You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1177 lines
41KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file cavs.c
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "golomb.h"
  29. #include "cavs.h"
  30. #include "cavsdata.h"
  31. /*****************************************************************************
  32. *
  33. * in-loop deblocking filter
  34. *
  35. ****************************************************************************/
  36. static inline int get_bs(vector_t *mvP, vector_t *mvQ, int b) {
  37. if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  38. return 2;
  39. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  40. return 1;
  41. if(b){
  42. mvP += MV_BWD_OFFS;
  43. mvQ += MV_BWD_OFFS;
  44. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  45. return 1;
  46. }else{
  47. if(mvP->ref != mvQ->ref)
  48. return 1;
  49. }
  50. return 0;
  51. }
  52. #define SET_PARAMS \
  53. alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
  54. beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
  55. tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
  56. /**
  57. * in-loop deblocking filter for a single macroblock
  58. *
  59. * boundary strength (bs) mapping:
  60. *
  61. * --4---5--
  62. * 0 2 |
  63. * | 6 | 7 |
  64. * 1 3 |
  65. * ---------
  66. *
  67. */
  68. void ff_cavs_filter(AVSContext *h, enum mb_t mb_type) {
  69. DECLARE_ALIGNED_8(uint8_t, bs[8]);
  70. int qp_avg, alpha, beta, tc;
  71. int i;
  72. /* save un-deblocked lines */
  73. h->topleft_border_y = h->top_border_y[h->mbx*16+15];
  74. h->topleft_border_u = h->top_border_u[h->mbx*10+8];
  75. h->topleft_border_v = h->top_border_v[h->mbx*10+8];
  76. memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
  77. memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
  78. memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
  79. for(i=0;i<8;i++) {
  80. h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
  81. h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
  82. h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
  83. h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
  84. }
  85. if(!h->loop_filter_disable) {
  86. /* determine bs */
  87. if(mb_type == I_8X8)
  88. *((uint64_t *)bs) = 0x0202020202020202ULL;
  89. else{
  90. *((uint64_t *)bs) = 0;
  91. if(partition_flags[mb_type] & SPLITV){
  92. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  93. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  94. }
  95. if(partition_flags[mb_type] & SPLITH){
  96. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  97. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  98. }
  99. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  100. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  101. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  102. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  103. }
  104. if( *((uint64_t *)bs) ) {
  105. if(h->flags & A_AVAIL) {
  106. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  107. SET_PARAMS;
  108. h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
  109. h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  110. h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  111. }
  112. qp_avg = h->qp;
  113. SET_PARAMS;
  114. h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
  115. h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
  116. bs[6],bs[7]);
  117. if(h->flags & B_AVAIL) {
  118. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  119. SET_PARAMS;
  120. h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
  121. h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  122. h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  123. }
  124. }
  125. }
  126. h->left_qp = h->qp;
  127. h->top_qp[h->mbx] = h->qp;
  128. }
  129. #undef SET_PARAMS
  130. /*****************************************************************************
  131. *
  132. * spatial intra prediction
  133. *
  134. ****************************************************************************/
  135. static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  136. int y;
  137. uint64_t a = unaligned64(&top[1]);
  138. for(y=0;y<8;y++) {
  139. *((uint64_t *)(d+y*stride)) = a;
  140. }
  141. }
  142. static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  143. int y;
  144. uint64_t a;
  145. for(y=0;y<8;y++) {
  146. a = left[y+1] * 0x0101010101010101ULL;
  147. *((uint64_t *)(d+y*stride)) = a;
  148. }
  149. }
  150. static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  151. int y;
  152. uint64_t a = 0x8080808080808080ULL;
  153. for(y=0;y<8;y++)
  154. *((uint64_t *)(d+y*stride)) = a;
  155. }
  156. static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  157. int x,y,ia;
  158. int ih = 0;
  159. int iv = 0;
  160. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  161. for(x=0; x<4; x++) {
  162. ih += (x+1)*(top[5+x]-top[3-x]);
  163. iv += (x+1)*(left[5+x]-left[3-x]);
  164. }
  165. ia = (top[8]+left[8])<<4;
  166. ih = (17*ih+16)>>5;
  167. iv = (17*iv+16)>>5;
  168. for(y=0; y<8; y++)
  169. for(x=0; x<8; x++)
  170. d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
  171. }
  172. #define LOWPASS(ARRAY,INDEX) \
  173. (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
  174. static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  175. int x,y;
  176. for(y=0; y<8; y++)
  177. for(x=0; x<8; x++)
  178. d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
  179. }
  180. static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  181. int x,y;
  182. for(y=0; y<8; y++)
  183. for(x=0; x<8; x++)
  184. d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
  185. }
  186. static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  187. int x,y;
  188. for(y=0; y<8; y++)
  189. for(x=0; x<8; x++)
  190. if(x==y)
  191. d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
  192. else if(x>y)
  193. d[y*stride+x] = LOWPASS(top,x-y);
  194. else
  195. d[y*stride+x] = LOWPASS(left,y-x);
  196. }
  197. static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  198. int x,y;
  199. for(y=0; y<8; y++)
  200. for(x=0; x<8; x++)
  201. d[y*stride+x] = LOWPASS(left,y+1);
  202. }
  203. static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  204. int x,y;
  205. for(y=0; y<8; y++)
  206. for(x=0; x<8; x++)
  207. d[y*stride+x] = LOWPASS(top,x+1);
  208. }
  209. #undef LOWPASS
  210. /*****************************************************************************
  211. *
  212. * motion compensation
  213. *
  214. ****************************************************************************/
  215. static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
  216. int chroma_height,int delta,int list,uint8_t *dest_y,
  217. uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
  218. int src_y_offset,qpel_mc_func *qpix_op,
  219. h264_chroma_mc_func chroma_op,vector_t *mv){
  220. MpegEncContext * const s = &h->s;
  221. const int mx= mv->x + src_x_offset*8;
  222. const int my= mv->y + src_y_offset*8;
  223. const int luma_xy= (mx&3) + ((my&3)<<2);
  224. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
  225. uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
  226. uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
  227. int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  228. int extra_height= extra_width;
  229. int emu=0;
  230. const int full_mx= mx>>2;
  231. const int full_my= my>>2;
  232. const int pic_width = 16*h->mb_width;
  233. const int pic_height = 16*h->mb_height;
  234. if(!pic->data[0])
  235. return;
  236. if(mx&7) extra_width -= 3;
  237. if(my&7) extra_height -= 3;
  238. if( full_mx < 0-extra_width
  239. || full_my < 0-extra_height
  240. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  241. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  242. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
  243. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  244. src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
  245. emu=1;
  246. }
  247. qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
  248. if(!square){
  249. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
  250. }
  251. if(emu){
  252. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
  253. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  254. src_cb= s->edge_emu_buffer;
  255. }
  256. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
  257. if(emu){
  258. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
  259. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  260. src_cr= s->edge_emu_buffer;
  261. }
  262. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
  263. }
  264. static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
  265. uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
  266. int x_offset, int y_offset,qpel_mc_func *qpix_put,
  267. h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
  268. h264_chroma_mc_func chroma_avg, vector_t *mv){
  269. qpel_mc_func *qpix_op= qpix_put;
  270. h264_chroma_mc_func chroma_op= chroma_put;
  271. dest_y += 2*x_offset + 2*y_offset*h->l_stride;
  272. dest_cb += x_offset + y_offset*h->c_stride;
  273. dest_cr += x_offset + y_offset*h->c_stride;
  274. x_offset += 8*h->mbx;
  275. y_offset += 8*h->mby;
  276. if(mv->ref >= 0){
  277. Picture *ref= &h->DPB[mv->ref];
  278. mc_dir_part(h, ref, square, chroma_height, delta, 0,
  279. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  280. qpix_op, chroma_op, mv);
  281. qpix_op= qpix_avg;
  282. chroma_op= chroma_avg;
  283. }
  284. if((mv+MV_BWD_OFFS)->ref >= 0){
  285. Picture *ref= &h->DPB[0];
  286. mc_dir_part(h, ref, square, chroma_height, delta, 1,
  287. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  288. qpix_op, chroma_op, mv+MV_BWD_OFFS);
  289. }
  290. }
  291. void ff_cavs_inter(AVSContext *h, enum mb_t mb_type) {
  292. if(partition_flags[mb_type] == 0){ // 16x16
  293. mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  294. h->s.dsp.put_cavs_qpel_pixels_tab[0],
  295. h->s.dsp.put_h264_chroma_pixels_tab[0],
  296. h->s.dsp.avg_cavs_qpel_pixels_tab[0],
  297. h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
  298. }else{
  299. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  300. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  301. h->s.dsp.put_h264_chroma_pixels_tab[1],
  302. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  303. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
  304. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  305. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  306. h->s.dsp.put_h264_chroma_pixels_tab[1],
  307. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  308. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
  309. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  310. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  311. h->s.dsp.put_h264_chroma_pixels_tab[1],
  312. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  313. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
  314. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  315. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  316. h->s.dsp.put_h264_chroma_pixels_tab[1],
  317. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  318. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
  319. }
  320. }
  321. /*****************************************************************************
  322. *
  323. * motion vector prediction
  324. *
  325. ****************************************************************************/
  326. static inline void store_mvs(AVSContext *h) {
  327. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0];
  328. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1];
  329. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2];
  330. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3];
  331. }
  332. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) {
  333. int den = h->scale_den[src->ref];
  334. *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
  335. *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
  336. }
  337. static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) {
  338. int ax, ay, bx, by, cx, cy;
  339. int len_ab, len_bc, len_ca, len_mid;
  340. /* scale candidates according to their temporal span */
  341. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  342. scale_mv(h, &bx, &by, mvB, mvP->dist);
  343. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  344. /* find the geometrical median of the three candidates */
  345. len_ab = abs(ax - bx) + abs(ay - by);
  346. len_bc = abs(bx - cx) + abs(by - cy);
  347. len_ca = abs(cx - ax) + abs(cy - ay);
  348. len_mid = mid_pred(len_ab, len_bc, len_ca);
  349. if(len_mid == len_ab) {
  350. mvP->x = cx;
  351. mvP->y = cy;
  352. } else if(len_mid == len_bc) {
  353. mvP->x = ax;
  354. mvP->y = ay;
  355. } else {
  356. mvP->x = bx;
  357. mvP->y = by;
  358. }
  359. }
  360. static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw,
  361. vector_t *col_mv) {
  362. vector_t *pmv_bw = pmv_fw + MV_BWD_OFFS;
  363. int den = h->direct_den[col_mv->ref];
  364. int m = col_mv->x >> 31;
  365. pmv_fw->dist = h->dist[1];
  366. pmv_bw->dist = h->dist[0];
  367. pmv_fw->ref = 1;
  368. pmv_bw->ref = 0;
  369. /* scale the co-located motion vector according to its temporal span */
  370. pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m;
  371. pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m);
  372. m = col_mv->y >> 31;
  373. pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m;
  374. pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m);
  375. }
  376. static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) {
  377. vector_t *dst = src + MV_BWD_OFFS;
  378. /* backward mv is the scaled and negated forward mv */
  379. dst->x = -((src->x * h->sym_factor + 256) >> 9);
  380. dst->y = -((src->y * h->sym_factor + 256) >> 9);
  381. dst->ref = 0;
  382. dst->dist = h->dist[0];
  383. set_mvs(dst, size);
  384. }
  385. void ff_cavs_mv(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
  386. enum mv_pred_t mode, enum block_t size, int ref) {
  387. vector_t *mvP = &h->mv[nP];
  388. vector_t *mvA = &h->mv[nP-1];
  389. vector_t *mvB = &h->mv[nP-4];
  390. vector_t *mvC = &h->mv[nC];
  391. const vector_t *mvP2 = NULL;
  392. mvP->ref = ref;
  393. mvP->dist = h->dist[mvP->ref];
  394. if(mvC->ref == NOT_AVAIL)
  395. mvC = &h->mv[nP-5]; // set to top-left (mvD)
  396. if((mode == MV_PRED_PSKIP) &&
  397. ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
  398. ((mvA->x | mvA->y | mvA->ref) == 0) ||
  399. ((mvB->x | mvB->y | mvB->ref) == 0) )) {
  400. mvP2 = &ff_cavs_un_mv;
  401. /* if there is only one suitable candidate, take it */
  402. } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
  403. mvP2= mvA;
  404. } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
  405. mvP2= mvB;
  406. } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
  407. mvP2= mvC;
  408. } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
  409. mvP2= mvA;
  410. } else if(mode == MV_PRED_TOP && mvB->ref == ref){
  411. mvP2= mvB;
  412. } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
  413. mvP2= mvC;
  414. }
  415. if(mvP2){
  416. mvP->x = mvP2->x;
  417. mvP->y = mvP2->y;
  418. }else
  419. mv_pred_median(h, mvP, mvA, mvB, mvC);
  420. if(mode < MV_PRED_PSKIP) {
  421. mvP->x += get_se_golomb(&h->s.gb);
  422. mvP->y += get_se_golomb(&h->s.gb);
  423. }
  424. set_mvs(mvP,size);
  425. }
  426. /*****************************************************************************
  427. *
  428. * residual data decoding
  429. *
  430. ****************************************************************************/
  431. /** kth-order exponential golomb code */
  432. static inline int get_ue_code(GetBitContext *gb, int order) {
  433. if(order) {
  434. int ret = get_ue_golomb(gb) << order;
  435. return ret + get_bits(gb,order);
  436. }
  437. return get_ue_golomb(gb);
  438. }
  439. /**
  440. * decode coefficients from one 8x8 block, dequantize, inverse transform
  441. * and add them to sample block
  442. * @param r pointer to 2D VLC table
  443. * @param esc_golomb_order escape codes are k-golomb with this order k
  444. * @param qp quantizer
  445. * @param dst location of sample block
  446. * @param stride line stride in frame buffer
  447. */
  448. static int decode_residual_block(AVSContext *h, GetBitContext *gb,
  449. const dec_2dvlc_t *r, int esc_golomb_order,
  450. int qp, uint8_t *dst, int stride) {
  451. int i, level_code, esc_code, level, run, mask;
  452. DCTELEM level_buf[64];
  453. uint8_t run_buf[64];
  454. DCTELEM *block = h->block;
  455. for(i=0;i<65;i++) {
  456. level_code = get_ue_code(gb,r->golomb_order);
  457. if(level_code >= ESCAPE_CODE) {
  458. run = ((level_code - ESCAPE_CODE) >> 1) + 1;
  459. esc_code = get_ue_code(gb,esc_golomb_order);
  460. level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
  461. while(level > r->inc_limit)
  462. r++;
  463. mask = -(level_code & 1);
  464. level = (level^mask) - mask;
  465. } else {
  466. level = r->rltab[level_code][0];
  467. if(!level) //end of block signal
  468. break;
  469. run = r->rltab[level_code][1];
  470. r += r->rltab[level_code][2];
  471. }
  472. level_buf[i] = level;
  473. run_buf[i] = run;
  474. }
  475. if(dequant(h,level_buf, run_buf, block, dequant_mul[qp],
  476. dequant_shift[qp], i))
  477. return -1;
  478. h->s.dsp.cavs_idct8_add(dst,block,stride);
  479. return 0;
  480. }
  481. static inline void decode_residual_chroma(AVSContext *h) {
  482. if(h->cbp & (1<<4))
  483. decode_residual_block(h,&h->s.gb,chroma_dec,0, chroma_qp[h->qp],
  484. h->cu,h->c_stride);
  485. if(h->cbp & (1<<5))
  486. decode_residual_block(h,&h->s.gb,chroma_dec,0, chroma_qp[h->qp],
  487. h->cv,h->c_stride);
  488. }
  489. static inline int decode_residual_inter(AVSContext *h) {
  490. int block;
  491. /* get coded block pattern */
  492. int cbp= get_ue_golomb(&h->s.gb);
  493. if(cbp > 63){
  494. av_log(h->s.avctx, AV_LOG_ERROR, "illegal inter cbp\n");
  495. return -1;
  496. }
  497. h->cbp = cbp_tab[cbp][1];
  498. /* get quantizer */
  499. if(h->cbp && !h->qp_fixed)
  500. h->qp = (h->qp + get_se_golomb(&h->s.gb)) & 63;
  501. for(block=0;block<4;block++)
  502. if(h->cbp & (1<<block))
  503. decode_residual_block(h,&h->s.gb,inter_dec,0,h->qp,
  504. h->cy + h->luma_scan[block], h->l_stride);
  505. decode_residual_chroma(h);
  506. return 0;
  507. }
  508. /*****************************************************************************
  509. *
  510. * macroblock level
  511. *
  512. ****************************************************************************/
  513. static int decode_mb_i(AVSContext *h, int cbp_code) {
  514. GetBitContext *gb = &h->s.gb;
  515. int block, pred_mode_uv;
  516. uint8_t top[18];
  517. uint8_t *left = NULL;
  518. uint8_t *d;
  519. init_mb(h);
  520. /* get intra prediction modes from stream */
  521. for(block=0;block<4;block++) {
  522. int nA,nB,predpred;
  523. int pos = scan3x3[block];
  524. nA = h->pred_mode_Y[pos-1];
  525. nB = h->pred_mode_Y[pos-3];
  526. predpred = FFMIN(nA,nB);
  527. if(predpred == NOT_AVAIL) // if either is not available
  528. predpred = INTRA_L_LP;
  529. if(!get_bits1(gb)){
  530. int rem_mode= get_bits(gb, 2);
  531. predpred = rem_mode + (rem_mode >= predpred);
  532. }
  533. h->pred_mode_Y[pos] = predpred;
  534. }
  535. pred_mode_uv = get_ue_golomb(gb);
  536. if(pred_mode_uv > 6) {
  537. av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
  538. return -1;
  539. }
  540. modify_mb_i(h, &pred_mode_uv);
  541. /* get coded block pattern */
  542. if(h->pic_type == FF_I_TYPE)
  543. cbp_code = get_ue_golomb(gb);
  544. if(cbp_code > 63){
  545. av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra cbp\n");
  546. return -1;
  547. }
  548. h->cbp = cbp_tab[cbp_code][0];
  549. if(h->cbp && !h->qp_fixed)
  550. h->qp = (h->qp + get_se_golomb(gb)) & 63; //qp_delta
  551. /* luma intra prediction interleaved with residual decode/transform/add */
  552. for(block=0;block<4;block++) {
  553. d = h->cy + h->luma_scan[block];
  554. load_intra_pred_luma(h, top, &left, block);
  555. h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]]
  556. (d, top, left, h->l_stride);
  557. if(h->cbp & (1<<block))
  558. decode_residual_block(h,gb,intra_dec,1,h->qp,d,h->l_stride);
  559. }
  560. /* chroma intra prediction */
  561. load_intra_pred_chroma(h);
  562. h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
  563. h->left_border_u, h->c_stride);
  564. h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
  565. h->left_border_v, h->c_stride);
  566. decode_residual_chroma(h);
  567. ff_cavs_filter(h,I_8X8);
  568. set_mv_intra(h);
  569. return 0;
  570. }
  571. static void decode_mb_p(AVSContext *h, enum mb_t mb_type) {
  572. GetBitContext *gb = &h->s.gb;
  573. int ref[4];
  574. init_mb(h);
  575. switch(mb_type) {
  576. case P_SKIP:
  577. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
  578. break;
  579. case P_16X16:
  580. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  581. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]);
  582. break;
  583. case P_16X8:
  584. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  585. ref[2] = h->ref_flag ? 0 : get_bits1(gb);
  586. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]);
  587. ff_cavs_mv(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]);
  588. break;
  589. case P_8X16:
  590. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  591. ref[1] = h->ref_flag ? 0 : get_bits1(gb);
  592. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]);
  593. ff_cavs_mv(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, ref[1]);
  594. break;
  595. case P_8X8:
  596. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  597. ref[1] = h->ref_flag ? 0 : get_bits1(gb);
  598. ref[2] = h->ref_flag ? 0 : get_bits1(gb);
  599. ref[3] = h->ref_flag ? 0 : get_bits1(gb);
  600. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]);
  601. ff_cavs_mv(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]);
  602. ff_cavs_mv(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]);
  603. ff_cavs_mv(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]);
  604. }
  605. ff_cavs_inter(h, mb_type);
  606. set_intra_mode_default(h);
  607. store_mvs(h);
  608. if(mb_type != P_SKIP)
  609. decode_residual_inter(h);
  610. ff_cavs_filter(h,mb_type);
  611. *h->col_type = mb_type;
  612. }
  613. static void decode_mb_b(AVSContext *h, enum mb_t mb_type) {
  614. int block;
  615. enum sub_mb_t sub_type[4];
  616. int flags;
  617. init_mb(h);
  618. /* reset all MVs */
  619. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  620. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  621. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  622. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  623. switch(mb_type) {
  624. case B_SKIP:
  625. case B_DIRECT:
  626. if(!(*h->col_type)) {
  627. /* intra MB at co-location, do in-plane prediction */
  628. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
  629. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
  630. } else
  631. /* direct prediction from co-located P MB, block-wise */
  632. for(block=0;block<4;block++)
  633. mv_pred_direct(h,&h->mv[mv_scan[block]],
  634. &h->col_mv[(h->mby*h->mb_width+h->mbx)*4 + block]);
  635. break;
  636. case B_FWD_16X16:
  637. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
  638. break;
  639. case B_SYM_16X16:
  640. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
  641. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16);
  642. break;
  643. case B_BWD_16X16:
  644. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
  645. break;
  646. case B_8X8:
  647. for(block=0;block<4;block++)
  648. sub_type[block] = get_bits(&h->s.gb,2);
  649. for(block=0;block<4;block++) {
  650. switch(sub_type[block]) {
  651. case B_SUB_DIRECT:
  652. if(!(*h->col_type)) {
  653. /* intra MB at co-location, do in-plane prediction */
  654. ff_cavs_mv(h, mv_scan[block], mv_scan[block]-3,
  655. MV_PRED_BSKIP, BLK_8X8, 1);
  656. ff_cavs_mv(h, mv_scan[block]+MV_BWD_OFFS,
  657. mv_scan[block]-3+MV_BWD_OFFS,
  658. MV_PRED_BSKIP, BLK_8X8, 0);
  659. } else
  660. mv_pred_direct(h,&h->mv[mv_scan[block]],
  661. &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]);
  662. break;
  663. case B_SUB_FWD:
  664. ff_cavs_mv(h, mv_scan[block], mv_scan[block]-3,
  665. MV_PRED_MEDIAN, BLK_8X8, 1);
  666. break;
  667. case B_SUB_SYM:
  668. ff_cavs_mv(h, mv_scan[block], mv_scan[block]-3,
  669. MV_PRED_MEDIAN, BLK_8X8, 1);
  670. mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8);
  671. break;
  672. }
  673. }
  674. for(block=0;block<4;block++) {
  675. if(sub_type[block] == B_SUB_BWD)
  676. ff_cavs_mv(h, mv_scan[block]+MV_BWD_OFFS,
  677. mv_scan[block]+MV_BWD_OFFS-3,
  678. MV_PRED_MEDIAN, BLK_8X8, 0);
  679. }
  680. break;
  681. default:
  682. assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8));
  683. flags = partition_flags[mb_type];
  684. if(mb_type & 1) { /* 16x8 macroblock types */
  685. if(flags & FWD0)
  686. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
  687. if(flags & SYM0)
  688. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8);
  689. if(flags & FWD1)
  690. ff_cavs_mv(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
  691. if(flags & SYM1)
  692. mv_pred_sym(h, &h->mv[MV_FWD_X2], BLK_16X8);
  693. if(flags & BWD0)
  694. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0);
  695. if(flags & BWD1)
  696. ff_cavs_mv(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
  697. } else { /* 8x16 macroblock types */
  698. if(flags & FWD0)
  699. ff_cavs_mv(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
  700. if(flags & SYM0)
  701. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16);
  702. if(flags & FWD1)
  703. ff_cavs_mv(h,MV_FWD_X1,MV_FWD_C2,MV_PRED_TOPRIGHT,BLK_8X16,1);
  704. if(flags & SYM1)
  705. mv_pred_sym(h, &h->mv[MV_FWD_X1], BLK_8X16);
  706. if(flags & BWD0)
  707. ff_cavs_mv(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
  708. if(flags & BWD1)
  709. ff_cavs_mv(h,MV_BWD_X1,MV_BWD_C2,MV_PRED_TOPRIGHT,BLK_8X16,0);
  710. }
  711. }
  712. ff_cavs_inter(h, mb_type);
  713. set_intra_mode_default(h);
  714. if(mb_type != B_SKIP)
  715. decode_residual_inter(h);
  716. ff_cavs_filter(h,mb_type);
  717. }
  718. /*****************************************************************************
  719. *
  720. * slice level
  721. *
  722. ****************************************************************************/
  723. static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) {
  724. if(h->stc > 0xAF)
  725. av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
  726. h->mby = h->stc;
  727. if((h->mby == 0) && (!h->qp_fixed)){
  728. h->qp_fixed = get_bits1(gb);
  729. h->qp = get_bits(gb,6);
  730. }
  731. /* inter frame or second slice can have weighting params */
  732. if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2))
  733. if(get_bits1(gb)) { //slice_weighting_flag
  734. av_log(h->s.avctx, AV_LOG_ERROR,
  735. "weighted prediction not yet supported\n");
  736. }
  737. return 0;
  738. }
  739. static inline void check_for_slice(AVSContext *h) {
  740. GetBitContext *gb = &h->s.gb;
  741. int align;
  742. align = (-get_bits_count(gb)) & 7;
  743. if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) {
  744. get_bits_long(gb,24+align);
  745. h->stc = get_bits(gb,8);
  746. decode_slice_header(h,gb);
  747. }
  748. }
  749. /*****************************************************************************
  750. *
  751. * frame level
  752. *
  753. ****************************************************************************/
  754. void ff_cavs_init_pic(AVSContext *h) {
  755. int i;
  756. /* clear some predictors */
  757. for(i=0;i<=20;i+=4)
  758. h->mv[i] = ff_cavs_un_mv;
  759. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  760. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  761. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  762. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  763. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  764. h->cy = h->picture.data[0];
  765. h->cu = h->picture.data[1];
  766. h->cv = h->picture.data[2];
  767. h->l_stride = h->picture.linesize[0];
  768. h->c_stride = h->picture.linesize[1];
  769. h->luma_scan[2] = 8*h->l_stride;
  770. h->luma_scan[3] = 8*h->l_stride+8;
  771. h->mbx = h->mby = 0;
  772. h->flags = 0;
  773. }
  774. static int decode_pic(AVSContext *h) {
  775. MpegEncContext *s = &h->s;
  776. int skip_count;
  777. enum mb_t mb_type;
  778. if (!s->context_initialized) {
  779. s->avctx->idct_algo = FF_IDCT_CAVS;
  780. if (MPV_common_init(s) < 0)
  781. return -1;
  782. ff_init_scantable(s->dsp.idct_permutation,&h->scantable,ff_zigzag_direct);
  783. }
  784. get_bits(&s->gb,16);//bbv_dwlay
  785. if(h->stc == PIC_PB_START_CODE) {
  786. h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE;
  787. if(h->pic_type > FF_B_TYPE) {
  788. av_log(s->avctx, AV_LOG_ERROR, "illegal picture type\n");
  789. return -1;
  790. }
  791. /* make sure we have the reference frames we need */
  792. if(!h->DPB[0].data[0] ||
  793. (!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE))
  794. return -1;
  795. } else {
  796. h->pic_type = FF_I_TYPE;
  797. if(get_bits1(&s->gb))
  798. get_bits(&s->gb,16);//time_code
  799. }
  800. /* release last B frame */
  801. if(h->picture.data[0])
  802. s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture);
  803. s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture);
  804. ff_cavs_init_pic(h);
  805. h->picture.poc = get_bits(&s->gb,8)*2;
  806. /* get temporal distances and MV scaling factors */
  807. if(h->pic_type != FF_B_TYPE) {
  808. h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512;
  809. } else {
  810. h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512;
  811. }
  812. h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512;
  813. h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0;
  814. h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0;
  815. if(h->pic_type == FF_B_TYPE) {
  816. h->sym_factor = h->dist[0]*h->scale_den[1];
  817. } else {
  818. h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0;
  819. h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0;
  820. }
  821. if(s->low_delay)
  822. get_ue_golomb(&s->gb); //bbv_check_times
  823. h->progressive = get_bits1(&s->gb);
  824. if(h->progressive)
  825. h->pic_structure = 1;
  826. else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) )
  827. get_bits1(&s->gb); //advanced_pred_mode_disable
  828. skip_bits1(&s->gb); //top_field_first
  829. skip_bits1(&s->gb); //repeat_first_field
  830. h->qp_fixed = get_bits1(&s->gb);
  831. h->qp = get_bits(&s->gb,6);
  832. if(h->pic_type == FF_I_TYPE) {
  833. if(!h->progressive && !h->pic_structure)
  834. skip_bits1(&s->gb);//what is this?
  835. skip_bits(&s->gb,4); //reserved bits
  836. } else {
  837. if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1))
  838. h->ref_flag = get_bits1(&s->gb);
  839. skip_bits(&s->gb,4); //reserved bits
  840. h->skip_mode_flag = get_bits1(&s->gb);
  841. }
  842. h->loop_filter_disable = get_bits1(&s->gb);
  843. if(!h->loop_filter_disable && get_bits1(&s->gb)) {
  844. h->alpha_offset = get_se_golomb(&s->gb);
  845. h->beta_offset = get_se_golomb(&s->gb);
  846. } else {
  847. h->alpha_offset = h->beta_offset = 0;
  848. }
  849. check_for_slice(h);
  850. if(h->pic_type == FF_I_TYPE) {
  851. do {
  852. decode_mb_i(h, 0);
  853. } while(next_mb(h));
  854. } else if(h->pic_type == FF_P_TYPE) {
  855. do {
  856. if(h->skip_mode_flag) {
  857. skip_count = get_ue_golomb(&s->gb);
  858. while(skip_count--) {
  859. decode_mb_p(h,P_SKIP);
  860. if(!next_mb(h))
  861. goto done;
  862. }
  863. mb_type = get_ue_golomb(&s->gb) + P_16X16;
  864. } else
  865. mb_type = get_ue_golomb(&s->gb) + P_SKIP;
  866. if(mb_type > P_8X8) {
  867. decode_mb_i(h, mb_type - P_8X8 - 1);
  868. } else
  869. decode_mb_p(h,mb_type);
  870. } while(next_mb(h));
  871. } else { /* FF_B_TYPE */
  872. do {
  873. if(h->skip_mode_flag) {
  874. skip_count = get_ue_golomb(&s->gb);
  875. while(skip_count--) {
  876. decode_mb_b(h,B_SKIP);
  877. if(!next_mb(h))
  878. goto done;
  879. }
  880. mb_type = get_ue_golomb(&s->gb) + B_DIRECT;
  881. } else
  882. mb_type = get_ue_golomb(&s->gb) + B_SKIP;
  883. if(mb_type > B_8X8) {
  884. decode_mb_i(h, mb_type - B_8X8 - 1);
  885. } else
  886. decode_mb_b(h,mb_type);
  887. } while(next_mb(h));
  888. }
  889. done:
  890. if(h->pic_type != FF_B_TYPE) {
  891. if(h->DPB[1].data[0])
  892. s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
  893. memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture));
  894. memcpy(&h->DPB[0], &h->picture, sizeof(Picture));
  895. memset(&h->picture,0,sizeof(Picture));
  896. }
  897. return 0;
  898. }
  899. /*****************************************************************************
  900. *
  901. * headers and interface
  902. *
  903. ****************************************************************************/
  904. /**
  905. * some predictions require data from the top-neighbouring macroblock.
  906. * this data has to be stored for one complete row of macroblocks
  907. * and this storage space is allocated here
  908. */
  909. void ff_cavs_init_top_lines(AVSContext *h) {
  910. /* alloc top line of predictors */
  911. h->top_qp = av_malloc( h->mb_width);
  912. h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
  913. h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
  914. h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
  915. h->top_border_y = av_malloc((h->mb_width+1)*16);
  916. h->top_border_u = av_malloc((h->mb_width)*10);
  917. h->top_border_v = av_malloc((h->mb_width)*10);
  918. /* alloc space for co-located MVs and types */
  919. h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t));
  920. h->col_type_base = av_malloc(h->mb_width*h->mb_height);
  921. h->block = av_mallocz(64*sizeof(DCTELEM));
  922. }
  923. static int decode_seq_header(AVSContext *h) {
  924. MpegEncContext *s = &h->s;
  925. int frame_rate_code;
  926. h->profile = get_bits(&s->gb,8);
  927. h->level = get_bits(&s->gb,8);
  928. skip_bits1(&s->gb); //progressive sequence
  929. s->width = get_bits(&s->gb,14);
  930. s->height = get_bits(&s->gb,14);
  931. skip_bits(&s->gb,2); //chroma format
  932. skip_bits(&s->gb,3); //sample_precision
  933. h->aspect_ratio = get_bits(&s->gb,4);
  934. frame_rate_code = get_bits(&s->gb,4);
  935. skip_bits(&s->gb,18);//bit_rate_lower
  936. skip_bits1(&s->gb); //marker_bit
  937. skip_bits(&s->gb,12);//bit_rate_upper
  938. s->low_delay = get_bits1(&s->gb);
  939. h->mb_width = (s->width + 15) >> 4;
  940. h->mb_height = (s->height + 15) >> 4;
  941. h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num;
  942. h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den;
  943. h->s.avctx->width = s->width;
  944. h->s.avctx->height = s->height;
  945. if(!h->top_qp)
  946. ff_cavs_init_top_lines(h);
  947. return 0;
  948. }
  949. static void cavs_flush(AVCodecContext * avctx) {
  950. AVSContext *h = avctx->priv_data;
  951. h->got_keyframe = 0;
  952. }
  953. static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size,
  954. uint8_t * buf, int buf_size) {
  955. AVSContext *h = avctx->priv_data;
  956. MpegEncContext *s = &h->s;
  957. int input_size;
  958. const uint8_t *buf_end;
  959. const uint8_t *buf_ptr;
  960. AVFrame *picture = data;
  961. uint32_t stc;
  962. s->avctx = avctx;
  963. if (buf_size == 0) {
  964. if(!s->low_delay && h->DPB[0].data[0]) {
  965. *data_size = sizeof(AVPicture);
  966. *picture = *(AVFrame *) &h->DPB[0];
  967. }
  968. return 0;
  969. }
  970. buf_ptr = buf;
  971. buf_end = buf + buf_size;
  972. for(;;) {
  973. buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc);
  974. if(stc & 0xFFFFFE00)
  975. return FFMAX(0, buf_ptr - buf - s->parse_context.last_index);
  976. input_size = (buf_end - buf_ptr)*8;
  977. switch(stc) {
  978. case CAVS_START_CODE:
  979. init_get_bits(&s->gb, buf_ptr, input_size);
  980. decode_seq_header(h);
  981. break;
  982. case PIC_I_START_CODE:
  983. if(!h->got_keyframe) {
  984. if(h->DPB[0].data[0])
  985. avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
  986. if(h->DPB[1].data[0])
  987. avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
  988. h->got_keyframe = 1;
  989. }
  990. case PIC_PB_START_CODE:
  991. *data_size = 0;
  992. if(!h->got_keyframe)
  993. break;
  994. init_get_bits(&s->gb, buf_ptr, input_size);
  995. h->stc = stc;
  996. if(decode_pic(h))
  997. break;
  998. *data_size = sizeof(AVPicture);
  999. if(h->pic_type != FF_B_TYPE) {
  1000. if(h->DPB[1].data[0]) {
  1001. *picture = *(AVFrame *) &h->DPB[1];
  1002. } else {
  1003. *data_size = 0;
  1004. }
  1005. } else
  1006. *picture = *(AVFrame *) &h->picture;
  1007. break;
  1008. case EXT_START_CODE:
  1009. //mpeg_decode_extension(avctx,buf_ptr, input_size);
  1010. break;
  1011. case USER_START_CODE:
  1012. //mpeg_decode_user_data(avctx,buf_ptr, input_size);
  1013. break;
  1014. default:
  1015. if (stc >= SLICE_MIN_START_CODE &&
  1016. stc <= SLICE_MAX_START_CODE) {
  1017. init_get_bits(&s->gb, buf_ptr, input_size);
  1018. decode_slice_header(h, &s->gb);
  1019. }
  1020. break;
  1021. }
  1022. }
  1023. }
  1024. int ff_cavs_init(AVCodecContext *avctx) {
  1025. AVSContext *h = avctx->priv_data;
  1026. MpegEncContext * const s = &h->s;
  1027. MPV_decode_defaults(s);
  1028. s->avctx = avctx;
  1029. avctx->pix_fmt= PIX_FMT_YUV420P;
  1030. h->luma_scan[0] = 0;
  1031. h->luma_scan[1] = 8;
  1032. h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
  1033. h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
  1034. h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
  1035. h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  1036. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  1037. h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
  1038. h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
  1039. h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
  1040. h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
  1041. h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
  1042. h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
  1043. h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
  1044. h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
  1045. h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
  1046. h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
  1047. h->mv[ 7] = ff_cavs_un_mv;
  1048. h->mv[19] = ff_cavs_un_mv;
  1049. return 0;
  1050. }
  1051. int ff_cavs_end(AVCodecContext *avctx) {
  1052. AVSContext *h = avctx->priv_data;
  1053. av_free(h->top_qp);
  1054. av_free(h->top_mv[0]);
  1055. av_free(h->top_mv[1]);
  1056. av_free(h->top_pred_Y);
  1057. av_free(h->top_border_y);
  1058. av_free(h->top_border_u);
  1059. av_free(h->top_border_v);
  1060. av_free(h->col_mv);
  1061. av_free(h->col_type_base);
  1062. av_free(h->block);
  1063. return 0;
  1064. }
  1065. AVCodec cavs_decoder = {
  1066. "cavs",
  1067. CODEC_TYPE_VIDEO,
  1068. CODEC_ID_CAVS,
  1069. sizeof(AVSContext),
  1070. ff_cavs_init,
  1071. NULL,
  1072. ff_cavs_end,
  1073. cavs_decode_frame,
  1074. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  1075. .flush= cavs_flush,
  1076. };