2187. if(!v->pquantizer && block[k << 3])
  2188. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2189. }
  2190. } else { //top
  2191. for(k = 1; k < 8; k++) {
  2192. block[k] = ac_val2[k + 8] * scale;
  2193. if(!v->pquantizer && block[k])
  2194. block[k] += (block[k] < 0) ? -mquant : mquant;
  2195. }
  2196. }
  2197. i = 63;
  2198. }
  2199. }
  2200. s->block_last_index[n] = i;
  2201. return 0;
  2202. }
  2203. /** Decode P block
  2204. */
  2205. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2206. {
  2207. MpegEncContext *s = &v->s;
  2208. GetBitContext *gb = &s->gb;
  2209. int i, j;
  2210. int subblkpat = 0;
  2211. int scale, off, idx, last, skip, value;
  2212. int ttblk = ttmb & 7;
  2213. if(ttmb == -1) {
  2214. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2215. }
  2216. if(ttblk == TT_4X4) {
  2217. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2218. }
  2219. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2220. subblkpat = decode012(gb);
  2221. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2222. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2223. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2224. }
  2225. scale = 2 * mquant + v->halfpq;
  2226. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2227. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2228. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2229. ttblk = TT_8X4;
  2230. }
  2231. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2232. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2233. ttblk = TT_4X8;
  2234. }
  2235. switch(ttblk) {
  2236. case TT_8X8:
  2237. i = 0;
  2238. last = 0;
  2239. while (!last) {
  2240. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2241. i += skip;
  2242. if(i > 63)
  2243. break;
  2244. idx = vc1_simple_progressive_8x8_zz[i++];
  2245. block[idx] = value * scale;
  2246. if(!v->pquantizer)
  2247. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2248. }
  2249. vc1_inv_trans(block, 8, 8);
  2250. break;
  2251. case TT_4X4:
  2252. for(j = 0; j < 4; j++) {
  2253. last = subblkpat & (1 << (3 - j));
  2254. i = 0;
  2255. off = (j & 1) * 4 + (j & 2) * 16;
  2256. while (!last) {
  2257. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2258. i += skip;
  2259. if(i > 15)
  2260. break;
  2261. idx = vc1_simple_progressive_4x4_zz[i++];
  2262. block[idx + off] = value * scale;
  2263. if(!v->pquantizer)
  2264. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2265. }
  2266. if(!(subblkpat & (1 << (3 - j))))
  2267. vc1_inv_trans(block + off, 4, 4);
  2268. }
  2269. break;
  2270. case TT_8X4:
  2271. for(j = 0; j < 2; j++) {
  2272. last = subblkpat & (1 << (1 - j));
  2273. i = 0;
  2274. off = j * 32;
  2275. while (!last) {
  2276. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2277. i += skip;
  2278. if(i > 31)
  2279. break;
  2280. idx = vc1_simple_progressive_8x4_zz[i++];
  2281. block[idx + off] = value * scale;
  2282. if(!v->pquantizer)
  2283. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2284. }
  2285. if(!(subblkpat & (1 << (1 - j))))
  2286. vc1_inv_trans(block + off, 8, 4);
  2287. }
  2288. break;
  2289. case TT_4X8:
  2290. for(j = 0; j < 2; j++) {
  2291. last = subblkpat & (1 << (1 - j));
  2292. i = 0;
  2293. off = j * 4;
  2294. while (!last) {
  2295. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2296. i += skip;
  2297. if(i > 31)
  2298. break;
  2299. idx = vc1_simple_progressive_4x8_zz[i++];
  2300. block[idx + off] = value * scale;
  2301. if(!v->pquantizer)
  2302. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2303. }
  2304. if(!(subblkpat & (1 << (1 - j))))
  2305. vc1_inv_trans(block + off, 4, 8);
  2306. }
  2307. break;
  2308. }
  2309. return 0;
  2310. }
  2311. /** Decode one P-frame MB (in Simple/Main profile)
  2312. * @todo TODO: Extend to AP
  2313. * @fixme FIXME: DC value for inter blocks not set
  2314. */
  2315. static int vc1_decode_p_mb(VC1Context *v)
  2316. {
  2317. MpegEncContext *s = &v->s;
  2318. GetBitContext *gb = &s->gb;
  2319. int i, j;
  2320. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2321. int cbp; /* cbp decoding stuff */
  2322. int mqdiff, mquant; /* MB quantization */
  2323. int ttmb = v->ttfrm; /* MB Transform type */
  2324. int status;
  2325. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2326. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2327. int mb_has_coeffs = 1; /* last_flag */
  2328. int dmv_x, dmv_y; /* Differential MV components */
  2329. int index, index1; /* LUT indices */
  2330. int val, sign; /* temp values */
  2331. int first_block = 1;
  2332. int dst_idx, off;
  2333. int skipped, fourmv;
  2334. mquant = v->pq; /* Loosy initialization */
  2335. if (v->mv_type_is_raw)
  2336. fourmv = get_bits1(gb);
  2337. else
  2338. fourmv = v->mv_type_mb_plane[mb_pos];
  2339. if (v->skip_is_raw)
  2340. skipped = get_bits1(gb);
  2341. else
  2342. skipped = v->s.mbskip_table[mb_pos];
  2343. s->dsp.clear_blocks(s->block[0]);
  2344. if (!fourmv) /* 1MV mode */
  2345. {
  2346. if (!skipped)
  2347. {
  2348. GET_MVDATA(dmv_x, dmv_y);
  2349. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2350. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2351. /* FIXME Set DC val for inter block ? */
  2352. if (s->mb_intra && !mb_has_coeffs)
  2353. {
  2354. GET_MQUANT();
  2355. s->ac_pred = get_bits(gb, 1);
  2356. cbp = 0;
  2357. }
  2358. else if (mb_has_coeffs)
  2359. {
  2360. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2361. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2362. GET_MQUANT();
  2363. }
  2364. else
  2365. {
  2366. mquant = v->pq;
  2367. cbp = 0;
  2368. }
  2369. s->current_picture.qscale_table[mb_pos] = mquant;
  2370. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2371. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2372. VC1_TTMB_VLC_BITS, 2);
  2373. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2374. dst_idx = 0;
  2375. for (i=0; i<6; i++)
  2376. {
  2377. s->dc_val[0][s->block_index[i]] = 0;
  2378. dst_idx += i >> 2;
  2379. val = ((cbp >> (5 - i)) & 1);
  2380. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2381. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2382. if(s->mb_intra) {
  2383. /* check if prediction blocks A and C are available */
  2384. v->a_avail = v->c_avail = 0;
  2385. if(i == 2 || i == 3 || !s->first_slice_line)
  2386. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2387. if(i == 1 || i == 3 || s->mb_x)
  2388. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2389. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2390. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2391. vc1_inv_trans(s->block[i], 8, 8);
  2392. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2393. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2394. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2395. /* TODO: proper loop filtering */
  2396. if(v->pq >= 9 && v->overlap) {
  2397. if(v->a_avail)
  2398. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2399. if(v->c_avail)
  2400. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2401. }
  2402. } else if(val) {
  2403. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2404. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2405. first_block = 0;
  2406. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2407. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2408. }
  2409. }
  2410. }
  2411. else //Skipped
  2412. {
  2413. s->mb_intra = 0;
  2414. for(i = 0; i < 6; i++) {
  2415. v->mb_type[0][s->block_index[i]] = 0;
  2416. s->dc_val[0][s->block_index[i]] = 0;
  2417. }
  2418. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2419. s->current_picture.qscale_table[mb_pos] = 0;
  2420. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2421. vc1_mc_1mv(v, 0);
  2422. return 0;
  2423. }
  2424. } //1MV mode
  2425. else //4MV mode
  2426. {
  2427. if (!skipped /* unskipped MB */)
  2428. {
  2429. int intra_count = 0, coded_inter = 0;
  2430. int is_intra[6], is_coded[6];
  2431. /* Get CBPCY */
  2432. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2433. for (i=0; i<6; i++)
  2434. {
  2435. val = ((cbp >> (5 - i)) & 1);
  2436. s->dc_val[0][s->block_index[i]] = 0;
  2437. s->mb_intra = 0;
  2438. if(i < 4) {
  2439. dmv_x = dmv_y = 0;
  2440. s->mb_intra = 0;
  2441. mb_has_coeffs = 0;
  2442. if(val) {
  2443. GET_MVDATA(dmv_x, dmv_y);
  2444. }
  2445. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2446. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2447. intra_count += s->mb_intra;
  2448. is_intra[i] = s->mb_intra;
  2449. is_coded[i] = mb_has_coeffs;
  2450. }
  2451. if(i&4){
  2452. is_intra[i] = (intra_count >= 3);
  2453. is_coded[i] = val;
  2454. }
  2455. if(i == 4) vc1_mc_4mv_chroma(v);
  2456. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2457. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2458. }
  2459. // if there are no coded blocks then don't do anything more
  2460. if(!intra_count && !coded_inter) return 0;
  2461. dst_idx = 0;
  2462. GET_MQUANT();
  2463. s->current_picture.qscale_table[mb_pos] = mquant;
  2464. /* test if block is intra and has pred */
  2465. {
  2466. int intrapred = 0;
  2467. for(i=0; i<6; i++)
  2468. if(is_intra[i]) {
  2469. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2470. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2471. intrapred = 1;
  2472. break;
  2473. }
  2474. }
  2475. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2476. else s->ac_pred = 0;
  2477. }
  2478. if (!v->ttmbf && coded_inter)
  2479. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2480. for (i=0; i<6; i++)
  2481. {
  2482. dst_idx += i >> 2;
  2483. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2484. s->mb_intra = is_intra[i];
  2485. if (is_intra[i]) {
  2486. /* check if prediction blocks A and C are available */
  2487. v->a_avail = v->c_avail = 0;
  2488. if(i == 2 || i == 3 || !s->first_slice_line)
  2489. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2490. if(i == 1 || i == 3 || s->mb_x)
  2491. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2492. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2493. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2494. vc1_inv_trans(s->block[i], 8, 8);
  2495. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2496. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2497. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2498. /* TODO: proper loop filtering */
  2499. if(v->pq >= 9 && v->overlap) {
  2500. if(v->a_avail)
  2501. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2502. if(v->c_avail)
  2503. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2504. }
  2505. } else if(is_coded[i]) {
  2506. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2507. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2508. first_block = 0;
  2509. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2510. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2511. }
  2512. }
  2513. return status;
  2514. }
  2515. else //Skipped MB
  2516. {
  2517. s->mb_intra = 0;
  2518. s->current_picture.qscale_table[mb_pos] = 0;
  2519. for (i=0; i<6; i++) {
  2520. v->mb_type[0][s->block_index[i]] = 0;
  2521. s->dc_val[0][s->block_index[i]] = 0;
  2522. }
  2523. for (i=0; i<4; i++)
  2524. {
  2525. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2526. vc1_mc_4mv_luma(v, i);
  2527. }
  2528. vc1_mc_4mv_chroma(v);
  2529. s->current_picture.qscale_table[mb_pos] = 0;
  2530. return 0;
  2531. }
  2532. }
  2533. /* Should never happen */
  2534. return -1;
  2535. }
  2536. /** Decode one B-frame MB (in Main profile)
  2537. */
  2538. static void vc1_decode_b_mb(VC1Context *v)
  2539. {
  2540. MpegEncContext *s = &v->s;
  2541. GetBitContext *gb = &s->gb;
  2542. int i, j;
  2543. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2544. int cbp; /* cbp decoding stuff */
  2545. int mqdiff, mquant; /* MB quantization */
  2546. int ttmb = v->ttfrm; /* MB Transform type */
  2547. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2548. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2549. int mb_has_coeffs = 0; /* last_flag */
  2550. int index, index1; /* LUT indices */
  2551. int val, sign; /* temp values */
  2552. int first_block = 1;
  2553. int dst_idx, off;
  2554. int skipped, direct;
  2555. int dmv_x[2], dmv_y[2];
  2556. int bmvtype = BMV_TYPE_BACKWARD; /* XXX: is it so? */
  2557. mquant = v->pq; /* Loosy initialization */
  2558. s->mb_intra = 0;
  2559. if (v->dmb_is_raw)
  2560. direct = get_bits1(gb);
  2561. else
  2562. direct = v->direct_mb_plane[mb_pos];
  2563. if (v->skip_is_raw)
  2564. skipped = get_bits1(gb);
  2565. else
  2566. skipped = v->s.mbskip_table[mb_pos];
  2567. s->dsp.clear_blocks(s->block[0]);
  2568. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2569. for(i = 0; i < 6; i++) {
  2570. v->mb_type[0][s->block_index[i]] = 0;
  2571. s->dc_val[0][s->block_index[i]] = 0;
  2572. }
  2573. s->current_picture.qscale_table[mb_pos] = 0;
  2574. if (!direct) {
  2575. if (!skipped) {
  2576. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2577. }
  2578. if(skipped || !s->mb_intra) {
  2579. bmvtype = decode012(gb);
  2580. switch(bmvtype) {
  2581. case 0:
  2582. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2583. break;
  2584. case 1:
  2585. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2586. break;
  2587. case 2:
  2588. bmvtype = BMV_TYPE_INTERPOLATED;
  2589. }
  2590. }
  2591. }
  2592. if (skipped) {
  2593. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2594. return;
  2595. }
  2596. if (direct) {
  2597. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2598. GET_MQUANT();
  2599. s->current_picture.qscale_table[mb_pos] = mquant;
  2600. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2601. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2602. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2603. } else {
  2604. if(!mb_has_coeffs && !s->mb_intra) {
  2605. /* no coded blocks - effectively skipped */
  2606. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2607. return;
  2608. }
  2609. if(s->mb_intra && !mb_has_coeffs) {
  2610. GET_MQUANT();
  2611. s->current_picture.qscale_table[mb_pos] = mquant;
  2612. s->ac_pred = get_bits1(gb);
  2613. cbp = 0;
  2614. } else {
  2615. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2616. GET_MVDATA(dmv_x[1], dmv_y[1]);
  2617. if(!mb_has_coeffs) {
  2618. /* interpolated skipped block */
  2619. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2620. return;
  2621. }
  2622. }
  2623. if(!s->mb_intra)
  2624. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2625. if(s->mb_intra)
  2626. s->ac_pred = get_bits1(gb);
  2627. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2628. GET_MQUANT();
  2629. s->current_picture.qscale_table[mb_pos] = mquant;
  2630. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2631. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2632. }
  2633. }
  2634. dst_idx = 0;
  2635. for (i=0; i<6; i++)
  2636. {
  2637. s->dc_val[0][s->block_index[i]] = 0;
  2638. dst_idx += i >> 2;
  2639. val = ((cbp >> (5 - i)) & 1);
  2640. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2641. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2642. if(s->mb_intra) {
  2643. /* check if prediction blocks A and C are available */
  2644. v->a_avail = v->c_avail = 0;
  2645. if(i == 2 || i == 3 || !s->first_slice_line)
  2646. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2647. if(i == 1 || i == 3 || s->mb_x)
  2648. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2649. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2650. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2651. vc1_inv_trans(s->block[i], 8, 8);
  2652. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2653. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2654. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2655. /* TODO: proper loop filtering */
  2656. if(v->pq >= 9 && v->overlap) {
  2657. if(v->a_avail)
  2658. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2659. if(v->c_avail)
  2660. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2661. }
  2662. } else if(val) {
  2663. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2664. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2665. first_block = 0;
  2666. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2667. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2668. }
  2669. }
  2670. }
  2671. /** Decode blocks of I-frame
  2672. */
  2673. static void vc1_decode_i_blocks(VC1Context *v)
  2674. {
  2675. int k, j;
  2676. MpegEncContext *s = &v->s;
  2677. int cbp, val;
  2678. uint8_t *coded_val;
  2679. int mb_pos;
  2680. /* select codingmode used for VLC tables selection */
  2681. switch(v->y_ac_table_index){
  2682. case 0:
  2683. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2684. break;
  2685. case 1:
  2686. v->codingset = CS_HIGH_MOT_INTRA;
  2687. break;
  2688. case 2:
  2689. v->codingset = CS_MID_RATE_INTRA;
  2690. break;
  2691. }
  2692. switch(v->c_ac_table_index){
  2693. case 0:
  2694. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2695. break;
  2696. case 1:
  2697. v->codingset2 = CS_HIGH_MOT_INTER;
  2698. break;
  2699. case 2:
  2700. v->codingset2 = CS_MID_RATE_INTER;
  2701. break;
  2702. }
  2703. /* Set DC scale - y and c use the same */
  2704. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2705. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2706. //do frame decode
  2707. s->mb_x = s->mb_y = 0;
  2708. s->mb_intra = 1;
  2709. s->first_slice_line = 1;
  2710. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2711. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2712. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2713. ff_init_block_index(s);
  2714. ff_update_block_index(s);
  2715. s->dsp.clear_blocks(s->block[0]);
  2716. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2717. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2718. s->current_picture.qscale_table[mb_pos] = v->pq;
  2719. // do actual MB decoding and displaying
  2720. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2721. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2722. for(k = 0; k < 6; k++) {
  2723. val = ((cbp >> (5 - k)) & 1);
  2724. if (k < 4) {
  2725. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2726. val = val ^ pred;
  2727. *coded_val = val;
  2728. }
  2729. cbp |= val << (5 - k);
  2730. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2731. vc1_inv_trans(s->block[k], 8, 8);
  2732. if(v->pq >= 9 && v->overlap) {
  2733. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2734. }
  2735. }
  2736. vc1_put_block(v, s->block);
  2737. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2738. if(!s->first_slice_line) {
  2739. vc1_v_overlap(s->dest[0], s->linesize, 0);
  2740. vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  2741. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2742. vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  2743. vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  2744. }
  2745. }
  2746. vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  2747. vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2748. if(s->mb_x) {
  2749. vc1_h_overlap(s->dest[0], s->linesize, 0);
  2750. vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  2751. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2752. vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  2753. vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  2754. }
  2755. }
  2756. vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  2757. vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2758. }
  2759. if(get_bits_count(&s->gb) > v->bits) {
  2760. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2761. return;
  2762. }
  2763. }
  2764. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2765. s->first_slice_line = 0;
  2766. }
  2767. }
  2768. static void vc1_decode_p_blocks(VC1Context *v)
  2769. {
  2770. MpegEncContext *s = &v->s;
  2771. /* select codingmode used for VLC tables selection */
  2772. switch(v->c_ac_table_index){
  2773. case 0:
  2774. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2775. break;
  2776. case 1:
  2777. v->codingset = CS_HIGH_MOT_INTRA;
  2778. break;
  2779. case 2:
  2780. v->codingset = CS_MID_RATE_INTRA;
  2781. break;
  2782. }
  2783. switch(v->c_ac_table_index){
  2784. case 0:
  2785. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2786. break;
  2787. case 1:
  2788. v->codingset2 = CS_HIGH_MOT_INTER;
  2789. break;
  2790. case 2:
  2791. v->codingset2 = CS_MID_RATE_INTER;
  2792. break;
  2793. }
  2794. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2795. s->first_slice_line = 1;
  2796. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2797. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2798. ff_init_block_index(s);
  2799. ff_update_block_index(s);
  2800. s->dsp.clear_blocks(s->block[0]);
  2801. vc1_decode_p_mb(v);
  2802. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2803. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2804. return;
  2805. }
  2806. }
  2807. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2808. s->first_slice_line = 0;
  2809. }
  2810. }
  2811. static void vc1_decode_b_blocks(VC1Context *v)
  2812. {
  2813. MpegEncContext *s = &v->s;
  2814. /* select codingmode used for VLC tables selection */
  2815. switch(v->c_ac_table_index){
  2816. case 0:
  2817. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2818. break;
  2819. case 1:
  2820. v->codingset = CS_HIGH_MOT_INTRA;
  2821. break;
  2822. case 2:
  2823. v->codingset = CS_MID_RATE_INTRA;
  2824. break;
  2825. }
  2826. switch(v->c_ac_table_index){
  2827. case 0:
  2828. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2829. break;
  2830. case 1:
  2831. v->codingset2 = CS_HIGH_MOT_INTER;
  2832. break;
  2833. case 2:
  2834. v->codingset2 = CS_MID_RATE_INTER;
  2835. break;
  2836. }
  2837. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2838. s->first_slice_line = 1;
  2839. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2840. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2841. ff_init_block_index(s);
  2842. ff_update_block_index(s);
  2843. s->dsp.clear_blocks(s->block[0]);
  2844. vc1_decode_b_mb(v);
  2845. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2846. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2847. return;
  2848. }
  2849. }
  2850. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2851. s->first_slice_line = 0;
  2852. }
  2853. }
  2854. static void vc1_decode_blocks(VC1Context *v)
  2855. {
  2856. v->s.esc3_level_length = 0;
  2857. switch(v->s.pict_type) {
  2858. case I_TYPE:
  2859. vc1_decode_i_blocks(v);
  2860. break;
  2861. case P_TYPE:
  2862. vc1_decode_p_blocks(v);
  2863. break;
  2864. case B_TYPE:
  2865. vc1_decode_b_blocks(v);
  2866. break;
  2867. }
  2868. }
  2869. /** Initialize a VC1/WMV3 decoder
  2870. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2871. * @todo TODO: Decypher remaining bits in extra_data
  2872. */
  2873. static int vc1_decode_init(AVCodecContext *avctx)
  2874. {
  2875. VC1Context *v = avctx->priv_data;
  2876. MpegEncContext *s = &v->s;
  2877. GetBitContext gb;
  2878. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2879. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2880. avctx->pix_fmt = PIX_FMT_YUV420P;
  2881. else
  2882. avctx->pix_fmt = PIX_FMT_GRAY8;
  2883. v->s.avctx = avctx;
  2884. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2885. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2886. if(ff_h263_decode_init(avctx) < 0)
  2887. return -1;
  2888. if (vc1_init_common(v) < 0) return -1;
  2889. avctx->coded_width = avctx->width;
  2890. avctx->coded_height = avctx->height;
  2891. if (avctx->codec_id == CODEC_ID_WMV3)
  2892. {
  2893. int count = 0;
  2894. // looks like WMV3 has a sequence header stored in the extradata
  2895. // advanced sequence header may be before the first frame
  2896. // the last byte of the extradata is a version number, 1 for the
  2897. // samples we can decode
  2898. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2899. if (decode_sequence_header(avctx, &gb) < 0)
  2900. return -1;
  2901. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2902. if (count>0)
  2903. {
  2904. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2905. count, get_bits(&gb, count));
  2906. }
  2907. else if (count < 0)
  2908. {
  2909. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2910. }
  2911. }
  2912. avctx->has_b_frames= !!(avctx->max_b_frames);
  2913. s->mb_width = (avctx->coded_width+15)>>4;
  2914. s->mb_height = (avctx->coded_height+15)>>4;
  2915. /* Allocate mb bitplanes */
  2916. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2917. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2918. /* allocate block type info in that way so it could be used with s->block_index[] */
  2919. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2920. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2921. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2922. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2923. /* Init coded blocks info */
  2924. if (v->profile == PROFILE_ADVANCED)
  2925. {
  2926. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2927. // return -1;
  2928. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2929. // return -1;
  2930. }
  2931. return 0;
  2932. }
  2933. /** Decode a VC1/WMV3 frame
  2934. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2935. * @warning Initial try at using MpegEncContext stuff
  2936. */
  2937. static int vc1_decode_frame(AVCodecContext *avctx,
  2938. void *data, int *data_size,
  2939. uint8_t *buf, int buf_size)
  2940. {
  2941. VC1Context *v = avctx->priv_data;
  2942. MpegEncContext *s = &v->s;
  2943. AVFrame *pict = data;
  2944. /* no supplementary picture */
  2945. if (buf_size == 0) {
  2946. /* special case for last picture */
  2947. if (s->low_delay==0 && s->next_picture_ptr) {
  2948. *pict= *(AVFrame*)s->next_picture_ptr;
  2949. s->next_picture_ptr= NULL;
  2950. *data_size = sizeof(AVFrame);
  2951. }
  2952. return 0;
  2953. }
  2954. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2955. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2956. int i= ff_find_unused_picture(s, 0);
  2957. s->current_picture_ptr= &s->picture[i];
  2958. }
  2959. avctx->has_b_frames= !s->low_delay;
  2960. init_get_bits(&s->gb, buf, buf_size*8);
  2961. // do parse frame header
  2962. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2963. return -1;
  2964. // if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2965. // for hurry_up==5
  2966. s->current_picture.pict_type= s->pict_type;
  2967. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2968. /* skip B-frames if we don't have reference frames */
  2969. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2970. /* skip b frames if we are in a hurry */
  2971. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2972. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2973. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2974. || avctx->skip_frame >= AVDISCARD_ALL)
  2975. return buf_size;
  2976. /* skip everything if we are in a hurry>=5 */
  2977. if(avctx->hurry_up>=5) return -1;//buf_size;
  2978. if(s->next_p_frame_damaged){
  2979. if(s->pict_type==B_TYPE)
  2980. return buf_size;
  2981. else
  2982. s->next_p_frame_damaged=0;
  2983. }
  2984. if(MPV_frame_start(s, avctx) < 0)
  2985. return -1;
  2986. ff_er_frame_start(s);
  2987. v->bits = buf_size * 8;
  2988. vc1_decode_blocks(v);
  2989. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2990. // if(get_bits_count(&s->gb) > buf_size * 8)
  2991. // return -1;
  2992. ff_er_frame_end(s);
  2993. MPV_frame_end(s);
  2994. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2995. assert(s->current_picture.pict_type == s->pict_type);
  2996. if (s->pict_type == B_TYPE || s->low_delay) {
  2997. *pict= *(AVFrame*)s->current_picture_ptr;
  2998. } else if (s->last_picture_ptr != NULL) {
  2999. *pict= *(AVFrame*)s->last_picture_ptr;
  3000. }
  3001. if(s->last_picture_ptr || s->low_delay){
  3002. *data_size = sizeof(AVFrame);
  3003. ff_print_debug_info(s, pict);
  3004. }
  3005. /* Return the Picture timestamp as the frame number */
  3006. /* we substract 1 because it is added on utils.c */
  3007. avctx->frame_number = s->picture_number - 1;
  3008. return buf_size;
  3009. }
  3010. /** Close a VC1/WMV3 decoder
  3011. * @warning Initial try at using MpegEncContext stuff
  3012. */
  3013. static int vc1_decode_end(AVCodecContext *avctx)
  3014. {
  3015. VC1Context *v = avctx->priv_data;
  3016. av_freep(&v->hrd_rate);
  3017. av_freep(&v->hrd_buffer);
  3018. MPV_common_end(&v->s);
  3019. av_freep(&v->mv_type_mb_plane);
  3020. av_freep(&v->direct_mb_plane);
  3021. av_freep(&v->mb_type_base);
  3022. return 0;
  3023. }
  3024. AVCodec vc1_decoder = {
  3025. "vc1",
  3026. CODEC_TYPE_VIDEO,
  3027. CODEC_ID_VC1,
  3028. sizeof(VC1Context),
  3029. vc1_decode_init,
  3030. NULL,
  3031. vc1_decode_end,
  3032. vc1_decode_frame,
  3033. CODEC_CAP_DELAY,
  3034. NULL
  3035. };
  3036. AVCodec wmv3_decoder = {
  3037. "wmv3",
  3038. CODEC_TYPE_VIDEO,
  3039. CODEC_ID_WMV3,
  3040. sizeof(VC1Context),
  3041. vc1_decode_init,
  3042. NULL,
  3043. vc1_decode_end,
  3044. vc1_decode_frame,
  3045. CODEC_CAP_DELAY,
  3046. NULL
  3047. };