You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2661 lines
100KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "fft.h"
  37. #include "get_bits.h"
  38. #include "dcadata.h"
  39. #include "dcahuff.h"
  40. #include "dca.h"
  41. #include "mathops.h"
  42. #include "synth_filter.h"
  43. #include "dcadsp.h"
  44. #include "fmtconvert.h"
  45. #include "internal.h"
  46. #if ARCH_ARM
  47. # include "arm/dca.h"
  48. #endif
  49. //#define TRACE
  50. #define DCA_PRIM_CHANNELS_MAX (7)
  51. #define DCA_ABITS_MAX (32) /* Should be 28 */
  52. #define DCA_SUBSUBFRAMES_MAX (4)
  53. #define DCA_SUBFRAMES_MAX (16)
  54. #define DCA_BLOCKS_MAX (16)
  55. #define DCA_LFE_MAX (3)
  56. #define DCA_CHSETS_MAX (4)
  57. #define DCA_CHSET_CHANS_MAX (8)
  58. enum DCAMode {
  59. DCA_MONO = 0,
  60. DCA_CHANNEL,
  61. DCA_STEREO,
  62. DCA_STEREO_SUMDIFF,
  63. DCA_STEREO_TOTAL,
  64. DCA_3F,
  65. DCA_2F1R,
  66. DCA_3F1R,
  67. DCA_2F2R,
  68. DCA_3F2R,
  69. DCA_4F2R
  70. };
  71. /* these are unconfirmed but should be mostly correct */
  72. enum DCAExSSSpeakerMask {
  73. DCA_EXSS_FRONT_CENTER = 0x0001,
  74. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  75. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  76. DCA_EXSS_LFE = 0x0008,
  77. DCA_EXSS_REAR_CENTER = 0x0010,
  78. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  79. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  80. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  81. DCA_EXSS_OVERHEAD = 0x0100,
  82. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  83. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  84. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  85. DCA_EXSS_LFE2 = 0x1000,
  86. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  87. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  88. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  89. };
  90. enum DCAXxchSpeakerMask {
  91. DCA_XXCH_FRONT_CENTER = 0x0000001,
  92. DCA_XXCH_FRONT_LEFT = 0x0000002,
  93. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  94. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  95. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  96. DCA_XXCH_LFE1 = 0x0000020,
  97. DCA_XXCH_REAR_CENTER = 0x0000040,
  98. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  99. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  100. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  101. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  102. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  103. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  104. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  105. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  106. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  107. DCA_XXCH_LFE2 = 0x0010000,
  108. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  109. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  110. DCA_XXCH_OVERHEAD = 0x0080000,
  111. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  112. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  113. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  114. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  115. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  116. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  117. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  118. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  119. };
  120. static const uint32_t map_xxch_to_native[28] = {
  121. AV_CH_FRONT_CENTER,
  122. AV_CH_FRONT_LEFT,
  123. AV_CH_FRONT_RIGHT,
  124. AV_CH_SIDE_LEFT,
  125. AV_CH_SIDE_RIGHT,
  126. AV_CH_LOW_FREQUENCY,
  127. AV_CH_BACK_CENTER,
  128. AV_CH_BACK_LEFT,
  129. AV_CH_BACK_RIGHT,
  130. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  131. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  132. AV_CH_FRONT_LEFT_OF_CENTER,
  133. AV_CH_FRONT_RIGHT_OF_CENTER,
  134. AV_CH_TOP_FRONT_LEFT,
  135. AV_CH_TOP_FRONT_CENTER,
  136. AV_CH_TOP_FRONT_RIGHT,
  137. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  138. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  139. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  140. AV_CH_TOP_CENTER, /* overhead */
  141. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  142. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  143. AV_CH_TOP_BACK_CENTER,
  144. AV_CH_TOP_BACK_LEFT,
  145. AV_CH_TOP_BACK_RIGHT,
  146. AV_CH_BACK_CENTER, /* rear low center -- dup */
  147. AV_CH_BACK_LEFT, /* rear low left -- dup */
  148. AV_CH_BACK_RIGHT /* read low right -- dup */
  149. };
  150. enum DCAExtensionMask {
  151. DCA_EXT_CORE = 0x001, ///< core in core substream
  152. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  153. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  154. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  155. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  156. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  157. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  158. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  159. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  160. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  161. };
  162. /* -1 are reserved or unknown */
  163. static const int dca_ext_audio_descr_mask[] = {
  164. DCA_EXT_XCH,
  165. -1,
  166. DCA_EXT_X96,
  167. DCA_EXT_XCH | DCA_EXT_X96,
  168. -1,
  169. -1,
  170. DCA_EXT_XXCH,
  171. -1,
  172. };
  173. /* extensions that reside in core substream */
  174. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  175. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  176. * Some compromises have been made for special configurations. Most configurations
  177. * are never used so complete accuracy is not needed.
  178. *
  179. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  180. * S -> side, when both rear and back are configured move one of them to the side channel
  181. * OV -> center back
  182. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  183. */
  184. static const uint64_t dca_core_channel_layout[] = {
  185. AV_CH_FRONT_CENTER, ///< 1, A
  186. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  187. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  188. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  189. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  190. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  191. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  192. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  193. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  194. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  195. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  196. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  197. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  198. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  199. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  200. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  201. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  202. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  203. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  204. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  205. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  206. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  207. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  208. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  209. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  210. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  211. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  212. };
  213. static const int8_t dca_lfe_index[] = {
  214. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  215. };
  216. static const int8_t dca_channel_reorder_lfe[][9] = {
  217. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  218. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  219. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  220. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  221. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  222. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  223. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  224. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  225. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  226. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  227. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  228. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  229. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  230. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  231. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  232. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  233. };
  234. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  235. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  236. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  237. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  238. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  239. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  240. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  241. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  242. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  243. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  244. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  245. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  246. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  247. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  248. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  249. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  250. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  251. };
  252. static const int8_t dca_channel_reorder_nolfe[][9] = {
  253. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  254. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  255. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  256. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  257. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  258. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  259. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  260. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  261. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  262. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  263. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  264. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  265. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  266. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  267. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  268. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  269. };
  270. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  271. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  272. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  273. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  274. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  275. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  276. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  277. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  278. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  279. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  280. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  281. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  282. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  283. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  284. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  285. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  286. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  287. };
  288. #define DCA_DOLBY 101 /* FIXME */
  289. #define DCA_CHANNEL_BITS 6
  290. #define DCA_CHANNEL_MASK 0x3F
  291. #define DCA_LFE 0x80
  292. #define HEADER_SIZE 14
  293. #define DCA_MAX_FRAME_SIZE 16384
  294. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  295. #define DCA_BUFFER_PADDING_SIZE 1024
  296. #define DCA_NSYNCAUX 0x9A1105A0
  297. /** Bit allocation */
  298. typedef struct {
  299. int offset; ///< code values offset
  300. int maxbits[8]; ///< max bits in VLC
  301. int wrap; ///< wrap for get_vlc2()
  302. VLC vlc[8]; ///< actual codes
  303. } BitAlloc;
  304. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  305. static BitAlloc dca_tmode; ///< transition mode VLCs
  306. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  307. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  308. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  309. int idx)
  310. {
  311. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  312. ba->offset;
  313. }
  314. typedef struct {
  315. const AVClass *class; ///< class for AVOptions
  316. AVCodecContext *avctx;
  317. /* Frame header */
  318. int frame_type; ///< type of the current frame
  319. int samples_deficit; ///< deficit sample count
  320. int crc_present; ///< crc is present in the bitstream
  321. int sample_blocks; ///< number of PCM sample blocks
  322. int frame_size; ///< primary frame byte size
  323. int amode; ///< audio channels arrangement
  324. int sample_rate; ///< audio sampling rate
  325. int bit_rate; ///< transmission bit rate
  326. int bit_rate_index; ///< transmission bit rate index
  327. int dynrange; ///< embedded dynamic range flag
  328. int timestamp; ///< embedded time stamp flag
  329. int aux_data; ///< auxiliary data flag
  330. int hdcd; ///< source material is mastered in HDCD
  331. int ext_descr; ///< extension audio descriptor flag
  332. int ext_coding; ///< extended coding flag
  333. int aspf; ///< audio sync word insertion flag
  334. int lfe; ///< low frequency effects flag
  335. int predictor_history; ///< predictor history flag
  336. int header_crc; ///< header crc check bytes
  337. int multirate_inter; ///< multirate interpolator switch
  338. int version; ///< encoder software revision
  339. int copy_history; ///< copy history
  340. int source_pcm_res; ///< source pcm resolution
  341. int front_sum; ///< front sum/difference flag
  342. int surround_sum; ///< surround sum/difference flag
  343. int dialog_norm; ///< dialog normalisation parameter
  344. /* Primary audio coding header */
  345. int subframes; ///< number of subframes
  346. int total_channels; ///< number of channels including extensions
  347. int prim_channels; ///< number of primary audio channels
  348. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  349. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  350. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  351. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  352. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  353. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  354. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  355. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  356. /* Primary audio coding side information */
  357. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  358. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  359. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  360. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  361. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  362. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  363. int32_t scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2];///< scale factors (2 if transient)
  364. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  365. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  366. float downmix_coef[DCA_PRIM_CHANNELS_MAX + 1][2]; ///< stereo downmix coefficients
  367. int dynrange_coef; ///< dynamic range coefficient
  368. /* Core substream's embedded downmix coefficients (cf. ETSI TS 102 114 V1.4.1)
  369. * Input: primary audio channels (incl. LFE if present)
  370. * Output: downmix audio channels (up to 4, no LFE) */
  371. uint8_t core_downmix; ///< embedded downmix coefficients available
  372. uint8_t core_downmix_amode; ///< audio channel arrangement of embedded downmix
  373. uint16_t core_downmix_codes[DCA_PRIM_CHANNELS_MAX + 1][4]; ///< embedded downmix coefficients (9-bit codes)
  374. int32_t high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  375. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  376. int lfe_scale_factor;
  377. /* Subband samples history (for ADPCM) */
  378. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  379. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  380. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  381. int hist_index[DCA_PRIM_CHANNELS_MAX];
  382. DECLARE_ALIGNED(32, float, raXin)[32];
  383. int output; ///< type of output
  384. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  385. float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  386. float *extra_channels[DCA_PRIM_CHANNELS_MAX + 1];
  387. uint8_t *extra_channels_buffer;
  388. unsigned int extra_channels_buffer_size;
  389. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  390. int dca_buffer_size; ///< how much data is in the dca_buffer
  391. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  392. GetBitContext gb;
  393. /* Current position in DCA frame */
  394. int current_subframe;
  395. int current_subsubframe;
  396. int core_ext_mask; ///< present extensions in the core substream
  397. /* XCh extension information */
  398. int xch_present; ///< XCh extension present and valid
  399. int xch_base_channel; ///< index of first (only) channel containing XCH data
  400. int xch_disable; ///< whether the XCh extension should be decoded or not
  401. /* XXCH extension information */
  402. int xxch_chset;
  403. int xxch_nbits_spk_mask;
  404. uint32_t xxch_core_spkmask;
  405. uint32_t xxch_spk_masks[4]; /* speaker masks, last element is core mask */
  406. int xxch_chset_nch[4];
  407. float xxch_dmix_sf[DCA_CHSETS_MAX];
  408. uint32_t xxch_dmix_embedded; /* lower layer has mix pre-embedded, per chset */
  409. float xxch_dmix_coeff[DCA_PRIM_CHANNELS_MAX][32]; /* worst case sizing */
  410. int8_t xxch_order_tab[32];
  411. int8_t lfe_index;
  412. /* ExSS header parser */
  413. int static_fields; ///< static fields present
  414. int mix_metadata; ///< mixing metadata present
  415. int num_mix_configs; ///< number of mix out configurations
  416. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  417. int profile;
  418. int debug_flag; ///< used for suppressing repeated error messages output
  419. AVFloatDSPContext fdsp;
  420. FFTContext imdct;
  421. SynthFilterContext synth;
  422. DCADSPContext dcadsp;
  423. FmtConvertContext fmt_conv;
  424. } DCAContext;
  425. static const uint16_t dca_vlc_offs[] = {
  426. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  427. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  428. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  429. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  430. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  431. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  432. };
  433. static av_cold void dca_init_vlcs(void)
  434. {
  435. static int vlcs_initialized = 0;
  436. int i, j, c = 14;
  437. static VLC_TYPE dca_table[23622][2];
  438. if (vlcs_initialized)
  439. return;
  440. dca_bitalloc_index.offset = 1;
  441. dca_bitalloc_index.wrap = 2;
  442. for (i = 0; i < 5; i++) {
  443. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  444. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  445. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  446. bitalloc_12_bits[i], 1, 1,
  447. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  448. }
  449. dca_scalefactor.offset = -64;
  450. dca_scalefactor.wrap = 2;
  451. for (i = 0; i < 5; i++) {
  452. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  453. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  454. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  455. scales_bits[i], 1, 1,
  456. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  457. }
  458. dca_tmode.offset = 0;
  459. dca_tmode.wrap = 1;
  460. for (i = 0; i < 4; i++) {
  461. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  462. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  463. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  464. tmode_bits[i], 1, 1,
  465. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  466. }
  467. for (i = 0; i < 10; i++)
  468. for (j = 0; j < 7; j++) {
  469. if (!bitalloc_codes[i][j])
  470. break;
  471. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  472. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  473. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  474. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  475. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  476. bitalloc_sizes[i],
  477. bitalloc_bits[i][j], 1, 1,
  478. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  479. c++;
  480. }
  481. vlcs_initialized = 1;
  482. }
  483. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  484. {
  485. while (len--)
  486. *dst++ = get_bits(gb, bits);
  487. }
  488. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  489. {
  490. int i, base, mask;
  491. /* locate channel set containing the channel */
  492. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  493. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  494. base += av_popcount(mask);
  495. return base + av_popcount(mask & (xxch_ch - 1));
  496. }
  497. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  498. int xxch)
  499. {
  500. int i, j;
  501. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  502. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  503. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  504. int hdr_pos = 0, hdr_size = 0;
  505. float sign, mag, scale_factor;
  506. int this_chans, acc_mask;
  507. int embedded_downmix;
  508. int nchans, mask[8];
  509. int coeff, ichan;
  510. /* xxch has arbitrary sized audio coding headers */
  511. if (xxch) {
  512. hdr_pos = get_bits_count(&s->gb);
  513. hdr_size = get_bits(&s->gb, 7) + 1;
  514. }
  515. nchans = get_bits(&s->gb, 3) + 1;
  516. s->total_channels = nchans + base_channel;
  517. s->prim_channels = s->total_channels;
  518. /* obtain speaker layout mask & downmix coefficients for XXCH */
  519. if (xxch) {
  520. acc_mask = s->xxch_core_spkmask;
  521. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  522. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  523. s->xxch_chset_nch[s->xxch_chset] = nchans;
  524. for (i = 0; i <= s->xxch_chset; i++)
  525. acc_mask |= s->xxch_spk_masks[i];
  526. /* check for downmixing information */
  527. if (get_bits1(&s->gb)) {
  528. embedded_downmix = get_bits1(&s->gb);
  529. scale_factor =
  530. 1.0f / dca_dmixtable[(get_bits(&s->gb, 6) - 1) << 2];
  531. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  532. for (i = base_channel; i < s->prim_channels; i++) {
  533. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  534. }
  535. for (j = base_channel; j < s->prim_channels; j++) {
  536. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  537. s->xxch_dmix_embedded |= (embedded_downmix << j);
  538. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  539. if (mask[j] & (1 << i)) {
  540. if ((1 << i) == DCA_XXCH_LFE1) {
  541. av_log(s->avctx, AV_LOG_WARNING,
  542. "DCA-XXCH: dmix to LFE1 not supported.\n");
  543. continue;
  544. }
  545. coeff = get_bits(&s->gb, 7);
  546. sign = (coeff & 64) ? 1.0 : -1.0;
  547. mag = dca_dmixtable[((coeff & 63) - 1) << 2];
  548. ichan = dca_xxch2index(s, 1 << i);
  549. s->xxch_dmix_coeff[j][ichan] = sign * mag;
  550. }
  551. }
  552. }
  553. }
  554. }
  555. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  556. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  557. for (i = base_channel; i < s->prim_channels; i++) {
  558. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  559. if (s->subband_activity[i] > DCA_SUBBANDS)
  560. s->subband_activity[i] = DCA_SUBBANDS;
  561. }
  562. for (i = base_channel; i < s->prim_channels; i++) {
  563. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  564. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  565. s->vq_start_subband[i] = DCA_SUBBANDS;
  566. }
  567. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  568. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  569. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  570. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  571. /* Get codebooks quantization indexes */
  572. if (!base_channel)
  573. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  574. for (j = 1; j < 11; j++)
  575. for (i = base_channel; i < s->prim_channels; i++)
  576. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  577. /* Get scale factor adjustment */
  578. for (j = 0; j < 11; j++)
  579. for (i = base_channel; i < s->prim_channels; i++)
  580. s->scalefactor_adj[i][j] = 1;
  581. for (j = 1; j < 11; j++)
  582. for (i = base_channel; i < s->prim_channels; i++)
  583. if (s->quant_index_huffman[i][j] < thr[j])
  584. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  585. if (!xxch) {
  586. if (s->crc_present) {
  587. /* Audio header CRC check */
  588. get_bits(&s->gb, 16);
  589. }
  590. } else {
  591. /* Skip to the end of the header, also ignore CRC if present */
  592. i = get_bits_count(&s->gb);
  593. if (hdr_pos + 8 * hdr_size > i)
  594. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  595. }
  596. s->current_subframe = 0;
  597. s->current_subsubframe = 0;
  598. #ifdef TRACE
  599. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  600. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  601. for (i = base_channel; i < s->prim_channels; i++) {
  602. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  603. s->subband_activity[i]);
  604. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  605. s->vq_start_subband[i]);
  606. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  607. s->joint_intensity[i]);
  608. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  609. s->transient_huffman[i]);
  610. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  611. s->scalefactor_huffman[i]);
  612. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  613. s->bitalloc_huffman[i]);
  614. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  615. for (j = 0; j < 11; j++)
  616. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  617. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  618. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  619. for (j = 0; j < 11; j++)
  620. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  621. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  622. }
  623. #endif
  624. return 0;
  625. }
  626. static int dca_parse_frame_header(DCAContext *s)
  627. {
  628. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  629. /* Sync code */
  630. skip_bits_long(&s->gb, 32);
  631. /* Frame header */
  632. s->frame_type = get_bits(&s->gb, 1);
  633. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  634. s->crc_present = get_bits(&s->gb, 1);
  635. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  636. s->frame_size = get_bits(&s->gb, 14) + 1;
  637. if (s->frame_size < 95)
  638. return AVERROR_INVALIDDATA;
  639. s->amode = get_bits(&s->gb, 6);
  640. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  641. if (!s->sample_rate)
  642. return AVERROR_INVALIDDATA;
  643. s->bit_rate_index = get_bits(&s->gb, 5);
  644. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  645. if (!s->bit_rate)
  646. return AVERROR_INVALIDDATA;
  647. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  648. s->dynrange = get_bits(&s->gb, 1);
  649. s->timestamp = get_bits(&s->gb, 1);
  650. s->aux_data = get_bits(&s->gb, 1);
  651. s->hdcd = get_bits(&s->gb, 1);
  652. s->ext_descr = get_bits(&s->gb, 3);
  653. s->ext_coding = get_bits(&s->gb, 1);
  654. s->aspf = get_bits(&s->gb, 1);
  655. s->lfe = get_bits(&s->gb, 2);
  656. s->predictor_history = get_bits(&s->gb, 1);
  657. if (s->lfe > 2) {
  658. s->lfe = 0;
  659. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  660. return AVERROR_INVALIDDATA;
  661. }
  662. /* TODO: check CRC */
  663. if (s->crc_present)
  664. s->header_crc = get_bits(&s->gb, 16);
  665. s->multirate_inter = get_bits(&s->gb, 1);
  666. s->version = get_bits(&s->gb, 4);
  667. s->copy_history = get_bits(&s->gb, 2);
  668. s->source_pcm_res = get_bits(&s->gb, 3);
  669. s->front_sum = get_bits(&s->gb, 1);
  670. s->surround_sum = get_bits(&s->gb, 1);
  671. s->dialog_norm = get_bits(&s->gb, 4);
  672. /* FIXME: channels mixing levels */
  673. s->output = s->amode;
  674. if (s->lfe)
  675. s->output |= DCA_LFE;
  676. #ifdef TRACE
  677. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  678. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  679. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  680. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  681. s->sample_blocks, s->sample_blocks * 32);
  682. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  683. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  684. s->amode, dca_channels[s->amode]);
  685. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  686. s->sample_rate);
  687. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  688. s->bit_rate);
  689. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  690. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  691. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  692. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  693. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  694. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  695. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  696. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  697. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  698. s->predictor_history);
  699. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  700. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  701. s->multirate_inter);
  702. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  703. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  704. av_log(s->avctx, AV_LOG_DEBUG,
  705. "source pcm resolution: %i (%i bits/sample)\n",
  706. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  707. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  708. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  709. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  710. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  711. #endif
  712. /* Primary audio coding header */
  713. s->subframes = get_bits(&s->gb, 4) + 1;
  714. return dca_parse_audio_coding_header(s, 0, 0);
  715. }
  716. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  717. {
  718. if (level < 5) {
  719. /* huffman encoded */
  720. value += get_bitalloc(gb, &dca_scalefactor, level);
  721. value = av_clip(value, 0, (1 << log2range) - 1);
  722. } else if (level < 8) {
  723. if (level + 1 > log2range) {
  724. skip_bits(gb, level + 1 - log2range);
  725. value = get_bits(gb, log2range);
  726. } else {
  727. value = get_bits(gb, level + 1);
  728. }
  729. }
  730. return value;
  731. }
  732. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  733. {
  734. /* Primary audio coding side information */
  735. int j, k;
  736. if (get_bits_left(&s->gb) < 0)
  737. return AVERROR_INVALIDDATA;
  738. if (!base_channel) {
  739. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  740. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  741. }
  742. for (j = base_channel; j < s->prim_channels; j++) {
  743. for (k = 0; k < s->subband_activity[j]; k++)
  744. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  745. }
  746. /* Get prediction codebook */
  747. for (j = base_channel; j < s->prim_channels; j++) {
  748. for (k = 0; k < s->subband_activity[j]; k++) {
  749. if (s->prediction_mode[j][k] > 0) {
  750. /* (Prediction coefficient VQ address) */
  751. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  752. }
  753. }
  754. }
  755. /* Bit allocation index */
  756. for (j = base_channel; j < s->prim_channels; j++) {
  757. for (k = 0; k < s->vq_start_subband[j]; k++) {
  758. if (s->bitalloc_huffman[j] == 6)
  759. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  760. else if (s->bitalloc_huffman[j] == 5)
  761. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  762. else if (s->bitalloc_huffman[j] == 7) {
  763. av_log(s->avctx, AV_LOG_ERROR,
  764. "Invalid bit allocation index\n");
  765. return AVERROR_INVALIDDATA;
  766. } else {
  767. s->bitalloc[j][k] =
  768. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  769. }
  770. if (s->bitalloc[j][k] > 26) {
  771. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  772. j, k, s->bitalloc[j][k]);
  773. return AVERROR_INVALIDDATA;
  774. }
  775. }
  776. }
  777. /* Transition mode */
  778. for (j = base_channel; j < s->prim_channels; j++) {
  779. for (k = 0; k < s->subband_activity[j]; k++) {
  780. s->transition_mode[j][k] = 0;
  781. if (s->subsubframes[s->current_subframe] > 1 &&
  782. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  783. s->transition_mode[j][k] =
  784. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  785. }
  786. }
  787. }
  788. if (get_bits_left(&s->gb) < 0)
  789. return AVERROR_INVALIDDATA;
  790. for (j = base_channel; j < s->prim_channels; j++) {
  791. const uint32_t *scale_table;
  792. int scale_sum, log_size;
  793. memset(s->scale_factor[j], 0,
  794. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  795. if (s->scalefactor_huffman[j] == 6) {
  796. scale_table = scale_factor_quant7;
  797. log_size = 7;
  798. } else {
  799. scale_table = scale_factor_quant6;
  800. log_size = 6;
  801. }
  802. /* When huffman coded, only the difference is encoded */
  803. scale_sum = 0;
  804. for (k = 0; k < s->subband_activity[j]; k++) {
  805. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  806. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  807. s->scale_factor[j][k][0] = scale_table[scale_sum];
  808. }
  809. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  810. /* Get second scale factor */
  811. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  812. s->scale_factor[j][k][1] = scale_table[scale_sum];
  813. }
  814. }
  815. }
  816. /* Joint subband scale factor codebook select */
  817. for (j = base_channel; j < s->prim_channels; j++) {
  818. /* Transmitted only if joint subband coding enabled */
  819. if (s->joint_intensity[j] > 0)
  820. s->joint_huff[j] = get_bits(&s->gb, 3);
  821. }
  822. if (get_bits_left(&s->gb) < 0)
  823. return AVERROR_INVALIDDATA;
  824. /* Scale factors for joint subband coding */
  825. for (j = base_channel; j < s->prim_channels; j++) {
  826. int source_channel;
  827. /* Transmitted only if joint subband coding enabled */
  828. if (s->joint_intensity[j] > 0) {
  829. int scale = 0;
  830. source_channel = s->joint_intensity[j] - 1;
  831. /* When huffman coded, only the difference is encoded
  832. * (is this valid as well for joint scales ???) */
  833. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  834. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  835. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  836. }
  837. if (!(s->debug_flag & 0x02)) {
  838. av_log(s->avctx, AV_LOG_DEBUG,
  839. "Joint stereo coding not supported\n");
  840. s->debug_flag |= 0x02;
  841. }
  842. }
  843. }
  844. /* Dynamic range coefficient */
  845. if (!base_channel && s->dynrange)
  846. s->dynrange_coef = get_bits(&s->gb, 8);
  847. /* Side information CRC check word */
  848. if (s->crc_present) {
  849. get_bits(&s->gb, 16);
  850. }
  851. /*
  852. * Primary audio data arrays
  853. */
  854. /* VQ encoded high frequency subbands */
  855. for (j = base_channel; j < s->prim_channels; j++)
  856. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  857. /* 1 vector -> 32 samples */
  858. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  859. /* Low frequency effect data */
  860. if (!base_channel && s->lfe) {
  861. int quant7;
  862. /* LFE samples */
  863. int lfe_samples = 2 * s->lfe * (4 + block_index);
  864. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  865. float lfe_scale;
  866. for (j = lfe_samples; j < lfe_end_sample; j++) {
  867. /* Signed 8 bits int */
  868. s->lfe_data[j] = get_sbits(&s->gb, 8);
  869. }
  870. /* Scale factor index */
  871. quant7 = get_bits(&s->gb, 8);
  872. if (quant7 > 127) {
  873. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  874. return AVERROR_INVALIDDATA;
  875. }
  876. s->lfe_scale_factor = scale_factor_quant7[quant7];
  877. /* Quantization step size * scale factor */
  878. lfe_scale = 0.035 * s->lfe_scale_factor;
  879. for (j = lfe_samples; j < lfe_end_sample; j++)
  880. s->lfe_data[j] *= lfe_scale;
  881. }
  882. #ifdef TRACE
  883. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  884. s->subsubframes[s->current_subframe]);
  885. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  886. s->partial_samples[s->current_subframe]);
  887. for (j = base_channel; j < s->prim_channels; j++) {
  888. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  889. for (k = 0; k < s->subband_activity[j]; k++)
  890. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  891. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  892. }
  893. for (j = base_channel; j < s->prim_channels; j++) {
  894. for (k = 0; k < s->subband_activity[j]; k++)
  895. av_log(s->avctx, AV_LOG_DEBUG,
  896. "prediction coefs: %f, %f, %f, %f\n",
  897. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  898. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  899. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  900. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  901. }
  902. for (j = base_channel; j < s->prim_channels; j++) {
  903. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  904. for (k = 0; k < s->vq_start_subband[j]; k++)
  905. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  906. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  907. }
  908. for (j = base_channel; j < s->prim_channels; j++) {
  909. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  910. for (k = 0; k < s->subband_activity[j]; k++)
  911. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  912. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  913. }
  914. for (j = base_channel; j < s->prim_channels; j++) {
  915. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  916. for (k = 0; k < s->subband_activity[j]; k++) {
  917. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  918. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  919. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  920. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  921. }
  922. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  923. }
  924. for (j = base_channel; j < s->prim_channels; j++) {
  925. if (s->joint_intensity[j] > 0) {
  926. int source_channel = s->joint_intensity[j] - 1;
  927. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  928. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  929. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  930. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  931. }
  932. }
  933. for (j = base_channel; j < s->prim_channels; j++)
  934. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  935. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  936. if (!base_channel && s->lfe) {
  937. int lfe_samples = 2 * s->lfe * (4 + block_index);
  938. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  939. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  940. for (j = lfe_samples; j < lfe_end_sample; j++)
  941. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  942. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  943. }
  944. #endif
  945. return 0;
  946. }
  947. static void qmf_32_subbands(DCAContext *s, int chans,
  948. float samples_in[32][8], float *samples_out,
  949. float scale)
  950. {
  951. const float *prCoeff;
  952. int sb_act = s->subband_activity[chans];
  953. scale *= sqrt(1 / 8.0);
  954. /* Select filter */
  955. if (!s->multirate_inter) /* Non-perfect reconstruction */
  956. prCoeff = fir_32bands_nonperfect;
  957. else /* Perfect reconstruction */
  958. prCoeff = fir_32bands_perfect;
  959. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  960. s->subband_fir_hist[chans],
  961. &s->hist_index[chans],
  962. s->subband_fir_noidea[chans], prCoeff,
  963. samples_out, s->raXin, scale);
  964. }
  965. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  966. int num_deci_sample, float *samples_in,
  967. float *samples_out)
  968. {
  969. /* samples_in: An array holding decimated samples.
  970. * Samples in current subframe starts from samples_in[0],
  971. * while samples_in[-1], samples_in[-2], ..., stores samples
  972. * from last subframe as history.
  973. *
  974. * samples_out: An array holding interpolated samples
  975. */
  976. int idx;
  977. const float *prCoeff;
  978. int deciindex;
  979. /* Select decimation filter */
  980. if (decimation_select == 1) {
  981. idx = 1;
  982. prCoeff = lfe_fir_128;
  983. } else {
  984. idx = 0;
  985. prCoeff = lfe_fir_64;
  986. }
  987. /* Interpolation */
  988. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  989. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  990. samples_in++;
  991. samples_out += 2 * 32 * (1 + idx);
  992. }
  993. }
  994. /* downmixing routines */
  995. #define MIX_REAR1(samples, s1, rs, coef) \
  996. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  997. samples[1][i] += samples[s1][i] * coef[rs][1];
  998. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  999. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  1000. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  1001. #define MIX_FRONT3(samples, coef) \
  1002. t = samples[c][i]; \
  1003. u = samples[l][i]; \
  1004. v = samples[r][i]; \
  1005. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  1006. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  1007. #define DOWNMIX_TO_STEREO(op1, op2) \
  1008. for (i = 0; i < 256; i++) { \
  1009. op1 \
  1010. op2 \
  1011. }
  1012. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  1013. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  1014. const int8_t *channel_mapping)
  1015. {
  1016. int c, l, r, sl, sr, s;
  1017. int i;
  1018. float t, u, v;
  1019. switch (srcfmt) {
  1020. case DCA_MONO:
  1021. case DCA_4F2R:
  1022. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  1023. break;
  1024. case DCA_CHANNEL:
  1025. case DCA_STEREO:
  1026. case DCA_STEREO_TOTAL:
  1027. case DCA_STEREO_SUMDIFF:
  1028. break;
  1029. case DCA_3F:
  1030. c = channel_mapping[0];
  1031. l = channel_mapping[1];
  1032. r = channel_mapping[2];
  1033. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  1034. break;
  1035. case DCA_2F1R:
  1036. s = channel_mapping[2];
  1037. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  1038. break;
  1039. case DCA_3F1R:
  1040. c = channel_mapping[0];
  1041. l = channel_mapping[1];
  1042. r = channel_mapping[2];
  1043. s = channel_mapping[3];
  1044. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1045. MIX_REAR1(samples, s, 3, coef));
  1046. break;
  1047. case DCA_2F2R:
  1048. sl = channel_mapping[2];
  1049. sr = channel_mapping[3];
  1050. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  1051. break;
  1052. case DCA_3F2R:
  1053. c = channel_mapping[0];
  1054. l = channel_mapping[1];
  1055. r = channel_mapping[2];
  1056. sl = channel_mapping[3];
  1057. sr = channel_mapping[4];
  1058. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  1059. MIX_REAR2(samples, sl, sr, 3, coef));
  1060. break;
  1061. }
  1062. if (lfe_present) {
  1063. int lf_buf = dca_lfe_index[srcfmt];
  1064. int lf_idx = dca_channels [srcfmt];
  1065. for (i = 0; i < 256; i++) {
  1066. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  1067. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  1068. }
  1069. }
  1070. }
  1071. #ifndef decode_blockcodes
  1072. /* Very compact version of the block code decoder that does not use table
  1073. * look-up but is slightly slower */
  1074. static int decode_blockcode(int code, int levels, int32_t *values)
  1075. {
  1076. int i;
  1077. int offset = (levels - 1) >> 1;
  1078. for (i = 0; i < 4; i++) {
  1079. int div = FASTDIV(code, levels);
  1080. values[i] = code - offset - div * levels;
  1081. code = div;
  1082. }
  1083. return code;
  1084. }
  1085. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  1086. {
  1087. return decode_blockcode(code1, levels, values) |
  1088. decode_blockcode(code2, levels, values + 4);
  1089. }
  1090. #endif
  1091. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  1092. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  1093. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  1094. {
  1095. int k, l;
  1096. int subsubframe = s->current_subsubframe;
  1097. const float *quant_step_table;
  1098. /* FIXME */
  1099. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1100. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  1101. /*
  1102. * Audio data
  1103. */
  1104. /* Select quantization step size table */
  1105. if (s->bit_rate_index == 0x1f)
  1106. quant_step_table = lossless_quant_d;
  1107. else
  1108. quant_step_table = lossy_quant_d;
  1109. for (k = base_channel; k < s->prim_channels; k++) {
  1110. float rscale[DCA_SUBBANDS];
  1111. if (get_bits_left(&s->gb) < 0)
  1112. return AVERROR_INVALIDDATA;
  1113. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1114. int m;
  1115. /* Select the mid-tread linear quantizer */
  1116. int abits = s->bitalloc[k][l];
  1117. float quant_step_size = quant_step_table[abits];
  1118. /*
  1119. * Determine quantization index code book and its type
  1120. */
  1121. /* Select quantization index code book */
  1122. int sel = s->quant_index_huffman[k][abits];
  1123. /*
  1124. * Extract bits from the bit stream
  1125. */
  1126. if (!abits) {
  1127. rscale[l] = 0;
  1128. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  1129. } else {
  1130. /* Deal with transients */
  1131. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1132. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  1133. s->scalefactor_adj[k][sel];
  1134. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1135. if (abits <= 7) {
  1136. /* Block code */
  1137. int block_code1, block_code2, size, levels, err;
  1138. size = abits_sizes[abits - 1];
  1139. levels = abits_levels[abits - 1];
  1140. block_code1 = get_bits(&s->gb, size);
  1141. block_code2 = get_bits(&s->gb, size);
  1142. err = decode_blockcodes(block_code1, block_code2,
  1143. levels, block + 8 * l);
  1144. if (err) {
  1145. av_log(s->avctx, AV_LOG_ERROR,
  1146. "ERROR: block code look-up failed\n");
  1147. return AVERROR_INVALIDDATA;
  1148. }
  1149. } else {
  1150. /* no coding */
  1151. for (m = 0; m < 8; m++)
  1152. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  1153. }
  1154. } else {
  1155. /* Huffman coded */
  1156. for (m = 0; m < 8; m++)
  1157. block[8 * l + m] = get_bitalloc(&s->gb,
  1158. &dca_smpl_bitalloc[abits], sel);
  1159. }
  1160. }
  1161. }
  1162. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  1163. block, rscale, 8 * s->vq_start_subband[k]);
  1164. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1165. int m;
  1166. /*
  1167. * Inverse ADPCM if in prediction mode
  1168. */
  1169. if (s->prediction_mode[k][l]) {
  1170. int n;
  1171. if (s->predictor_history)
  1172. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  1173. s->subband_samples_hist[k][l][3] +
  1174. adpcm_vb[s->prediction_vq[k][l]][1] *
  1175. s->subband_samples_hist[k][l][2] +
  1176. adpcm_vb[s->prediction_vq[k][l]][2] *
  1177. s->subband_samples_hist[k][l][1] +
  1178. adpcm_vb[s->prediction_vq[k][l]][3] *
  1179. s->subband_samples_hist[k][l][0]) *
  1180. (1.0f / 8192);
  1181. for (m = 1; m < 8; m++) {
  1182. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  1183. subband_samples[k][l][m - 1];
  1184. for (n = 2; n <= 4; n++)
  1185. if (m >= n)
  1186. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1187. subband_samples[k][l][m - n];
  1188. else if (s->predictor_history)
  1189. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1190. s->subband_samples_hist[k][l][m - n + 4];
  1191. subband_samples[k][l][m] += sum * (1.0f / 8192);
  1192. }
  1193. }
  1194. }
  1195. /*
  1196. * Decode VQ encoded high frequencies
  1197. */
  1198. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  1199. if (!(s->debug_flag & 0x01)) {
  1200. av_log(s->avctx, AV_LOG_DEBUG,
  1201. "Stream with high frequencies VQ coding\n");
  1202. s->debug_flag |= 0x01;
  1203. }
  1204. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  1205. high_freq_vq, subsubframe * 8,
  1206. s->scale_factor[k], s->vq_start_subband[k],
  1207. s->subband_activity[k]);
  1208. }
  1209. }
  1210. /* Check for DSYNC after subsubframe */
  1211. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1212. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1213. #ifdef TRACE
  1214. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1215. #endif
  1216. } else {
  1217. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1218. return AVERROR_INVALIDDATA;
  1219. }
  1220. }
  1221. /* Backup predictor history for adpcm */
  1222. for (k = base_channel; k < s->prim_channels; k++)
  1223. for (l = 0; l < s->vq_start_subband[k]; l++)
  1224. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  1225. return 0;
  1226. }
  1227. static int dca_filter_channels(DCAContext *s, int block_index)
  1228. {
  1229. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1230. int k;
  1231. /* 32 subbands QMF */
  1232. for (k = 0; k < s->prim_channels; k++) {
  1233. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1234. 0, 8388608.0, 8388608.0 };*/
  1235. if (s->channel_order_tab[k] >= 0)
  1236. qmf_32_subbands(s, k, subband_samples[k],
  1237. s->samples_chanptr[s->channel_order_tab[k]],
  1238. M_SQRT1_2 / 32768.0 /* pcm_to_double[s->source_pcm_res] */);
  1239. }
  1240. /* Generate LFE samples for this subsubframe FIXME!!! */
  1241. if (s->lfe) {
  1242. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1243. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1244. s->samples_chanptr[s->lfe_index]);
  1245. /* Outputs 20bits pcm samples */
  1246. }
  1247. /* Downmixing to Stereo */
  1248. if (s->prim_channels + !!s->lfe > 2 &&
  1249. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1250. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  1251. s->channel_order_tab);
  1252. }
  1253. return 0;
  1254. }
  1255. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1256. {
  1257. int in, out, aux_data_count, aux_data_end, reserved;
  1258. uint32_t nsyncaux;
  1259. /*
  1260. * Unpack optional information
  1261. */
  1262. /* presumably optional information only appears in the core? */
  1263. if (!base_channel) {
  1264. if (s->timestamp)
  1265. skip_bits_long(&s->gb, 32);
  1266. if (s->aux_data) {
  1267. aux_data_count = get_bits(&s->gb, 6);
  1268. // align (32-bit)
  1269. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1270. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  1271. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  1272. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  1273. nsyncaux);
  1274. return AVERROR_INVALIDDATA;
  1275. }
  1276. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  1277. avpriv_request_sample(s->avctx,
  1278. "Auxiliary Decode Time Stamp Flag");
  1279. // align (4-bit)
  1280. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  1281. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  1282. skip_bits_long(&s->gb, 44);
  1283. }
  1284. if ((s->core_downmix = get_bits1(&s->gb))) {
  1285. int am = get_bits(&s->gb, 3);
  1286. switch (am) {
  1287. case 0:
  1288. s->core_downmix_amode = DCA_MONO;
  1289. break;
  1290. case 1:
  1291. s->core_downmix_amode = DCA_STEREO;
  1292. break;
  1293. case 2:
  1294. s->core_downmix_amode = DCA_STEREO_TOTAL;
  1295. break;
  1296. case 3:
  1297. s->core_downmix_amode = DCA_3F;
  1298. break;
  1299. case 4:
  1300. s->core_downmix_amode = DCA_2F1R;
  1301. break;
  1302. case 5:
  1303. s->core_downmix_amode = DCA_2F2R;
  1304. break;
  1305. case 6:
  1306. s->core_downmix_amode = DCA_3F1R;
  1307. break;
  1308. default:
  1309. av_log(s->avctx, AV_LOG_ERROR,
  1310. "Invalid mode %d for embedded downmix coefficients\n",
  1311. am);
  1312. return AVERROR_INVALIDDATA;
  1313. }
  1314. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  1315. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  1316. uint16_t tmp = get_bits(&s->gb, 9);
  1317. if ((tmp & 0xFF) > 241) {
  1318. av_log(s->avctx, AV_LOG_ERROR,
  1319. "Invalid downmix coefficient code %"PRIu16"\n",
  1320. tmp);
  1321. return AVERROR_INVALIDDATA;
  1322. }
  1323. s->core_downmix_codes[in][out] = tmp;
  1324. }
  1325. }
  1326. }
  1327. align_get_bits(&s->gb); // byte align
  1328. skip_bits(&s->gb, 16); // nAUXCRC16
  1329. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  1330. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  1331. av_log(s->avctx, AV_LOG_ERROR,
  1332. "Overread auxiliary data by %d bits\n", -reserved);
  1333. return AVERROR_INVALIDDATA;
  1334. } else if (reserved) {
  1335. avpriv_request_sample(s->avctx,
  1336. "Core auxiliary data reserved content");
  1337. skip_bits_long(&s->gb, reserved);
  1338. }
  1339. }
  1340. if (s->crc_present && s->dynrange)
  1341. get_bits(&s->gb, 16);
  1342. }
  1343. return 0;
  1344. }
  1345. /**
  1346. * Decode a dca frame block
  1347. *
  1348. * @param s pointer to the DCAContext
  1349. */
  1350. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1351. {
  1352. int ret;
  1353. /* Sanity check */
  1354. if (s->current_subframe >= s->subframes) {
  1355. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1356. s->current_subframe, s->subframes);
  1357. return AVERROR_INVALIDDATA;
  1358. }
  1359. if (!s->current_subsubframe) {
  1360. #ifdef TRACE
  1361. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1362. #endif
  1363. /* Read subframe header */
  1364. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1365. return ret;
  1366. }
  1367. /* Read subsubframe */
  1368. #ifdef TRACE
  1369. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1370. #endif
  1371. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1372. return ret;
  1373. /* Update state */
  1374. s->current_subsubframe++;
  1375. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1376. s->current_subsubframe = 0;
  1377. s->current_subframe++;
  1378. }
  1379. if (s->current_subframe >= s->subframes) {
  1380. #ifdef TRACE
  1381. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1382. #endif
  1383. /* Read subframe footer */
  1384. if ((ret = dca_subframe_footer(s, base_channel)))
  1385. return ret;
  1386. }
  1387. return 0;
  1388. }
  1389. /**
  1390. * Return the number of channels in an ExSS speaker mask (HD)
  1391. */
  1392. static int dca_exss_mask2count(int mask)
  1393. {
  1394. /* count bits that mean speaker pairs twice */
  1395. return av_popcount(mask) +
  1396. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1397. DCA_EXSS_FRONT_LEFT_RIGHT |
  1398. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1399. DCA_EXSS_WIDE_LEFT_RIGHT |
  1400. DCA_EXSS_SIDE_LEFT_RIGHT |
  1401. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1402. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1403. DCA_EXSS_REAR_LEFT_RIGHT |
  1404. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1405. }
  1406. /**
  1407. * Skip mixing coefficients of a single mix out configuration (HD)
  1408. */
  1409. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1410. {
  1411. int i;
  1412. for (i = 0; i < channels; i++) {
  1413. int mix_map_mask = get_bits(gb, out_ch);
  1414. int num_coeffs = av_popcount(mix_map_mask);
  1415. skip_bits_long(gb, num_coeffs * 6);
  1416. }
  1417. }
  1418. /**
  1419. * Parse extension substream asset header (HD)
  1420. */
  1421. static int dca_exss_parse_asset_header(DCAContext *s)
  1422. {
  1423. int header_pos = get_bits_count(&s->gb);
  1424. int header_size;
  1425. int channels = 0;
  1426. int embedded_stereo = 0;
  1427. int embedded_6ch = 0;
  1428. int drc_code_present;
  1429. int av_uninit(extensions_mask);
  1430. int i, j;
  1431. if (get_bits_left(&s->gb) < 16)
  1432. return -1;
  1433. /* We will parse just enough to get to the extensions bitmask with which
  1434. * we can set the profile value. */
  1435. header_size = get_bits(&s->gb, 9) + 1;
  1436. skip_bits(&s->gb, 3); // asset index
  1437. if (s->static_fields) {
  1438. if (get_bits1(&s->gb))
  1439. skip_bits(&s->gb, 4); // asset type descriptor
  1440. if (get_bits1(&s->gb))
  1441. skip_bits_long(&s->gb, 24); // language descriptor
  1442. if (get_bits1(&s->gb)) {
  1443. /* How can one fit 1024 bytes of text here if the maximum value
  1444. * for the asset header size field above was 512 bytes? */
  1445. int text_length = get_bits(&s->gb, 10) + 1;
  1446. if (get_bits_left(&s->gb) < text_length * 8)
  1447. return -1;
  1448. skip_bits_long(&s->gb, text_length * 8); // info text
  1449. }
  1450. skip_bits(&s->gb, 5); // bit resolution - 1
  1451. skip_bits(&s->gb, 4); // max sample rate code
  1452. channels = get_bits(&s->gb, 8) + 1;
  1453. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1454. int spkr_remap_sets;
  1455. int spkr_mask_size = 16;
  1456. int num_spkrs[7];
  1457. if (channels > 2)
  1458. embedded_stereo = get_bits1(&s->gb);
  1459. if (channels > 6)
  1460. embedded_6ch = get_bits1(&s->gb);
  1461. if (get_bits1(&s->gb)) {
  1462. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1463. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1464. }
  1465. spkr_remap_sets = get_bits(&s->gb, 3);
  1466. for (i = 0; i < spkr_remap_sets; i++) {
  1467. /* std layout mask for each remap set */
  1468. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1469. }
  1470. for (i = 0; i < spkr_remap_sets; i++) {
  1471. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1472. if (get_bits_left(&s->gb) < 0)
  1473. return -1;
  1474. for (j = 0; j < num_spkrs[i]; j++) {
  1475. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1476. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1477. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1478. }
  1479. }
  1480. } else {
  1481. skip_bits(&s->gb, 3); // representation type
  1482. }
  1483. }
  1484. drc_code_present = get_bits1(&s->gb);
  1485. if (drc_code_present)
  1486. get_bits(&s->gb, 8); // drc code
  1487. if (get_bits1(&s->gb))
  1488. skip_bits(&s->gb, 5); // dialog normalization code
  1489. if (drc_code_present && embedded_stereo)
  1490. get_bits(&s->gb, 8); // drc stereo code
  1491. if (s->mix_metadata && get_bits1(&s->gb)) {
  1492. skip_bits(&s->gb, 1); // external mix
  1493. skip_bits(&s->gb, 6); // post mix gain code
  1494. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1495. skip_bits(&s->gb, 3); // drc limit
  1496. else
  1497. skip_bits(&s->gb, 8); // custom drc code
  1498. if (get_bits1(&s->gb)) // channel specific scaling
  1499. for (i = 0; i < s->num_mix_configs; i++)
  1500. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1501. else
  1502. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1503. for (i = 0; i < s->num_mix_configs; i++) {
  1504. if (get_bits_left(&s->gb) < 0)
  1505. return -1;
  1506. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1507. if (embedded_6ch)
  1508. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1509. if (embedded_stereo)
  1510. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1511. }
  1512. }
  1513. switch (get_bits(&s->gb, 2)) {
  1514. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1515. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1516. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1517. case 3: extensions_mask = 0; /* aux coding */ break;
  1518. }
  1519. /* not parsed further, we were only interested in the extensions mask */
  1520. if (get_bits_left(&s->gb) < 0)
  1521. return -1;
  1522. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1523. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1524. return -1;
  1525. }
  1526. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1527. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1528. s->profile = FF_PROFILE_DTS_HD_MA;
  1529. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1530. DCA_EXT_EXSS_XXCH))
  1531. s->profile = FF_PROFILE_DTS_HD_HRA;
  1532. if (!(extensions_mask & DCA_EXT_CORE))
  1533. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1534. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1535. av_log(s->avctx, AV_LOG_WARNING,
  1536. "DTS extensions detection mismatch (%d, %d)\n",
  1537. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1538. return 0;
  1539. }
  1540. static int dca_xbr_parse_frame(DCAContext *s)
  1541. {
  1542. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1543. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1544. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1545. int anctemp[DCA_CHSET_CHANS_MAX];
  1546. int chset_fsize[DCA_CHSETS_MAX];
  1547. int n_xbr_ch[DCA_CHSETS_MAX];
  1548. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1549. int i, j, k, l, chset, chan_base;
  1550. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1551. /* get bit position of sync header */
  1552. hdr_pos = get_bits_count(&s->gb) - 32;
  1553. hdr_size = get_bits(&s->gb, 6) + 1;
  1554. num_chsets = get_bits(&s->gb, 2) + 1;
  1555. for(i = 0; i < num_chsets; i++)
  1556. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1557. xbr_tmode = get_bits1(&s->gb);
  1558. for(i = 0; i < num_chsets; i++) {
  1559. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1560. k = get_bits(&s->gb, 2) + 5;
  1561. for(j = 0; j < n_xbr_ch[i]; j++)
  1562. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1563. }
  1564. /* skip to the end of the header */
  1565. i = get_bits_count(&s->gb);
  1566. if(hdr_pos + hdr_size * 8 > i)
  1567. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1568. /* loop over the channel data sets */
  1569. /* only decode as many channels as we've decoded base data for */
  1570. for(chset = 0, chan_base = 0;
  1571. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1572. chan_base += n_xbr_ch[chset++]) {
  1573. int start_posn = get_bits_count(&s->gb);
  1574. int subsubframe = 0;
  1575. int subframe = 0;
  1576. /* loop over subframes */
  1577. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1578. /* parse header if we're on first subsubframe of a block */
  1579. if(subsubframe == 0) {
  1580. /* Parse subframe header */
  1581. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1582. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1583. }
  1584. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1585. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1586. }
  1587. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1588. anctemp[i] = get_bits(&s->gb, 3);
  1589. if(anctemp[i] < 1) {
  1590. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1591. return AVERROR_INVALIDDATA;
  1592. }
  1593. }
  1594. /* generate scale factors */
  1595. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1596. const uint32_t *scale_table;
  1597. int nbits;
  1598. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1599. scale_table = scale_factor_quant7;
  1600. } else {
  1601. scale_table = scale_factor_quant6;
  1602. }
  1603. nbits = anctemp[i];
  1604. for(j = 0; j < active_bands[chset][i]; j++) {
  1605. if(abits_high[i][j] > 0) {
  1606. scale_table_high[i][j][0] =
  1607. scale_table[get_bits(&s->gb, nbits)];
  1608. if(xbr_tmode && s->transition_mode[i][j]) {
  1609. scale_table_high[i][j][1] =
  1610. scale_table[get_bits(&s->gb, nbits)];
  1611. }
  1612. }
  1613. }
  1614. }
  1615. }
  1616. /* decode audio array for this block */
  1617. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1618. for(j = 0; j < active_bands[chset][i]; j++) {
  1619. const int xbr_abits = abits_high[i][j];
  1620. const float quant_step_size = lossless_quant_d[xbr_abits];
  1621. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1622. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1623. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1624. int block[8];
  1625. if(xbr_abits <= 0)
  1626. continue;
  1627. if(xbr_abits > 7) {
  1628. get_array(&s->gb, block, 8, xbr_abits - 3);
  1629. } else {
  1630. int block_code1, block_code2, size, levels, err;
  1631. size = abits_sizes[xbr_abits - 1];
  1632. levels = abits_levels[xbr_abits - 1];
  1633. block_code1 = get_bits(&s->gb, size);
  1634. block_code2 = get_bits(&s->gb, size);
  1635. err = decode_blockcodes(block_code1, block_code2,
  1636. levels, block);
  1637. if (err) {
  1638. av_log(s->avctx, AV_LOG_ERROR,
  1639. "ERROR: DTS-XBR: block code look-up failed\n");
  1640. return AVERROR_INVALIDDATA;
  1641. }
  1642. }
  1643. /* scale & sum into subband */
  1644. for(l = 0; l < 8; l++)
  1645. subband_samples[l] += (float)block[l] * rscale;
  1646. }
  1647. }
  1648. /* check DSYNC marker */
  1649. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1650. if(get_bits(&s->gb, 16) != 0xffff) {
  1651. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1652. return AVERROR_INVALIDDATA;
  1653. }
  1654. }
  1655. /* advance sub-sub-frame index */
  1656. if(++subsubframe >= s->subsubframes[subframe]) {
  1657. subsubframe = 0;
  1658. subframe++;
  1659. }
  1660. }
  1661. /* skip to next channel set */
  1662. i = get_bits_count(&s->gb);
  1663. if(start_posn + chset_fsize[chset] * 8 != i) {
  1664. j = start_posn + chset_fsize[chset] * 8 - i;
  1665. if(j < 0 || j >= 8)
  1666. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1667. " skipping further than expected (%d bits)\n", j);
  1668. skip_bits_long(&s->gb, j);
  1669. }
  1670. }
  1671. return 0;
  1672. }
  1673. /* parse initial header for XXCH and dump details */
  1674. static int dca_xxch_decode_frame(DCAContext *s)
  1675. {
  1676. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1677. int i, chset, base_channel, chstart, fsize[8];
  1678. /* assume header word has already been parsed */
  1679. hdr_pos = get_bits_count(&s->gb) - 32;
  1680. hdr_size = get_bits(&s->gb, 6) + 1;
  1681. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1682. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1683. num_chsets = get_bits(&s->gb, 2) + 1;
  1684. for (i = 0; i < num_chsets; i++)
  1685. fsize[i] = get_bits(&s->gb, 14) + 1;
  1686. core_spk = get_bits(&s->gb, spkmsk_bits);
  1687. s->xxch_core_spkmask = core_spk;
  1688. s->xxch_nbits_spk_mask = spkmsk_bits;
  1689. s->xxch_dmix_embedded = 0;
  1690. /* skip to the end of the header */
  1691. i = get_bits_count(&s->gb);
  1692. if (hdr_pos + hdr_size * 8 > i)
  1693. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1694. for (chset = 0; chset < num_chsets; chset++) {
  1695. chstart = get_bits_count(&s->gb);
  1696. base_channel = s->prim_channels;
  1697. s->xxch_chset = chset;
  1698. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1699. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1700. dca_parse_audio_coding_header(s, base_channel, 1);
  1701. /* decode channel data */
  1702. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1703. if (dca_decode_block(s, base_channel, i)) {
  1704. av_log(s->avctx, AV_LOG_ERROR,
  1705. "Error decoding DTS-XXCH extension\n");
  1706. continue;
  1707. }
  1708. }
  1709. /* skip to end of this section */
  1710. i = get_bits_count(&s->gb);
  1711. if (chstart + fsize[chset] * 8 > i)
  1712. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1713. }
  1714. s->xxch_chset = num_chsets;
  1715. return 0;
  1716. }
  1717. /**
  1718. * Parse extension substream header (HD)
  1719. */
  1720. static void dca_exss_parse_header(DCAContext *s)
  1721. {
  1722. int asset_size[8];
  1723. int ss_index;
  1724. int blownup;
  1725. int num_audiop = 1;
  1726. int num_assets = 1;
  1727. int active_ss_mask[8];
  1728. int i, j;
  1729. int start_posn;
  1730. int hdrsize;
  1731. uint32_t mkr;
  1732. if (get_bits_left(&s->gb) < 52)
  1733. return;
  1734. start_posn = get_bits_count(&s->gb) - 32;
  1735. skip_bits(&s->gb, 8); // user data
  1736. ss_index = get_bits(&s->gb, 2);
  1737. blownup = get_bits1(&s->gb);
  1738. hdrsize = get_bits(&s->gb, 8 + 4 * blownup) + 1; // header_size
  1739. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1740. s->static_fields = get_bits1(&s->gb);
  1741. if (s->static_fields) {
  1742. skip_bits(&s->gb, 2); // reference clock code
  1743. skip_bits(&s->gb, 3); // frame duration code
  1744. if (get_bits1(&s->gb))
  1745. skip_bits_long(&s->gb, 36); // timestamp
  1746. /* a single stream can contain multiple audio assets that can be
  1747. * combined to form multiple audio presentations */
  1748. num_audiop = get_bits(&s->gb, 3) + 1;
  1749. if (num_audiop > 1) {
  1750. avpriv_request_sample(s->avctx,
  1751. "Multiple DTS-HD audio presentations");
  1752. /* ignore such streams for now */
  1753. return;
  1754. }
  1755. num_assets = get_bits(&s->gb, 3) + 1;
  1756. if (num_assets > 1) {
  1757. avpriv_request_sample(s->avctx, "Multiple DTS-HD audio assets");
  1758. /* ignore such streams for now */
  1759. return;
  1760. }
  1761. for (i = 0; i < num_audiop; i++)
  1762. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1763. for (i = 0; i < num_audiop; i++)
  1764. for (j = 0; j <= ss_index; j++)
  1765. if (active_ss_mask[i] & (1 << j))
  1766. skip_bits(&s->gb, 8); // active asset mask
  1767. s->mix_metadata = get_bits1(&s->gb);
  1768. if (s->mix_metadata) {
  1769. int mix_out_mask_size;
  1770. skip_bits(&s->gb, 2); // adjustment level
  1771. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1772. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1773. for (i = 0; i < s->num_mix_configs; i++) {
  1774. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1775. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1776. }
  1777. }
  1778. }
  1779. for (i = 0; i < num_assets; i++)
  1780. asset_size[i] = get_bits_long(&s->gb, 16 + 4 * blownup);
  1781. for (i = 0; i < num_assets; i++) {
  1782. if (dca_exss_parse_asset_header(s))
  1783. return;
  1784. }
  1785. /* not parsed further, we were only interested in the extensions mask
  1786. * from the asset header */
  1787. j = get_bits_count(&s->gb);
  1788. if (start_posn + hdrsize * 8 > j)
  1789. skip_bits_long(&s->gb, start_posn + hdrsize * 8 - j);
  1790. for (i = 0; i < num_assets; i++) {
  1791. start_posn = get_bits_count(&s->gb);
  1792. mkr = get_bits_long(&s->gb, 32);
  1793. /* parse extensions that we know about */
  1794. if (mkr == 0x655e315e) {
  1795. dca_xbr_parse_frame(s);
  1796. } else if (mkr == 0x47004a03) {
  1797. dca_xxch_decode_frame(s);
  1798. s->core_ext_mask |= DCA_EXT_XXCH; /* xxx use for chan reordering */
  1799. } else {
  1800. av_log(s->avctx, AV_LOG_DEBUG,
  1801. "DTS-ExSS: unknown marker = 0x%08x\n", mkr);
  1802. }
  1803. /* skip to end of block */
  1804. j = get_bits_count(&s->gb);
  1805. if (start_posn + asset_size[i] * 8 > j)
  1806. skip_bits_long(&s->gb, start_posn + asset_size[i] * 8 - j);
  1807. }
  1808. }
  1809. /**
  1810. * Main frame decoding function
  1811. * FIXME add arguments
  1812. */
  1813. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1814. int *got_frame_ptr, AVPacket *avpkt)
  1815. {
  1816. AVFrame *frame = data;
  1817. const uint8_t *buf = avpkt->data;
  1818. int buf_size = avpkt->size;
  1819. int channel_mask;
  1820. int channel_layout;
  1821. int lfe_samples;
  1822. int num_core_channels = 0;
  1823. int i, ret;
  1824. float **samples_flt;
  1825. float *src_chan;
  1826. float *dst_chan;
  1827. DCAContext *s = avctx->priv_data;
  1828. int core_ss_end;
  1829. int channels, full_channels;
  1830. float scale;
  1831. int achan;
  1832. int chset;
  1833. int mask;
  1834. int lavc;
  1835. int posn;
  1836. int j, k;
  1837. int endch;
  1838. s->xch_present = 0;
  1839. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1840. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1841. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1842. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1843. return AVERROR_INVALIDDATA;
  1844. }
  1845. if ((ret = dca_parse_frame_header(s)) < 0) {
  1846. //seems like the frame is corrupt, try with the next one
  1847. return ret;
  1848. }
  1849. //set AVCodec values with parsed data
  1850. avctx->sample_rate = s->sample_rate;
  1851. avctx->bit_rate = s->bit_rate;
  1852. s->profile = FF_PROFILE_DTS;
  1853. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1854. if ((ret = dca_decode_block(s, 0, i))) {
  1855. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1856. return ret;
  1857. }
  1858. }
  1859. /* record number of core channels incase less than max channels are requested */
  1860. num_core_channels = s->prim_channels;
  1861. if (s->prim_channels + !!s->lfe > 2 &&
  1862. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1863. /* Stereo downmix coefficients
  1864. *
  1865. * The decoder can only downmix to 2-channel, so we need to ensure
  1866. * embedded downmix coefficients are actually targeting 2-channel.
  1867. */
  1868. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1869. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1870. int sign, code;
  1871. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1872. sign = s->core_downmix_codes[i][0] & 0x100 ? 1 : -1;
  1873. code = s->core_downmix_codes[i][0] & 0x0FF;
  1874. s->downmix_coef[i][0] = (!code ? 0.0f :
  1875. sign * dca_dmixtable[code - 1]);
  1876. sign = s->core_downmix_codes[i][1] & 0x100 ? 1 : -1;
  1877. code = s->core_downmix_codes[i][1] & 0x0FF;
  1878. s->downmix_coef[i][1] = (!code ? 0.0f :
  1879. sign * dca_dmixtable[code - 1]);
  1880. }
  1881. s->output = s->core_downmix_amode;
  1882. } else {
  1883. int am = s->amode & DCA_CHANNEL_MASK;
  1884. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1885. av_log(s->avctx, AV_LOG_ERROR,
  1886. "Invalid channel mode %d\n", am);
  1887. return AVERROR_INVALIDDATA;
  1888. }
  1889. if (num_core_channels + !!s->lfe >
  1890. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1891. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1892. s->prim_channels + !!s->lfe);
  1893. return AVERROR_PATCHWELCOME;
  1894. }
  1895. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1896. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1897. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1898. }
  1899. }
  1900. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1901. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1902. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1903. s->downmix_coef[i][0]);
  1904. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1905. s->downmix_coef[i][1]);
  1906. }
  1907. av_dlog(s->avctx, "\n");
  1908. }
  1909. if (s->ext_coding)
  1910. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1911. else
  1912. s->core_ext_mask = 0;
  1913. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1914. /* only scan for extensions if ext_descr was unknown or indicated a
  1915. * supported XCh extension */
  1916. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1917. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1918. * extensions scan can fill it up */
  1919. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1920. /* extensions start at 32-bit boundaries into bitstream */
  1921. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1922. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1923. uint32_t bits = get_bits_long(&s->gb, 32);
  1924. switch (bits) {
  1925. case 0x5a5a5a5a: {
  1926. int ext_amode, xch_fsize;
  1927. s->xch_base_channel = s->prim_channels;
  1928. /* validate sync word using XCHFSIZE field */
  1929. xch_fsize = show_bits(&s->gb, 10);
  1930. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1931. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1932. continue;
  1933. /* skip length-to-end-of-frame field for the moment */
  1934. skip_bits(&s->gb, 10);
  1935. s->core_ext_mask |= DCA_EXT_XCH;
  1936. /* extension amode(number of channels in extension) should be 1 */
  1937. /* AFAIK XCh is not used for more channels */
  1938. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1939. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1940. " supported!\n", ext_amode);
  1941. continue;
  1942. }
  1943. if (s->xch_base_channel < 2) {
  1944. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1945. continue;
  1946. }
  1947. /* much like core primary audio coding header */
  1948. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1949. for (i = 0; i < (s->sample_blocks / 8); i++)
  1950. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1951. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1952. continue;
  1953. }
  1954. s->xch_present = 1;
  1955. break;
  1956. }
  1957. case 0x47004a03:
  1958. /* XXCh: extended channels */
  1959. /* usually found either in core or HD part in DTS-HD HRA streams,
  1960. * but not in DTS-ES which contains XCh extensions instead */
  1961. s->core_ext_mask |= DCA_EXT_XXCH;
  1962. dca_xxch_decode_frame(s);
  1963. break;
  1964. case 0x1d95f262: {
  1965. int fsize96 = show_bits(&s->gb, 12) + 1;
  1966. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1967. continue;
  1968. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1969. get_bits_count(&s->gb));
  1970. skip_bits(&s->gb, 12);
  1971. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1972. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1973. s->core_ext_mask |= DCA_EXT_X96;
  1974. break;
  1975. }
  1976. }
  1977. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1978. }
  1979. } else {
  1980. /* no supported extensions, skip the rest of the core substream */
  1981. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1982. }
  1983. if (s->core_ext_mask & DCA_EXT_X96)
  1984. s->profile = FF_PROFILE_DTS_96_24;
  1985. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1986. s->profile = FF_PROFILE_DTS_ES;
  1987. /* check for ExSS (HD part) */
  1988. if (s->dca_buffer_size - s->frame_size > 32 &&
  1989. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1990. dca_exss_parse_header(s);
  1991. avctx->profile = s->profile;
  1992. full_channels = channels = s->prim_channels + !!s->lfe;
  1993. /* If we have XXCH then the channel layout is managed differently */
  1994. /* note that XLL will also have another way to do things */
  1995. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1996. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1997. && avctx->request_channels
  1998. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1999. { /* xxx should also do MA extensions */
  2000. if (s->amode < 16) {
  2001. avctx->channel_layout = dca_core_channel_layout[s->amode];
  2002. if (s->prim_channels + !!s->lfe > 2 &&
  2003. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2004. /*
  2005. * Neither the core's auxiliary data nor our default tables contain
  2006. * downmix coefficients for the additional channel coded in the XCh
  2007. * extension, so when we're doing a Stereo downmix, don't decode it.
  2008. */
  2009. s->xch_disable = 1;
  2010. }
  2011. #if FF_API_REQUEST_CHANNELS
  2012. FF_DISABLE_DEPRECATION_WARNINGS
  2013. if (s->xch_present && !s->xch_disable &&
  2014. (!avctx->request_channels ||
  2015. avctx->request_channels > num_core_channels + !!s->lfe)) {
  2016. FF_ENABLE_DEPRECATION_WARNINGS
  2017. #else
  2018. if (s->xch_present && !s->xch_disable) {
  2019. #endif
  2020. avctx->channel_layout |= AV_CH_BACK_CENTER;
  2021. if (s->lfe) {
  2022. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2023. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  2024. } else {
  2025. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  2026. }
  2027. if (s->channel_order_tab[s->xch_base_channel] < 0)
  2028. return AVERROR_INVALIDDATA;
  2029. } else {
  2030. channels = num_core_channels + !!s->lfe;
  2031. s->xch_present = 0; /* disable further xch processing */
  2032. if (s->lfe) {
  2033. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  2034. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  2035. } else
  2036. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  2037. }
  2038. if (channels > !!s->lfe &&
  2039. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  2040. return AVERROR_INVALIDDATA;
  2041. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  2042. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  2043. return AVERROR_INVALIDDATA;
  2044. }
  2045. if (num_core_channels + !!s->lfe > 2 &&
  2046. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  2047. channels = 2;
  2048. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  2049. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  2050. }
  2051. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  2052. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  2053. s->channel_order_tab = dca_channel_order_native;
  2054. }
  2055. s->lfe_index = dca_lfe_index[s->amode];
  2056. } else {
  2057. av_log(avctx, AV_LOG_ERROR,
  2058. "Non standard configuration %d !\n", s->amode);
  2059. return AVERROR_INVALIDDATA;
  2060. }
  2061. s->xxch_dmix_embedded = 0;
  2062. } else {
  2063. /* we only get here if an XXCH channel set can be added to the mix */
  2064. channel_mask = s->xxch_core_spkmask;
  2065. if (avctx->request_channels > 0
  2066. && avctx->request_channels < s->prim_channels) {
  2067. channels = num_core_channels + !!s->lfe;
  2068. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  2069. <= avctx->request_channels; i++) {
  2070. channels += s->xxch_chset_nch[i];
  2071. channel_mask |= s->xxch_spk_masks[i];
  2072. }
  2073. } else {
  2074. channels = s->prim_channels + !!s->lfe;
  2075. for (i = 0; i < s->xxch_chset; i++) {
  2076. channel_mask |= s->xxch_spk_masks[i];
  2077. }
  2078. }
  2079. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  2080. channel_layout = 0;
  2081. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  2082. if (channel_mask & (1 << i)) {
  2083. channel_layout |= map_xxch_to_native[i];
  2084. }
  2085. }
  2086. /* make sure that we have managed to get equivelant dts/avcodec channel
  2087. * masks in some sense -- unfortunately some channels could overlap */
  2088. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  2089. av_log(avctx, AV_LOG_DEBUG,
  2090. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  2091. return AVERROR_INVALIDDATA;
  2092. }
  2093. avctx->channel_layout = channel_layout;
  2094. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  2095. /* Estimate DTS --> avcodec ordering table */
  2096. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  2097. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  2098. : s->xxch_core_spkmask;
  2099. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  2100. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  2101. lavc = map_xxch_to_native[i];
  2102. posn = av_popcount(channel_layout & (lavc - 1));
  2103. s->xxch_order_tab[j++] = posn;
  2104. }
  2105. }
  2106. }
  2107. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  2108. } else { /* native ordering */
  2109. for (i = 0; i < channels; i++)
  2110. s->xxch_order_tab[i] = i;
  2111. s->lfe_index = channels - 1;
  2112. }
  2113. s->channel_order_tab = s->xxch_order_tab;
  2114. }
  2115. if (avctx->channels != channels) {
  2116. if (avctx->channels)
  2117. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  2118. avctx->channels = channels;
  2119. }
  2120. /* get output buffer */
  2121. frame->nb_samples = 256 * (s->sample_blocks / 8);
  2122. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  2123. return ret;
  2124. samples_flt = (float **)frame->extended_data;
  2125. /* allocate buffer for extra channels if downmixing */
  2126. if (avctx->channels < full_channels) {
  2127. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  2128. frame->nb_samples,
  2129. avctx->sample_fmt, 0);
  2130. if (ret < 0)
  2131. return ret;
  2132. av_fast_malloc(&s->extra_channels_buffer,
  2133. &s->extra_channels_buffer_size, ret);
  2134. if (!s->extra_channels_buffer)
  2135. return AVERROR(ENOMEM);
  2136. ret = av_samples_fill_arrays((uint8_t **)s->extra_channels, NULL,
  2137. s->extra_channels_buffer,
  2138. full_channels - channels,
  2139. frame->nb_samples, avctx->sample_fmt, 0);
  2140. if (ret < 0)
  2141. return ret;
  2142. }
  2143. /* filter to get final output */
  2144. for (i = 0; i < (s->sample_blocks / 8); i++) {
  2145. int ch;
  2146. for (ch = 0; ch < channels; ch++)
  2147. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  2148. for (; ch < full_channels; ch++)
  2149. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  2150. dca_filter_channels(s, i);
  2151. /* If this was marked as a DTS-ES stream we need to subtract back- */
  2152. /* channel from SL & SR to remove matrixed back-channel signal */
  2153. if ((s->source_pcm_res & 1) && s->xch_present) {
  2154. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  2155. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  2156. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  2157. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  2158. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  2159. }
  2160. /* If stream contains XXCH, we might need to undo an embedded downmix */
  2161. if (s->xxch_dmix_embedded) {
  2162. /* Loop over channel sets in turn */
  2163. ch = num_core_channels;
  2164. for (chset = 0; chset < s->xxch_chset; chset++) {
  2165. endch = ch + s->xxch_chset_nch[chset];
  2166. mask = s->xxch_dmix_embedded;
  2167. /* undo downmix */
  2168. for (j = ch; j < endch; j++) {
  2169. if (mask & (1 << j)) { /* this channel has been mixed-out */
  2170. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2171. for (k = 0; k < endch; k++) {
  2172. achan = s->channel_order_tab[k];
  2173. scale = s->xxch_dmix_coeff[j][k];
  2174. if (scale != 0.0) {
  2175. dst_chan = s->samples_chanptr[achan];
  2176. s->fdsp.vector_fmac_scalar(dst_chan, src_chan,
  2177. -scale, 256);
  2178. }
  2179. }
  2180. }
  2181. }
  2182. /* if a downmix has been embedded then undo the pre-scaling */
  2183. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  2184. scale = s->xxch_dmix_sf[chset];
  2185. for (j = 0; j < ch; j++) {
  2186. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  2187. for (k = 0; k < 256; k++)
  2188. src_chan[k] *= scale;
  2189. }
  2190. /* LFE channel is always part of core, scale if it exists */
  2191. if (s->lfe) {
  2192. src_chan = s->samples_chanptr[s->lfe_index];
  2193. for (k = 0; k < 256; k++)
  2194. src_chan[k] *= scale;
  2195. }
  2196. }
  2197. ch = endch;
  2198. }
  2199. }
  2200. }
  2201. /* update lfe history */
  2202. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  2203. for (i = 0; i < 2 * s->lfe * 4; i++)
  2204. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  2205. /* AVMatrixEncoding
  2206. *
  2207. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  2208. ret = ff_side_data_update_matrix_encoding(frame,
  2209. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  2210. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  2211. if (ret < 0)
  2212. return ret;
  2213. *got_frame_ptr = 1;
  2214. return buf_size;
  2215. }
  2216. /**
  2217. * DCA initialization
  2218. *
  2219. * @param avctx pointer to the AVCodecContext
  2220. */
  2221. static av_cold int dca_decode_init(AVCodecContext *avctx)
  2222. {
  2223. DCAContext *s = avctx->priv_data;
  2224. s->avctx = avctx;
  2225. dca_init_vlcs();
  2226. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  2227. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  2228. ff_synth_filter_init(&s->synth);
  2229. ff_dcadsp_init(&s->dcadsp);
  2230. ff_fmt_convert_init(&s->fmt_conv, avctx);
  2231. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  2232. /* allow downmixing to stereo */
  2233. #if FF_API_REQUEST_CHANNELS
  2234. FF_DISABLE_DEPRECATION_WARNINGS
  2235. if (avctx->request_channels == 2)
  2236. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  2237. FF_ENABLE_DEPRECATION_WARNINGS
  2238. #endif
  2239. if (avctx->channels > 2 &&
  2240. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  2241. avctx->channels = 2;
  2242. return 0;
  2243. }
  2244. static av_cold int dca_decode_end(AVCodecContext *avctx)
  2245. {
  2246. DCAContext *s = avctx->priv_data;
  2247. ff_mdct_end(&s->imdct);
  2248. av_freep(&s->extra_channels_buffer);
  2249. return 0;
  2250. }
  2251. static const AVProfile profiles[] = {
  2252. { FF_PROFILE_DTS, "DTS" },
  2253. { FF_PROFILE_DTS_ES, "DTS-ES" },
  2254. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  2255. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  2256. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  2257. { FF_PROFILE_UNKNOWN },
  2258. };
  2259. static const AVOption options[] = {
  2260. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM|AV_OPT_FLAG_AUDIO_PARAM },
  2261. { NULL },
  2262. };
  2263. static const AVClass dca_decoder_class = {
  2264. .class_name = "DCA decoder",
  2265. .item_name = av_default_item_name,
  2266. .option = options,
  2267. .version = LIBAVUTIL_VERSION_INT,
  2268. .category = AV_CLASS_CATEGORY_DECODER,
  2269. };
  2270. AVCodec ff_dca_decoder = {
  2271. .name = "dca",
  2272. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  2273. .type = AVMEDIA_TYPE_AUDIO,
  2274. .id = AV_CODEC_ID_DTS,
  2275. .priv_data_size = sizeof(DCAContext),
  2276. .init = dca_decode_init,
  2277. .decode = dca_decode_frame,
  2278. .close = dca_decode_end,
  2279. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  2280. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  2281. AV_SAMPLE_FMT_NONE },
  2282. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  2283. .priv_class = &dca_decoder_class,
  2284. };