|
- /*
- * The simplest AC-3 encoder
- * Copyright (c) 2000 Fabrice Bellard
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * The simplest AC-3 encoder.
- */
-
- //#define DEBUG
-
- #include "libavcore/audioconvert.h"
- #include "libavutil/crc.h"
- #include "avcodec.h"
- #include "put_bits.h"
- #include "ac3.h"
- #include "audioconvert.h"
-
-
- #define MDCT_NBITS 9
- #define MDCT_SAMPLES (1 << MDCT_NBITS)
-
- /** Maximum number of exponent groups. +1 for separate DC exponent. */
- #define AC3_MAX_EXP_GROUPS 85
-
- /** Scale a float value by 2^bits and convert to an integer. */
- #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
-
- /** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
- #define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15))
-
-
- /**
- * Compex number.
- * Used in fixed-point MDCT calculation.
- */
- typedef struct IComplex {
- int16_t re,im;
- } IComplex;
-
- /**
- * AC-3 encoder private context.
- */
- typedef struct AC3EncodeContext {
- PutBitContext pb; ///< bitstream writer context
-
- int bitstream_id; ///< bitstream id (bsid)
- int bitstream_mode; ///< bitstream mode (bsmod)
-
- int bit_rate; ///< target bit rate, in bits-per-second
- int sample_rate; ///< sampling frequency, in Hz
-
- int frame_size_min; ///< minimum frame size in case rounding is necessary
- int frame_size; ///< current frame size in bytes
- int frame_size_code; ///< frame size code (frmsizecod)
- int bits_written; ///< bit count (used to avg. bitrate)
- int samples_written; ///< sample count (used to avg. bitrate)
-
- int fbw_channels; ///< number of full-bandwidth channels (nfchans)
- int channels; ///< total number of channels (nchans)
- int lfe_on; ///< indicates if there is an LFE channel (lfeon)
- int lfe_channel; ///< channel index of the LFE channel
- int channel_mode; ///< channel mode (acmod)
- const uint8_t *channel_map; ///< channel map used to reorder channels
-
- int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod)
- int nb_coefs[AC3_MAX_CHANNELS];
-
- /* bitrate allocation control */
- int slow_gain_code; ///< slow gain code (sgaincod)
- int slow_decay_code; ///< slow decay code (sdcycod)
- int fast_decay_code; ///< fast decay code (fdcycod)
- int db_per_bit_code; ///< dB/bit code (dbpbcod)
- int floor_code; ///< floor code (floorcod)
- AC3BitAllocParameters bit_alloc; ///< bit allocation parameters
- int coarse_snr_offset; ///< coarse SNR offsets (csnroffst)
- int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod)
- int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst)
- int frame_bits; ///< all frame bits except exponents and mantissas
- int exponent_bits; ///< number of bits used for exponents
-
- /* mantissa encoding */
- int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
- uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
-
- int16_t last_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE]; ///< last 256 samples from previous frame
- } AC3EncodeContext;
-
-
- /** MDCT and FFT tables */
- static int16_t costab[64];
- static int16_t sintab[64];
- static int16_t xcos1[128];
- static int16_t xsin1[128];
-
-
- /**
- * Adjust the frame size to make the average bit rate match the target bit rate.
- * This is only needed for 11025, 22050, and 44100 sample rates.
- */
- static void adjust_frame_size(AC3EncodeContext *s)
- {
- while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
- s->bits_written -= s->bit_rate;
- s->samples_written -= s->sample_rate;
- }
- s->frame_size = s->frame_size_min + 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
- s->bits_written += s->frame_size * 8;
- s->samples_written += AC3_FRAME_SIZE;
- }
-
-
- /**
- * Deinterleave input samples.
- * Channels are reordered from FFmpeg's default order to AC-3 order.
- */
- static void deinterleave_input_samples(AC3EncodeContext *s,
- const int16_t *samples,
- int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE])
- {
- int ch, i;
-
- /* deinterleave and remap input samples */
- for (ch = 0; ch < s->channels; ch++) {
- const int16_t *sptr;
- int sinc;
-
- /* copy last 256 samples of previous frame to the start of the current frame */
- memcpy(&planar_samples[ch][0], s->last_samples[ch],
- AC3_BLOCK_SIZE * sizeof(planar_samples[0][0]));
-
- /* deinterleave */
- sinc = s->channels;
- sptr = samples + s->channel_map[ch];
- for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
- planar_samples[ch][i] = *sptr;
- sptr += sinc;
- }
-
- /* save last 256 samples for next frame */
- memcpy(s->last_samples[ch], &planar_samples[ch][6* AC3_BLOCK_SIZE],
- AC3_BLOCK_SIZE * sizeof(planar_samples[0][0]));
- }
- }
-
-
- /**
- * Initialize FFT tables.
- * @param ln log2(FFT size)
- */
- static av_cold void fft_init(int ln)
- {
- int i, n, n2;
- float alpha;
-
- n = 1 << ln;
- n2 = n >> 1;
-
- for (i = 0; i < n2; i++) {
- alpha = 2.0 * M_PI * i / n;
- costab[i] = FIX15(cos(alpha));
- sintab[i] = FIX15(sin(alpha));
- }
- }
-
-
- /**
- * Initialize MDCT tables.
- * @param nbits log2(MDCT size)
- */
- static av_cold void mdct_init(int nbits)
- {
- int i, n, n4;
-
- n = 1 << nbits;
- n4 = n >> 2;
-
- fft_init(nbits - 2);
-
- for (i = 0; i < n4; i++) {
- float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
- xcos1[i] = FIX15(-cos(alpha));
- xsin1[i] = FIX15(-sin(alpha));
- }
- }
-
-
- /** Butterfly op */
- #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
- { \
- int ax, ay, bx, by; \
- bx = pre1; \
- by = pim1; \
- ax = qre1; \
- ay = qim1; \
- pre = (bx + ax) >> 1; \
- pim = (by + ay) >> 1; \
- qre = (bx - ax) >> 1; \
- qim = (by - ay) >> 1; \
- }
-
-
- /** Complex multiply */
- #define CMUL(pre, pim, are, aim, bre, bim) \
- { \
- pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
- pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
- }
-
-
- /**
- * Calculate a 2^n point complex FFT on 2^ln points.
- * @param z complex input/output samples
- * @param ln log2(FFT size)
- */
- static void fft(IComplex *z, int ln)
- {
- int j, l, np, np2;
- int nblocks, nloops;
- register IComplex *p,*q;
- int tmp_re, tmp_im;
-
- np = 1 << ln;
-
- /* reverse */
- for (j = 0; j < np; j++) {
- int k = av_reverse[j] >> (8 - ln);
- if (k < j)
- FFSWAP(IComplex, z[k], z[j]);
- }
-
- /* pass 0 */
-
- p = &z[0];
- j = np >> 1;
- do {
- BF(p[0].re, p[0].im, p[1].re, p[1].im,
- p[0].re, p[0].im, p[1].re, p[1].im);
- p += 2;
- } while (--j);
-
- /* pass 1 */
-
- p = &z[0];
- j = np >> 2;
- do {
- BF(p[0].re, p[0].im, p[2].re, p[2].im,
- p[0].re, p[0].im, p[2].re, p[2].im);
- BF(p[1].re, p[1].im, p[3].re, p[3].im,
- p[1].re, p[1].im, p[3].im, -p[3].re);
- p+=4;
- } while (--j);
-
- /* pass 2 .. ln-1 */
-
- nblocks = np >> 3;
- nloops = 1 << 2;
- np2 = np >> 1;
- do {
- p = z;
- q = z + nloops;
- for (j = 0; j < nblocks; j++) {
- BF(p->re, p->im, q->re, q->im,
- p->re, p->im, q->re, q->im);
- p++;
- q++;
- for(l = nblocks; l < np2; l += nblocks) {
- CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
- BF(p->re, p->im, q->re, q->im,
- p->re, p->im, tmp_re, tmp_im);
- p++;
- q++;
- }
- p += nloops;
- q += nloops;
- }
- nblocks = nblocks >> 1;
- nloops = nloops << 1;
- } while (nblocks);
- }
-
-
- /**
- * Calculate a 512-point MDCT
- * @param out 256 output frequency coefficients
- * @param in 512 windowed input audio samples
- */
- static void mdct512(int32_t *out, int16_t *in)
- {
- int i, re, im, re1, im1;
- int16_t rot[MDCT_SAMPLES];
- IComplex x[MDCT_SAMPLES/4];
-
- /* shift to simplify computations */
- for (i = 0; i < MDCT_SAMPLES/4; i++)
- rot[i] = -in[i + 3*MDCT_SAMPLES/4];
- for (;i < MDCT_SAMPLES; i++)
- rot[i] = in[i - MDCT_SAMPLES/4];
-
- /* pre rotation */
- for (i = 0; i < MDCT_SAMPLES/4; i++) {
- re = ((int)rot[ 2*i] - (int)rot[MDCT_SAMPLES -1-2*i]) >> 1;
- im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1;
- CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
- }
-
- fft(x, MDCT_NBITS - 2);
-
- /* post rotation */
- for (i = 0; i < MDCT_SAMPLES/4; i++) {
- re = x[i].re;
- im = x[i].im;
- CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
- out[ 2*i] = im1;
- out[MDCT_SAMPLES/2-1-2*i] = re1;
- }
- }
-
-
- /**
- * Apply KBD window to input samples prior to MDCT.
- */
- static void apply_window(int16_t *output, const int16_t *input,
- const int16_t *window, int n)
- {
- int i;
- int n2 = n >> 1;
-
- for (i = 0; i < n2; i++) {
- output[i] = MUL16(input[i], window[i]) >> 15;
- output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
- }
- }
-
-
- /**
- * Calculate the log2() of the maximum absolute value in an array.
- * @param tab input array
- * @param n number of values in the array
- * @return log2(max(abs(tab[])))
- */
- static int log2_tab(int16_t *tab, int n)
- {
- int i, v;
-
- v = 0;
- for (i = 0; i < n; i++)
- v |= abs(tab[i]);
-
- return av_log2(v);
- }
-
-
- /**
- * Left-shift each value in an array by a specified amount.
- * @param tab input array
- * @param n number of values in the array
- * @param lshift left shift amount. a negative value means right shift.
- */
- static void lshift_tab(int16_t *tab, int n, int lshift)
- {
- int i;
-
- if (lshift > 0) {
- for(i = 0; i < n; i++)
- tab[i] <<= lshift;
- } else if (lshift < 0) {
- lshift = -lshift;
- for (i = 0; i < n; i++)
- tab[i] >>= lshift;
- }
- }
-
-
- /**
- * Normalize the input samples to use the maximum available precision.
- * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
- * match the 24-bit internal precision for MDCT coefficients.
- *
- * @return exponent shift
- */
- static int normalize_samples(AC3EncodeContext *s,
- int16_t windowed_samples[AC3_WINDOW_SIZE])
- {
- int v = 14 - log2_tab(windowed_samples, AC3_WINDOW_SIZE);
- v = FFMAX(0, v);
- lshift_tab(windowed_samples, AC3_WINDOW_SIZE, v);
- return v - 9;
- }
-
-
- /**
- * Apply the MDCT to input samples to generate frequency coefficients.
- * This applies the KBD window and normalizes the input to reduce precision
- * loss due to fixed-point calculations.
- */
- static void apply_mdct(AC3EncodeContext *s,
- int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE],
- int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
- {
- int blk, ch;
- int16_t windowed_samples[AC3_WINDOW_SIZE];
-
- for (ch = 0; ch < s->channels; ch++) {
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- const int16_t *input_samples = &planar_samples[ch][blk * AC3_BLOCK_SIZE];
-
- apply_window(windowed_samples, input_samples, ff_ac3_window, AC3_WINDOW_SIZE);
-
- exp_shift[blk][ch] = normalize_samples(s, windowed_samples);
-
- mdct512(mdct_coef[blk][ch], windowed_samples);
- }
- }
- }
-
-
- /**
- * Extract exponents from the MDCT coefficients.
- * This takes into account the normalization that was done to the input samples
- * by adjusting the exponents by the exponent shift values.
- */
- static void extract_exponents(AC3EncodeContext *s,
- int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
- {
- int blk, ch, i;
-
- /* extract exponents */
- for (ch = 0; ch < s->channels; ch++) {
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- /* compute "exponents". We take into account the normalization there */
- for (i = 0; i < AC3_MAX_COEFS; i++) {
- int e;
- int v = abs(mdct_coef[blk][ch][i]);
- if (v == 0)
- e = 24;
- else {
- e = 23 - av_log2(v) + exp_shift[blk][ch];
- if (e >= 24) {
- e = 24;
- mdct_coef[blk][ch][i] = 0;
- }
- }
- exp[blk][ch][i] = e;
- }
- }
- }
- }
-
-
- /**
- * Calculate the sum of absolute differences (SAD) between 2 sets of exponents.
- */
- static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
- {
- int sum, i;
- sum = 0;
- for (i = 0; i < n; i++)
- sum += abs(exp1[i] - exp2[i]);
- return sum;
- }
-
-
- /**
- * Exponent Difference Threshold.
- * New exponents are sent if their SAD exceed this number.
- */
- #define EXP_DIFF_THRESHOLD 1000
-
-
- /**
- * Calculate exponent strategies for all blocks in a single channel.
- */
- static void compute_exp_strategy_ch(uint8_t *exp_strategy, uint8_t **exp)
- {
- int blk, blk1;
- int exp_diff;
-
- /* estimate if the exponent variation & decide if they should be
- reused in the next frame */
- exp_strategy[0] = EXP_NEW;
- for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
- exp_diff = calc_exp_diff(exp[blk], exp[blk-1], AC3_MAX_COEFS);
- if (exp_diff > EXP_DIFF_THRESHOLD)
- exp_strategy[blk] = EXP_NEW;
- else
- exp_strategy[blk] = EXP_REUSE;
- }
-
- /* now select the encoding strategy type : if exponents are often
- recoded, we use a coarse encoding */
- blk = 0;
- while (blk < AC3_MAX_BLOCKS) {
- blk1 = blk + 1;
- while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
- blk1++;
- switch (blk1 - blk) {
- case 1: exp_strategy[blk] = EXP_D45; break;
- case 2:
- case 3: exp_strategy[blk] = EXP_D25; break;
- default: exp_strategy[blk] = EXP_D15; break;
- }
- blk = blk1;
- }
- }
-
-
- /**
- * Calculate exponent strategies for all channels.
- * Array arrangement is reversed to simplify the per-channel calculation.
- */
- static void compute_exp_strategy(AC3EncodeContext *s,
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
- {
- uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
- uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
- int ch, blk;
-
- for (ch = 0; ch < s->fbw_channels; ch++) {
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- exp1[ch][blk] = exp[blk][ch];
- exp_str1[ch][blk] = exp_strategy[blk][ch];
- }
-
- compute_exp_strategy_ch(exp_str1[ch], exp1[ch]);
-
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
- exp_strategy[blk][ch] = exp_str1[ch][blk];
- }
- if (s->lfe_on) {
- ch = s->lfe_channel;
- exp_strategy[0][ch] = EXP_D15;
- for (blk = 1; blk < 5; blk++)
- exp_strategy[blk][ch] = EXP_REUSE;
- }
- }
-
-
- /**
- * Set each encoded exponent in a block to the minimum of itself and the
- * exponent in the same frequency bin of a following block.
- * exp[i] = min(exp[i], exp1[i]
- */
- static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n)
- {
- int i;
- for (i = 0; i < n; i++) {
- if (exp1[i] < exp[i])
- exp[i] = exp1[i];
- }
- }
-
-
- /**
- * Update the exponents so that they are the ones the decoder will decode.
- */
- static void encode_exponents_blk_ch(uint8_t encoded_exp[AC3_MAX_COEFS],
- uint8_t exp[AC3_MAX_COEFS],
- int nb_exps, int exp_strategy,
- uint8_t *num_exp_groups)
- {
- int group_size, nb_groups, i, j, k, exp_min;
- uint8_t exp1[AC3_MAX_COEFS];
-
- group_size = exp_strategy + (exp_strategy == EXP_D45);
- *num_exp_groups = (nb_exps + (group_size * 3) - 4) / (3 * group_size);
- nb_groups = *num_exp_groups * 3;
-
- /* for each group, compute the minimum exponent */
- exp1[0] = exp[0]; /* DC exponent is handled separately */
- k = 1;
- for (i = 1; i <= nb_groups; i++) {
- exp_min = exp[k];
- assert(exp_min >= 0 && exp_min <= 24);
- for (j = 1; j < group_size; j++) {
- if (exp[k+j] < exp_min)
- exp_min = exp[k+j];
- }
- exp1[i] = exp_min;
- k += group_size;
- }
-
- /* constraint for DC exponent */
- if (exp1[0] > 15)
- exp1[0] = 15;
-
- /* decrease the delta between each groups to within 2 so that they can be
- differentially encoded */
- for (i = 1; i <= nb_groups; i++)
- exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
- for (i = nb_groups-1; i >= 0; i--)
- exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
-
- /* now we have the exponent values the decoder will see */
- encoded_exp[0] = exp1[0];
- k = 1;
- for (i = 1; i <= nb_groups; i++) {
- for (j = 0; j < group_size; j++)
- encoded_exp[k+j] = exp1[i];
- k += group_size;
- }
- }
-
-
- /**
- * Encode exponents from original extracted form to what the decoder will see.
- * This copies and groups exponents based on exponent strategy and reduces
- * deltas between adjacent exponent groups so that they can be differentially
- * encoded.
- */
- static void encode_exponents(AC3EncodeContext *s,
- uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
- {
- int blk, blk1, blk2, ch;
-
- for (ch = 0; ch < s->channels; ch++) {
- /* for the EXP_REUSE case we select the min of the exponents */
- blk = 0;
- while (blk < AC3_MAX_BLOCKS) {
- blk1 = blk + 1;
- while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1][ch] == EXP_REUSE) {
- exponent_min(exp[blk][ch], exp[blk1][ch], s->nb_coefs[ch]);
- blk1++;
- }
- encode_exponents_blk_ch(encoded_exp[blk][ch],
- exp[blk][ch], s->nb_coefs[ch],
- exp_strategy[blk][ch],
- &num_exp_groups[blk][ch]);
- /* copy encoded exponents for reuse case */
- for (blk2 = blk+1; blk2 < blk1; blk2++) {
- memcpy(encoded_exp[blk2][ch], encoded_exp[blk][ch],
- s->nb_coefs[ch] * sizeof(uint8_t));
- }
- blk = blk1;
- }
- }
- }
-
-
- /**
- * Group exponents.
- * 3 delta-encoded exponents are in each 7-bit group. The number of groups
- * varies depending on exponent strategy and bandwidth.
- */
- static void group_exponents(AC3EncodeContext *s,
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS])
- {
- int blk, ch, i;
- int group_size, bit_count;
- uint8_t *p;
- int delta0, delta1, delta2;
- int exp0, exp1;
-
- bit_count = 0;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- for (ch = 0; ch < s->channels; ch++) {
- if (exp_strategy[blk][ch] == EXP_REUSE) {
- num_exp_groups[blk][ch] = 0;
- continue;
- }
- group_size = exp_strategy[blk][ch] + (exp_strategy[blk][ch] == EXP_D45);
- bit_count += 4 + (num_exp_groups[blk][ch] * 7);
- p = encoded_exp[blk][ch];
-
- /* DC exponent */
- exp1 = *p++;
- grouped_exp[blk][ch][0] = exp1;
-
- /* remaining exponents are delta encoded */
- for (i = 1; i <= num_exp_groups[blk][ch]; i++) {
- /* merge three delta in one code */
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta0 = exp1 - exp0 + 2;
-
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta1 = exp1 - exp0 + 2;
-
- exp0 = exp1;
- exp1 = p[0];
- p += group_size;
- delta2 = exp1 - exp0 + 2;
-
- grouped_exp[blk][ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
- }
- }
- }
-
- s->exponent_bits = bit_count;
- }
-
-
- /**
- * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
- * Extract exponents from MDCT coefficients, calculate exponent strategies,
- * and encode final exponents.
- */
- static void process_exponents(AC3EncodeContext *s,
- int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS])
- {
- extract_exponents(s, mdct_coef, exp_shift, exp);
-
- compute_exp_strategy(s, exp_strategy, exp);
-
- encode_exponents(s, exp, exp_strategy, num_exp_groups, encoded_exp);
-
- group_exponents(s, encoded_exp, exp_strategy, num_exp_groups, grouped_exp);
- }
-
-
- /**
- * Initialize bit allocation.
- * Set default parameter codes and calculate parameter values.
- */
- static void bit_alloc_init(AC3EncodeContext *s)
- {
- int ch;
-
- /* init default parameters */
- s->slow_decay_code = 2;
- s->fast_decay_code = 1;
- s->slow_gain_code = 1;
- s->db_per_bit_code = 2;
- s->floor_code = 4;
- for (ch = 0; ch < s->channels; ch++)
- s->fast_gain_code[ch] = 4;
-
- /* initial snr offset */
- s->coarse_snr_offset = 40;
-
- /* compute real values */
- /* currently none of these values change during encoding, so we can just
- set them once at initialization */
- s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
- s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
- s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
- s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
- s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
- }
-
-
- /**
- * Count the bits used to encode the frame, minus exponents and mantissas.
- */
- static void count_frame_bits(AC3EncodeContext *s,
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS])
- {
- static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
- int blk, ch;
- int frame_bits;
-
- /* header size */
- frame_bits = 65;
- frame_bits += frame_bits_inc[s->channel_mode];
-
- /* audio blocks */
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
- if (s->channel_mode == AC3_CHMODE_STEREO) {
- frame_bits++; /* rematstr */
- if (!blk)
- frame_bits += 4;
- }
- frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
- if (s->lfe_on)
- frame_bits++; /* lfeexpstr */
- for (ch = 0; ch < s->fbw_channels; ch++) {
- if (exp_strategy[blk][ch] != EXP_REUSE)
- frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
- }
- frame_bits++; /* baie */
- frame_bits++; /* snr */
- frame_bits += 2; /* delta / skip */
- }
- frame_bits++; /* cplinu for block 0 */
- /* bit alloc info */
- /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
- /* csnroffset[6] */
- /* (fsnoffset[4] + fgaincod[4]) * c */
- frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
-
- /* auxdatae, crcrsv */
- frame_bits += 2;
-
- /* CRC */
- frame_bits += 16;
-
- s->frame_bits = frame_bits;
- }
-
-
- /**
- * Calculate the number of bits needed to encode a set of mantissas.
- */
- static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
- {
- int bits, mant, i;
-
- bits = 0;
- for (i = 0; i < nb_coefs; i++) {
- mant = m[i];
- switch (mant) {
- case 0:
- /* nothing */
- break;
- case 1:
- /* 3 mantissa in 5 bits */
- if (s->mant1_cnt == 0)
- bits += 5;
- if (++s->mant1_cnt == 3)
- s->mant1_cnt = 0;
- break;
- case 2:
- /* 3 mantissa in 7 bits */
- if (s->mant2_cnt == 0)
- bits += 7;
- if (++s->mant2_cnt == 3)
- s->mant2_cnt = 0;
- break;
- case 3:
- bits += 3;
- break;
- case 4:
- /* 2 mantissa in 7 bits */
- if (s->mant4_cnt == 0)
- bits += 7;
- if (++s->mant4_cnt == 2)
- s->mant4_cnt = 0;
- break;
- case 14:
- bits += 14;
- break;
- case 15:
- bits += 16;
- break;
- default:
- bits += mant - 1;
- break;
- }
- }
- return bits;
- }
-
-
- /**
- * Calculate masking curve based on the final exponents.
- * Also calculate the power spectral densities to use in future calculations.
- */
- static void bit_alloc_masking(AC3EncodeContext *s,
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS])
- {
- int blk, ch;
- int16_t band_psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS];
-
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- for (ch = 0; ch < s->channels; ch++) {
- if(exp_strategy[blk][ch] == EXP_REUSE) {
- memcpy(psd[blk][ch], psd[blk-1][ch], AC3_MAX_COEFS*sizeof(psd[0][0][0]));
- memcpy(mask[blk][ch], mask[blk-1][ch], AC3_CRITICAL_BANDS*sizeof(mask[0][0][0]));
- } else {
- ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
- s->nb_coefs[ch],
- psd[blk][ch], band_psd[blk][ch]);
- ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
- 0, s->nb_coefs[ch],
- ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
- ch == s->lfe_channel,
- DBA_NONE, 0, NULL, NULL, NULL,
- mask[blk][ch]);
- }
- }
- }
- }
-
-
- /**
- * Run the bit allocation with a given SNR offset.
- * This calculates the bit allocation pointers that will be used to determine
- * the quantization of each mantissa.
- * @return the number of bits needed for mantissas if the given SNR offset is
- * is used.
- */
- static int bit_alloc(AC3EncodeContext *s,
- int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS],
- int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- int snr_offset)
- {
- int blk, ch;
- int mantissa_bits;
-
- snr_offset = (snr_offset - 240) << 2;
-
- mantissa_bits = 0;
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- s->mant1_cnt = 0;
- s->mant2_cnt = 0;
- s->mant4_cnt = 0;
- for (ch = 0; ch < s->channels; ch++) {
- ff_ac3_bit_alloc_calc_bap(mask[blk][ch], psd[blk][ch], 0,
- s->nb_coefs[ch], snr_offset,
- s->bit_alloc.floor, ff_ac3_bap_tab,
- bap[blk][ch]);
- mantissa_bits += compute_mantissa_size(s, bap[blk][ch], s->nb_coefs[ch]);
- }
- }
- return mantissa_bits;
- }
-
-
- /**
- * Perform bit allocation search.
- * Finds the SNR offset value that maximizes quality and fits in the specified
- * frame size. Output is the SNR offset and a set of bit allocation pointers
- * used to quantize the mantissas.
- */
- static int compute_bit_allocation(AC3EncodeContext *s,
- uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS])
- {
- int ch;
- int bits_left;
- int snr_offset;
- uint8_t bap1[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS];
-
- /* count frame bits other than exponents and mantissas */
- count_frame_bits(s, exp_strategy);
-
- /* calculate psd and masking curve before doing bit allocation */
- bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
-
- /* now the big work begins : do the bit allocation. Modify the snr
- offset until we can pack everything in the requested frame size */
-
- bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
-
- snr_offset = s->coarse_snr_offset << 4;
-
- while (snr_offset >= 0 &&
- bit_alloc(s, mask, psd, bap, snr_offset) > bits_left) {
- snr_offset -= 64;
- }
- if (snr_offset < 0) {
- return AVERROR(EINVAL);
- }
-
- while (snr_offset + 64 <= 1023 &&
- bit_alloc(s, mask, psd, bap1, snr_offset + 64) <= bits_left) {
- snr_offset += 64;
- memcpy(bap, bap1, sizeof(bap1));
- }
- while (snr_offset + 16 <= 1023 &&
- bit_alloc(s, mask, psd, bap1, snr_offset + 16) <= bits_left) {
- snr_offset += 16;
- memcpy(bap, bap1, sizeof(bap1));
- }
- while (snr_offset + 4 <= 1023 &&
- bit_alloc(s, mask, psd, bap1, snr_offset + 4) <= bits_left) {
- snr_offset += 4;
- memcpy(bap, bap1, sizeof(bap1));
- }
- while (snr_offset + 1 <= 1023 &&
- bit_alloc(s, mask, psd, bap1, snr_offset + 1) <= bits_left) {
- snr_offset++;
- memcpy(bap, bap1, sizeof(bap1));
- }
-
- s->coarse_snr_offset = snr_offset >> 4;
- for (ch = 0; ch < s->channels; ch++)
- s->fine_snr_offset[ch] = snr_offset & 0xF;
-
- return 0;
- }
-
-
- /**
- * Symmetric quantization on 'levels' levels.
- */
- static inline int sym_quant(int c, int e, int levels)
- {
- int v;
-
- if (c >= 0) {
- v = (levels * (c << e)) >> 24;
- v = (v + 1) >> 1;
- v = (levels >> 1) + v;
- } else {
- v = (levels * ((-c) << e)) >> 24;
- v = (v + 1) >> 1;
- v = (levels >> 1) - v;
- }
- assert (v >= 0 && v < levels);
- return v;
- }
-
-
- /**
- * Asymmetric quantization on 2^qbits levels.
- */
- static inline int asym_quant(int c, int e, int qbits)
- {
- int lshift, m, v;
-
- lshift = e + qbits - 24;
- if (lshift >= 0)
- v = c << lshift;
- else
- v = c >> (-lshift);
- /* rounding */
- v = (v + 1) >> 1;
- m = (1 << (qbits-1));
- if (v >= m)
- v = m - 1;
- assert(v >= -m);
- return v & ((1 << qbits)-1);
- }
-
-
- /**
- * Quantize a set of mantissas for a single channel in a single block.
- */
- static void quantize_mantissas_blk_ch(AC3EncodeContext *s,
- int32_t *mdct_coef, int8_t exp_shift,
- uint8_t *encoded_exp, uint8_t *bap,
- uint16_t *qmant, int n)
- {
- int i;
-
- for (i = 0; i < n; i++) {
- int v;
- int c = mdct_coef[i];
- int e = encoded_exp[i] - exp_shift;
- int b = bap[i];
- switch (b) {
- case 0:
- v = 0;
- break;
- case 1:
- v = sym_quant(c, e, 3);
- switch (s->mant1_cnt) {
- case 0:
- s->qmant1_ptr = &qmant[i];
- v = 9 * v;
- s->mant1_cnt = 1;
- break;
- case 1:
- *s->qmant1_ptr += 3 * v;
- s->mant1_cnt = 2;
- v = 128;
- break;
- default:
- *s->qmant1_ptr += v;
- s->mant1_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 2:
- v = sym_quant(c, e, 5);
- switch (s->mant2_cnt) {
- case 0:
- s->qmant2_ptr = &qmant[i];
- v = 25 * v;
- s->mant2_cnt = 1;
- break;
- case 1:
- *s->qmant2_ptr += 5 * v;
- s->mant2_cnt = 2;
- v = 128;
- break;
- default:
- *s->qmant2_ptr += v;
- s->mant2_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 3:
- v = sym_quant(c, e, 7);
- break;
- case 4:
- v = sym_quant(c, e, 11);
- switch (s->mant4_cnt) {
- case 0:
- s->qmant4_ptr = &qmant[i];
- v = 11 * v;
- s->mant4_cnt = 1;
- break;
- default:
- *s->qmant4_ptr += v;
- s->mant4_cnt = 0;
- v = 128;
- break;
- }
- break;
- case 5:
- v = sym_quant(c, e, 15);
- break;
- case 14:
- v = asym_quant(c, e, 14);
- break;
- case 15:
- v = asym_quant(c, e, 16);
- break;
- default:
- v = asym_quant(c, e, b - 1);
- break;
- }
- qmant[i] = v;
- }
- }
-
-
- /**
- * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
- */
- static void quantize_mantissas(AC3EncodeContext *s,
- int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
- {
- int blk, ch;
-
-
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- s->mant1_cnt = s->mant2_cnt = s->mant4_cnt = 0;
- s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
-
- for (ch = 0; ch < s->channels; ch++) {
- quantize_mantissas_blk_ch(s, mdct_coef[blk][ch], exp_shift[blk][ch],
- encoded_exp[blk][ch], bap[blk][ch],
- qmant[blk][ch], s->nb_coefs[ch]);
- }
- }
- }
-
-
- /**
- * Write the AC-3 frame header to the output bitstream.
- */
- static void output_frame_header(AC3EncodeContext *s)
- {
- put_bits(&s->pb, 16, 0x0b77); /* frame header */
- put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
- put_bits(&s->pb, 2, s->bit_alloc.sr_code);
- put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
- put_bits(&s->pb, 5, s->bitstream_id);
- put_bits(&s->pb, 3, s->bitstream_mode);
- put_bits(&s->pb, 3, s->channel_mode);
- if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
- put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
- if (s->channel_mode & 0x04)
- put_bits(&s->pb, 2, 1); /* XXX -6 dB */
- if (s->channel_mode == AC3_CHMODE_STEREO)
- put_bits(&s->pb, 2, 0); /* surround not indicated */
- put_bits(&s->pb, 1, s->lfe_on); /* LFE */
- put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
- put_bits(&s->pb, 1, 0); /* no compression control word */
- put_bits(&s->pb, 1, 0); /* no lang code */
- put_bits(&s->pb, 1, 0); /* no audio production info */
- put_bits(&s->pb, 1, 0); /* no copyright */
- put_bits(&s->pb, 1, 1); /* original bitstream */
- put_bits(&s->pb, 1, 0); /* no time code 1 */
- put_bits(&s->pb, 1, 0); /* no time code 2 */
- put_bits(&s->pb, 1, 0); /* no additional bit stream info */
- }
-
-
- /**
- * Write one audio block to the output bitstream.
- */
- static void output_audio_block(AC3EncodeContext *s,
- uint8_t exp_strategy[AC3_MAX_CHANNELS],
- uint8_t num_exp_groups[AC3_MAX_CHANNELS],
- uint8_t grouped_exp[AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS],
- uint8_t bap[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint16_t qmant[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- int block_num)
- {
- int ch, i, baie, rbnd;
-
- for (ch = 0; ch < s->fbw_channels; ch++)
- put_bits(&s->pb, 1, 0); /* no block switching */
- for (ch = 0; ch < s->fbw_channels; ch++)
- put_bits(&s->pb, 1, 1); /* no dither */
- put_bits(&s->pb, 1, 0); /* no dynamic range */
- if (!block_num) {
- put_bits(&s->pb, 1, 1); /* coupling strategy present */
- put_bits(&s->pb, 1, 0); /* no coupling strategy */
- } else {
- put_bits(&s->pb, 1, 0); /* no new coupling strategy */
- }
-
- if (s->channel_mode == AC3_CHMODE_STEREO) {
- if (!block_num) {
- /* first block must define rematrixing (rematstr) */
- put_bits(&s->pb, 1, 1);
-
- /* dummy rematrixing rematflg(1:4)=0 */
- for (rbnd = 0; rbnd < 4; rbnd++)
- put_bits(&s->pb, 1, 0);
- } else {
- /* no matrixing (but should be used in the future) */
- put_bits(&s->pb, 1, 0);
- }
- }
-
- /* exponent strategy */
- for (ch = 0; ch < s->fbw_channels; ch++)
- put_bits(&s->pb, 2, exp_strategy[ch]);
-
- if (s->lfe_on)
- put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
-
- /* bandwidth */
- for (ch = 0; ch < s->fbw_channels; ch++) {
- if (exp_strategy[ch] != EXP_REUSE)
- put_bits(&s->pb, 6, s->bandwidth_code[ch]);
- }
-
- /* exponents */
- for (ch = 0; ch < s->channels; ch++) {
- if (exp_strategy[ch] == EXP_REUSE)
- continue;
-
- /* first exponent */
- put_bits(&s->pb, 4, grouped_exp[ch][0]);
-
- /* next ones are delta-encoded and grouped */
- for (i = 1; i <= num_exp_groups[ch]; i++)
- put_bits(&s->pb, 7, grouped_exp[ch][i]);
-
- if (ch != s->lfe_channel)
- put_bits(&s->pb, 2, 0); /* no gain range info */
- }
-
- /* bit allocation info */
- baie = (block_num == 0);
- put_bits(&s->pb, 1, baie);
- if (baie) {
- put_bits(&s->pb, 2, s->slow_decay_code);
- put_bits(&s->pb, 2, s->fast_decay_code);
- put_bits(&s->pb, 2, s->slow_gain_code);
- put_bits(&s->pb, 2, s->db_per_bit_code);
- put_bits(&s->pb, 3, s->floor_code);
- }
-
- /* snr offset */
- put_bits(&s->pb, 1, baie);
- if (baie) {
- put_bits(&s->pb, 6, s->coarse_snr_offset);
- for (ch = 0; ch < s->channels; ch++) {
- put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
- put_bits(&s->pb, 3, s->fast_gain_code[ch]);
- }
- }
-
- put_bits(&s->pb, 1, 0); /* no delta bit allocation */
- put_bits(&s->pb, 1, 0); /* no data to skip */
-
- /* mantissa encoding */
- for (ch = 0; ch < s->channels; ch++) {
- int b, q;
-
- for (i = 0; i < s->nb_coefs[ch]; i++) {
- q = qmant[ch][i];
- b = bap[ch][i];
- switch (b) {
- case 0: break;
- case 1: if (q != 128) put_bits(&s->pb, 5, q); break;
- case 2: if (q != 128) put_bits(&s->pb, 7, q); break;
- case 3: put_bits(&s->pb, 3, q); break;
- case 4: if (q != 128) put_bits(&s->pb, 7, q); break;
- case 14: put_bits(&s->pb, 14, q); break;
- case 15: put_bits(&s->pb, 16, q); break;
- default: put_bits(&s->pb, b-1, q); break;
- }
- }
- }
- }
-
-
- /** CRC-16 Polynomial */
- #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
-
-
- static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
- {
- unsigned int c;
-
- c = 0;
- while (a) {
- if (a & 1)
- c ^= b;
- a = a >> 1;
- b = b << 1;
- if (b & (1 << 16))
- b ^= poly;
- }
- return c;
- }
-
-
- static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
- {
- unsigned int r;
- r = 1;
- while (n) {
- if (n & 1)
- r = mul_poly(r, a, poly);
- a = mul_poly(a, a, poly);
- n >>= 1;
- }
- return r;
- }
-
-
- /**
- * Fill the end of the frame with 0's and compute the two CRCs.
- */
- static void output_frame_end(AC3EncodeContext *s)
- {
- int frame_size, frame_size_58, pad_bytes, crc1, crc2, crc_inv;
- uint8_t *frame;
-
- frame_size = s->frame_size; /* frame size in words */
- /* align to 8 bits */
- flush_put_bits(&s->pb);
- /* add zero bytes to reach the frame size */
- frame = s->pb.buf;
- pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
- assert(pad_bytes >= 0);
- if (pad_bytes > 0)
- memset(put_bits_ptr(&s->pb), 0, pad_bytes);
-
- /* Now we must compute both crcs : this is not so easy for crc1
- because it is at the beginning of the data... */
- frame_size_58 = ((frame_size >> 2) + (frame_size >> 4)) << 1;
-
- crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
- frame + 4, frame_size_58 - 4));
-
- /* XXX: could precompute crc_inv */
- crc_inv = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
- crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
- AV_WB16(frame + 2, crc1);
-
- crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
- frame + frame_size_58,
- frame_size - frame_size_58 - 2));
- AV_WB16(frame + frame_size - 2, crc2);
- }
-
-
- /**
- * Write the frame to the output bitstream.
- */
- static void output_frame(AC3EncodeContext *s,
- unsigned char *frame,
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
- uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS],
- uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
- uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
- {
- int blk;
-
- init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
-
- output_frame_header(s);
-
- for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
- output_audio_block(s, exp_strategy[blk], num_exp_groups[blk],
- grouped_exp[blk], bap[blk], qmant[blk], blk);
- }
-
- output_frame_end(s);
- }
-
-
- /**
- * Encode a single AC-3 frame.
- */
- static int ac3_encode_frame(AVCodecContext *avctx,
- unsigned char *frame, int buf_size, void *data)
- {
- AC3EncodeContext *s = avctx->priv_data;
- const int16_t *samples = data;
- int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE];
- int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
- uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
- uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS];
- uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
- uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
- int ret;
-
- if (s->bit_alloc.sr_code == 1)
- adjust_frame_size(s);
-
- deinterleave_input_samples(s, samples, planar_samples);
-
- apply_mdct(s, planar_samples, exp_shift, mdct_coef);
-
- process_exponents(s, mdct_coef, exp_shift, exp, exp_strategy, encoded_exp,
- num_exp_groups, grouped_exp);
-
- ret = compute_bit_allocation(s, bap, encoded_exp, exp_strategy);
- if (ret) {
- av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
- return ret;
- }
-
- quantize_mantissas(s, mdct_coef, exp_shift, encoded_exp, bap, qmant);
-
- output_frame(s, frame, exp_strategy, num_exp_groups, grouped_exp, bap, qmant);
-
- return s->frame_size;
- }
-
-
- /**
- * Finalize encoding and free any memory allocated by the encoder.
- */
- static av_cold int ac3_encode_close(AVCodecContext *avctx)
- {
- av_freep(&avctx->coded_frame);
- return 0;
- }
-
-
- /**
- * Set channel information during initialization.
- */
- static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
- int64_t *channel_layout)
- {
- int ch_layout;
-
- if (channels < 1 || channels > AC3_MAX_CHANNELS)
- return AVERROR(EINVAL);
- if ((uint64_t)*channel_layout > 0x7FF)
- return AVERROR(EINVAL);
- ch_layout = *channel_layout;
- if (!ch_layout)
- ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
- if (av_get_channel_layout_nb_channels(ch_layout) != channels)
- return AVERROR(EINVAL);
-
- s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
- s->channels = channels;
- s->fbw_channels = channels - s->lfe_on;
- s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
- if (s->lfe_on)
- ch_layout -= AV_CH_LOW_FREQUENCY;
-
- switch (ch_layout) {
- case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
- case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
- case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
- case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
- case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
- case AV_CH_LAYOUT_QUAD:
- case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
- case AV_CH_LAYOUT_5POINT0:
- case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
- default:
- return AVERROR(EINVAL);
- }
-
- s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
- *channel_layout = ch_layout;
- if (s->lfe_on)
- *channel_layout |= AV_CH_LOW_FREQUENCY;
-
- return 0;
- }
-
-
- static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
- {
- int i, ret;
-
- /* validate channel layout */
- if (!avctx->channel_layout) {
- av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
- "encoder will guess the layout, but it "
- "might be incorrect.\n");
- }
- ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
- if (ret) {
- av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
- return ret;
- }
-
- /* validate sample rate */
- for (i = 0; i < 9; i++) {
- if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
- break;
- }
- if (i == 9) {
- av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
- return AVERROR(EINVAL);
- }
- s->sample_rate = avctx->sample_rate;
- s->bit_alloc.sr_shift = i % 3;
- s->bit_alloc.sr_code = i / 3;
-
- /* validate bit rate */
- for (i = 0; i < 19; i++) {
- if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
- break;
- }
- if (i == 19) {
- av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
- return AVERROR(EINVAL);
- }
- s->bit_rate = avctx->bit_rate;
- s->frame_size_code = i << 1;
-
- return 0;
- }
-
-
- /**
- * Set bandwidth for all channels.
- * The user can optionally supply a cutoff frequency. Otherwise an appropriate
- * default value will be used.
- */
- static av_cold void set_bandwidth(AC3EncodeContext *s, int cutoff)
- {
- int ch, bw_code;
-
- if (cutoff) {
- /* calculate bandwidth based on user-specified cutoff frequency */
- int fbw_coeffs;
- cutoff = av_clip(cutoff, 1, s->sample_rate >> 1);
- fbw_coeffs = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
- bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
- } else {
- /* use default bandwidth setting */
- /* XXX: should compute the bandwidth according to the frame
- size, so that we avoid annoying high frequency artifacts */
- bw_code = 50;
- }
-
- /* set number of coefficients for each channel */
- for (ch = 0; ch < s->fbw_channels; ch++) {
- s->bandwidth_code[ch] = bw_code;
- s->nb_coefs[ch] = bw_code * 3 + 73;
- }
- if (s->lfe_on)
- s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
- }
-
-
- /**
- * Initialize the encoder.
- */
- static av_cold int ac3_encode_init(AVCodecContext *avctx)
- {
- AC3EncodeContext *s = avctx->priv_data;
- int ret;
-
- avctx->frame_size = AC3_FRAME_SIZE;
-
- ac3_common_init();
-
- ret = validate_options(avctx, s);
- if (ret)
- return ret;
-
- s->bitstream_id = 8 + s->bit_alloc.sr_shift;
- s->bitstream_mode = 0; /* complete main audio service */
-
- s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
- s->bits_written = 0;
- s->samples_written = 0;
- s->frame_size = s->frame_size_min;
-
- set_bandwidth(s, avctx->cutoff);
-
- bit_alloc_init(s);
-
- mdct_init(9);
-
- avctx->coded_frame= avcodec_alloc_frame();
- avctx->coded_frame->key_frame= 1;
-
- return 0;
- }
-
-
- #ifdef TEST
- /*************************************************************************/
- /* TEST */
-
- #include "libavutil/lfg.h"
-
- #define FN (MDCT_SAMPLES/4)
-
-
- static void fft_test(AVLFG *lfg)
- {
- IComplex in[FN], in1[FN];
- int k, n, i;
- float sum_re, sum_im, a;
-
- for (i = 0; i < FN; i++) {
- in[i].re = av_lfg_get(lfg) % 65535 - 32767;
- in[i].im = av_lfg_get(lfg) % 65535 - 32767;
- in1[i] = in[i];
- }
- fft(in, 7);
-
- /* do it by hand */
- for (k = 0; k < FN; k++) {
- sum_re = 0;
- sum_im = 0;
- for (n = 0; n < FN; n++) {
- a = -2 * M_PI * (n * k) / FN;
- sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
- sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
- }
- av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
- k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
- }
- }
-
-
- static void mdct_test(AVLFG *lfg)
- {
- int16_t input[MDCT_SAMPLES];
- int32_t output[AC3_MAX_COEFS];
- float input1[MDCT_SAMPLES];
- float output1[AC3_MAX_COEFS];
- float s, a, err, e, emax;
- int i, k, n;
-
- for (i = 0; i < MDCT_SAMPLES; i++) {
- input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
- input1[i] = input[i];
- }
-
- mdct512(output, input);
-
- /* do it by hand */
- for (k = 0; k < AC3_MAX_COEFS; k++) {
- s = 0;
- for (n = 0; n < MDCT_SAMPLES; n++) {
- a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
- s += input1[n] * cos(a);
- }
- output1[k] = -2 * s / MDCT_SAMPLES;
- }
-
- err = 0;
- emax = 0;
- for (i = 0; i < AC3_MAX_COEFS; i++) {
- av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
- e = output[i] - output1[i];
- if (e > emax)
- emax = e;
- err += e * e;
- }
- av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
- }
-
-
- int main(void)
- {
- AVLFG lfg;
-
- av_log_set_level(AV_LOG_DEBUG);
- mdct_init(9);
-
- fft_test(&lfg);
- mdct_test(&lfg);
-
- return 0;
- }
- #endif /* TEST */
-
-
- AVCodec ac3_encoder = {
- "ac3",
- AVMEDIA_TYPE_AUDIO,
- CODEC_ID_AC3,
- sizeof(AC3EncodeContext),
- ac3_encode_init,
- ac3_encode_frame,
- ac3_encode_close,
- NULL,
- .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
- .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
- .channel_layouts = (const int64_t[]){
- AV_CH_LAYOUT_MONO,
- AV_CH_LAYOUT_STEREO,
- AV_CH_LAYOUT_2_1,
- AV_CH_LAYOUT_SURROUND,
- AV_CH_LAYOUT_2_2,
- AV_CH_LAYOUT_QUAD,
- AV_CH_LAYOUT_4POINT0,
- AV_CH_LAYOUT_5POINT0,
- AV_CH_LAYOUT_5POINT0_BACK,
- (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
- (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
- AV_CH_LAYOUT_5POINT1,
- AV_CH_LAYOUT_5POINT1_BACK,
- 0 },
- };
|