You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2169 lines
77KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avassert.h"
  39. #include "libavutil/avutil.h"
  40. #include "libavutil/bswap.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/imgutils.h"
  43. #include "libavutil/intreadwrite.h"
  44. #include "libavutil/mathematics.h"
  45. #include "libavutil/opt.h"
  46. #include "libavutil/pixdesc.h"
  47. #include "libavutil/ppc/cpu.h"
  48. #include "libavutil/x86/asm.h"
  49. #include "libavutil/x86/cpu.h"
  50. #include "rgb2rgb.h"
  51. #include "swscale.h"
  52. #include "swscale_internal.h"
  53. static void handle_formats(SwsContext *c);
  54. unsigned swscale_version(void)
  55. {
  56. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  57. return LIBSWSCALE_VERSION_INT;
  58. }
  59. const char *swscale_configuration(void)
  60. {
  61. return FFMPEG_CONFIGURATION;
  62. }
  63. const char *swscale_license(void)
  64. {
  65. #define LICENSE_PREFIX "libswscale license: "
  66. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  67. }
  68. typedef struct FormatEntry {
  69. uint8_t is_supported_in :1;
  70. uint8_t is_supported_out :1;
  71. uint8_t is_supported_endianness :1;
  72. } FormatEntry;
  73. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  74. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  75. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  76. [AV_PIX_FMT_RGB24] = { 1, 1 },
  77. [AV_PIX_FMT_BGR24] = { 1, 1 },
  78. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  79. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  82. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  83. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  84. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  85. [AV_PIX_FMT_PAL8] = { 1, 0 },
  86. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  87. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  90. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  91. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  92. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  93. [AV_PIX_FMT_BGR8] = { 1, 1 },
  94. [AV_PIX_FMT_BGR4] = { 0, 1 },
  95. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  96. [AV_PIX_FMT_RGB8] = { 1, 1 },
  97. [AV_PIX_FMT_RGB4] = { 0, 1 },
  98. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  99. [AV_PIX_FMT_NV12] = { 1, 1 },
  100. [AV_PIX_FMT_NV21] = { 1, 1 },
  101. [AV_PIX_FMT_ARGB] = { 1, 1 },
  102. [AV_PIX_FMT_RGBA] = { 1, 1 },
  103. [AV_PIX_FMT_ABGR] = { 1, 1 },
  104. [AV_PIX_FMT_BGRA] = { 1, 1 },
  105. [AV_PIX_FMT_0RGB] = { 1, 1 },
  106. [AV_PIX_FMT_RGB0] = { 1, 1 },
  107. [AV_PIX_FMT_0BGR] = { 1, 1 },
  108. [AV_PIX_FMT_BGR0] = { 1, 1 },
  109. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  110. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  111. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  112. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  113. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  115. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  126. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  134. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  135. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  136. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  137. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  138. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  139. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  140. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  141. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  142. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  143. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  156. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  157. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  158. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  159. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  160. [AV_PIX_FMT_YA8] = { 1, 1 },
  161. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  162. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  163. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  164. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  165. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  166. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  167. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  191. [AV_PIX_FMT_GBRP] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  197. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  198. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  199. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  200. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  201. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  202. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  203. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  204. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  205. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  206. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  213. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  214. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  215. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  216. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  217. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  218. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  219. };
  220. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  221. {
  222. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  223. format_entries[pix_fmt].is_supported_in : 0;
  224. }
  225. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  226. {
  227. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  228. format_entries[pix_fmt].is_supported_out : 0;
  229. }
  230. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  231. {
  232. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  233. format_entries[pix_fmt].is_supported_endianness : 0;
  234. }
  235. static double getSplineCoeff(double a, double b, double c, double d,
  236. double dist)
  237. {
  238. if (dist <= 1.0)
  239. return ((d * dist + c) * dist + b) * dist + a;
  240. else
  241. return getSplineCoeff(0.0,
  242. b + 2.0 * c + 3.0 * d,
  243. c + 3.0 * d,
  244. -b - 3.0 * c - 6.0 * d,
  245. dist - 1.0);
  246. }
  247. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  248. {
  249. if (pos == -1 || pos <= -513) {
  250. pos = (128 << chr_subsample) - 128;
  251. }
  252. pos += 128; // relative to ideal left edge
  253. return pos >> chr_subsample;
  254. }
  255. typedef struct {
  256. int flag; ///< flag associated to the algorithm
  257. const char *description; ///< human-readable description
  258. int size_factor; ///< size factor used when initing the filters
  259. } ScaleAlgorithm;
  260. static const ScaleAlgorithm scale_algorithms[] = {
  261. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  262. { SWS_BICUBIC, "bicubic", 4 },
  263. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  264. { SWS_BILINEAR, "bilinear", 2 },
  265. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  266. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  267. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  268. { SWS_POINT, "nearest neighbor / point", -1 },
  269. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  270. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  271. { SWS_X, "experimental", 8 },
  272. };
  273. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  274. int *outFilterSize, int xInc, int srcW,
  275. int dstW, int filterAlign, int one,
  276. int flags, int cpu_flags,
  277. SwsVector *srcFilter, SwsVector *dstFilter,
  278. double param[2], int srcPos, int dstPos)
  279. {
  280. int i;
  281. int filterSize;
  282. int filter2Size;
  283. int minFilterSize;
  284. int64_t *filter = NULL;
  285. int64_t *filter2 = NULL;
  286. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  287. int ret = -1;
  288. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  289. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  290. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  291. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  292. int i;
  293. filterSize = 1;
  294. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  295. dstW, sizeof(*filter) * filterSize, fail);
  296. for (i = 0; i < dstW; i++) {
  297. filter[i * filterSize] = fone;
  298. (*filterPos)[i] = i;
  299. }
  300. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  301. int i;
  302. int64_t xDstInSrc;
  303. filterSize = 1;
  304. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  305. dstW, sizeof(*filter) * filterSize, fail);
  306. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  307. for (i = 0; i < dstW; i++) {
  308. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  309. (*filterPos)[i] = xx;
  310. filter[i] = fone;
  311. xDstInSrc += xInc;
  312. }
  313. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  314. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  315. int i;
  316. int64_t xDstInSrc;
  317. filterSize = 2;
  318. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  319. dstW, sizeof(*filter) * filterSize, fail);
  320. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  321. for (i = 0; i < dstW; i++) {
  322. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  323. int j;
  324. (*filterPos)[i] = xx;
  325. // bilinear upscale / linear interpolate / area averaging
  326. for (j = 0; j < filterSize; j++) {
  327. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  328. if (coeff < 0)
  329. coeff = 0;
  330. filter[i * filterSize + j] = coeff;
  331. xx++;
  332. }
  333. xDstInSrc += xInc;
  334. }
  335. } else {
  336. int64_t xDstInSrc;
  337. int sizeFactor = -1;
  338. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  339. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  340. sizeFactor = scale_algorithms[i].size_factor;
  341. break;
  342. }
  343. }
  344. if (flags & SWS_LANCZOS)
  345. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  346. av_assert0(sizeFactor > 0);
  347. if (xInc <= 1 << 16)
  348. filterSize = 1 + sizeFactor; // upscale
  349. else
  350. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  351. filterSize = FFMIN(filterSize, srcW - 2);
  352. filterSize = FFMAX(filterSize, 1);
  353. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  354. dstW, sizeof(*filter) * filterSize, fail);
  355. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  356. for (i = 0; i < dstW; i++) {
  357. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  358. int j;
  359. (*filterPos)[i] = xx;
  360. for (j = 0; j < filterSize; j++) {
  361. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  362. double floatd;
  363. int64_t coeff;
  364. if (xInc > 1 << 16)
  365. d = d * dstW / srcW;
  366. floatd = d * (1.0 / (1 << 30));
  367. if (flags & SWS_BICUBIC) {
  368. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  369. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  370. if (d >= 1LL << 31) {
  371. coeff = 0.0;
  372. } else {
  373. int64_t dd = (d * d) >> 30;
  374. int64_t ddd = (dd * d) >> 30;
  375. if (d < 1LL << 30)
  376. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  377. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  378. (6 * (1 << 24) - 2 * B) * (1 << 30);
  379. else
  380. coeff = (-B - 6 * C) * ddd +
  381. (6 * B + 30 * C) * dd +
  382. (-12 * B - 48 * C) * d +
  383. (8 * B + 24 * C) * (1 << 30);
  384. }
  385. coeff /= (1LL<<54)/fone;
  386. }
  387. #if 0
  388. else if (flags & SWS_X) {
  389. double p = param ? param * 0.01 : 0.3;
  390. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  391. coeff *= pow(2.0, -p * d * d);
  392. }
  393. #endif
  394. else if (flags & SWS_X) {
  395. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  396. double c;
  397. if (floatd < 1.0)
  398. c = cos(floatd * M_PI);
  399. else
  400. c = -1.0;
  401. if (c < 0.0)
  402. c = -pow(-c, A);
  403. else
  404. c = pow(c, A);
  405. coeff = (c * 0.5 + 0.5) * fone;
  406. } else if (flags & SWS_AREA) {
  407. int64_t d2 = d - (1 << 29);
  408. if (d2 * xInc < -(1LL << (29 + 16)))
  409. coeff = 1.0 * (1LL << (30 + 16));
  410. else if (d2 * xInc < (1LL << (29 + 16)))
  411. coeff = -d2 * xInc + (1LL << (29 + 16));
  412. else
  413. coeff = 0.0;
  414. coeff *= fone >> (30 + 16);
  415. } else if (flags & SWS_GAUSS) {
  416. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  417. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  418. } else if (flags & SWS_SINC) {
  419. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  420. } else if (flags & SWS_LANCZOS) {
  421. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  422. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  423. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  424. if (floatd > p)
  425. coeff = 0;
  426. } else if (flags & SWS_BILINEAR) {
  427. coeff = (1 << 30) - d;
  428. if (coeff < 0)
  429. coeff = 0;
  430. coeff *= fone >> 30;
  431. } else if (flags & SWS_SPLINE) {
  432. double p = -2.196152422706632;
  433. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  434. } else {
  435. av_assert0(0);
  436. }
  437. filter[i * filterSize + j] = coeff;
  438. xx++;
  439. }
  440. xDstInSrc += 2 * xInc;
  441. }
  442. }
  443. /* apply src & dst Filter to filter -> filter2
  444. * av_free(filter);
  445. */
  446. av_assert0(filterSize > 0);
  447. filter2Size = filterSize;
  448. if (srcFilter)
  449. filter2Size += srcFilter->length - 1;
  450. if (dstFilter)
  451. filter2Size += dstFilter->length - 1;
  452. av_assert0(filter2Size > 0);
  453. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  454. for (i = 0; i < dstW; i++) {
  455. int j, k;
  456. if (srcFilter) {
  457. for (k = 0; k < srcFilter->length; k++) {
  458. for (j = 0; j < filterSize; j++)
  459. filter2[i * filter2Size + k + j] +=
  460. srcFilter->coeff[k] * filter[i * filterSize + j];
  461. }
  462. } else {
  463. for (j = 0; j < filterSize; j++)
  464. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  465. }
  466. // FIXME dstFilter
  467. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  468. }
  469. av_freep(&filter);
  470. /* try to reduce the filter-size (step1 find size and shift left) */
  471. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  472. minFilterSize = 0;
  473. for (i = dstW - 1; i >= 0; i--) {
  474. int min = filter2Size;
  475. int j;
  476. int64_t cutOff = 0.0;
  477. /* get rid of near zero elements on the left by shifting left */
  478. for (j = 0; j < filter2Size; j++) {
  479. int k;
  480. cutOff += FFABS(filter2[i * filter2Size]);
  481. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  482. break;
  483. /* preserve monotonicity because the core can't handle the
  484. * filter otherwise */
  485. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  486. break;
  487. // move filter coefficients left
  488. for (k = 1; k < filter2Size; k++)
  489. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  490. filter2[i * filter2Size + k - 1] = 0;
  491. (*filterPos)[i]++;
  492. }
  493. cutOff = 0;
  494. /* count near zeros on the right */
  495. for (j = filter2Size - 1; j > 0; j--) {
  496. cutOff += FFABS(filter2[i * filter2Size + j]);
  497. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  498. break;
  499. min--;
  500. }
  501. if (min > minFilterSize)
  502. minFilterSize = min;
  503. }
  504. if (PPC_ALTIVEC(cpu_flags)) {
  505. // we can handle the special case 4, so we don't want to go the full 8
  506. if (minFilterSize < 5)
  507. filterAlign = 4;
  508. /* We really don't want to waste our time doing useless computation, so
  509. * fall back on the scalar C code for very small filters.
  510. * Vectorizing is worth it only if you have a decent-sized vector. */
  511. if (minFilterSize < 3)
  512. filterAlign = 1;
  513. }
  514. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  515. // special case for unscaled vertical filtering
  516. if (minFilterSize == 1 && filterAlign == 2)
  517. filterAlign = 1;
  518. }
  519. av_assert0(minFilterSize > 0);
  520. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  521. av_assert0(filterSize > 0);
  522. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  523. if (!filter)
  524. goto fail;
  525. if (filterSize >= MAX_FILTER_SIZE * 16 /
  526. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  527. ret = RETCODE_USE_CASCADE;
  528. goto fail;
  529. }
  530. *outFilterSize = filterSize;
  531. if (flags & SWS_PRINT_INFO)
  532. av_log(NULL, AV_LOG_VERBOSE,
  533. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  534. filter2Size, filterSize);
  535. /* try to reduce the filter-size (step2 reduce it) */
  536. for (i = 0; i < dstW; i++) {
  537. int j;
  538. for (j = 0; j < filterSize; j++) {
  539. if (j >= filter2Size)
  540. filter[i * filterSize + j] = 0;
  541. else
  542. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  543. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  544. filter[i * filterSize + j] = 0;
  545. }
  546. }
  547. // FIXME try to align filterPos if possible
  548. // fix borders
  549. for (i = 0; i < dstW; i++) {
  550. int j;
  551. if ((*filterPos)[i] < 0) {
  552. // move filter coefficients left to compensate for filterPos
  553. for (j = 1; j < filterSize; j++) {
  554. int left = FFMAX(j + (*filterPos)[i], 0);
  555. filter[i * filterSize + left] += filter[i * filterSize + j];
  556. filter[i * filterSize + j] = 0;
  557. }
  558. (*filterPos)[i]= 0;
  559. }
  560. if ((*filterPos)[i] + filterSize > srcW) {
  561. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  562. int64_t acc = 0;
  563. for (j = filterSize - 1; j >= 0; j--) {
  564. if ((*filterPos)[i] + j >= srcW) {
  565. acc += filter[i * filterSize + j];
  566. filter[i * filterSize + j] = 0;
  567. }
  568. }
  569. for (j = filterSize - 1; j >= 0; j--) {
  570. if (j < shift) {
  571. filter[i * filterSize + j] = 0;
  572. } else {
  573. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  574. }
  575. }
  576. (*filterPos)[i]-= shift;
  577. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  578. }
  579. av_assert0((*filterPos)[i] >= 0);
  580. av_assert0((*filterPos)[i] < srcW);
  581. if ((*filterPos)[i] + filterSize > srcW) {
  582. for (j = 0; j < filterSize; j++) {
  583. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  584. }
  585. }
  586. }
  587. // Note the +1 is for the MMX scaler which reads over the end
  588. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  589. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  590. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  591. /* normalize & store in outFilter */
  592. for (i = 0; i < dstW; i++) {
  593. int j;
  594. int64_t error = 0;
  595. int64_t sum = 0;
  596. for (j = 0; j < filterSize; j++) {
  597. sum += filter[i * filterSize + j];
  598. }
  599. sum = (sum + one / 2) / one;
  600. if (!sum) {
  601. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  602. sum = 1;
  603. }
  604. for (j = 0; j < *outFilterSize; j++) {
  605. int64_t v = filter[i * filterSize + j] + error;
  606. int intV = ROUNDED_DIV(v, sum);
  607. (*outFilter)[i * (*outFilterSize) + j] = intV;
  608. error = v - intV * sum;
  609. }
  610. }
  611. (*filterPos)[dstW + 0] =
  612. (*filterPos)[dstW + 1] =
  613. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  614. * read over the end */
  615. for (i = 0; i < *outFilterSize; i++) {
  616. int k = (dstW - 1) * (*outFilterSize) + i;
  617. (*outFilter)[k + 1 * (*outFilterSize)] =
  618. (*outFilter)[k + 2 * (*outFilterSize)] =
  619. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  620. }
  621. ret = 0;
  622. fail:
  623. if(ret < 0)
  624. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  625. av_free(filter);
  626. av_free(filter2);
  627. return ret;
  628. }
  629. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  630. {
  631. int64_t W, V, Z, Cy, Cu, Cv;
  632. int64_t vr = table[0];
  633. int64_t ub = table[1];
  634. int64_t ug = -table[2];
  635. int64_t vg = -table[3];
  636. int64_t ONE = 65536;
  637. int64_t cy = ONE;
  638. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  639. int i;
  640. static const int8_t map[] = {
  641. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  642. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  643. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  644. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  645. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  646. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  647. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  648. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  649. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  650. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  651. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  652. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  653. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  654. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  655. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  656. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  657. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  658. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  659. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  660. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  661. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  662. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  663. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  664. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  665. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  666. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  667. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  668. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  669. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  670. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  671. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  672. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  673. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  674. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  675. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  676. };
  677. dstRange = 0; //FIXME range = 1 is handled elsewhere
  678. if (!dstRange) {
  679. cy = cy * 255 / 219;
  680. } else {
  681. vr = vr * 224 / 255;
  682. ub = ub * 224 / 255;
  683. ug = ug * 224 / 255;
  684. vg = vg * 224 / 255;
  685. }
  686. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  687. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  688. Z = ONE*ONE-W-V;
  689. Cy = ROUNDED_DIV(cy*Z, ONE);
  690. Cu = ROUNDED_DIV(ub*Z, ONE);
  691. Cv = ROUNDED_DIV(vr*Z, ONE);
  692. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  693. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  694. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  695. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  696. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  697. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  698. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  699. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  700. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  701. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  702. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  703. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  704. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  705. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  706. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  707. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  708. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  709. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  710. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  711. }
  712. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  713. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  714. }
  715. static void fill_xyztables(struct SwsContext *c)
  716. {
  717. int i;
  718. double xyzgamma = XYZ_GAMMA;
  719. double rgbgamma = 1.0 / RGB_GAMMA;
  720. double xyzgammainv = 1.0 / XYZ_GAMMA;
  721. double rgbgammainv = RGB_GAMMA;
  722. static const int16_t xyz2rgb_matrix[3][4] = {
  723. {13270, -6295, -2041},
  724. {-3969, 7682, 170},
  725. { 228, -835, 4329} };
  726. static const int16_t rgb2xyz_matrix[3][4] = {
  727. {1689, 1464, 739},
  728. { 871, 2929, 296},
  729. { 79, 488, 3891} };
  730. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  731. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  732. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  733. c->xyzgamma = xyzgamma_tab;
  734. c->rgbgamma = rgbgamma_tab;
  735. c->xyzgammainv = xyzgammainv_tab;
  736. c->rgbgammainv = rgbgammainv_tab;
  737. if (rgbgamma_tab[4095])
  738. return;
  739. /* set gamma vectors */
  740. for (i = 0; i < 4096; i++) {
  741. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  742. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  743. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  744. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  745. }
  746. }
  747. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  748. int srcRange, const int table[4], int dstRange,
  749. int brightness, int contrast, int saturation)
  750. {
  751. const AVPixFmtDescriptor *desc_dst;
  752. const AVPixFmtDescriptor *desc_src;
  753. int need_reinit = 0;
  754. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  755. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  756. handle_formats(c);
  757. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  758. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  759. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  760. dstRange = 0;
  761. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  762. srcRange = 0;
  763. c->brightness = brightness;
  764. c->contrast = contrast;
  765. c->saturation = saturation;
  766. if (c->srcRange != srcRange || c->dstRange != dstRange)
  767. need_reinit = 1;
  768. c->srcRange = srcRange;
  769. c->dstRange = dstRange;
  770. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  771. //and what we have in ticket 2939 looks better with this check
  772. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  773. ff_sws_init_range_convert(c);
  774. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat)))
  775. return -1;
  776. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  777. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  778. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  779. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  780. contrast, saturation);
  781. // FIXME factorize
  782. if (ARCH_PPC)
  783. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  784. contrast, saturation);
  785. }
  786. fill_rgb2yuv_table(c, table, dstRange);
  787. return 0;
  788. }
  789. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  790. int *srcRange, int **table, int *dstRange,
  791. int *brightness, int *contrast, int *saturation)
  792. {
  793. if (!c )
  794. return -1;
  795. *inv_table = c->srcColorspaceTable;
  796. *table = c->dstColorspaceTable;
  797. *srcRange = c->srcRange;
  798. *dstRange = c->dstRange;
  799. *brightness = c->brightness;
  800. *contrast = c->contrast;
  801. *saturation = c->saturation;
  802. return 0;
  803. }
  804. static int handle_jpeg(enum AVPixelFormat *format)
  805. {
  806. switch (*format) {
  807. case AV_PIX_FMT_YUVJ420P:
  808. *format = AV_PIX_FMT_YUV420P;
  809. return 1;
  810. case AV_PIX_FMT_YUVJ411P:
  811. *format = AV_PIX_FMT_YUV411P;
  812. return 1;
  813. case AV_PIX_FMT_YUVJ422P:
  814. *format = AV_PIX_FMT_YUV422P;
  815. return 1;
  816. case AV_PIX_FMT_YUVJ444P:
  817. *format = AV_PIX_FMT_YUV444P;
  818. return 1;
  819. case AV_PIX_FMT_YUVJ440P:
  820. *format = AV_PIX_FMT_YUV440P;
  821. return 1;
  822. case AV_PIX_FMT_GRAY8:
  823. case AV_PIX_FMT_GRAY16LE:
  824. case AV_PIX_FMT_GRAY16BE:
  825. return 1;
  826. default:
  827. return 0;
  828. }
  829. }
  830. static int handle_0alpha(enum AVPixelFormat *format)
  831. {
  832. switch (*format) {
  833. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  834. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  835. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  836. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  837. default: return 0;
  838. }
  839. }
  840. static int handle_xyz(enum AVPixelFormat *format)
  841. {
  842. switch (*format) {
  843. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  844. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  845. default: return 0;
  846. }
  847. }
  848. static void handle_formats(SwsContext *c)
  849. {
  850. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  851. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  852. c->srcXYZ |= handle_xyz(&c->srcFormat);
  853. c->dstXYZ |= handle_xyz(&c->dstFormat);
  854. if (c->srcXYZ || c->dstXYZ)
  855. fill_xyztables(c);
  856. }
  857. SwsContext *sws_alloc_context(void)
  858. {
  859. SwsContext *c = av_mallocz(sizeof(SwsContext));
  860. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  861. if (c) {
  862. c->av_class = &sws_context_class;
  863. av_opt_set_defaults(c);
  864. }
  865. return c;
  866. }
  867. static uint16_t * alloc_gamma_tbl(double e)
  868. {
  869. int i = 0;
  870. uint16_t * tbl;
  871. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  872. if (!tbl)
  873. return NULL;
  874. for (i = 0; i < 65536; ++i) {
  875. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  876. }
  877. return tbl;
  878. }
  879. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  880. SwsFilter *dstFilter)
  881. {
  882. int i, j;
  883. int usesVFilter, usesHFilter;
  884. int unscaled;
  885. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  886. int srcW = c->srcW;
  887. int srcH = c->srcH;
  888. int dstW = c->dstW;
  889. int dstH = c->dstH;
  890. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  891. int flags, cpu_flags;
  892. enum AVPixelFormat srcFormat = c->srcFormat;
  893. enum AVPixelFormat dstFormat = c->dstFormat;
  894. const AVPixFmtDescriptor *desc_src;
  895. const AVPixFmtDescriptor *desc_dst;
  896. int ret = 0;
  897. enum AVPixelFormat tmpFmt;
  898. cpu_flags = av_get_cpu_flags();
  899. flags = c->flags;
  900. emms_c();
  901. if (!rgb15to16)
  902. sws_rgb2rgb_init();
  903. unscaled = (srcW == dstW && srcH == dstH);
  904. c->srcRange |= handle_jpeg(&c->srcFormat);
  905. c->dstRange |= handle_jpeg(&c->dstFormat);
  906. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  907. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  908. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  909. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  910. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  911. c->dstRange, 0, 1 << 16, 1 << 16);
  912. handle_formats(c);
  913. srcFormat = c->srcFormat;
  914. dstFormat = c->dstFormat;
  915. desc_src = av_pix_fmt_desc_get(srcFormat);
  916. desc_dst = av_pix_fmt_desc_get(dstFormat);
  917. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  918. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  919. if (!sws_isSupportedInput(srcFormat)) {
  920. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  921. av_get_pix_fmt_name(srcFormat));
  922. return AVERROR(EINVAL);
  923. }
  924. if (!sws_isSupportedOutput(dstFormat)) {
  925. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  926. av_get_pix_fmt_name(dstFormat));
  927. return AVERROR(EINVAL);
  928. }
  929. }
  930. av_assert2(desc_src && desc_dst);
  931. i = flags & (SWS_POINT |
  932. SWS_AREA |
  933. SWS_BILINEAR |
  934. SWS_FAST_BILINEAR |
  935. SWS_BICUBIC |
  936. SWS_X |
  937. SWS_GAUSS |
  938. SWS_LANCZOS |
  939. SWS_SINC |
  940. SWS_SPLINE |
  941. SWS_BICUBLIN);
  942. /* provide a default scaler if not set by caller */
  943. if (!i) {
  944. if (dstW < srcW && dstH < srcH)
  945. flags |= SWS_BICUBIC;
  946. else if (dstW > srcW && dstH > srcH)
  947. flags |= SWS_BICUBIC;
  948. else
  949. flags |= SWS_BICUBIC;
  950. c->flags = flags;
  951. } else if (i & (i - 1)) {
  952. av_log(c, AV_LOG_ERROR,
  953. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  954. return AVERROR(EINVAL);
  955. }
  956. /* sanity check */
  957. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  958. /* FIXME check if these are enough and try to lower them after
  959. * fixing the relevant parts of the code */
  960. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  961. srcW, srcH, dstW, dstH);
  962. return AVERROR(EINVAL);
  963. }
  964. if (!dstFilter)
  965. dstFilter = &dummyFilter;
  966. if (!srcFilter)
  967. srcFilter = &dummyFilter;
  968. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  969. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  970. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  971. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  972. c->vRounder = 4 * 0x0001000100010001ULL;
  973. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  974. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  975. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  976. (dstFilter->chrV && dstFilter->chrV->length > 1);
  977. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  978. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  979. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  980. (dstFilter->chrH && dstFilter->chrH->length > 1);
  981. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  982. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  983. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  984. if (dstW&1) {
  985. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  986. flags |= SWS_FULL_CHR_H_INT;
  987. c->flags = flags;
  988. }
  989. if ( c->chrSrcHSubSample == 0
  990. && c->chrSrcVSubSample == 0
  991. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  992. && !(c->flags & SWS_FAST_BILINEAR)
  993. ) {
  994. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  995. flags |= SWS_FULL_CHR_H_INT;
  996. c->flags = flags;
  997. }
  998. }
  999. if (c->dither == SWS_DITHER_AUTO) {
  1000. if (flags & SWS_ERROR_DIFFUSION)
  1001. c->dither = SWS_DITHER_ED;
  1002. }
  1003. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1004. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1005. dstFormat == AV_PIX_FMT_BGR8 ||
  1006. dstFormat == AV_PIX_FMT_RGB8) {
  1007. if (c->dither == SWS_DITHER_AUTO)
  1008. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1009. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1010. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1011. av_log(c, AV_LOG_DEBUG,
  1012. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1013. av_get_pix_fmt_name(dstFormat));
  1014. flags |= SWS_FULL_CHR_H_INT;
  1015. c->flags = flags;
  1016. }
  1017. }
  1018. if (flags & SWS_FULL_CHR_H_INT) {
  1019. if (c->dither == SWS_DITHER_BAYER) {
  1020. av_log(c, AV_LOG_DEBUG,
  1021. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1022. av_get_pix_fmt_name(dstFormat));
  1023. c->dither = SWS_DITHER_ED;
  1024. }
  1025. }
  1026. }
  1027. if (isPlanarRGB(dstFormat)) {
  1028. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1029. av_log(c, AV_LOG_DEBUG,
  1030. "%s output is not supported with half chroma resolution, switching to full\n",
  1031. av_get_pix_fmt_name(dstFormat));
  1032. flags |= SWS_FULL_CHR_H_INT;
  1033. c->flags = flags;
  1034. }
  1035. }
  1036. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1037. * chroma interpolation */
  1038. if (flags & SWS_FULL_CHR_H_INT &&
  1039. isAnyRGB(dstFormat) &&
  1040. !isPlanarRGB(dstFormat) &&
  1041. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1042. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1043. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1044. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1045. dstFormat != AV_PIX_FMT_RGB48LE &&
  1046. dstFormat != AV_PIX_FMT_RGB48BE &&
  1047. dstFormat != AV_PIX_FMT_BGR48LE &&
  1048. dstFormat != AV_PIX_FMT_BGR48BE &&
  1049. dstFormat != AV_PIX_FMT_RGBA &&
  1050. dstFormat != AV_PIX_FMT_ARGB &&
  1051. dstFormat != AV_PIX_FMT_BGRA &&
  1052. dstFormat != AV_PIX_FMT_ABGR &&
  1053. dstFormat != AV_PIX_FMT_RGB24 &&
  1054. dstFormat != AV_PIX_FMT_BGR24 &&
  1055. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1056. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1057. dstFormat != AV_PIX_FMT_BGR8 &&
  1058. dstFormat != AV_PIX_FMT_RGB8
  1059. ) {
  1060. av_log(c, AV_LOG_WARNING,
  1061. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1062. av_get_pix_fmt_name(dstFormat));
  1063. flags &= ~SWS_FULL_CHR_H_INT;
  1064. c->flags = flags;
  1065. }
  1066. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1067. c->chrDstHSubSample = 1;
  1068. // drop some chroma lines if the user wants it
  1069. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1070. SWS_SRC_V_CHR_DROP_SHIFT;
  1071. c->chrSrcVSubSample += c->vChrDrop;
  1072. /* drop every other pixel for chroma calculation unless user
  1073. * wants full chroma */
  1074. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1075. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1076. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1077. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1078. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1079. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1080. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1081. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1082. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1083. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1084. (flags & SWS_FAST_BILINEAR)))
  1085. c->chrSrcHSubSample = 1;
  1086. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1087. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1088. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1089. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1090. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1091. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1092. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  1093. if (c->srcBpc < 8)
  1094. c->srcBpc = 8;
  1095. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  1096. if (c->dstBpc < 8)
  1097. c->dstBpc = 8;
  1098. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1099. c->srcBpc = 16;
  1100. if (c->dstBpc == 16)
  1101. dst_stride <<= 1;
  1102. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1103. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1104. c->chrDstW >= c->chrSrcW &&
  1105. (srcW & 15) == 0;
  1106. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1107. && (flags & SWS_FAST_BILINEAR)) {
  1108. if (flags & SWS_PRINT_INFO)
  1109. av_log(c, AV_LOG_INFO,
  1110. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1111. }
  1112. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1113. c->canMMXEXTBeUsed = 0;
  1114. } else
  1115. c->canMMXEXTBeUsed = 0;
  1116. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1117. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1118. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1119. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1120. * correct scaling.
  1121. * n-2 is the last chrominance sample available.
  1122. * This is not perfect, but no one should notice the difference, the more
  1123. * correct variant would be like the vertical one, but that would require
  1124. * some special code for the first and last pixel */
  1125. if (flags & SWS_FAST_BILINEAR) {
  1126. if (c->canMMXEXTBeUsed) {
  1127. c->lumXInc += 20;
  1128. c->chrXInc += 20;
  1129. }
  1130. // we don't use the x86 asm scaler if MMX is available
  1131. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1132. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1133. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1134. }
  1135. }
  1136. // hardcoded for now
  1137. c->gamma_value = 2.2;
  1138. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1139. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1140. SwsContext *c2;
  1141. c->cascaded_context[0] = NULL;
  1142. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1143. srcW, srcH, tmpFmt, 64);
  1144. if (ret < 0)
  1145. return ret;
  1146. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1147. srcW, srcH, tmpFmt,
  1148. flags, NULL, NULL, c->param);
  1149. if (!c->cascaded_context[0]) {
  1150. return -1;
  1151. }
  1152. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1153. dstW, dstH, tmpFmt,
  1154. flags, srcFilter, dstFilter, c->param);
  1155. if (!c->cascaded_context[1])
  1156. return -1;
  1157. c2 = c->cascaded_context[1];
  1158. c2->is_internal_gamma = 1;
  1159. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1160. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1161. if (!c2->gamma || !c2->inv_gamma)
  1162. return AVERROR(ENOMEM);
  1163. c->cascaded_context[2] = NULL;
  1164. if (dstFormat != tmpFmt) {
  1165. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1166. dstW, dstH, tmpFmt, 64);
  1167. if (ret < 0)
  1168. return ret;
  1169. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1170. dstW, dstH, dstFormat,
  1171. flags, NULL, NULL, c->param);
  1172. if (!c->cascaded_context[2])
  1173. return -1;
  1174. }
  1175. return 0;
  1176. }
  1177. if (isBayer(srcFormat)) {
  1178. if (!unscaled ||
  1179. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1180. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1181. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1182. srcW, srcH, tmpFormat, 64);
  1183. if (ret < 0)
  1184. return ret;
  1185. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1186. srcW, srcH, tmpFormat,
  1187. flags, srcFilter, NULL, c->param);
  1188. if (!c->cascaded_context[0])
  1189. return -1;
  1190. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1191. dstW, dstH, dstFormat,
  1192. flags, NULL, dstFilter, c->param);
  1193. if (!c->cascaded_context[1])
  1194. return -1;
  1195. return 0;
  1196. }
  1197. }
  1198. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1199. /* precalculate horizontal scaler filter coefficients */
  1200. {
  1201. #if HAVE_MMXEXT_INLINE
  1202. // can't downscale !!!
  1203. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1204. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1205. NULL, NULL, 8);
  1206. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1207. NULL, NULL, NULL, 4);
  1208. #if USE_MMAP
  1209. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1210. PROT_READ | PROT_WRITE,
  1211. MAP_PRIVATE | MAP_ANONYMOUS,
  1212. -1, 0);
  1213. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1214. PROT_READ | PROT_WRITE,
  1215. MAP_PRIVATE | MAP_ANONYMOUS,
  1216. -1, 0);
  1217. #elif HAVE_VIRTUALALLOC
  1218. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1219. c->lumMmxextFilterCodeSize,
  1220. MEM_COMMIT,
  1221. PAGE_EXECUTE_READWRITE);
  1222. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1223. c->chrMmxextFilterCodeSize,
  1224. MEM_COMMIT,
  1225. PAGE_EXECUTE_READWRITE);
  1226. #else
  1227. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1228. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1229. #endif
  1230. #ifdef MAP_ANONYMOUS
  1231. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1232. #else
  1233. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1234. #endif
  1235. {
  1236. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1237. return AVERROR(ENOMEM);
  1238. }
  1239. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1240. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1241. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1242. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1243. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1244. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1245. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1246. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1247. #if USE_MMAP
  1248. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1249. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1250. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1251. goto fail;
  1252. }
  1253. #endif
  1254. } else
  1255. #endif /* HAVE_MMXEXT_INLINE */
  1256. {
  1257. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1258. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1259. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1260. &c->hLumFilterSize, c->lumXInc,
  1261. srcW, dstW, filterAlign, 1 << 14,
  1262. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1263. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1264. c->param,
  1265. get_local_pos(c, 0, 0, 0),
  1266. get_local_pos(c, 0, 0, 0))) < 0)
  1267. goto fail;
  1268. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1269. &c->hChrFilterSize, c->chrXInc,
  1270. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1271. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1272. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1273. c->param,
  1274. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1275. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1276. goto fail;
  1277. }
  1278. } // initialize horizontal stuff
  1279. /* precalculate vertical scaler filter coefficients */
  1280. {
  1281. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1282. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1283. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1284. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1285. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1286. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1287. c->param,
  1288. get_local_pos(c, 0, 0, 1),
  1289. get_local_pos(c, 0, 0, 1))) < 0)
  1290. goto fail;
  1291. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1292. c->chrYInc, c->chrSrcH, c->chrDstH,
  1293. filterAlign, (1 << 12),
  1294. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1295. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1296. c->param,
  1297. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1298. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1299. goto fail;
  1300. #if HAVE_ALTIVEC
  1301. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1302. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1303. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1304. int j;
  1305. short *p = (short *)&c->vYCoeffsBank[i];
  1306. for (j = 0; j < 8; j++)
  1307. p[j] = c->vLumFilter[i];
  1308. }
  1309. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1310. int j;
  1311. short *p = (short *)&c->vCCoeffsBank[i];
  1312. for (j = 0; j < 8; j++)
  1313. p[j] = c->vChrFilter[i];
  1314. }
  1315. #endif
  1316. }
  1317. // calculate buffer sizes so that they won't run out while handling these damn slices
  1318. c->vLumBufSize = c->vLumFilterSize;
  1319. c->vChrBufSize = c->vChrFilterSize;
  1320. for (i = 0; i < dstH; i++) {
  1321. int chrI = (int64_t)i * c->chrDstH / dstH;
  1322. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1323. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1324. << c->chrSrcVSubSample));
  1325. nextSlice >>= c->chrSrcVSubSample;
  1326. nextSlice <<= c->chrSrcVSubSample;
  1327. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1328. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1329. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1330. (nextSlice >> c->chrSrcVSubSample))
  1331. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1332. c->vChrFilterPos[chrI];
  1333. }
  1334. for (i = 0; i < 4; i++)
  1335. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1336. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1337. * need to allocate several megabytes to handle all possible cases) */
  1338. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1339. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1340. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1341. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1342. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1343. /* Note we need at least one pixel more at the end because of the MMX code
  1344. * (just in case someone wants to replace the 4000/8000). */
  1345. /* align at 16 bytes for AltiVec */
  1346. for (i = 0; i < c->vLumBufSize; i++) {
  1347. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1348. dst_stride + 16, fail);
  1349. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1350. }
  1351. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1352. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1353. c->uv_offx2 = dst_stride + 16;
  1354. for (i = 0; i < c->vChrBufSize; i++) {
  1355. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1356. dst_stride * 2 + 32, fail);
  1357. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1358. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1359. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1360. }
  1361. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1362. for (i = 0; i < c->vLumBufSize; i++) {
  1363. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1364. dst_stride + 16, fail);
  1365. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1366. }
  1367. // try to avoid drawing green stuff between the right end and the stride end
  1368. for (i = 0; i < c->vChrBufSize; i++)
  1369. if(desc_dst->comp[0].depth_minus1 == 15){
  1370. av_assert0(c->dstBpc > 14);
  1371. for(j=0; j<dst_stride/2+1; j++)
  1372. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1373. } else
  1374. for(j=0; j<dst_stride+1; j++)
  1375. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1376. av_assert0(c->chrDstH <= dstH);
  1377. if (flags & SWS_PRINT_INFO) {
  1378. const char *scaler = NULL, *cpucaps;
  1379. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1380. if (flags & scale_algorithms[i].flag) {
  1381. scaler = scale_algorithms[i].description;
  1382. break;
  1383. }
  1384. }
  1385. if (!scaler)
  1386. scaler = "ehh flags invalid?!";
  1387. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1388. scaler,
  1389. av_get_pix_fmt_name(srcFormat),
  1390. #ifdef DITHER1XBPP
  1391. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1392. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1393. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1394. "dithered " : "",
  1395. #else
  1396. "",
  1397. #endif
  1398. av_get_pix_fmt_name(dstFormat));
  1399. if (INLINE_MMXEXT(cpu_flags))
  1400. cpucaps = "MMXEXT";
  1401. else if (INLINE_AMD3DNOW(cpu_flags))
  1402. cpucaps = "3DNOW";
  1403. else if (INLINE_MMX(cpu_flags))
  1404. cpucaps = "MMX";
  1405. else if (PPC_ALTIVEC(cpu_flags))
  1406. cpucaps = "AltiVec";
  1407. else
  1408. cpucaps = "C";
  1409. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1410. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1411. av_log(c, AV_LOG_DEBUG,
  1412. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1413. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1414. av_log(c, AV_LOG_DEBUG,
  1415. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1416. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1417. c->chrXInc, c->chrYInc);
  1418. }
  1419. /* unscaled special cases */
  1420. if (unscaled && !usesHFilter && !usesVFilter &&
  1421. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1422. ff_get_unscaled_swscale(c);
  1423. if (c->swscale) {
  1424. if (flags & SWS_PRINT_INFO)
  1425. av_log(c, AV_LOG_INFO,
  1426. "using unscaled %s -> %s special converter\n",
  1427. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1428. return 0;
  1429. }
  1430. }
  1431. c->swscale = ff_getSwsFunc(c);
  1432. return 0;
  1433. fail: // FIXME replace things by appropriate error codes
  1434. if (ret == RETCODE_USE_CASCADE) {
  1435. int tmpW = sqrt(srcW * (int64_t)dstW);
  1436. int tmpH = sqrt(srcH * (int64_t)dstH);
  1437. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1438. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1439. return AVERROR(EINVAL);
  1440. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1441. tmpW, tmpH, tmpFormat, 64);
  1442. if (ret < 0)
  1443. return ret;
  1444. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1445. tmpW, tmpH, tmpFormat,
  1446. flags, srcFilter, NULL, c->param);
  1447. if (!c->cascaded_context[0])
  1448. return -1;
  1449. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1450. dstW, dstH, dstFormat,
  1451. flags, NULL, dstFilter, c->param);
  1452. if (!c->cascaded_context[1])
  1453. return -1;
  1454. return 0;
  1455. }
  1456. return -1;
  1457. }
  1458. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1459. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1460. int flags, SwsFilter *srcFilter,
  1461. SwsFilter *dstFilter, const double *param)
  1462. {
  1463. SwsContext *c;
  1464. if (!(c = sws_alloc_context()))
  1465. return NULL;
  1466. c->flags = flags;
  1467. c->srcW = srcW;
  1468. c->srcH = srcH;
  1469. c->dstW = dstW;
  1470. c->dstH = dstH;
  1471. c->srcFormat = srcFormat;
  1472. c->dstFormat = dstFormat;
  1473. if (param) {
  1474. c->param[0] = param[0];
  1475. c->param[1] = param[1];
  1476. }
  1477. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1478. sws_freeContext(c);
  1479. return NULL;
  1480. }
  1481. return c;
  1482. }
  1483. static int isnan_vec(SwsVector *a)
  1484. {
  1485. int i;
  1486. for (i=0; i<a->length; i++)
  1487. if (isnan(a->coeff[i]))
  1488. return 1;
  1489. return 0;
  1490. }
  1491. static void makenan_vec(SwsVector *a)
  1492. {
  1493. int i;
  1494. for (i=0; i<a->length; i++)
  1495. a->coeff[i] = NAN;
  1496. }
  1497. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1498. float lumaSharpen, float chromaSharpen,
  1499. float chromaHShift, float chromaVShift,
  1500. int verbose)
  1501. {
  1502. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1503. if (!filter)
  1504. return NULL;
  1505. if (lumaGBlur != 0.0) {
  1506. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1507. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1508. } else {
  1509. filter->lumH = sws_getIdentityVec();
  1510. filter->lumV = sws_getIdentityVec();
  1511. }
  1512. if (chromaGBlur != 0.0) {
  1513. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1514. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1515. } else {
  1516. filter->chrH = sws_getIdentityVec();
  1517. filter->chrV = sws_getIdentityVec();
  1518. }
  1519. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1520. goto fail;
  1521. if (chromaSharpen != 0.0) {
  1522. SwsVector *id = sws_getIdentityVec();
  1523. if (!id)
  1524. goto fail;
  1525. sws_scaleVec(filter->chrH, -chromaSharpen);
  1526. sws_scaleVec(filter->chrV, -chromaSharpen);
  1527. sws_addVec(filter->chrH, id);
  1528. sws_addVec(filter->chrV, id);
  1529. sws_freeVec(id);
  1530. }
  1531. if (lumaSharpen != 0.0) {
  1532. SwsVector *id = sws_getIdentityVec();
  1533. if (!id)
  1534. goto fail;
  1535. sws_scaleVec(filter->lumH, -lumaSharpen);
  1536. sws_scaleVec(filter->lumV, -lumaSharpen);
  1537. sws_addVec(filter->lumH, id);
  1538. sws_addVec(filter->lumV, id);
  1539. sws_freeVec(id);
  1540. }
  1541. if (chromaHShift != 0.0)
  1542. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1543. if (chromaVShift != 0.0)
  1544. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1545. sws_normalizeVec(filter->chrH, 1.0);
  1546. sws_normalizeVec(filter->chrV, 1.0);
  1547. sws_normalizeVec(filter->lumH, 1.0);
  1548. sws_normalizeVec(filter->lumV, 1.0);
  1549. if (isnan_vec(filter->chrH) ||
  1550. isnan_vec(filter->chrV) ||
  1551. isnan_vec(filter->lumH) ||
  1552. isnan_vec(filter->lumV))
  1553. goto fail;
  1554. if (verbose)
  1555. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1556. if (verbose)
  1557. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1558. return filter;
  1559. fail:
  1560. sws_freeVec(filter->lumH);
  1561. sws_freeVec(filter->lumV);
  1562. sws_freeVec(filter->chrH);
  1563. sws_freeVec(filter->chrV);
  1564. av_freep(&filter);
  1565. return NULL;
  1566. }
  1567. SwsVector *sws_allocVec(int length)
  1568. {
  1569. SwsVector *vec;
  1570. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1571. return NULL;
  1572. vec = av_malloc(sizeof(SwsVector));
  1573. if (!vec)
  1574. return NULL;
  1575. vec->length = length;
  1576. vec->coeff = av_malloc(sizeof(double) * length);
  1577. if (!vec->coeff)
  1578. av_freep(&vec);
  1579. return vec;
  1580. }
  1581. SwsVector *sws_getGaussianVec(double variance, double quality)
  1582. {
  1583. const int length = (int)(variance * quality + 0.5) | 1;
  1584. int i;
  1585. double middle = (length - 1) * 0.5;
  1586. SwsVector *vec;
  1587. if(variance < 0 || quality < 0)
  1588. return NULL;
  1589. vec = sws_allocVec(length);
  1590. if (!vec)
  1591. return NULL;
  1592. for (i = 0; i < length; i++) {
  1593. double dist = i - middle;
  1594. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1595. sqrt(2 * variance * M_PI);
  1596. }
  1597. sws_normalizeVec(vec, 1.0);
  1598. return vec;
  1599. }
  1600. SwsVector *sws_getConstVec(double c, int length)
  1601. {
  1602. int i;
  1603. SwsVector *vec = sws_allocVec(length);
  1604. if (!vec)
  1605. return NULL;
  1606. for (i = 0; i < length; i++)
  1607. vec->coeff[i] = c;
  1608. return vec;
  1609. }
  1610. SwsVector *sws_getIdentityVec(void)
  1611. {
  1612. return sws_getConstVec(1.0, 1);
  1613. }
  1614. static double sws_dcVec(SwsVector *a)
  1615. {
  1616. int i;
  1617. double sum = 0;
  1618. for (i = 0; i < a->length; i++)
  1619. sum += a->coeff[i];
  1620. return sum;
  1621. }
  1622. void sws_scaleVec(SwsVector *a, double scalar)
  1623. {
  1624. int i;
  1625. for (i = 0; i < a->length; i++)
  1626. a->coeff[i] *= scalar;
  1627. }
  1628. void sws_normalizeVec(SwsVector *a, double height)
  1629. {
  1630. sws_scaleVec(a, height / sws_dcVec(a));
  1631. }
  1632. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1633. {
  1634. int length = a->length + b->length - 1;
  1635. int i, j;
  1636. SwsVector *vec = sws_getConstVec(0.0, length);
  1637. if (!vec)
  1638. return NULL;
  1639. for (i = 0; i < a->length; i++) {
  1640. for (j = 0; j < b->length; j++) {
  1641. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1642. }
  1643. }
  1644. return vec;
  1645. }
  1646. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1647. {
  1648. int length = FFMAX(a->length, b->length);
  1649. int i;
  1650. SwsVector *vec = sws_getConstVec(0.0, length);
  1651. if (!vec)
  1652. return NULL;
  1653. for (i = 0; i < a->length; i++)
  1654. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1655. for (i = 0; i < b->length; i++)
  1656. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1657. return vec;
  1658. }
  1659. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1660. {
  1661. int length = FFMAX(a->length, b->length);
  1662. int i;
  1663. SwsVector *vec = sws_getConstVec(0.0, length);
  1664. if (!vec)
  1665. return NULL;
  1666. for (i = 0; i < a->length; i++)
  1667. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1668. for (i = 0; i < b->length; i++)
  1669. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1670. return vec;
  1671. }
  1672. /* shift left / or right if "shift" is negative */
  1673. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1674. {
  1675. int length = a->length + FFABS(shift) * 2;
  1676. int i;
  1677. SwsVector *vec = sws_getConstVec(0.0, length);
  1678. if (!vec)
  1679. return NULL;
  1680. for (i = 0; i < a->length; i++) {
  1681. vec->coeff[i + (length - 1) / 2 -
  1682. (a->length - 1) / 2 - shift] = a->coeff[i];
  1683. }
  1684. return vec;
  1685. }
  1686. void sws_shiftVec(SwsVector *a, int shift)
  1687. {
  1688. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1689. if (!shifted) {
  1690. makenan_vec(a);
  1691. return;
  1692. }
  1693. av_free(a->coeff);
  1694. a->coeff = shifted->coeff;
  1695. a->length = shifted->length;
  1696. av_free(shifted);
  1697. }
  1698. void sws_addVec(SwsVector *a, SwsVector *b)
  1699. {
  1700. SwsVector *sum = sws_sumVec(a, b);
  1701. if (!sum) {
  1702. makenan_vec(a);
  1703. return;
  1704. }
  1705. av_free(a->coeff);
  1706. a->coeff = sum->coeff;
  1707. a->length = sum->length;
  1708. av_free(sum);
  1709. }
  1710. void sws_subVec(SwsVector *a, SwsVector *b)
  1711. {
  1712. SwsVector *diff = sws_diffVec(a, b);
  1713. if (!diff) {
  1714. makenan_vec(a);
  1715. return;
  1716. }
  1717. av_free(a->coeff);
  1718. a->coeff = diff->coeff;
  1719. a->length = diff->length;
  1720. av_free(diff);
  1721. }
  1722. void sws_convVec(SwsVector *a, SwsVector *b)
  1723. {
  1724. SwsVector *conv = sws_getConvVec(a, b);
  1725. if (!conv) {
  1726. makenan_vec(a);
  1727. return;
  1728. }
  1729. av_free(a->coeff);
  1730. a->coeff = conv->coeff;
  1731. a->length = conv->length;
  1732. av_free(conv);
  1733. }
  1734. SwsVector *sws_cloneVec(SwsVector *a)
  1735. {
  1736. SwsVector *vec = sws_allocVec(a->length);
  1737. if (!vec)
  1738. return NULL;
  1739. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1740. return vec;
  1741. }
  1742. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1743. {
  1744. int i;
  1745. double max = 0;
  1746. double min = 0;
  1747. double range;
  1748. for (i = 0; i < a->length; i++)
  1749. if (a->coeff[i] > max)
  1750. max = a->coeff[i];
  1751. for (i = 0; i < a->length; i++)
  1752. if (a->coeff[i] < min)
  1753. min = a->coeff[i];
  1754. range = max - min;
  1755. for (i = 0; i < a->length; i++) {
  1756. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1757. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1758. for (; x > 0; x--)
  1759. av_log(log_ctx, log_level, " ");
  1760. av_log(log_ctx, log_level, "|\n");
  1761. }
  1762. }
  1763. void sws_freeVec(SwsVector *a)
  1764. {
  1765. if (!a)
  1766. return;
  1767. av_freep(&a->coeff);
  1768. a->length = 0;
  1769. av_free(a);
  1770. }
  1771. void sws_freeFilter(SwsFilter *filter)
  1772. {
  1773. if (!filter)
  1774. return;
  1775. sws_freeVec(filter->lumH);
  1776. sws_freeVec(filter->lumV);
  1777. sws_freeVec(filter->chrH);
  1778. sws_freeVec(filter->chrV);
  1779. av_free(filter);
  1780. }
  1781. void sws_freeContext(SwsContext *c)
  1782. {
  1783. int i;
  1784. if (!c)
  1785. return;
  1786. if (c->lumPixBuf) {
  1787. for (i = 0; i < c->vLumBufSize; i++)
  1788. av_freep(&c->lumPixBuf[i]);
  1789. av_freep(&c->lumPixBuf);
  1790. }
  1791. if (c->chrUPixBuf) {
  1792. for (i = 0; i < c->vChrBufSize; i++)
  1793. av_freep(&c->chrUPixBuf[i]);
  1794. av_freep(&c->chrUPixBuf);
  1795. av_freep(&c->chrVPixBuf);
  1796. }
  1797. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1798. for (i = 0; i < c->vLumBufSize; i++)
  1799. av_freep(&c->alpPixBuf[i]);
  1800. av_freep(&c->alpPixBuf);
  1801. }
  1802. for (i = 0; i < 4; i++)
  1803. av_freep(&c->dither_error[i]);
  1804. av_freep(&c->vLumFilter);
  1805. av_freep(&c->vChrFilter);
  1806. av_freep(&c->hLumFilter);
  1807. av_freep(&c->hChrFilter);
  1808. #if HAVE_ALTIVEC
  1809. av_freep(&c->vYCoeffsBank);
  1810. av_freep(&c->vCCoeffsBank);
  1811. #endif
  1812. av_freep(&c->vLumFilterPos);
  1813. av_freep(&c->vChrFilterPos);
  1814. av_freep(&c->hLumFilterPos);
  1815. av_freep(&c->hChrFilterPos);
  1816. #if HAVE_MMX_INLINE
  1817. #if USE_MMAP
  1818. if (c->lumMmxextFilterCode)
  1819. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1820. if (c->chrMmxextFilterCode)
  1821. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1822. #elif HAVE_VIRTUALALLOC
  1823. if (c->lumMmxextFilterCode)
  1824. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1825. if (c->chrMmxextFilterCode)
  1826. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1827. #else
  1828. av_free(c->lumMmxextFilterCode);
  1829. av_free(c->chrMmxextFilterCode);
  1830. #endif
  1831. c->lumMmxextFilterCode = NULL;
  1832. c->chrMmxextFilterCode = NULL;
  1833. #endif /* HAVE_MMX_INLINE */
  1834. av_freep(&c->yuvTable);
  1835. av_freep(&c->formatConvBuffer);
  1836. sws_freeContext(c->cascaded_context[0]);
  1837. sws_freeContext(c->cascaded_context[1]);
  1838. sws_freeContext(c->cascaded_context[2]);
  1839. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  1840. av_freep(&c->cascaded_tmp[0]);
  1841. av_freep(&c->cascaded1_tmp[0]);
  1842. av_freep(&c->gamma);
  1843. av_freep(&c->inv_gamma);
  1844. av_free(c);
  1845. }
  1846. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1847. int srcH, enum AVPixelFormat srcFormat,
  1848. int dstW, int dstH,
  1849. enum AVPixelFormat dstFormat, int flags,
  1850. SwsFilter *srcFilter,
  1851. SwsFilter *dstFilter,
  1852. const double *param)
  1853. {
  1854. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1855. SWS_PARAM_DEFAULT };
  1856. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  1857. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  1858. if (!param)
  1859. param = default_param;
  1860. if (context &&
  1861. (context->srcW != srcW ||
  1862. context->srcH != srcH ||
  1863. context->srcFormat != srcFormat ||
  1864. context->dstW != dstW ||
  1865. context->dstH != dstH ||
  1866. context->dstFormat != dstFormat ||
  1867. context->flags != flags ||
  1868. context->param[0] != param[0] ||
  1869. context->param[1] != param[1])) {
  1870. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  1871. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  1872. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  1873. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  1874. sws_freeContext(context);
  1875. context = NULL;
  1876. }
  1877. if (!context) {
  1878. if (!(context = sws_alloc_context()))
  1879. return NULL;
  1880. context->srcW = srcW;
  1881. context->srcH = srcH;
  1882. context->srcFormat = srcFormat;
  1883. context->dstW = dstW;
  1884. context->dstH = dstH;
  1885. context->dstFormat = dstFormat;
  1886. context->flags = flags;
  1887. context->param[0] = param[0];
  1888. context->param[1] = param[1];
  1889. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  1890. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  1891. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  1892. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  1893. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1894. sws_freeContext(context);
  1895. return NULL;
  1896. }
  1897. }
  1898. return context;
  1899. }