You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

988 lines
29KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bytestream.h"
  27. #include "get_bits.h"
  28. #include "dsputil.h"
  29. #define TM2_ESCAPE 0x80000000
  30. #define TM2_DELTAS 64
  31. /* Huffman-coded streams of different types of blocks */
  32. enum TM2_STREAMS {
  33. TM2_C_HI = 0,
  34. TM2_C_LO,
  35. TM2_L_HI,
  36. TM2_L_LO,
  37. TM2_UPD,
  38. TM2_MOT,
  39. TM2_TYPE,
  40. TM2_NUM_STREAMS
  41. };
  42. /* Block types */
  43. enum TM2_BLOCKS {
  44. TM2_HI_RES = 0,
  45. TM2_MED_RES,
  46. TM2_LOW_RES,
  47. TM2_NULL_RES,
  48. TM2_UPDATE,
  49. TM2_STILL,
  50. TM2_MOTION
  51. };
  52. typedef struct TM2Context {
  53. AVCodecContext *avctx;
  54. AVFrame pic;
  55. GetBitContext gb;
  56. DSPContext dsp;
  57. /* TM2 streams */
  58. int *tokens[TM2_NUM_STREAMS];
  59. int tok_lens[TM2_NUM_STREAMS];
  60. int tok_ptrs[TM2_NUM_STREAMS];
  61. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  62. /* for blocks decoding */
  63. int D[4];
  64. int CD[4];
  65. int *last;
  66. int *clast;
  67. /* data for current and previous frame */
  68. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  69. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  70. int y_stride, uv_stride;
  71. int cur;
  72. } TM2Context;
  73. /**
  74. * Huffman codes for each of streams
  75. */
  76. typedef struct TM2Codes {
  77. VLC vlc; ///< table for Libav bitstream reader
  78. int bits;
  79. int *recode; ///< table for converting from code indexes to values
  80. int length;
  81. } TM2Codes;
  82. /**
  83. * structure for gathering Huffman codes information
  84. */
  85. typedef struct TM2Huff {
  86. int val_bits; ///< length of literal
  87. int max_bits; ///< maximum length of code
  88. int min_bits; ///< minimum length of code
  89. int nodes; ///< total number of nodes in tree
  90. int num; ///< current number filled
  91. int max_num; ///< total number of codes
  92. int *nums; ///< literals
  93. uint32_t *bits; ///< codes
  94. int *lens; ///< codelengths
  95. } TM2Huff;
  96. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  97. {
  98. int ret;
  99. if (length > huff->max_bits) {
  100. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n",
  101. huff->max_bits);
  102. return AVERROR_INVALIDDATA;
  103. }
  104. if (!get_bits1(&ctx->gb)) { /* literal */
  105. if (length == 0) {
  106. length = 1;
  107. }
  108. if (huff->num >= huff->max_num) {
  109. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  110. return AVERROR_INVALIDDATA;
  111. }
  112. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  113. huff->bits[huff->num] = prefix;
  114. huff->lens[huff->num] = length;
  115. huff->num++;
  116. return 0;
  117. } else { /* non-terminal node */
  118. if ((ret = tm2_read_tree(ctx, prefix << 1, length + 1, huff)) < 0)
  119. return ret;
  120. if ((ret = tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff)) < 0)
  121. return ret;
  122. }
  123. return 0;
  124. }
  125. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  126. {
  127. TM2Huff huff;
  128. int res = 0;
  129. huff.val_bits = get_bits(&ctx->gb, 5);
  130. huff.max_bits = get_bits(&ctx->gb, 5);
  131. huff.min_bits = get_bits(&ctx->gb, 5);
  132. huff.nodes = get_bits_long(&ctx->gb, 17);
  133. huff.num = 0;
  134. /* check for correct codes parameters */
  135. if ((huff.val_bits < 1) || (huff.val_bits > 32) ||
  136. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  137. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal "
  138. "length: %i, max code length: %i\n", huff.val_bits, huff.max_bits);
  139. return AVERROR_INVALIDDATA;
  140. }
  141. if ((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  142. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree "
  143. "nodes: %i\n", huff.nodes);
  144. return AVERROR_INVALIDDATA;
  145. }
  146. /* one-node tree */
  147. if (huff.max_bits == 0)
  148. huff.max_bits = 1;
  149. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  150. huff.max_num = (huff.nodes + 1) >> 1;
  151. huff.nums = av_mallocz(huff.max_num * sizeof(int));
  152. huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t));
  153. huff.lens = av_mallocz(huff.max_num * sizeof(int));
  154. res = tm2_read_tree(ctx, 0, 0, &huff);
  155. if (huff.num != huff.max_num) {
  156. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  157. huff.num, huff.max_num);
  158. res = AVERROR_INVALIDDATA;
  159. }
  160. /* convert codes to vlc_table */
  161. if (res >= 0) {
  162. int i;
  163. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  164. huff.lens, sizeof(int), sizeof(int),
  165. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  166. if (res < 0)
  167. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  168. else {
  169. code->bits = huff.max_bits;
  170. code->length = huff.max_num;
  171. code->recode = av_malloc(code->length * sizeof(int));
  172. for (i = 0; i < code->length; i++)
  173. code->recode[i] = huff.nums[i];
  174. }
  175. }
  176. /* free allocated memory */
  177. av_free(huff.nums);
  178. av_free(huff.bits);
  179. av_free(huff.lens);
  180. return res;
  181. }
  182. static void tm2_free_codes(TM2Codes *code)
  183. {
  184. av_free(code->recode);
  185. if (code->vlc.table)
  186. ff_free_vlc(&code->vlc);
  187. }
  188. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  189. {
  190. int val;
  191. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  192. return code->recode[val];
  193. }
  194. #define TM2_OLD_HEADER_MAGIC 0x00000100
  195. #define TM2_NEW_HEADER_MAGIC 0x00000101
  196. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  197. {
  198. uint32_t magic = AV_RL32(buf);
  199. switch (magic) {
  200. case TM2_OLD_HEADER_MAGIC:
  201. av_log_missing_feature(ctx->avctx, "TM2 old header", 1);
  202. return 0;
  203. case TM2_NEW_HEADER_MAGIC:
  204. return 0;
  205. default:
  206. av_log(ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08X\n", magic);
  207. return AVERROR_INVALIDDATA;
  208. }
  209. }
  210. static int tm2_read_deltas(TM2Context *ctx, int stream_id)
  211. {
  212. int d, mb;
  213. int i, v;
  214. d = get_bits(&ctx->gb, 9);
  215. mb = get_bits(&ctx->gb, 5);
  216. if ((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) {
  217. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  218. return AVERROR_INVALIDDATA;
  219. }
  220. for (i = 0; i < d; i++) {
  221. v = get_bits_long(&ctx->gb, mb);
  222. if (v & (1 << (mb - 1)))
  223. ctx->deltas[stream_id][i] = v - (1 << mb);
  224. else
  225. ctx->deltas[stream_id][i] = v;
  226. }
  227. for (; i < TM2_DELTAS; i++)
  228. ctx->deltas[stream_id][i] = 0;
  229. return 0;
  230. }
  231. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  232. {
  233. int i, ret;
  234. int skip = 0;
  235. int len, toks, pos;
  236. TM2Codes codes;
  237. GetByteContext gb;
  238. /* get stream length in dwords */
  239. bytestream2_init(&gb, buf, buf_size);
  240. len = bytestream2_get_be32(&gb);
  241. skip = len * 4 + 4;
  242. if (len == 0)
  243. return 4;
  244. if (len >= INT_MAX/4-1 || len < 0 || len > buf_size) {
  245. av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n");
  246. return AVERROR_INVALIDDATA;
  247. }
  248. toks = bytestream2_get_be32(&gb);
  249. if (toks & 1) {
  250. len = bytestream2_get_be32(&gb);
  251. if (len == TM2_ESCAPE) {
  252. len = bytestream2_get_be32(&gb);
  253. }
  254. if (len > 0) {
  255. pos = bytestream2_tell(&gb);
  256. if (skip <= pos)
  257. return AVERROR_INVALIDDATA;
  258. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  259. if ((ret = tm2_read_deltas(ctx, stream_id)) < 0)
  260. return ret;
  261. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  262. }
  263. }
  264. /* skip unused fields */
  265. len = bytestream2_get_be32(&gb);
  266. if (len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  267. bytestream2_skip(&gb, 8); /* unused by decoder */
  268. } else {
  269. bytestream2_skip(&gb, 4); /* unused by decoder */
  270. }
  271. pos = bytestream2_tell(&gb);
  272. if (skip <= pos)
  273. return AVERROR_INVALIDDATA;
  274. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  275. if ((ret = tm2_build_huff_table(ctx, &codes)) < 0)
  276. return ret;
  277. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  278. toks >>= 1;
  279. /* check if we have sane number of tokens */
  280. if ((toks < 0) || (toks > 0xFFFFFF)) {
  281. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  282. tm2_free_codes(&codes);
  283. return AVERROR_INVALIDDATA;
  284. }
  285. ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int));
  286. ctx->tok_lens[stream_id] = toks;
  287. len = bytestream2_get_be32(&gb);
  288. if (len > 0) {
  289. pos = bytestream2_tell(&gb);
  290. if (skip <= pos)
  291. return AVERROR_INVALIDDATA;
  292. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  293. for (i = 0; i < toks; i++) {
  294. if (get_bits_left(&ctx->gb) <= 0) {
  295. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  296. return AVERROR_INVALIDDATA;
  297. }
  298. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  299. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  300. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  301. ctx->tokens[stream_id][i], stream_id, i);
  302. return AVERROR_INVALIDDATA;
  303. }
  304. }
  305. } else {
  306. for (i = 0; i < toks; i++) {
  307. ctx->tokens[stream_id][i] = codes.recode[0];
  308. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  309. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  310. ctx->tokens[stream_id][i], stream_id, i);
  311. return AVERROR_INVALIDDATA;
  312. }
  313. }
  314. }
  315. tm2_free_codes(&codes);
  316. return skip;
  317. }
  318. static inline int GET_TOK(TM2Context *ctx,int type)
  319. {
  320. if (ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  321. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  322. return 0;
  323. }
  324. if (type <= TM2_MOT)
  325. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  326. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  327. }
  328. /* blocks decoding routines */
  329. /* common Y, U, V pointers initialisation */
  330. #define TM2_INIT_POINTERS() \
  331. int *last, *clast; \
  332. int *Y, *U, *V;\
  333. int Ystride, Ustride, Vstride;\
  334. \
  335. Ystride = ctx->y_stride;\
  336. Vstride = ctx->uv_stride;\
  337. Ustride = ctx->uv_stride;\
  338. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  339. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  340. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  341. last = ctx->last + bx * 4;\
  342. clast = ctx->clast + bx * 4;
  343. #define TM2_INIT_POINTERS_2() \
  344. int *Yo, *Uo, *Vo;\
  345. int oYstride, oUstride, oVstride;\
  346. \
  347. TM2_INIT_POINTERS();\
  348. oYstride = Ystride;\
  349. oVstride = Vstride;\
  350. oUstride = Ustride;\
  351. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  352. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  353. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  354. /* recalculate last and delta values for next blocks */
  355. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  356. CD[0] = CHR[1] - last[1];\
  357. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  358. last[0] = (int)CHR[stride + 0];\
  359. last[1] = (int)CHR[stride + 1];}
  360. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  361. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  362. {
  363. int ct, d;
  364. int i, j;
  365. for (j = 0; j < 4; j++){
  366. ct = ctx->D[j];
  367. for (i = 0; i < 4; i++){
  368. d = deltas[i + j * 4];
  369. ct += d;
  370. last[i] += ct;
  371. Y[i] = av_clip_uint8(last[i]);
  372. }
  373. Y += stride;
  374. ctx->D[j] = ct;
  375. }
  376. }
  377. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  378. {
  379. int i, j;
  380. for (j = 0; j < 2; j++) {
  381. for (i = 0; i < 2; i++) {
  382. CD[j] += deltas[i + j * 2];
  383. last[i] += CD[j];
  384. data[i] = last[i];
  385. }
  386. data += stride;
  387. }
  388. }
  389. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  390. {
  391. int t;
  392. int l;
  393. int prev;
  394. if (bx > 0)
  395. prev = clast[-3];
  396. else
  397. prev = 0;
  398. t = (CD[0] + CD[1]) >> 1;
  399. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  400. CD[1] = CD[0] + CD[1] - t;
  401. CD[0] = t;
  402. clast[0] = l;
  403. tm2_high_chroma(data, stride, clast, CD, deltas);
  404. }
  405. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  406. {
  407. int i;
  408. int deltas[16];
  409. TM2_INIT_POINTERS();
  410. /* hi-res chroma */
  411. for (i = 0; i < 4; i++) {
  412. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  413. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  414. }
  415. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  416. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  417. /* hi-res luma */
  418. for (i = 0; i < 16; i++)
  419. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  420. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  421. }
  422. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  423. {
  424. int i;
  425. int deltas[16];
  426. TM2_INIT_POINTERS();
  427. /* low-res chroma */
  428. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  429. deltas[1] = deltas[2] = deltas[3] = 0;
  430. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  431. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  432. deltas[1] = deltas[2] = deltas[3] = 0;
  433. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  434. /* hi-res luma */
  435. for (i = 0; i < 16; i++)
  436. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  437. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  438. }
  439. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  440. {
  441. int i;
  442. int t1, t2;
  443. int deltas[16];
  444. TM2_INIT_POINTERS();
  445. /* low-res chroma */
  446. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  447. deltas[1] = deltas[2] = deltas[3] = 0;
  448. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  449. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  450. deltas[1] = deltas[2] = deltas[3] = 0;
  451. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  452. /* low-res luma */
  453. for (i = 0; i < 16; i++)
  454. deltas[i] = 0;
  455. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  456. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  457. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  458. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  459. if (bx > 0)
  460. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  461. else
  462. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  463. last[2] = (last[1] + last[3]) >> 1;
  464. t1 = ctx->D[0] + ctx->D[1];
  465. ctx->D[0] = t1 >> 1;
  466. ctx->D[1] = t1 - (t1 >> 1);
  467. t2 = ctx->D[2] + ctx->D[3];
  468. ctx->D[2] = t2 >> 1;
  469. ctx->D[3] = t2 - (t2 >> 1);
  470. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  471. }
  472. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  473. {
  474. int i;
  475. int ct;
  476. int left, right, diff;
  477. int deltas[16];
  478. TM2_INIT_POINTERS();
  479. /* null chroma */
  480. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  481. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  482. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  483. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  484. /* null luma */
  485. for (i = 0; i < 16; i++)
  486. deltas[i] = 0;
  487. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  488. if (bx > 0)
  489. left = last[-1] - ct;
  490. else
  491. left = 0;
  492. right = last[3];
  493. diff = right - left;
  494. last[0] = left + (diff >> 2);
  495. last[1] = left + (diff >> 1);
  496. last[2] = right - (diff >> 2);
  497. last[3] = right;
  498. {
  499. int tp = left;
  500. ctx->D[0] = (tp + (ct >> 2)) - left;
  501. left += ctx->D[0];
  502. ctx->D[1] = (tp + (ct >> 1)) - left;
  503. left += ctx->D[1];
  504. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  505. left += ctx->D[2];
  506. ctx->D[3] = (tp + ct) - left;
  507. }
  508. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  509. }
  510. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  511. {
  512. int i, j;
  513. TM2_INIT_POINTERS_2();
  514. /* update chroma */
  515. for (j = 0; j < 2; j++) {
  516. for (i = 0; i < 2; i++){
  517. U[i] = Uo[i];
  518. V[i] = Vo[i];
  519. }
  520. U += Ustride; V += Vstride;
  521. Uo += oUstride; Vo += oVstride;
  522. }
  523. U -= Ustride * 2;
  524. V -= Vstride * 2;
  525. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  526. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  527. /* update deltas */
  528. ctx->D[0] = Yo[3] - last[3];
  529. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  530. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  531. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  532. for (j = 0; j < 4; j++) {
  533. for (i = 0; i < 4; i++) {
  534. Y[i] = Yo[i];
  535. last[i] = Yo[i];
  536. }
  537. Y += Ystride;
  538. Yo += oYstride;
  539. }
  540. }
  541. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  542. {
  543. int i, j;
  544. int d;
  545. TM2_INIT_POINTERS_2();
  546. /* update chroma */
  547. for (j = 0; j < 2; j++) {
  548. for (i = 0; i < 2; i++) {
  549. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  550. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  551. }
  552. U += Ustride;
  553. V += Vstride;
  554. Uo += oUstride;
  555. Vo += oVstride;
  556. }
  557. U -= Ustride * 2;
  558. V -= Vstride * 2;
  559. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  560. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  561. /* update deltas */
  562. ctx->D[0] = Yo[3] - last[3];
  563. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  564. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  565. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  566. for (j = 0; j < 4; j++) {
  567. d = last[3];
  568. for (i = 0; i < 4; i++) {
  569. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  570. last[i] = Y[i];
  571. }
  572. ctx->D[j] = last[3] - d;
  573. Y += Ystride;
  574. Yo += oYstride;
  575. }
  576. }
  577. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  578. {
  579. int i, j;
  580. int mx, my;
  581. TM2_INIT_POINTERS_2();
  582. mx = GET_TOK(ctx, TM2_MOT);
  583. my = GET_TOK(ctx, TM2_MOT);
  584. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  585. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  586. Yo += my * oYstride + mx;
  587. Uo += (my >> 1) * oUstride + (mx >> 1);
  588. Vo += (my >> 1) * oVstride + (mx >> 1);
  589. /* copy chroma */
  590. for (j = 0; j < 2; j++) {
  591. for (i = 0; i < 2; i++) {
  592. U[i] = Uo[i];
  593. V[i] = Vo[i];
  594. }
  595. U += Ustride;
  596. V += Vstride;
  597. Uo += oUstride;
  598. Vo += oVstride;
  599. }
  600. U -= Ustride * 2;
  601. V -= Vstride * 2;
  602. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  603. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  604. /* copy luma */
  605. for (j = 0; j < 4; j++) {
  606. for (i = 0; i < 4; i++) {
  607. Y[i] = Yo[i];
  608. }
  609. Y += Ystride;
  610. Yo += oYstride;
  611. }
  612. /* calculate deltas */
  613. Y -= Ystride * 4;
  614. ctx->D[0] = Y[3] - last[3];
  615. ctx->D[1] = Y[3 + Ystride] - Y[3];
  616. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  617. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  618. for (i = 0; i < 4; i++)
  619. last[i] = Y[i + Ystride * 3];
  620. }
  621. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  622. {
  623. int i, j;
  624. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  625. int type;
  626. int keyframe = 1;
  627. int *Y, *U, *V;
  628. uint8_t *dst;
  629. for (i = 0; i < TM2_NUM_STREAMS; i++)
  630. ctx->tok_ptrs[i] = 0;
  631. if (ctx->tok_lens[TM2_TYPE]<bw*bh) {
  632. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  633. return AVERROR_INVALIDDATA;
  634. }
  635. memset(ctx->last, 0, 4 * bw * sizeof(int));
  636. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  637. for (j = 0; j < bh; j++) {
  638. memset(ctx->D, 0, 4 * sizeof(int));
  639. memset(ctx->CD, 0, 4 * sizeof(int));
  640. for (i = 0; i < bw; i++) {
  641. type = GET_TOK(ctx, TM2_TYPE);
  642. switch(type) {
  643. case TM2_HI_RES:
  644. tm2_hi_res_block(ctx, p, i, j);
  645. break;
  646. case TM2_MED_RES:
  647. tm2_med_res_block(ctx, p, i, j);
  648. break;
  649. case TM2_LOW_RES:
  650. tm2_low_res_block(ctx, p, i, j);
  651. break;
  652. case TM2_NULL_RES:
  653. tm2_null_res_block(ctx, p, i, j);
  654. break;
  655. case TM2_UPDATE:
  656. tm2_update_block(ctx, p, i, j);
  657. keyframe = 0;
  658. break;
  659. case TM2_STILL:
  660. tm2_still_block(ctx, p, i, j);
  661. keyframe = 0;
  662. break;
  663. case TM2_MOTION:
  664. tm2_motion_block(ctx, p, i, j);
  665. keyframe = 0;
  666. break;
  667. default:
  668. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  669. }
  670. }
  671. }
  672. /* copy data from our buffer to AVFrame */
  673. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  674. U = (ctx->cur?ctx->U2:ctx->U1);
  675. V = (ctx->cur?ctx->V2:ctx->V1);
  676. dst = p->data[0];
  677. for (j = 0; j < h; j++) {
  678. for (i = 0; i < w; i++) {
  679. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  680. dst[3*i+0] = av_clip_uint8(y + v);
  681. dst[3*i+1] = av_clip_uint8(y);
  682. dst[3*i+2] = av_clip_uint8(y + u);
  683. }
  684. /* horizontal edge extension */
  685. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  686. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  687. /* vertical edge extension */
  688. if (j == 0) {
  689. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  690. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  691. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  692. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  693. } else if (j == h - 1) {
  694. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  695. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  696. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  697. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  698. }
  699. Y += ctx->y_stride;
  700. if (j & 1) {
  701. /* horizontal edge extension */
  702. U[-2] = U[-1] = U[0];
  703. V[-2] = V[-1] = V[0];
  704. U[cw + 1] = U[cw] = U[cw - 1];
  705. V[cw + 1] = V[cw] = V[cw - 1];
  706. /* vertical edge extension */
  707. if (j == 1) {
  708. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  709. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  710. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  711. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  712. } else if (j == h - 1) {
  713. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  714. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  715. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  716. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  717. }
  718. U += ctx->uv_stride;
  719. V += ctx->uv_stride;
  720. }
  721. dst += p->linesize[0];
  722. }
  723. return keyframe;
  724. }
  725. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  726. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  727. };
  728. #define TM2_HEADER_SIZE 40
  729. static int decode_frame(AVCodecContext *avctx,
  730. void *data, int *got_frame,
  731. AVPacket *avpkt)
  732. {
  733. TM2Context * const l = avctx->priv_data;
  734. const uint8_t *buf = avpkt->data;
  735. int buf_size = avpkt->size & ~3;
  736. AVFrame * const p = &l->pic;
  737. int offset = TM2_HEADER_SIZE;
  738. int i, t, ret;
  739. uint8_t *swbuf;
  740. swbuf = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  741. if (!swbuf) {
  742. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  743. return AVERROR(ENOMEM);
  744. }
  745. p->reference = 1;
  746. p->buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
  747. if ((ret = avctx->reget_buffer(avctx, p)) < 0) {
  748. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  749. av_free(swbuf);
  750. return ret;
  751. }
  752. l->dsp.bswap_buf((uint32_t*)swbuf, (const uint32_t*)buf, buf_size >> 2);
  753. if ((ret = tm2_read_header(l, swbuf)) < 0) {
  754. av_free(swbuf);
  755. return ret;
  756. }
  757. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  758. if (offset >= buf_size) {
  759. av_free(swbuf);
  760. return AVERROR_INVALIDDATA;
  761. }
  762. t = tm2_read_stream(l, swbuf + offset, tm2_stream_order[i],
  763. buf_size - offset);
  764. if (t < 0) {
  765. av_free(swbuf);
  766. return t;
  767. }
  768. offset += t;
  769. }
  770. p->key_frame = tm2_decode_blocks(l, p);
  771. if (p->key_frame)
  772. p->pict_type = AV_PICTURE_TYPE_I;
  773. else
  774. p->pict_type = AV_PICTURE_TYPE_P;
  775. l->cur = !l->cur;
  776. *got_frame = 1;
  777. *(AVFrame*)data = l->pic;
  778. av_free(swbuf);
  779. return buf_size;
  780. }
  781. static av_cold int decode_init(AVCodecContext *avctx)
  782. {
  783. TM2Context * const l = avctx->priv_data;
  784. int i, w = avctx->width, h = avctx->height;
  785. if ((avctx->width & 3) || (avctx->height & 3)) {
  786. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  787. return AVERROR(EINVAL);
  788. }
  789. l->avctx = avctx;
  790. l->pic.data[0] = NULL;
  791. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  792. ff_dsputil_init(&l->dsp, avctx);
  793. l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2));
  794. l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2));
  795. for (i = 0; i < TM2_NUM_STREAMS; i++) {
  796. l->tokens[i] = NULL;
  797. l->tok_lens[i] = 0;
  798. }
  799. w += 8;
  800. h += 8;
  801. l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h);
  802. l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h);
  803. l->y_stride = w;
  804. w = (w + 1) >> 1;
  805. h = (h + 1) >> 1;
  806. l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h);
  807. l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h);
  808. l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h);
  809. l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h);
  810. l->uv_stride = w;
  811. l->cur = 0;
  812. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  813. !l->V1_base || !l->U2_base || !l->V2_base ||
  814. !l->last || !l->clast) {
  815. av_freep(l->Y1_base);
  816. av_freep(l->Y2_base);
  817. av_freep(l->U1_base);
  818. av_freep(l->U2_base);
  819. av_freep(l->V1_base);
  820. av_freep(l->V2_base);
  821. av_freep(l->last);
  822. av_freep(l->clast);
  823. return AVERROR(ENOMEM);
  824. }
  825. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  826. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  827. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  828. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  829. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  830. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  831. return 0;
  832. }
  833. static av_cold int decode_end(AVCodecContext *avctx)
  834. {
  835. TM2Context * const l = avctx->priv_data;
  836. AVFrame *pic = &l->pic;
  837. int i;
  838. av_free(l->last);
  839. av_free(l->clast);
  840. for (i = 0; i < TM2_NUM_STREAMS; i++)
  841. av_free(l->tokens[i]);
  842. if (l->Y1) {
  843. av_free(l->Y1_base);
  844. av_free(l->U1_base);
  845. av_free(l->V1_base);
  846. av_free(l->Y2_base);
  847. av_free(l->U2_base);
  848. av_free(l->V2_base);
  849. }
  850. if (pic->data[0])
  851. avctx->release_buffer(avctx, pic);
  852. return 0;
  853. }
  854. AVCodec ff_truemotion2_decoder = {
  855. .name = "truemotion2",
  856. .type = AVMEDIA_TYPE_VIDEO,
  857. .id = AV_CODEC_ID_TRUEMOTION2,
  858. .priv_data_size = sizeof(TM2Context),
  859. .init = decode_init,
  860. .close = decode_end,
  861. .decode = decode_frame,
  862. .capabilities = CODEC_CAP_DR1,
  863. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  864. };