You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

761 lines
23KB

  1. /*
  2. * Copyright (c) 2001-2010 Krzysztof Foltman, Markus Schmidt, Thor Harald Johansen and others
  3. * Copyright (c) 2015 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/intreadwrite.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/opt.h"
  24. #include "libavutil/parseutils.h"
  25. #include "avfilter.h"
  26. #include "internal.h"
  27. #include "audio.h"
  28. #define FILTER_ORDER 4
  29. enum FilterType {
  30. BUTTERWORTH,
  31. CHEBYSHEV1,
  32. CHEBYSHEV2,
  33. NB_TYPES
  34. };
  35. typedef struct FoSection {
  36. double a0, a1, a2, a3, a4;
  37. double b0, b1, b2, b3, b4;
  38. double num[4];
  39. double denum[4];
  40. } FoSection;
  41. typedef struct EqualizatorFilter {
  42. int ignore;
  43. int channel;
  44. int type;
  45. double freq;
  46. double gain;
  47. double width;
  48. FoSection section[2];
  49. } EqualizatorFilter;
  50. typedef struct AudioNEqualizerContext {
  51. const AVClass *class;
  52. char *args;
  53. char *colors;
  54. int draw_curves;
  55. int w, h;
  56. double mag;
  57. int fscale;
  58. int nb_filters;
  59. int nb_allocated;
  60. EqualizatorFilter *filters;
  61. AVFrame *video;
  62. } AudioNEqualizerContext;
  63. #define OFFSET(x) offsetof(AudioNEqualizerContext, x)
  64. #define A AV_OPT_FLAG_AUDIO_PARAM
  65. #define V AV_OPT_FLAG_VIDEO_PARAM
  66. #define F AV_OPT_FLAG_FILTERING_PARAM
  67. static const AVOption anequalizer_options[] = {
  68. { "params", NULL, OFFSET(args), AV_OPT_TYPE_STRING, {.str=""}, 0, 0, A|F },
  69. { "curves", "draw frequency response curves", OFFSET(draw_curves), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, V|F },
  70. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, V|F },
  71. { "mgain", "set max gain", OFFSET(mag), AV_OPT_TYPE_DOUBLE, {.dbl=60}, -900, 900, V|F },
  72. { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, V|F, "fscale" },
  73. { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, V|F, "fscale" },
  74. { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, V|F, "fscale" },
  75. { "colors", "set channels curves colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, V|F },
  76. { NULL }
  77. };
  78. AVFILTER_DEFINE_CLASS(anequalizer);
  79. static void draw_curves(AVFilterContext *ctx, AVFilterLink *inlink, AVFrame *out)
  80. {
  81. AudioNEqualizerContext *s = ctx->priv;
  82. char *colors, *color, *saveptr = NULL;
  83. int ch, i, n;
  84. colors = av_strdup(s->colors);
  85. if (!colors)
  86. return;
  87. memset(out->data[0], 0, s->h * out->linesize[0]);
  88. for (ch = 0; ch < inlink->channels; ch++) {
  89. uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
  90. int prev_v = -1;
  91. double f;
  92. color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr);
  93. if (color)
  94. av_parse_color(fg, color, -1, ctx);
  95. for (f = 0; f < s->w; f++) {
  96. double zr, zi, zr2, zi2;
  97. double Hr, Hi;
  98. double Hmag = 1;
  99. double w;
  100. int v, y, x;
  101. w = M_PI * (s->fscale ? pow(s->w - 1, f / s->w) : f) / (s->w - 1);
  102. zr = cos(w);
  103. zr2 = zr * zr;
  104. zi = -sin(w);
  105. zi2 = zi * zi;
  106. for (n = 0; n < s->nb_filters; n++) {
  107. if (s->filters[n].channel != ch ||
  108. s->filters[n].ignore)
  109. continue;
  110. for (i = 0; i < FILTER_ORDER / 2; i++) {
  111. FoSection *S = &s->filters[n].section[i];
  112. /* H *= (((((S->b4 * z + S->b3) * z + S->b2) * z + S->b1) * z + S->b0) /
  113. ((((S->a4 * z + S->a3) * z + S->a2) * z + S->a1) * z + S->a0)); */
  114. Hr = S->b4*(1-8*zr2*zi2) + S->b2*(zr2-zi2) + zr*(S->b1+S->b3*(zr2-3*zi2))+ S->b0;
  115. Hi = zi*(S->b3*(3*zr2-zi2) + S->b1 + 2*zr*(2*S->b4*(zr2-zi2) + S->b2));
  116. Hmag *= hypot(Hr, Hi);
  117. Hr = S->a4*(1-8*zr2*zi2) + S->a2*(zr2-zi2) + zr*(S->a1+S->a3*(zr2-3*zi2))+ S->a0;
  118. Hi = zi*(S->a3*(3*zr2-zi2) + S->a1 + 2*zr*(2*S->a4*(zr2-zi2) + S->a2));
  119. Hmag /= hypot(Hr, Hi);
  120. }
  121. }
  122. v = av_clip((1. + -20 * log10(Hmag) / s->mag) * s->h / 2, 0, s->h - 1);
  123. x = lrint(f);
  124. if (prev_v == -1)
  125. prev_v = v;
  126. if (v <= prev_v) {
  127. for (y = v; y <= prev_v; y++)
  128. AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
  129. } else {
  130. for (y = prev_v; y <= v; y++)
  131. AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
  132. }
  133. prev_v = v;
  134. }
  135. }
  136. av_free(colors);
  137. }
  138. static int config_video(AVFilterLink *outlink)
  139. {
  140. AVFilterContext *ctx = outlink->src;
  141. AudioNEqualizerContext *s = ctx->priv;
  142. AVFilterLink *inlink = ctx->inputs[0];
  143. AVFrame *out;
  144. outlink->w = s->w;
  145. outlink->h = s->h;
  146. av_frame_free(&s->video);
  147. s->video = out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  148. if (!out)
  149. return AVERROR(ENOMEM);
  150. outlink->sample_aspect_ratio = (AVRational){1,1};
  151. draw_curves(ctx, inlink, out);
  152. return 0;
  153. }
  154. static av_cold int init(AVFilterContext *ctx)
  155. {
  156. AudioNEqualizerContext *s = ctx->priv;
  157. AVFilterPad pad, vpad;
  158. pad = (AVFilterPad){
  159. .name = av_strdup("out0"),
  160. .type = AVMEDIA_TYPE_AUDIO,
  161. };
  162. if (!pad.name)
  163. return AVERROR(ENOMEM);
  164. if (s->draw_curves) {
  165. vpad = (AVFilterPad){
  166. .name = av_strdup("out1"),
  167. .type = AVMEDIA_TYPE_VIDEO,
  168. .config_props = config_video,
  169. };
  170. if (!vpad.name)
  171. return AVERROR(ENOMEM);
  172. }
  173. ff_insert_outpad(ctx, 0, &pad);
  174. if (s->draw_curves)
  175. ff_insert_outpad(ctx, 1, &vpad);
  176. return 0;
  177. }
  178. static int query_formats(AVFilterContext *ctx)
  179. {
  180. AVFilterLink *inlink = ctx->inputs[0];
  181. AVFilterLink *outlink = ctx->outputs[0];
  182. AudioNEqualizerContext *s = ctx->priv;
  183. AVFilterFormats *formats;
  184. AVFilterChannelLayouts *layouts;
  185. static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE };
  186. static const enum AVSampleFormat sample_fmts[] = {
  187. AV_SAMPLE_FMT_DBLP,
  188. AV_SAMPLE_FMT_NONE
  189. };
  190. int ret;
  191. if (s->draw_curves) {
  192. AVFilterLink *videolink = ctx->outputs[1];
  193. formats = ff_make_format_list(pix_fmts);
  194. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  195. return ret;
  196. }
  197. formats = ff_make_format_list(sample_fmts);
  198. if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0 ||
  199. (ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
  200. return ret;
  201. layouts = ff_all_channel_counts();
  202. if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0 ||
  203. (ret = ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts)) < 0)
  204. return ret;
  205. formats = ff_all_samplerates();
  206. if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0 ||
  207. (ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0)
  208. return ret;
  209. return 0;
  210. }
  211. static av_cold void uninit(AVFilterContext *ctx)
  212. {
  213. AudioNEqualizerContext *s = ctx->priv;
  214. av_freep(&ctx->output_pads[0].name);
  215. if (s->draw_curves)
  216. av_freep(&ctx->output_pads[1].name);
  217. av_frame_free(&s->video);
  218. av_freep(&s->filters);
  219. s->nb_filters = 0;
  220. s->nb_allocated = 0;
  221. }
  222. static void butterworth_fo_section(FoSection *S, double beta,
  223. double si, double g, double g0,
  224. double D, double c0)
  225. {
  226. if (c0 == 1 || c0 == -1) {
  227. S->b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
  228. S->b1 = 2*c0*(g*g*beta*beta - g0*g0)/D;
  229. S->b2 = (g*g*beta*beta - 2*g0*g*beta*si + g0*g0)/D;
  230. S->b3 = 0;
  231. S->b4 = 0;
  232. S->a0 = 1;
  233. S->a1 = 2*c0*(beta*beta - 1)/D;
  234. S->a2 = (beta*beta - 2*beta*si + 1)/D;
  235. S->a3 = 0;
  236. S->a4 = 0;
  237. } else {
  238. S->b0 = (g*g*beta*beta + 2*g*g0*si*beta + g0*g0)/D;
  239. S->b1 = -4*c0*(g0*g0 + g*g0*si*beta)/D;
  240. S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - g*g*beta*beta)/D;
  241. S->b3 = -4*c0*(g0*g0 - g*g0*si*beta)/D;
  242. S->b4 = (g*g*beta*beta - 2*g*g0*si*beta + g0*g0)/D;
  243. S->a0 = 1;
  244. S->a1 = -4*c0*(1 + si*beta)/D;
  245. S->a2 = 2*(1 + 2*c0*c0 - beta*beta)/D;
  246. S->a3 = -4*c0*(1 - si*beta)/D;
  247. S->a4 = (beta*beta - 2*si*beta + 1)/D;
  248. }
  249. }
  250. static void butterworth_bp_filter(EqualizatorFilter *f,
  251. int N, double w0, double wb,
  252. double G, double Gb, double G0)
  253. {
  254. double g, c0, g0, beta;
  255. double epsilon;
  256. int r = N % 2;
  257. int L = (N - r) / 2;
  258. int i;
  259. if (G == 0 && G0 == 0) {
  260. f->section[0].a0 = 1;
  261. f->section[0].b0 = 1;
  262. f->section[1].a0 = 1;
  263. f->section[1].b0 = 1;
  264. return;
  265. }
  266. G = ff_exp10(G/20);
  267. Gb = ff_exp10(Gb/20);
  268. G0 = ff_exp10(G0/20);
  269. epsilon = sqrt((G * G - Gb * Gb) / (Gb * Gb - G0 * G0));
  270. g = pow(G, 1.0 / N);
  271. g0 = pow(G0, 1.0 / N);
  272. beta = pow(epsilon, -1.0 / N) * tan(wb/2);
  273. c0 = cos(w0);
  274. for (i = 1; i <= L; i++) {
  275. double ui = (2.0 * i - 1) / N;
  276. double si = sin(M_PI * ui / 2.0);
  277. double Di = beta * beta + 2 * si * beta + 1;
  278. butterworth_fo_section(&f->section[i - 1], beta, si, g, g0, Di, c0);
  279. }
  280. }
  281. static void chebyshev1_fo_section(FoSection *S, double a,
  282. double c, double tetta_b,
  283. double g0, double si, double b,
  284. double D, double c0)
  285. {
  286. if (c0 == 1 || c0 == -1) {
  287. S->b0 = (tetta_b*tetta_b*(b*b+g0*g0*c*c) + 2*g0*b*si*tetta_b*tetta_b + g0*g0)/D;
  288. S->b1 = 2*c0*(tetta_b*tetta_b*(b*b+g0*g0*c*c) - g0*g0)/D;
  289. S->b2 = (tetta_b*tetta_b*(b*b+g0*g0*c*c) - 2*g0*b*si*tetta_b + g0*g0)/D;
  290. S->b3 = 0;
  291. S->b4 = 0;
  292. S->a0 = 1;
  293. S->a1 = 2*c0*(tetta_b*tetta_b*(a*a+c*c) - 1)/D;
  294. S->a2 = (tetta_b*tetta_b*(a*a+c*c) - 2*a*si*tetta_b + 1)/D;
  295. S->a3 = 0;
  296. S->a4 = 0;
  297. } else {
  298. S->b0 = ((b*b + g0*g0*c*c)*tetta_b*tetta_b + 2*g0*b*si*tetta_b + g0*g0)/D;
  299. S->b1 = -4*c0*(g0*g0 + g0*b*si*tetta_b)/D;
  300. S->b2 = 2*(g0*g0*(1 + 2*c0*c0) - (b*b + g0*g0*c*c)*tetta_b*tetta_b)/D;
  301. S->b3 = -4*c0*(g0*g0 - g0*b*si*tetta_b)/D;
  302. S->b4 = ((b*b + g0*g0*c*c)*tetta_b*tetta_b - 2*g0*b*si*tetta_b + g0*g0)/D;
  303. S->a0 = 1;
  304. S->a1 = -4*c0*(1 + a*si*tetta_b)/D;
  305. S->a2 = 2*(1 + 2*c0*c0 - (a*a + c*c)*tetta_b*tetta_b)/D;
  306. S->a3 = -4*c0*(1 - a*si*tetta_b)/D;
  307. S->a4 = ((a*a + c*c)*tetta_b*tetta_b - 2*a*si*tetta_b + 1)/D;
  308. }
  309. }
  310. static void chebyshev1_bp_filter(EqualizatorFilter *f,
  311. int N, double w0, double wb,
  312. double G, double Gb, double G0)
  313. {
  314. double a, b, c0, g0, alfa, beta, tetta_b;
  315. double epsilon;
  316. int r = N % 2;
  317. int L = (N - r) / 2;
  318. int i;
  319. if (G == 0 && G0 == 0) {
  320. f->section[0].a0 = 1;
  321. f->section[0].b0 = 1;
  322. f->section[1].a0 = 1;
  323. f->section[1].b0 = 1;
  324. return;
  325. }
  326. G = ff_exp10(G/20);
  327. Gb = ff_exp10(Gb/20);
  328. G0 = ff_exp10(G0/20);
  329. epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
  330. g0 = pow(G0,1.0/N);
  331. alfa = pow(1.0/epsilon + sqrt(1 + 1/(epsilon*epsilon)), 1.0/N);
  332. beta = pow(G/epsilon + Gb * sqrt(1 + 1/(epsilon*epsilon)), 1.0/N);
  333. a = 0.5 * (alfa - 1.0/alfa);
  334. b = 0.5 * (beta - g0*g0*(1/beta));
  335. tetta_b = tan(wb/2);
  336. c0 = cos(w0);
  337. for (i = 1; i <= L; i++) {
  338. double ui = (2.0*i-1.0)/N;
  339. double ci = cos(M_PI*ui/2.0);
  340. double si = sin(M_PI*ui/2.0);
  341. double Di = (a*a + ci*ci)*tetta_b*tetta_b + 2.0*a*si*tetta_b + 1;
  342. chebyshev1_fo_section(&f->section[i - 1], a, ci, tetta_b, g0, si, b, Di, c0);
  343. }
  344. }
  345. static void chebyshev2_fo_section(FoSection *S, double a,
  346. double c, double tetta_b,
  347. double g, double si, double b,
  348. double D, double c0)
  349. {
  350. if (c0 == 1 || c0 == -1) {
  351. S->b0 = (g*g*tetta_b*tetta_b + 2*tetta_b*g*b*si + b*b + g*g*c*c)/D;
  352. S->b1 = 2*c0*(g*g*tetta_b*tetta_b - b*b - g*g*c*c)/D;
  353. S->b2 = (g*g*tetta_b*tetta_b - 2*tetta_b*g*b*si + b*b + g*g*c*c)/D;
  354. S->b3 = 0;
  355. S->b4 = 0;
  356. S->a0 = 1;
  357. S->a1 = 2*c0*(tetta_b*tetta_b - a*a - c*c)/D;
  358. S->a2 = (tetta_b*tetta_b - 2*tetta_b*a*si + a*a + c*c)/D;
  359. S->a3 = 0;
  360. S->a4 = 0;
  361. } else {
  362. S->b0 = (g*g*tetta_b*tetta_b + 2*g*b*si*tetta_b + b*b + g*g*c*c)/D;
  363. S->b1 = -4*c0*(b*b + g*g*c*c + g*b*si*tetta_b)/D;
  364. S->b2 = 2*((b*b + g*g*c*c)*(1 + 2*c0*c0) - g*g*tetta_b*tetta_b)/D;
  365. S->b3 = -4*c0*(b*b + g*g*c*c - g*b*si*tetta_b)/D;
  366. S->b4 = (g*g*tetta_b*tetta_b - 2*g*b*si*tetta_b + b*b + g*g*c*c)/D;
  367. S->a0 = 1;
  368. S->a1 = -4*c0*(a*a + c*c + a*si*tetta_b)/D;
  369. S->a2 = 2*((a*a + c*c)*(1 + 2*c0*c0) - tetta_b*tetta_b)/D;
  370. S->a3 = -4*c0*(a*a + c*c - a*si*tetta_b)/D;
  371. S->a4 = (tetta_b*tetta_b - 2*a*si*tetta_b + a*a + c*c)/D;
  372. }
  373. }
  374. static void chebyshev2_bp_filter(EqualizatorFilter *f,
  375. int N, double w0, double wb,
  376. double G, double Gb, double G0)
  377. {
  378. double a, b, c0, tetta_b;
  379. double epsilon, g, eu, ew;
  380. int r = N % 2;
  381. int L = (N - r) / 2;
  382. int i;
  383. if (G == 0 && G0 == 0) {
  384. f->section[0].a0 = 1;
  385. f->section[0].b0 = 1;
  386. f->section[1].a0 = 1;
  387. f->section[1].b0 = 1;
  388. return;
  389. }
  390. G = ff_exp10(G/20);
  391. Gb = ff_exp10(Gb/20);
  392. G0 = ff_exp10(G0/20);
  393. epsilon = sqrt((G*G - Gb*Gb) / (Gb*Gb - G0*G0));
  394. g = pow(G, 1.0 / N);
  395. eu = pow(epsilon + sqrt(1 + epsilon*epsilon), 1.0/N);
  396. ew = pow(G0*epsilon + Gb*sqrt(1 + epsilon*epsilon), 1.0/N);
  397. a = (eu - 1.0/eu)/2.0;
  398. b = (ew - g*g/ew)/2.0;
  399. tetta_b = tan(wb/2);
  400. c0 = cos(w0);
  401. for (i = 1; i <= L; i++) {
  402. double ui = (2.0 * i - 1.0)/N;
  403. double ci = cos(M_PI * ui / 2.0);
  404. double si = sin(M_PI * ui / 2.0);
  405. double Di = tetta_b*tetta_b + 2*a*si*tetta_b + a*a + ci*ci;
  406. chebyshev2_fo_section(&f->section[i - 1], a, ci, tetta_b, g, si, b, Di, c0);
  407. }
  408. }
  409. static double butterworth_compute_bw_gain_db(double gain)
  410. {
  411. double bw_gain = 0;
  412. if (gain <= -6)
  413. bw_gain = gain + 3;
  414. else if(gain > -6 && gain < 6)
  415. bw_gain = gain * 0.5;
  416. else if(gain >= 6)
  417. bw_gain = gain - 3;
  418. return bw_gain;
  419. }
  420. static double chebyshev1_compute_bw_gain_db(double gain)
  421. {
  422. double bw_gain = 0;
  423. if (gain <= -6)
  424. bw_gain = gain + 1;
  425. else if(gain > -6 && gain < 6)
  426. bw_gain = gain * 0.9;
  427. else if(gain >= 6)
  428. bw_gain = gain - 1;
  429. return bw_gain;
  430. }
  431. static double chebyshev2_compute_bw_gain_db(double gain)
  432. {
  433. double bw_gain = 0;
  434. if (gain <= -6)
  435. bw_gain = -3;
  436. else if(gain > -6 && gain < 6)
  437. bw_gain = gain * 0.3;
  438. else if(gain >= 6)
  439. bw_gain = 3;
  440. return bw_gain;
  441. }
  442. static inline double hz_2_rad(double x, double fs)
  443. {
  444. return 2 * M_PI * x / fs;
  445. }
  446. static void equalizer(EqualizatorFilter *f, double sample_rate)
  447. {
  448. double w0 = hz_2_rad(f->freq, sample_rate);
  449. double wb = hz_2_rad(f->width, sample_rate);
  450. double bw_gain;
  451. switch (f->type) {
  452. case BUTTERWORTH:
  453. bw_gain = butterworth_compute_bw_gain_db(f->gain);
  454. butterworth_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  455. break;
  456. case CHEBYSHEV1:
  457. bw_gain = chebyshev1_compute_bw_gain_db(f->gain);
  458. chebyshev1_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  459. break;
  460. case CHEBYSHEV2:
  461. bw_gain = chebyshev2_compute_bw_gain_db(f->gain);
  462. chebyshev2_bp_filter(f, FILTER_ORDER, w0, wb, f->gain, bw_gain, 0);
  463. break;
  464. }
  465. }
  466. static int add_filter(AudioNEqualizerContext *s, AVFilterLink *inlink)
  467. {
  468. equalizer(&s->filters[s->nb_filters], inlink->sample_rate);
  469. if (s->nb_filters >= s->nb_allocated) {
  470. EqualizatorFilter *filters;
  471. filters = av_calloc(s->nb_allocated, 2 * sizeof(*s->filters));
  472. if (!filters)
  473. return AVERROR(ENOMEM);
  474. memcpy(filters, s->filters, sizeof(*s->filters) * s->nb_allocated);
  475. av_free(s->filters);
  476. s->filters = filters;
  477. s->nb_allocated *= 2;
  478. }
  479. s->nb_filters++;
  480. return 0;
  481. }
  482. static int config_input(AVFilterLink *inlink)
  483. {
  484. AVFilterContext *ctx = inlink->dst;
  485. AudioNEqualizerContext *s = ctx->priv;
  486. char *args = av_strdup(s->args);
  487. char *saveptr = NULL;
  488. int ret = 0;
  489. if (!args)
  490. return AVERROR(ENOMEM);
  491. s->nb_allocated = 32 * inlink->channels;
  492. s->filters = av_calloc(inlink->channels, 32 * sizeof(*s->filters));
  493. if (!s->filters) {
  494. s->nb_allocated = 0;
  495. return AVERROR(ENOMEM);
  496. }
  497. while (1) {
  498. char *arg = av_strtok(s->nb_filters == 0 ? args : NULL, "|", &saveptr);
  499. if (!arg)
  500. break;
  501. s->filters[s->nb_filters].type = 0;
  502. if (sscanf(arg, "c%d f=%lf w=%lf g=%lf t=%d", &s->filters[s->nb_filters].channel,
  503. &s->filters[s->nb_filters].freq,
  504. &s->filters[s->nb_filters].width,
  505. &s->filters[s->nb_filters].gain,
  506. &s->filters[s->nb_filters].type) != 5 &&
  507. sscanf(arg, "c%d f=%lf w=%lf g=%lf", &s->filters[s->nb_filters].channel,
  508. &s->filters[s->nb_filters].freq,
  509. &s->filters[s->nb_filters].width,
  510. &s->filters[s->nb_filters].gain) != 4 ) {
  511. av_free(args);
  512. return AVERROR(EINVAL);
  513. }
  514. if (s->filters[s->nb_filters].freq < 0 ||
  515. s->filters[s->nb_filters].freq > inlink->sample_rate / 2)
  516. s->filters[s->nb_filters].ignore = 1;
  517. if (s->filters[s->nb_filters].channel < 0 ||
  518. s->filters[s->nb_filters].channel >= inlink->channels)
  519. s->filters[s->nb_filters].ignore = 1;
  520. s->filters[s->nb_filters].type = av_clip(s->filters[s->nb_filters].type, 0, NB_TYPES - 1);
  521. ret = add_filter(s, inlink);
  522. if (ret < 0)
  523. break;
  524. }
  525. av_free(args);
  526. return ret;
  527. }
  528. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  529. char *res, int res_len, int flags)
  530. {
  531. AudioNEqualizerContext *s = ctx->priv;
  532. AVFilterLink *inlink = ctx->inputs[0];
  533. int ret = AVERROR(ENOSYS);
  534. if (!strcmp(cmd, "change")) {
  535. double freq, width, gain;
  536. int filter;
  537. if (sscanf(args, "%d|f=%lf|w=%lf|g=%lf", &filter, &freq, &width, &gain) != 4)
  538. return AVERROR(EINVAL);
  539. if (filter < 0 || filter >= s->nb_filters)
  540. return AVERROR(EINVAL);
  541. if (freq < 0 || freq > inlink->sample_rate / 2)
  542. return AVERROR(EINVAL);
  543. s->filters[filter].freq = freq;
  544. s->filters[filter].width = width;
  545. s->filters[filter].gain = gain;
  546. equalizer(&s->filters[filter], inlink->sample_rate);
  547. if (s->draw_curves)
  548. draw_curves(ctx, inlink, s->video);
  549. ret = 0;
  550. }
  551. return ret;
  552. }
  553. static inline double section_process(FoSection *S, double in)
  554. {
  555. double out;
  556. out = S->b0 * in;
  557. out+= S->b1 * S->num[0] - S->denum[0] * S->a1;
  558. out+= S->b2 * S->num[1] - S->denum[1] * S->a2;
  559. out+= S->b3 * S->num[2] - S->denum[2] * S->a3;
  560. out+= S->b4 * S->num[3] - S->denum[3] * S->a4;
  561. S->num[3] = S->num[2];
  562. S->num[2] = S->num[1];
  563. S->num[1] = S->num[0];
  564. S->num[0] = in;
  565. S->denum[3] = S->denum[2];
  566. S->denum[2] = S->denum[1];
  567. S->denum[1] = S->denum[0];
  568. S->denum[0] = out;
  569. return out;
  570. }
  571. static double process_sample(FoSection *s1, double in)
  572. {
  573. double p0 = in, p1;
  574. int i;
  575. for (i = 0; i < FILTER_ORDER / 2; i++) {
  576. p1 = section_process(&s1[i], p0);
  577. p0 = p1;
  578. }
  579. return p1;
  580. }
  581. static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
  582. {
  583. AVFilterContext *ctx = inlink->dst;
  584. AudioNEqualizerContext *s = ctx->priv;
  585. AVFilterLink *outlink = ctx->outputs[0];
  586. double *bptr;
  587. int i, n;
  588. for (i = 0; i < s->nb_filters; i++) {
  589. EqualizatorFilter *f = &s->filters[i];
  590. if (f->gain == 0. || f->ignore)
  591. continue;
  592. bptr = (double *)buf->extended_data[f->channel];
  593. for (n = 0; n < buf->nb_samples; n++) {
  594. double sample = bptr[n];
  595. sample = process_sample(f->section, sample);
  596. bptr[n] = sample;
  597. }
  598. }
  599. if (s->draw_curves) {
  600. const int64_t pts = buf->pts +
  601. av_rescale_q(buf->nb_samples, (AVRational){ 1, inlink->sample_rate },
  602. outlink->time_base);
  603. int ret;
  604. s->video->pts = pts;
  605. ret = ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  606. if (ret < 0)
  607. return ret;
  608. }
  609. return ff_filter_frame(outlink, buf);
  610. }
  611. static const AVFilterPad inputs[] = {
  612. {
  613. .name = "default",
  614. .type = AVMEDIA_TYPE_AUDIO,
  615. .config_props = config_input,
  616. .filter_frame = filter_frame,
  617. .needs_writable = 1,
  618. },
  619. { NULL }
  620. };
  621. AVFilter ff_af_anequalizer = {
  622. .name = "anequalizer",
  623. .description = NULL_IF_CONFIG_SMALL("Apply high-order audio parametric multi band equalizer."),
  624. .priv_size = sizeof(AudioNEqualizerContext),
  625. .priv_class = &anequalizer_class,
  626. .init = init,
  627. .uninit = uninit,
  628. .query_formats = query_formats,
  629. .inputs = inputs,
  630. .outputs = NULL,
  631. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
  632. .process_command = process_command,
  633. };