You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1516 lines
54KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include <string.h>
  22. #include <math.h>
  23. #include <stdio.h>
  24. #include "config.h"
  25. #include <assert.h>
  26. #if HAVE_SYS_MMAN_H
  27. #include <sys/mman.h>
  28. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  29. #define MAP_ANONYMOUS MAP_ANON
  30. #endif
  31. #endif
  32. #if HAVE_VIRTUALALLOC
  33. #define WIN32_LEAN_AND_MEAN
  34. #include <windows.h>
  35. #endif
  36. #include "swscale.h"
  37. #include "swscale_internal.h"
  38. #include "rgb2rgb.h"
  39. #include "libavutil/intreadwrite.h"
  40. #include "libavutil/x86_cpu.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/avutil.h"
  43. #include "libavutil/bswap.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. unsigned swscale_version(void)
  47. {
  48. return LIBSWSCALE_VERSION_INT;
  49. }
  50. const char *swscale_configuration(void)
  51. {
  52. return LIBAV_CONFIGURATION;
  53. }
  54. const char *swscale_license(void)
  55. {
  56. #define LICENSE_PREFIX "libswscale license: "
  57. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  58. }
  59. #define RET 0xC3 //near return opcode for x86
  60. typedef struct FormatEntry {
  61. int is_supported_in, is_supported_out;
  62. } FormatEntry;
  63. const static FormatEntry format_entries[PIX_FMT_NB] = {
  64. [PIX_FMT_YUV420P] = { 1 , 1 },
  65. [PIX_FMT_YUYV422] = { 1 , 1 },
  66. [PIX_FMT_RGB24] = { 1 , 1 },
  67. [PIX_FMT_BGR24] = { 1 , 1 },
  68. [PIX_FMT_YUV422P] = { 1 , 1 },
  69. [PIX_FMT_YUV444P] = { 1 , 1 },
  70. [PIX_FMT_YUV410P] = { 1 , 1 },
  71. [PIX_FMT_YUV411P] = { 1 , 1 },
  72. [PIX_FMT_GRAY8] = { 1 , 1 },
  73. [PIX_FMT_MONOWHITE] = { 1 , 1 },
  74. [PIX_FMT_MONOBLACK] = { 1 , 1 },
  75. [PIX_FMT_PAL8] = { 1 , 0 },
  76. [PIX_FMT_YUVJ420P] = { 1 , 1 },
  77. [PIX_FMT_YUVJ422P] = { 1 , 1 },
  78. [PIX_FMT_YUVJ444P] = { 1 , 1 },
  79. [PIX_FMT_UYVY422] = { 1 , 1 },
  80. [PIX_FMT_UYYVYY411] = { 0 , 0 },
  81. [PIX_FMT_BGR8] = { 1 , 1 },
  82. [PIX_FMT_BGR4] = { 0 , 1 },
  83. [PIX_FMT_BGR4_BYTE] = { 1 , 1 },
  84. [PIX_FMT_RGB8] = { 1 , 1 },
  85. [PIX_FMT_RGB4] = { 0 , 1 },
  86. [PIX_FMT_RGB4_BYTE] = { 1 , 1 },
  87. [PIX_FMT_NV12] = { 1 , 1 },
  88. [PIX_FMT_NV21] = { 1 , 1 },
  89. [PIX_FMT_ARGB] = { 1 , 1 },
  90. [PIX_FMT_RGBA] = { 1 , 1 },
  91. [PIX_FMT_ABGR] = { 1 , 1 },
  92. [PIX_FMT_BGRA] = { 1 , 1 },
  93. [PIX_FMT_GRAY16BE] = { 1 , 1 },
  94. [PIX_FMT_GRAY16LE] = { 1 , 1 },
  95. [PIX_FMT_YUV440P] = { 1 , 1 },
  96. [PIX_FMT_YUVJ440P] = { 1 , 1 },
  97. [PIX_FMT_YUVA420P] = { 1 , 1 },
  98. [PIX_FMT_RGB48BE] = { 1 , 1 },
  99. [PIX_FMT_RGB48LE] = { 1 , 1 },
  100. [PIX_FMT_RGB565BE] = { 1 , 1 },
  101. [PIX_FMT_RGB565LE] = { 1 , 1 },
  102. [PIX_FMT_RGB555BE] = { 1 , 1 },
  103. [PIX_FMT_RGB555LE] = { 1 , 1 },
  104. [PIX_FMT_BGR565BE] = { 1 , 1 },
  105. [PIX_FMT_BGR565LE] = { 1 , 1 },
  106. [PIX_FMT_BGR555BE] = { 1 , 1 },
  107. [PIX_FMT_BGR555LE] = { 1 , 1 },
  108. [PIX_FMT_YUV420P16LE] = { 1 , 1 },
  109. [PIX_FMT_YUV420P16BE] = { 1 , 1 },
  110. [PIX_FMT_YUV422P16LE] = { 1 , 1 },
  111. [PIX_FMT_YUV422P16BE] = { 1 , 1 },
  112. [PIX_FMT_YUV444P16LE] = { 1 , 1 },
  113. [PIX_FMT_YUV444P16BE] = { 1 , 1 },
  114. [PIX_FMT_RGB444LE] = { 0 , 1 },
  115. [PIX_FMT_RGB444BE] = { 0 , 1 },
  116. [PIX_FMT_BGR444LE] = { 0 , 1 },
  117. [PIX_FMT_BGR444BE] = { 0 , 1 },
  118. [PIX_FMT_Y400A] = { 1 , 0 },
  119. [PIX_FMT_BGR48BE] = { 1 , 1 },
  120. [PIX_FMT_BGR48LE] = { 1 , 1 },
  121. [PIX_FMT_YUV420P9BE] = { 1 , 1 },
  122. [PIX_FMT_YUV420P9LE] = { 1 , 1 },
  123. [PIX_FMT_YUV420P10BE] = { 1 , 1 },
  124. [PIX_FMT_YUV420P10LE] = { 1 , 1 },
  125. [PIX_FMT_YUV422P10BE] = { 1 , 1 },
  126. [PIX_FMT_YUV422P10LE] = { 1 , 1 },
  127. [PIX_FMT_YUV444P9BE] = { 1 , 0 },
  128. [PIX_FMT_YUV444P9LE] = { 1 , 0 },
  129. [PIX_FMT_YUV444P10BE] = { 1 , 0 },
  130. [PIX_FMT_YUV444P10LE] = { 1 , 0 },
  131. };
  132. int sws_isSupportedInput(enum PixelFormat pix_fmt)
  133. {
  134. return (unsigned)pix_fmt < PIX_FMT_NB ?
  135. format_entries[pix_fmt].is_supported_in : 0;
  136. }
  137. int sws_isSupportedOutput(enum PixelFormat pix_fmt)
  138. {
  139. return (unsigned)pix_fmt < PIX_FMT_NB ?
  140. format_entries[pix_fmt].is_supported_out : 0;
  141. }
  142. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  143. const char *sws_format_name(enum PixelFormat format)
  144. {
  145. if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
  146. return av_pix_fmt_descriptors[format].name;
  147. else
  148. return "Unknown format";
  149. }
  150. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  151. {
  152. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  153. else return getSplineCoeff( 0.0,
  154. b+ 2.0*c + 3.0*d,
  155. c + 3.0*d,
  156. -b- 3.0*c - 6.0*d,
  157. dist-1.0);
  158. }
  159. static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  160. int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags,
  161. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  162. {
  163. int i;
  164. int filterSize;
  165. int filter2Size;
  166. int minFilterSize;
  167. int64_t *filter=NULL;
  168. int64_t *filter2=NULL;
  169. const int64_t fone= 1LL<<54;
  170. int ret= -1;
  171. emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions)
  172. // NOTE: the +1 is for the MMX scaler which reads over the end
  173. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
  174. if (FFABS(xInc - 0x10000) <10) { // unscaled
  175. int i;
  176. filterSize= 1;
  177. FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  178. for (i=0; i<dstW; i++) {
  179. filter[i*filterSize]= fone;
  180. (*filterPos)[i]=i;
  181. }
  182. } else if (flags&SWS_POINT) { // lame looking point sampling mode
  183. int i;
  184. int xDstInSrc;
  185. filterSize= 1;
  186. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  187. xDstInSrc= xInc/2 - 0x8000;
  188. for (i=0; i<dstW; i++) {
  189. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  190. (*filterPos)[i]= xx;
  191. filter[i]= fone;
  192. xDstInSrc+= xInc;
  193. }
  194. } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
  195. int i;
  196. int xDstInSrc;
  197. filterSize= 2;
  198. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  199. xDstInSrc= xInc/2 - 0x8000;
  200. for (i=0; i<dstW; i++) {
  201. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  202. int j;
  203. (*filterPos)[i]= xx;
  204. //bilinear upscale / linear interpolate / area averaging
  205. for (j=0; j<filterSize; j++) {
  206. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  207. if (coeff<0) coeff=0;
  208. filter[i*filterSize + j]= coeff;
  209. xx++;
  210. }
  211. xDstInSrc+= xInc;
  212. }
  213. } else {
  214. int xDstInSrc;
  215. int sizeFactor;
  216. if (flags&SWS_BICUBIC) sizeFactor= 4;
  217. else if (flags&SWS_X) sizeFactor= 8;
  218. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  219. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  220. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  221. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  222. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  223. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  224. else {
  225. sizeFactor= 0; //GCC warning killer
  226. assert(0);
  227. }
  228. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  229. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  230. if (filterSize > srcW-2) filterSize=srcW-2;
  231. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  232. xDstInSrc= xInc - 0x10000;
  233. for (i=0; i<dstW; i++) {
  234. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  235. int j;
  236. (*filterPos)[i]= xx;
  237. for (j=0; j<filterSize; j++) {
  238. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  239. double floatd;
  240. int64_t coeff;
  241. if (xInc > 1<<16)
  242. d= d*dstW/srcW;
  243. floatd= d * (1.0/(1<<30));
  244. if (flags & SWS_BICUBIC) {
  245. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  246. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  247. int64_t dd = ( d*d)>>30;
  248. int64_t ddd= (dd*d)>>30;
  249. if (d < 1LL<<30)
  250. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  251. else if (d < 1LL<<31)
  252. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  253. else
  254. coeff=0.0;
  255. coeff *= fone>>(30+24);
  256. }
  257. /* else if (flags & SWS_X) {
  258. double p= param ? param*0.01 : 0.3;
  259. coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
  260. coeff*= pow(2.0, - p*d*d);
  261. }*/
  262. else if (flags & SWS_X) {
  263. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  264. double c;
  265. if (floatd<1.0)
  266. c = cos(floatd*M_PI);
  267. else
  268. c=-1.0;
  269. if (c<0.0) c= -pow(-c, A);
  270. else c= pow( c, A);
  271. coeff= (c*0.5 + 0.5)*fone;
  272. } else if (flags & SWS_AREA) {
  273. int64_t d2= d - (1<<29);
  274. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  275. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  276. else coeff=0.0;
  277. coeff *= fone>>(30+16);
  278. } else if (flags & SWS_GAUSS) {
  279. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  280. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  281. } else if (flags & SWS_SINC) {
  282. coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
  283. } else if (flags & SWS_LANCZOS) {
  284. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  285. coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
  286. if (floatd>p) coeff=0;
  287. } else if (flags & SWS_BILINEAR) {
  288. coeff= (1<<30) - d;
  289. if (coeff<0) coeff=0;
  290. coeff *= fone >> 30;
  291. } else if (flags & SWS_SPLINE) {
  292. double p=-2.196152422706632;
  293. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  294. } else {
  295. coeff= 0.0; //GCC warning killer
  296. assert(0);
  297. }
  298. filter[i*filterSize + j]= coeff;
  299. xx++;
  300. }
  301. xDstInSrc+= 2*xInc;
  302. }
  303. }
  304. /* apply src & dst Filter to filter -> filter2
  305. av_free(filter);
  306. */
  307. assert(filterSize>0);
  308. filter2Size= filterSize;
  309. if (srcFilter) filter2Size+= srcFilter->length - 1;
  310. if (dstFilter) filter2Size+= dstFilter->length - 1;
  311. assert(filter2Size>0);
  312. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
  313. for (i=0; i<dstW; i++) {
  314. int j, k;
  315. if(srcFilter) {
  316. for (k=0; k<srcFilter->length; k++) {
  317. for (j=0; j<filterSize; j++)
  318. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  319. }
  320. } else {
  321. for (j=0; j<filterSize; j++)
  322. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  323. }
  324. //FIXME dstFilter
  325. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  326. }
  327. av_freep(&filter);
  328. /* try to reduce the filter-size (step1 find size and shift left) */
  329. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  330. minFilterSize= 0;
  331. for (i=dstW-1; i>=0; i--) {
  332. int min= filter2Size;
  333. int j;
  334. int64_t cutOff=0.0;
  335. /* get rid of near zero elements on the left by shifting left */
  336. for (j=0; j<filter2Size; j++) {
  337. int k;
  338. cutOff += FFABS(filter2[i*filter2Size]);
  339. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  340. /* preserve monotonicity because the core can't handle the filter otherwise */
  341. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  342. // move filter coefficients left
  343. for (k=1; k<filter2Size; k++)
  344. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  345. filter2[i*filter2Size + k - 1]= 0;
  346. (*filterPos)[i]++;
  347. }
  348. cutOff=0;
  349. /* count near zeros on the right */
  350. for (j=filter2Size-1; j>0; j--) {
  351. cutOff += FFABS(filter2[i*filter2Size + j]);
  352. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  353. min--;
  354. }
  355. if (min>minFilterSize) minFilterSize= min;
  356. }
  357. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  358. // we can handle the special case 4,
  359. // so we don't want to go to the full 8
  360. if (minFilterSize < 5)
  361. filterAlign = 4;
  362. // We really don't want to waste our time
  363. // doing useless computation, so fall back on
  364. // the scalar C code for very small filters.
  365. // Vectorizing is worth it only if you have a
  366. // decent-sized vector.
  367. if (minFilterSize < 3)
  368. filterAlign = 1;
  369. }
  370. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  371. // special case for unscaled vertical filtering
  372. if (minFilterSize == 1 && filterAlign == 2)
  373. filterAlign= 1;
  374. }
  375. assert(minFilterSize > 0);
  376. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  377. assert(filterSize > 0);
  378. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  379. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  380. goto fail;
  381. *outFilterSize= filterSize;
  382. if (flags&SWS_PRINT_INFO)
  383. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  384. /* try to reduce the filter-size (step2 reduce it) */
  385. for (i=0; i<dstW; i++) {
  386. int j;
  387. for (j=0; j<filterSize; j++) {
  388. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  389. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  390. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  391. filter[i*filterSize + j]= 0;
  392. }
  393. }
  394. //FIXME try to align filterPos if possible
  395. //fix borders
  396. for (i=0; i<dstW; i++) {
  397. int j;
  398. if ((*filterPos)[i] < 0) {
  399. // move filter coefficients left to compensate for filterPos
  400. for (j=1; j<filterSize; j++) {
  401. int left= FFMAX(j + (*filterPos)[i], 0);
  402. filter[i*filterSize + left] += filter[i*filterSize + j];
  403. filter[i*filterSize + j]=0;
  404. }
  405. (*filterPos)[i]= 0;
  406. }
  407. if ((*filterPos)[i] + filterSize > srcW) {
  408. int shift= (*filterPos)[i] + filterSize - srcW;
  409. // move filter coefficients right to compensate for filterPos
  410. for (j=filterSize-2; j>=0; j--) {
  411. int right= FFMIN(j + shift, filterSize-1);
  412. filter[i*filterSize +right] += filter[i*filterSize +j];
  413. filter[i*filterSize +j]=0;
  414. }
  415. (*filterPos)[i]= srcW - filterSize;
  416. }
  417. }
  418. // Note the +1 is for the MMX scaler which reads over the end
  419. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  420. FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
  421. /* normalize & store in outFilter */
  422. for (i=0; i<dstW; i++) {
  423. int j;
  424. int64_t error=0;
  425. int64_t sum=0;
  426. for (j=0; j<filterSize; j++) {
  427. sum+= filter[i*filterSize + j];
  428. }
  429. sum= (sum + one/2)/ one;
  430. for (j=0; j<*outFilterSize; j++) {
  431. int64_t v= filter[i*filterSize + j] + error;
  432. int intV= ROUNDED_DIV(v, sum);
  433. (*outFilter)[i*(*outFilterSize) + j]= intV;
  434. error= v - intV*sum;
  435. }
  436. }
  437. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  438. for (i=0; i<*outFilterSize; i++) {
  439. int j= dstW*(*outFilterSize);
  440. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  441. }
  442. ret=0;
  443. fail:
  444. av_free(filter);
  445. av_free(filter2);
  446. return ret;
  447. }
  448. #if HAVE_MMX2
  449. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
  450. {
  451. uint8_t *fragmentA;
  452. x86_reg imm8OfPShufW1A;
  453. x86_reg imm8OfPShufW2A;
  454. x86_reg fragmentLengthA;
  455. uint8_t *fragmentB;
  456. x86_reg imm8OfPShufW1B;
  457. x86_reg imm8OfPShufW2B;
  458. x86_reg fragmentLengthB;
  459. int fragmentPos;
  460. int xpos, i;
  461. // create an optimized horizontal scaling routine
  462. /* This scaler is made of runtime-generated MMX2 code using specially
  463. * tuned pshufw instructions. For every four output pixels, if four
  464. * input pixels are enough for the fast bilinear scaling, then a chunk
  465. * of fragmentB is used. If five input pixels are needed, then a chunk
  466. * of fragmentA is used.
  467. */
  468. //code fragment
  469. __asm__ volatile(
  470. "jmp 9f \n\t"
  471. // Begin
  472. "0: \n\t"
  473. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  474. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  475. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  476. "punpcklbw %%mm7, %%mm1 \n\t"
  477. "punpcklbw %%mm7, %%mm0 \n\t"
  478. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  479. "1: \n\t"
  480. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  481. "2: \n\t"
  482. "psubw %%mm1, %%mm0 \n\t"
  483. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  484. "pmullw %%mm3, %%mm0 \n\t"
  485. "psllw $7, %%mm1 \n\t"
  486. "paddw %%mm1, %%mm0 \n\t"
  487. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  488. "add $8, %%"REG_a" \n\t"
  489. // End
  490. "9: \n\t"
  491. // "int $3 \n\t"
  492. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  493. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  494. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  495. "dec %1 \n\t"
  496. "dec %2 \n\t"
  497. "sub %0, %1 \n\t"
  498. "sub %0, %2 \n\t"
  499. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  500. "sub %0, %3 \n\t"
  501. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  502. "=r" (fragmentLengthA)
  503. );
  504. __asm__ volatile(
  505. "jmp 9f \n\t"
  506. // Begin
  507. "0: \n\t"
  508. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  509. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  510. "punpcklbw %%mm7, %%mm0 \n\t"
  511. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  512. "1: \n\t"
  513. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  514. "2: \n\t"
  515. "psubw %%mm1, %%mm0 \n\t"
  516. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  517. "pmullw %%mm3, %%mm0 \n\t"
  518. "psllw $7, %%mm1 \n\t"
  519. "paddw %%mm1, %%mm0 \n\t"
  520. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  521. "add $8, %%"REG_a" \n\t"
  522. // End
  523. "9: \n\t"
  524. // "int $3 \n\t"
  525. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  526. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  527. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  528. "dec %1 \n\t"
  529. "dec %2 \n\t"
  530. "sub %0, %1 \n\t"
  531. "sub %0, %2 \n\t"
  532. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  533. "sub %0, %3 \n\t"
  534. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  535. "=r" (fragmentLengthB)
  536. );
  537. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  538. fragmentPos=0;
  539. for (i=0; i<dstW/numSplits; i++) {
  540. int xx=xpos>>16;
  541. if ((i&3) == 0) {
  542. int a=0;
  543. int b=((xpos+xInc)>>16) - xx;
  544. int c=((xpos+xInc*2)>>16) - xx;
  545. int d=((xpos+xInc*3)>>16) - xx;
  546. int inc = (d+1<4);
  547. uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
  548. x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  549. x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  550. x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
  551. int maxShift= 3-(d+inc);
  552. int shift=0;
  553. if (filterCode) {
  554. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  555. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  556. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  557. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  558. filterPos[i/2]= xx;
  559. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  560. filterCode[fragmentPos + imm8OfPShufW1]=
  561. (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
  562. filterCode[fragmentPos + imm8OfPShufW2]=
  563. a | (b<<2) | (c<<4) | (d<<6);
  564. if (i+4-inc>=dstW) shift=maxShift; //avoid overread
  565. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  566. if (shift && i>=shift) {
  567. filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
  568. filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
  569. filterPos[i/2]-=shift;
  570. }
  571. }
  572. fragmentPos+= fragmentLength;
  573. if (filterCode)
  574. filterCode[fragmentPos]= RET;
  575. }
  576. xpos+=xInc;
  577. }
  578. if (filterCode)
  579. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  580. return fragmentPos + 1;
  581. }
  582. #endif /* HAVE_MMX2 */
  583. static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
  584. {
  585. *h = av_pix_fmt_descriptors[format].log2_chroma_w;
  586. *v = av_pix_fmt_descriptors[format].log2_chroma_h;
  587. }
  588. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  589. int srcRange, const int table[4], int dstRange,
  590. int brightness, int contrast, int saturation)
  591. {
  592. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  593. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  594. c->brightness= brightness;
  595. c->contrast = contrast;
  596. c->saturation= saturation;
  597. c->srcRange = srcRange;
  598. c->dstRange = dstRange;
  599. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  600. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
  601. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
  602. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  603. //FIXME factorize
  604. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  605. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  606. return 0;
  607. }
  608. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  609. int *srcRange, int **table, int *dstRange,
  610. int *brightness, int *contrast, int *saturation)
  611. {
  612. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  613. *inv_table = c->srcColorspaceTable;
  614. *table = c->dstColorspaceTable;
  615. *srcRange = c->srcRange;
  616. *dstRange = c->dstRange;
  617. *brightness= c->brightness;
  618. *contrast = c->contrast;
  619. *saturation= c->saturation;
  620. return 0;
  621. }
  622. static int handle_jpeg(enum PixelFormat *format)
  623. {
  624. switch (*format) {
  625. case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
  626. case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
  627. case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
  628. case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
  629. default: return 0;
  630. }
  631. }
  632. SwsContext *sws_alloc_context(void)
  633. {
  634. SwsContext *c= av_mallocz(sizeof(SwsContext));
  635. c->av_class = &sws_context_class;
  636. av_opt_set_defaults(c);
  637. return c;
  638. }
  639. int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
  640. {
  641. int i;
  642. int usesVFilter, usesHFilter;
  643. int unscaled;
  644. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  645. int srcW= c->srcW;
  646. int srcH= c->srcH;
  647. int dstW= c->dstW;
  648. int dstH= c->dstH;
  649. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16), dst_stride_px = dst_stride >> 1;
  650. int flags, cpu_flags;
  651. enum PixelFormat srcFormat= c->srcFormat;
  652. enum PixelFormat dstFormat= c->dstFormat;
  653. cpu_flags = av_get_cpu_flags();
  654. flags = c->flags;
  655. emms_c();
  656. if (!rgb15to16) sws_rgb2rgb_init();
  657. unscaled = (srcW == dstW && srcH == dstH);
  658. if (!sws_isSupportedInput(srcFormat)) {
  659. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", sws_format_name(srcFormat));
  660. return AVERROR(EINVAL);
  661. }
  662. if (!sws_isSupportedOutput(dstFormat)) {
  663. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", sws_format_name(dstFormat));
  664. return AVERROR(EINVAL);
  665. }
  666. i= flags & ( SWS_POINT
  667. |SWS_AREA
  668. |SWS_BILINEAR
  669. |SWS_FAST_BILINEAR
  670. |SWS_BICUBIC
  671. |SWS_X
  672. |SWS_GAUSS
  673. |SWS_LANCZOS
  674. |SWS_SINC
  675. |SWS_SPLINE
  676. |SWS_BICUBLIN);
  677. if(!i || (i & (i-1))) {
  678. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen\n");
  679. return AVERROR(EINVAL);
  680. }
  681. /* sanity check */
  682. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  683. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  684. srcW, srcH, dstW, dstH);
  685. return AVERROR(EINVAL);
  686. }
  687. if (!dstFilter) dstFilter= &dummyFilter;
  688. if (!srcFilter) srcFilter= &dummyFilter;
  689. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  690. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  691. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
  692. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
  693. c->vRounder= 4* 0x0001000100010001ULL;
  694. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
  695. (srcFilter->chrV && srcFilter->chrV->length>1) ||
  696. (dstFilter->lumV && dstFilter->lumV->length>1) ||
  697. (dstFilter->chrV && dstFilter->chrV->length>1);
  698. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
  699. (srcFilter->chrH && srcFilter->chrH->length>1) ||
  700. (dstFilter->lumH && dstFilter->lumH->length>1) ||
  701. (dstFilter->chrH && dstFilter->chrH->length>1);
  702. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  703. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  704. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  705. if (flags & SWS_FULL_CHR_H_INT &&
  706. dstFormat != PIX_FMT_RGBA &&
  707. dstFormat != PIX_FMT_ARGB &&
  708. dstFormat != PIX_FMT_BGRA &&
  709. dstFormat != PIX_FMT_ABGR &&
  710. dstFormat != PIX_FMT_RGB24 &&
  711. dstFormat != PIX_FMT_BGR24) {
  712. av_log(c, AV_LOG_ERROR,
  713. "full chroma interpolation for destination format '%s' not yet implemented\n",
  714. sws_format_name(dstFormat));
  715. flags &= ~SWS_FULL_CHR_H_INT;
  716. c->flags = flags;
  717. }
  718. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  719. // drop some chroma lines if the user wants it
  720. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  721. c->chrSrcVSubSample+= c->vChrDrop;
  722. // drop every other pixel for chroma calculation unless user wants full chroma
  723. if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
  724. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  725. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  726. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  727. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
  728. c->chrSrcHSubSample=1;
  729. // Note the -((-x)>>y) is so that we always round toward +inf.
  730. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  731. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  732. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  733. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  734. /* unscaled special cases */
  735. if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  736. ff_get_unscaled_swscale(c);
  737. if (c->swScale) {
  738. if (flags&SWS_PRINT_INFO)
  739. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  740. sws_format_name(srcFormat), sws_format_name(dstFormat));
  741. return 0;
  742. }
  743. }
  744. c->srcBpc = 1 + av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1;
  745. if (c->srcBpc < 8)
  746. c->srcBpc = 8;
  747. c->dstBpc = 1 + av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1;
  748. if (c->dstBpc < 8)
  749. c->dstBpc = 8;
  750. if (c->dstBpc == 16)
  751. dst_stride <<= 1;
  752. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  753. FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3,
  754. fail);
  755. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2 && c->srcBpc == 8 && c->dstBpc <= 10) {
  756. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  757. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
  758. if (flags&SWS_PRINT_INFO)
  759. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  760. }
  761. if (usesHFilter) c->canMMX2BeUsed=0;
  762. }
  763. else
  764. c->canMMX2BeUsed=0;
  765. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  766. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  767. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  768. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  769. // n-2 is the last chrominance sample available
  770. // this is not perfect, but no one should notice the difference, the more correct variant
  771. // would be like the vertical one, but that would require some special code for the
  772. // first and last pixel
  773. if (flags&SWS_FAST_BILINEAR) {
  774. if (c->canMMX2BeUsed) {
  775. c->lumXInc+= 20;
  776. c->chrXInc+= 20;
  777. }
  778. //we don't use the x86 asm scaler if MMX is available
  779. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  780. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  781. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  782. }
  783. }
  784. /* precalculate horizontal scaler filter coefficients */
  785. {
  786. #if HAVE_MMX2
  787. // can't downscale !!!
  788. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  789. c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
  790. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
  791. #ifdef MAP_ANONYMOUS
  792. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  793. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  794. #elif HAVE_VIRTUALALLOC
  795. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  796. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  797. #else
  798. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  799. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  800. #endif
  801. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  802. return AVERROR(ENOMEM);
  803. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
  804. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
  805. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
  806. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
  807. initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
  808. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
  809. #ifdef MAP_ANONYMOUS
  810. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  811. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  812. #endif
  813. } else
  814. #endif /* HAVE_MMX2 */
  815. {
  816. const int filterAlign=
  817. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  818. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  819. 1;
  820. if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  821. srcW , dstW, filterAlign, 1<<14,
  822. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  823. srcFilter->lumH, dstFilter->lumH, c->param) < 0)
  824. goto fail;
  825. if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  826. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  827. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  828. srcFilter->chrH, dstFilter->chrH, c->param) < 0)
  829. goto fail;
  830. }
  831. } // initialize horizontal stuff
  832. /* precalculate vertical scaler filter coefficients */
  833. {
  834. const int filterAlign=
  835. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  836. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  837. 1;
  838. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  839. srcH , dstH, filterAlign, (1<<12),
  840. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  841. srcFilter->lumV, dstFilter->lumV, c->param) < 0)
  842. goto fail;
  843. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  844. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  845. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  846. srcFilter->chrV, dstFilter->chrV, c->param) < 0)
  847. goto fail;
  848. #if HAVE_ALTIVEC
  849. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
  850. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
  851. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  852. int j;
  853. short *p = (short *)&c->vYCoeffsBank[i];
  854. for (j=0;j<8;j++)
  855. p[j] = c->vLumFilter[i];
  856. }
  857. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  858. int j;
  859. short *p = (short *)&c->vCCoeffsBank[i];
  860. for (j=0;j<8;j++)
  861. p[j] = c->vChrFilter[i];
  862. }
  863. #endif
  864. }
  865. // calculate buffer sizes so that they won't run out while handling these damn slices
  866. c->vLumBufSize= c->vLumFilterSize;
  867. c->vChrBufSize= c->vChrFilterSize;
  868. for (i=0; i<dstH; i++) {
  869. int chrI= i*c->chrDstH / dstH;
  870. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  871. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  872. nextSlice>>= c->chrSrcVSubSample;
  873. nextSlice<<= c->chrSrcVSubSample;
  874. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  875. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  876. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  877. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  878. }
  879. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  880. // allocate several megabytes to handle all possible cases)
  881. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  882. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  883. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  884. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  885. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  886. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  887. /* align at 16 bytes for AltiVec */
  888. for (i=0; i<c->vLumBufSize; i++) {
  889. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+16, fail);
  890. c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
  891. }
  892. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  893. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc &~ 7);
  894. c->uv_off_byte = dst_stride + 16;
  895. for (i=0; i<c->vChrBufSize; i++) {
  896. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+32, fail);
  897. c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize];
  898. c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  899. }
  900. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  901. for (i=0; i<c->vLumBufSize; i++) {
  902. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+16, fail);
  903. c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
  904. }
  905. //try to avoid drawing green stuff between the right end and the stride end
  906. for (i=0; i<c->vChrBufSize; i++)
  907. memset(c->chrUPixBuf[i], 64, dst_stride*2+1);
  908. assert(c->chrDstH <= dstH);
  909. if (flags&SWS_PRINT_INFO) {
  910. if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  911. else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  912. else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  913. else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  914. else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  915. else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  916. else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  917. else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  918. else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  919. else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  920. else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  921. else av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  922. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  923. sws_format_name(srcFormat),
  924. #ifdef DITHER1XBPP
  925. dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
  926. dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  927. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
  928. #else
  929. "",
  930. #endif
  931. sws_format_name(dstFormat));
  932. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n");
  933. else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  934. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) av_log(c, AV_LOG_INFO, "using MMX\n");
  935. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
  936. else av_log(c, AV_LOG_INFO, "using C\n");
  937. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  938. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  939. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  940. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  941. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  942. }
  943. c->swScale= ff_getSwsFunc(c);
  944. return 0;
  945. fail: //FIXME replace things by appropriate error codes
  946. return -1;
  947. }
  948. #if FF_API_SWS_GETCONTEXT
  949. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
  950. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  951. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  952. {
  953. SwsContext *c;
  954. if(!(c=sws_alloc_context()))
  955. return NULL;
  956. c->flags= flags;
  957. c->srcW= srcW;
  958. c->srcH= srcH;
  959. c->dstW= dstW;
  960. c->dstH= dstH;
  961. c->srcRange = handle_jpeg(&srcFormat);
  962. c->dstRange = handle_jpeg(&dstFormat);
  963. c->srcFormat= srcFormat;
  964. c->dstFormat= dstFormat;
  965. if (param) {
  966. c->param[0] = param[0];
  967. c->param[1] = param[1];
  968. }
  969. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
  970. if(sws_init_context(c, srcFilter, dstFilter) < 0){
  971. sws_freeContext(c);
  972. return NULL;
  973. }
  974. return c;
  975. }
  976. #endif
  977. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  978. float lumaSharpen, float chromaSharpen,
  979. float chromaHShift, float chromaVShift,
  980. int verbose)
  981. {
  982. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  983. if (!filter)
  984. return NULL;
  985. if (lumaGBlur!=0.0) {
  986. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  987. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  988. } else {
  989. filter->lumH= sws_getIdentityVec();
  990. filter->lumV= sws_getIdentityVec();
  991. }
  992. if (chromaGBlur!=0.0) {
  993. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  994. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  995. } else {
  996. filter->chrH= sws_getIdentityVec();
  997. filter->chrV= sws_getIdentityVec();
  998. }
  999. if (chromaSharpen!=0.0) {
  1000. SwsVector *id= sws_getIdentityVec();
  1001. sws_scaleVec(filter->chrH, -chromaSharpen);
  1002. sws_scaleVec(filter->chrV, -chromaSharpen);
  1003. sws_addVec(filter->chrH, id);
  1004. sws_addVec(filter->chrV, id);
  1005. sws_freeVec(id);
  1006. }
  1007. if (lumaSharpen!=0.0) {
  1008. SwsVector *id= sws_getIdentityVec();
  1009. sws_scaleVec(filter->lumH, -lumaSharpen);
  1010. sws_scaleVec(filter->lumV, -lumaSharpen);
  1011. sws_addVec(filter->lumH, id);
  1012. sws_addVec(filter->lumV, id);
  1013. sws_freeVec(id);
  1014. }
  1015. if (chromaHShift != 0.0)
  1016. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  1017. if (chromaVShift != 0.0)
  1018. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  1019. sws_normalizeVec(filter->chrH, 1.0);
  1020. sws_normalizeVec(filter->chrV, 1.0);
  1021. sws_normalizeVec(filter->lumH, 1.0);
  1022. sws_normalizeVec(filter->lumV, 1.0);
  1023. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1024. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1025. return filter;
  1026. }
  1027. SwsVector *sws_allocVec(int length)
  1028. {
  1029. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1030. if (!vec)
  1031. return NULL;
  1032. vec->length = length;
  1033. vec->coeff = av_malloc(sizeof(double) * length);
  1034. if (!vec->coeff)
  1035. av_freep(&vec);
  1036. return vec;
  1037. }
  1038. SwsVector *sws_getGaussianVec(double variance, double quality)
  1039. {
  1040. const int length= (int)(variance*quality + 0.5) | 1;
  1041. int i;
  1042. double middle= (length-1)*0.5;
  1043. SwsVector *vec= sws_allocVec(length);
  1044. if (!vec)
  1045. return NULL;
  1046. for (i=0; i<length; i++) {
  1047. double dist= i-middle;
  1048. vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
  1049. }
  1050. sws_normalizeVec(vec, 1.0);
  1051. return vec;
  1052. }
  1053. SwsVector *sws_getConstVec(double c, int length)
  1054. {
  1055. int i;
  1056. SwsVector *vec= sws_allocVec(length);
  1057. if (!vec)
  1058. return NULL;
  1059. for (i=0; i<length; i++)
  1060. vec->coeff[i]= c;
  1061. return vec;
  1062. }
  1063. SwsVector *sws_getIdentityVec(void)
  1064. {
  1065. return sws_getConstVec(1.0, 1);
  1066. }
  1067. static double sws_dcVec(SwsVector *a)
  1068. {
  1069. int i;
  1070. double sum=0;
  1071. for (i=0; i<a->length; i++)
  1072. sum+= a->coeff[i];
  1073. return sum;
  1074. }
  1075. void sws_scaleVec(SwsVector *a, double scalar)
  1076. {
  1077. int i;
  1078. for (i=0; i<a->length; i++)
  1079. a->coeff[i]*= scalar;
  1080. }
  1081. void sws_normalizeVec(SwsVector *a, double height)
  1082. {
  1083. sws_scaleVec(a, height/sws_dcVec(a));
  1084. }
  1085. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1086. {
  1087. int length= a->length + b->length - 1;
  1088. int i, j;
  1089. SwsVector *vec= sws_getConstVec(0.0, length);
  1090. if (!vec)
  1091. return NULL;
  1092. for (i=0; i<a->length; i++) {
  1093. for (j=0; j<b->length; j++) {
  1094. vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
  1095. }
  1096. }
  1097. return vec;
  1098. }
  1099. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1100. {
  1101. int length= FFMAX(a->length, b->length);
  1102. int i;
  1103. SwsVector *vec= sws_getConstVec(0.0, length);
  1104. if (!vec)
  1105. return NULL;
  1106. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1107. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  1108. return vec;
  1109. }
  1110. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1111. {
  1112. int length= FFMAX(a->length, b->length);
  1113. int i;
  1114. SwsVector *vec= sws_getConstVec(0.0, length);
  1115. if (!vec)
  1116. return NULL;
  1117. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1118. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  1119. return vec;
  1120. }
  1121. /* shift left / or right if "shift" is negative */
  1122. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1123. {
  1124. int length= a->length + FFABS(shift)*2;
  1125. int i;
  1126. SwsVector *vec= sws_getConstVec(0.0, length);
  1127. if (!vec)
  1128. return NULL;
  1129. for (i=0; i<a->length; i++) {
  1130. vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  1131. }
  1132. return vec;
  1133. }
  1134. void sws_shiftVec(SwsVector *a, int shift)
  1135. {
  1136. SwsVector *shifted= sws_getShiftedVec(a, shift);
  1137. av_free(a->coeff);
  1138. a->coeff= shifted->coeff;
  1139. a->length= shifted->length;
  1140. av_free(shifted);
  1141. }
  1142. void sws_addVec(SwsVector *a, SwsVector *b)
  1143. {
  1144. SwsVector *sum= sws_sumVec(a, b);
  1145. av_free(a->coeff);
  1146. a->coeff= sum->coeff;
  1147. a->length= sum->length;
  1148. av_free(sum);
  1149. }
  1150. void sws_subVec(SwsVector *a, SwsVector *b)
  1151. {
  1152. SwsVector *diff= sws_diffVec(a, b);
  1153. av_free(a->coeff);
  1154. a->coeff= diff->coeff;
  1155. a->length= diff->length;
  1156. av_free(diff);
  1157. }
  1158. void sws_convVec(SwsVector *a, SwsVector *b)
  1159. {
  1160. SwsVector *conv= sws_getConvVec(a, b);
  1161. av_free(a->coeff);
  1162. a->coeff= conv->coeff;
  1163. a->length= conv->length;
  1164. av_free(conv);
  1165. }
  1166. SwsVector *sws_cloneVec(SwsVector *a)
  1167. {
  1168. int i;
  1169. SwsVector *vec= sws_allocVec(a->length);
  1170. if (!vec)
  1171. return NULL;
  1172. for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
  1173. return vec;
  1174. }
  1175. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1176. {
  1177. int i;
  1178. double max=0;
  1179. double min=0;
  1180. double range;
  1181. for (i=0; i<a->length; i++)
  1182. if (a->coeff[i]>max) max= a->coeff[i];
  1183. for (i=0; i<a->length; i++)
  1184. if (a->coeff[i]<min) min= a->coeff[i];
  1185. range= max - min;
  1186. for (i=0; i<a->length; i++) {
  1187. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  1188. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1189. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  1190. av_log(log_ctx, log_level, "|\n");
  1191. }
  1192. }
  1193. void sws_freeVec(SwsVector *a)
  1194. {
  1195. if (!a) return;
  1196. av_freep(&a->coeff);
  1197. a->length=0;
  1198. av_free(a);
  1199. }
  1200. void sws_freeFilter(SwsFilter *filter)
  1201. {
  1202. if (!filter) return;
  1203. if (filter->lumH) sws_freeVec(filter->lumH);
  1204. if (filter->lumV) sws_freeVec(filter->lumV);
  1205. if (filter->chrH) sws_freeVec(filter->chrH);
  1206. if (filter->chrV) sws_freeVec(filter->chrV);
  1207. av_free(filter);
  1208. }
  1209. void sws_freeContext(SwsContext *c)
  1210. {
  1211. int i;
  1212. if (!c) return;
  1213. if (c->lumPixBuf) {
  1214. for (i=0; i<c->vLumBufSize; i++)
  1215. av_freep(&c->lumPixBuf[i]);
  1216. av_freep(&c->lumPixBuf);
  1217. }
  1218. if (c->chrUPixBuf) {
  1219. for (i=0; i<c->vChrBufSize; i++)
  1220. av_freep(&c->chrUPixBuf[i]);
  1221. av_freep(&c->chrUPixBuf);
  1222. av_freep(&c->chrVPixBuf);
  1223. }
  1224. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1225. for (i=0; i<c->vLumBufSize; i++)
  1226. av_freep(&c->alpPixBuf[i]);
  1227. av_freep(&c->alpPixBuf);
  1228. }
  1229. av_freep(&c->vLumFilter);
  1230. av_freep(&c->vChrFilter);
  1231. av_freep(&c->hLumFilter);
  1232. av_freep(&c->hChrFilter);
  1233. #if HAVE_ALTIVEC
  1234. av_freep(&c->vYCoeffsBank);
  1235. av_freep(&c->vCCoeffsBank);
  1236. #endif
  1237. av_freep(&c->vLumFilterPos);
  1238. av_freep(&c->vChrFilterPos);
  1239. av_freep(&c->hLumFilterPos);
  1240. av_freep(&c->hChrFilterPos);
  1241. #if HAVE_MMX
  1242. #ifdef MAP_ANONYMOUS
  1243. if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1244. if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1245. #elif HAVE_VIRTUALALLOC
  1246. if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1247. if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1248. #else
  1249. av_free(c->lumMmx2FilterCode);
  1250. av_free(c->chrMmx2FilterCode);
  1251. #endif
  1252. c->lumMmx2FilterCode=NULL;
  1253. c->chrMmx2FilterCode=NULL;
  1254. #endif /* HAVE_MMX */
  1255. av_freep(&c->yuvTable);
  1256. av_free(c->formatConvBuffer);
  1257. av_free(c);
  1258. }
  1259. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  1260. int srcW, int srcH, enum PixelFormat srcFormat,
  1261. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1262. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1263. {
  1264. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  1265. if (!param)
  1266. param = default_param;
  1267. if (context &&
  1268. (context->srcW != srcW ||
  1269. context->srcH != srcH ||
  1270. context->srcFormat != srcFormat ||
  1271. context->dstW != dstW ||
  1272. context->dstH != dstH ||
  1273. context->dstFormat != dstFormat ||
  1274. context->flags != flags ||
  1275. context->param[0] != param[0] ||
  1276. context->param[1] != param[1])) {
  1277. sws_freeContext(context);
  1278. context = NULL;
  1279. }
  1280. if (!context) {
  1281. if (!(context = sws_alloc_context()))
  1282. return NULL;
  1283. context->srcW = srcW;
  1284. context->srcH = srcH;
  1285. context->srcRange = handle_jpeg(&srcFormat);
  1286. context->srcFormat = srcFormat;
  1287. context->dstW = dstW;
  1288. context->dstH = dstH;
  1289. context->dstRange = handle_jpeg(&dstFormat);
  1290. context->dstFormat = dstFormat;
  1291. context->flags = flags;
  1292. context->param[0] = param[0];
  1293. context->param[1] = param[1];
  1294. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
  1295. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1296. sws_freeContext(context);
  1297. return NULL;
  1298. }
  1299. }
  1300. return context;
  1301. }