You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2692 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "mpegaudio.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. #define USE_HIGHPRECISION
  36. #endif
  37. #ifdef USE_HIGHPRECISION
  38. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  39. #define WFRAC_BITS 16 /* fractional bits for window */
  40. #else
  41. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  42. #define WFRAC_BITS 14 /* fractional bits for window */
  43. #endif
  44. #define FRAC_ONE (1 << FRAC_BITS)
  45. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  46. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  47. #define FIX(a) ((int)((a) * FRAC_ONE))
  48. /* WARNING: only correct for posititive numbers */
  49. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  50. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  51. #if FRAC_BITS <= 15
  52. typedef int16_t MPA_INT;
  53. #else
  54. typedef int32_t MPA_INT;
  55. #endif
  56. /****************/
  57. #define HEADER_SIZE 4
  58. #define BACKSTEP_SIZE 512
  59. struct GranuleDef;
  60. typedef struct MPADecodeContext {
  61. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  62. int inbuf_index;
  63. uint8_t *inbuf_ptr, *inbuf;
  64. int frame_size;
  65. int free_format_frame_size; /* frame size in case of free format
  66. (zero if currently unknown) */
  67. /* next header (used in free format parsing) */
  68. uint32_t free_format_next_header;
  69. int error_protection;
  70. int layer;
  71. int sample_rate;
  72. int sample_rate_index; /* between 0 and 8 */
  73. int bit_rate;
  74. int old_frame_size;
  75. GetBitContext gb;
  76. int nb_channels;
  77. int mode;
  78. int mode_ext;
  79. int lsf;
  80. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  81. int synth_buf_offset[MPA_MAX_CHANNELS];
  82. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  83. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  84. #ifdef DEBUG
  85. int frame_count;
  86. #endif
  87. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  88. } MPADecodeContext;
  89. /* layer 3 "granule" */
  90. typedef struct GranuleDef {
  91. uint8_t scfsi;
  92. int part2_3_length;
  93. int big_values;
  94. int global_gain;
  95. int scalefac_compress;
  96. uint8_t block_type;
  97. uint8_t switch_point;
  98. int table_select[3];
  99. int subblock_gain[3];
  100. uint8_t scalefac_scale;
  101. uint8_t count1table_select;
  102. int region_size[3]; /* number of huffman codes in each region */
  103. int preflag;
  104. int short_start, long_end; /* long/short band indexes */
  105. uint8_t scale_factors[40];
  106. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  107. } GranuleDef;
  108. #define MODE_EXT_MS_STEREO 2
  109. #define MODE_EXT_I_STEREO 1
  110. /* layer 3 huffman tables */
  111. typedef struct HuffTable {
  112. int xsize;
  113. const uint8_t *bits;
  114. const uint16_t *codes;
  115. } HuffTable;
  116. #include "mpegaudiodectab.h"
  117. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  118. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  119. /* vlc structure for decoding layer 3 huffman tables */
  120. static VLC huff_vlc[16];
  121. static uint8_t *huff_code_table[16];
  122. static VLC huff_quad_vlc[2];
  123. /* computed from band_size_long */
  124. static uint16_t band_index_long[9][23];
  125. /* XXX: free when all decoders are closed */
  126. #define TABLE_4_3_SIZE (8191 + 16)
  127. static int8_t *table_4_3_exp;
  128. #if FRAC_BITS <= 15
  129. static uint16_t *table_4_3_value;
  130. #else
  131. static uint32_t *table_4_3_value;
  132. #endif
  133. /* intensity stereo coef table */
  134. static int32_t is_table[2][16];
  135. static int32_t is_table_lsf[2][2][16];
  136. static int32_t csa_table[8][4];
  137. static float csa_table_float[8][4];
  138. static int32_t mdct_win[8][36];
  139. /* lower 2 bits: modulo 3, higher bits: shift */
  140. static uint16_t scale_factor_modshift[64];
  141. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  142. static int32_t scale_factor_mult[15][3];
  143. /* mult table for layer 2 group quantization */
  144. #define SCALE_GEN(v) \
  145. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  146. static int32_t scale_factor_mult2[3][3] = {
  147. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  148. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  149. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  150. };
  151. /* 2^(n/4) */
  152. static uint32_t scale_factor_mult3[4] = {
  153. FIXR(1.0),
  154. FIXR(1.18920711500272106671),
  155. FIXR(1.41421356237309504880),
  156. FIXR(1.68179283050742908605),
  157. };
  158. static MPA_INT window[512] __attribute__((aligned(16)));
  159. /* layer 1 unscaling */
  160. /* n = number of bits of the mantissa minus 1 */
  161. static inline int l1_unscale(int n, int mant, int scale_factor)
  162. {
  163. int shift, mod;
  164. int64_t val;
  165. shift = scale_factor_modshift[scale_factor];
  166. mod = shift & 3;
  167. shift >>= 2;
  168. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  169. shift += n;
  170. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  171. return (int)((val + (1LL << (shift - 1))) >> shift);
  172. }
  173. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  174. {
  175. int shift, mod, val;
  176. shift = scale_factor_modshift[scale_factor];
  177. mod = shift & 3;
  178. shift >>= 2;
  179. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  180. /* NOTE: at this point, 0 <= shift <= 21 */
  181. if (shift > 0)
  182. val = (val + (1 << (shift - 1))) >> shift;
  183. return val;
  184. }
  185. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  186. static inline int l3_unscale(int value, int exponent)
  187. {
  188. #if FRAC_BITS <= 15
  189. unsigned int m;
  190. #else
  191. uint64_t m;
  192. #endif
  193. int e;
  194. e = table_4_3_exp[value];
  195. e += (exponent >> 2);
  196. e = FRAC_BITS - e;
  197. #if FRAC_BITS <= 15
  198. if (e > 31)
  199. e = 31;
  200. #endif
  201. m = table_4_3_value[value];
  202. #if FRAC_BITS <= 15
  203. m = (m * scale_factor_mult3[exponent & 3]);
  204. m = (m + (1 << (e-1))) >> e;
  205. return m;
  206. #else
  207. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  208. m = (m + (uint64_t_C(1) << (e-1))) >> e;
  209. return m;
  210. #endif
  211. }
  212. /* all integer n^(4/3) computation code */
  213. #define DEV_ORDER 13
  214. #define POW_FRAC_BITS 24
  215. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  216. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  217. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  218. static int dev_4_3_coefs[DEV_ORDER];
  219. static int pow_mult3[3] = {
  220. POW_FIX(1.0),
  221. POW_FIX(1.25992104989487316476),
  222. POW_FIX(1.58740105196819947474),
  223. };
  224. static void int_pow_init(void)
  225. {
  226. int i, a;
  227. a = POW_FIX(1.0);
  228. for(i=0;i<DEV_ORDER;i++) {
  229. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  230. dev_4_3_coefs[i] = a;
  231. }
  232. }
  233. /* return the mantissa and the binary exponent */
  234. static int int_pow(int i, int *exp_ptr)
  235. {
  236. int e, er, eq, j;
  237. int a, a1;
  238. /* renormalize */
  239. a = i;
  240. e = POW_FRAC_BITS;
  241. while (a < (1 << (POW_FRAC_BITS - 1))) {
  242. a = a << 1;
  243. e--;
  244. }
  245. a -= (1 << POW_FRAC_BITS);
  246. a1 = 0;
  247. for(j = DEV_ORDER - 1; j >= 0; j--)
  248. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  249. a = (1 << POW_FRAC_BITS) + a1;
  250. /* exponent compute (exact) */
  251. e = e * 4;
  252. er = e % 3;
  253. eq = e / 3;
  254. a = POW_MULL(a, pow_mult3[er]);
  255. while (a >= 2 * POW_FRAC_ONE) {
  256. a = a >> 1;
  257. eq++;
  258. }
  259. /* convert to float */
  260. while (a < POW_FRAC_ONE) {
  261. a = a << 1;
  262. eq--;
  263. }
  264. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  265. #if POW_FRAC_BITS > FRAC_BITS
  266. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  267. /* correct overflow */
  268. if (a >= 2 * (1 << FRAC_BITS)) {
  269. a = a >> 1;
  270. eq++;
  271. }
  272. #endif
  273. *exp_ptr = eq;
  274. return a;
  275. }
  276. static int decode_init(AVCodecContext * avctx)
  277. {
  278. MPADecodeContext *s = avctx->priv_data;
  279. static int init=0;
  280. int i, j, k;
  281. if(avctx->antialias_algo == FF_AA_INT)
  282. s->compute_antialias= compute_antialias_integer;
  283. else
  284. s->compute_antialias= compute_antialias_float;
  285. if (!init && !avctx->parse_only) {
  286. /* scale factors table for layer 1/2 */
  287. for(i=0;i<64;i++) {
  288. int shift, mod;
  289. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  290. shift = (i / 3);
  291. mod = i % 3;
  292. scale_factor_modshift[i] = mod | (shift << 2);
  293. }
  294. /* scale factor multiply for layer 1 */
  295. for(i=0;i<15;i++) {
  296. int n, norm;
  297. n = i + 2;
  298. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  299. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  300. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  301. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  302. dprintf("%d: norm=%x s=%x %x %x\n",
  303. i, norm,
  304. scale_factor_mult[i][0],
  305. scale_factor_mult[i][1],
  306. scale_factor_mult[i][2]);
  307. }
  308. /* window */
  309. /* max = 18760, max sum over all 16 coefs : 44736 */
  310. for(i=0;i<257;i++) {
  311. int v;
  312. v = mpa_enwindow[i];
  313. #if WFRAC_BITS < 16
  314. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  315. #endif
  316. window[i] = v;
  317. if ((i & 63) != 0)
  318. v = -v;
  319. if (i != 0)
  320. window[512 - i] = v;
  321. }
  322. /* huffman decode tables */
  323. huff_code_table[0] = NULL;
  324. for(i=1;i<16;i++) {
  325. const HuffTable *h = &mpa_huff_tables[i];
  326. int xsize, x, y;
  327. unsigned int n;
  328. uint8_t *code_table;
  329. xsize = h->xsize;
  330. n = xsize * xsize;
  331. /* XXX: fail test */
  332. init_vlc(&huff_vlc[i], 8, n,
  333. h->bits, 1, 1, h->codes, 2, 2);
  334. code_table = av_mallocz(n);
  335. j = 0;
  336. for(x=0;x<xsize;x++) {
  337. for(y=0;y<xsize;y++)
  338. code_table[j++] = (x << 4) | y;
  339. }
  340. huff_code_table[i] = code_table;
  341. }
  342. for(i=0;i<2;i++) {
  343. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  344. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
  345. }
  346. for(i=0;i<9;i++) {
  347. k = 0;
  348. for(j=0;j<22;j++) {
  349. band_index_long[i][j] = k;
  350. k += band_size_long[i][j];
  351. }
  352. band_index_long[i][22] = k;
  353. }
  354. /* compute n ^ (4/3) and store it in mantissa/exp format */
  355. if (!av_mallocz_static(&table_4_3_exp,
  356. TABLE_4_3_SIZE * sizeof(table_4_3_exp[0])))
  357. return -1;
  358. if (!av_mallocz_static(&table_4_3_value,
  359. TABLE_4_3_SIZE * sizeof(table_4_3_value[0])))
  360. return -1;
  361. int_pow_init();
  362. for(i=1;i<TABLE_4_3_SIZE;i++) {
  363. int e, m;
  364. m = int_pow(i, &e);
  365. #if 0
  366. /* test code */
  367. {
  368. double f, fm;
  369. int e1, m1;
  370. f = pow((double)i, 4.0 / 3.0);
  371. fm = frexp(f, &e1);
  372. m1 = FIXR(2 * fm);
  373. #if FRAC_BITS <= 15
  374. if ((unsigned short)m1 != m1) {
  375. m1 = m1 >> 1;
  376. e1++;
  377. }
  378. #endif
  379. e1--;
  380. if (m != m1 || e != e1) {
  381. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  382. i, m, m1, e, e1);
  383. }
  384. }
  385. #endif
  386. /* normalized to FRAC_BITS */
  387. table_4_3_value[i] = m;
  388. table_4_3_exp[i] = e;
  389. }
  390. for(i=0;i<7;i++) {
  391. float f;
  392. int v;
  393. if (i != 6) {
  394. f = tan((double)i * M_PI / 12.0);
  395. v = FIXR(f / (1.0 + f));
  396. } else {
  397. v = FIXR(1.0);
  398. }
  399. is_table[0][i] = v;
  400. is_table[1][6 - i] = v;
  401. }
  402. /* invalid values */
  403. for(i=7;i<16;i++)
  404. is_table[0][i] = is_table[1][i] = 0.0;
  405. for(i=0;i<16;i++) {
  406. double f;
  407. int e, k;
  408. for(j=0;j<2;j++) {
  409. e = -(j + 1) * ((i + 1) >> 1);
  410. f = pow(2.0, e / 4.0);
  411. k = i & 1;
  412. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  413. is_table_lsf[j][k][i] = FIXR(1.0);
  414. dprintf("is_table_lsf %d %d: %x %x\n",
  415. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  416. }
  417. }
  418. for(i=0;i<8;i++) {
  419. float ci, cs, ca;
  420. ci = ci_table[i];
  421. cs = 1.0 / sqrt(1.0 + ci * ci);
  422. ca = cs * ci;
  423. csa_table[i][0] = FIX(cs);
  424. csa_table[i][1] = FIX(ca);
  425. csa_table[i][2] = FIX(ca) + FIX(cs);
  426. csa_table[i][3] = FIX(ca) - FIX(cs);
  427. csa_table_float[i][0] = cs;
  428. csa_table_float[i][1] = ca;
  429. csa_table_float[i][2] = ca + cs;
  430. csa_table_float[i][3] = ca - cs;
  431. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  432. }
  433. /* compute mdct windows */
  434. for(i=0;i<36;i++) {
  435. int v;
  436. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  437. mdct_win[0][i] = v;
  438. mdct_win[1][i] = v;
  439. mdct_win[3][i] = v;
  440. }
  441. for(i=0;i<6;i++) {
  442. mdct_win[1][18 + i] = FIXR(1.0);
  443. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  444. mdct_win[1][30 + i] = FIXR(0.0);
  445. mdct_win[3][i] = FIXR(0.0);
  446. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  447. mdct_win[3][12 + i] = FIXR(1.0);
  448. }
  449. for(i=0;i<12;i++)
  450. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  451. /* NOTE: we do frequency inversion adter the MDCT by changing
  452. the sign of the right window coefs */
  453. for(j=0;j<4;j++) {
  454. for(i=0;i<36;i+=2) {
  455. mdct_win[j + 4][i] = mdct_win[j][i];
  456. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  457. }
  458. }
  459. #if defined(DEBUG)
  460. for(j=0;j<8;j++) {
  461. printf("win%d=\n", j);
  462. for(i=0;i<36;i++)
  463. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  464. printf("\n");
  465. }
  466. #endif
  467. init = 1;
  468. }
  469. s->inbuf_index = 0;
  470. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  471. s->inbuf_ptr = s->inbuf;
  472. #ifdef DEBUG
  473. s->frame_count = 0;
  474. #endif
  475. return 0;
  476. }
  477. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  478. /* cos(i*pi/64) */
  479. #define COS0_0 FIXR(0.50060299823519630134)
  480. #define COS0_1 FIXR(0.50547095989754365998)
  481. #define COS0_2 FIXR(0.51544730992262454697)
  482. #define COS0_3 FIXR(0.53104259108978417447)
  483. #define COS0_4 FIXR(0.55310389603444452782)
  484. #define COS0_5 FIXR(0.58293496820613387367)
  485. #define COS0_6 FIXR(0.62250412303566481615)
  486. #define COS0_7 FIXR(0.67480834145500574602)
  487. #define COS0_8 FIXR(0.74453627100229844977)
  488. #define COS0_9 FIXR(0.83934964541552703873)
  489. #define COS0_10 FIXR(0.97256823786196069369)
  490. #define COS0_11 FIXR(1.16943993343288495515)
  491. #define COS0_12 FIXR(1.48416461631416627724)
  492. #define COS0_13 FIXR(2.05778100995341155085)
  493. #define COS0_14 FIXR(3.40760841846871878570)
  494. #define COS0_15 FIXR(10.19000812354805681150)
  495. #define COS1_0 FIXR(0.50241928618815570551)
  496. #define COS1_1 FIXR(0.52249861493968888062)
  497. #define COS1_2 FIXR(0.56694403481635770368)
  498. #define COS1_3 FIXR(0.64682178335999012954)
  499. #define COS1_4 FIXR(0.78815462345125022473)
  500. #define COS1_5 FIXR(1.06067768599034747134)
  501. #define COS1_6 FIXR(1.72244709823833392782)
  502. #define COS1_7 FIXR(5.10114861868916385802)
  503. #define COS2_0 FIXR(0.50979557910415916894)
  504. #define COS2_1 FIXR(0.60134488693504528054)
  505. #define COS2_2 FIXR(0.89997622313641570463)
  506. #define COS2_3 FIXR(2.56291544774150617881)
  507. #define COS3_0 FIXR(0.54119610014619698439)
  508. #define COS3_1 FIXR(1.30656296487637652785)
  509. #define COS4_0 FIXR(0.70710678118654752439)
  510. /* butterfly operator */
  511. #define BF(a, b, c)\
  512. {\
  513. tmp0 = tab[a] + tab[b];\
  514. tmp1 = tab[a] - tab[b];\
  515. tab[a] = tmp0;\
  516. tab[b] = MULL(tmp1, c);\
  517. }
  518. #define BF1(a, b, c, d)\
  519. {\
  520. BF(a, b, COS4_0);\
  521. BF(c, d, -COS4_0);\
  522. tab[c] += tab[d];\
  523. }
  524. #define BF2(a, b, c, d)\
  525. {\
  526. BF(a, b, COS4_0);\
  527. BF(c, d, -COS4_0);\
  528. tab[c] += tab[d];\
  529. tab[a] += tab[c];\
  530. tab[c] += tab[b];\
  531. tab[b] += tab[d];\
  532. }
  533. #define ADD(a, b) tab[a] += tab[b]
  534. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  535. static void dct32(int32_t *out, int32_t *tab)
  536. {
  537. int tmp0, tmp1;
  538. /* pass 1 */
  539. BF(0, 31, COS0_0);
  540. BF(1, 30, COS0_1);
  541. BF(2, 29, COS0_2);
  542. BF(3, 28, COS0_3);
  543. BF(4, 27, COS0_4);
  544. BF(5, 26, COS0_5);
  545. BF(6, 25, COS0_6);
  546. BF(7, 24, COS0_7);
  547. BF(8, 23, COS0_8);
  548. BF(9, 22, COS0_9);
  549. BF(10, 21, COS0_10);
  550. BF(11, 20, COS0_11);
  551. BF(12, 19, COS0_12);
  552. BF(13, 18, COS0_13);
  553. BF(14, 17, COS0_14);
  554. BF(15, 16, COS0_15);
  555. /* pass 2 */
  556. BF(0, 15, COS1_0);
  557. BF(1, 14, COS1_1);
  558. BF(2, 13, COS1_2);
  559. BF(3, 12, COS1_3);
  560. BF(4, 11, COS1_4);
  561. BF(5, 10, COS1_5);
  562. BF(6, 9, COS1_6);
  563. BF(7, 8, COS1_7);
  564. BF(16, 31, -COS1_0);
  565. BF(17, 30, -COS1_1);
  566. BF(18, 29, -COS1_2);
  567. BF(19, 28, -COS1_3);
  568. BF(20, 27, -COS1_4);
  569. BF(21, 26, -COS1_5);
  570. BF(22, 25, -COS1_6);
  571. BF(23, 24, -COS1_7);
  572. /* pass 3 */
  573. BF(0, 7, COS2_0);
  574. BF(1, 6, COS2_1);
  575. BF(2, 5, COS2_2);
  576. BF(3, 4, COS2_3);
  577. BF(8, 15, -COS2_0);
  578. BF(9, 14, -COS2_1);
  579. BF(10, 13, -COS2_2);
  580. BF(11, 12, -COS2_3);
  581. BF(16, 23, COS2_0);
  582. BF(17, 22, COS2_1);
  583. BF(18, 21, COS2_2);
  584. BF(19, 20, COS2_3);
  585. BF(24, 31, -COS2_0);
  586. BF(25, 30, -COS2_1);
  587. BF(26, 29, -COS2_2);
  588. BF(27, 28, -COS2_3);
  589. /* pass 4 */
  590. BF(0, 3, COS3_0);
  591. BF(1, 2, COS3_1);
  592. BF(4, 7, -COS3_0);
  593. BF(5, 6, -COS3_1);
  594. BF(8, 11, COS3_0);
  595. BF(9, 10, COS3_1);
  596. BF(12, 15, -COS3_0);
  597. BF(13, 14, -COS3_1);
  598. BF(16, 19, COS3_0);
  599. BF(17, 18, COS3_1);
  600. BF(20, 23, -COS3_0);
  601. BF(21, 22, -COS3_1);
  602. BF(24, 27, COS3_0);
  603. BF(25, 26, COS3_1);
  604. BF(28, 31, -COS3_0);
  605. BF(29, 30, -COS3_1);
  606. /* pass 5 */
  607. BF1(0, 1, 2, 3);
  608. BF2(4, 5, 6, 7);
  609. BF1(8, 9, 10, 11);
  610. BF2(12, 13, 14, 15);
  611. BF1(16, 17, 18, 19);
  612. BF2(20, 21, 22, 23);
  613. BF1(24, 25, 26, 27);
  614. BF2(28, 29, 30, 31);
  615. /* pass 6 */
  616. ADD( 8, 12);
  617. ADD(12, 10);
  618. ADD(10, 14);
  619. ADD(14, 9);
  620. ADD( 9, 13);
  621. ADD(13, 11);
  622. ADD(11, 15);
  623. out[ 0] = tab[0];
  624. out[16] = tab[1];
  625. out[ 8] = tab[2];
  626. out[24] = tab[3];
  627. out[ 4] = tab[4];
  628. out[20] = tab[5];
  629. out[12] = tab[6];
  630. out[28] = tab[7];
  631. out[ 2] = tab[8];
  632. out[18] = tab[9];
  633. out[10] = tab[10];
  634. out[26] = tab[11];
  635. out[ 6] = tab[12];
  636. out[22] = tab[13];
  637. out[14] = tab[14];
  638. out[30] = tab[15];
  639. ADD(24, 28);
  640. ADD(28, 26);
  641. ADD(26, 30);
  642. ADD(30, 25);
  643. ADD(25, 29);
  644. ADD(29, 27);
  645. ADD(27, 31);
  646. out[ 1] = tab[16] + tab[24];
  647. out[17] = tab[17] + tab[25];
  648. out[ 9] = tab[18] + tab[26];
  649. out[25] = tab[19] + tab[27];
  650. out[ 5] = tab[20] + tab[28];
  651. out[21] = tab[21] + tab[29];
  652. out[13] = tab[22] + tab[30];
  653. out[29] = tab[23] + tab[31];
  654. out[ 3] = tab[24] + tab[20];
  655. out[19] = tab[25] + tab[21];
  656. out[11] = tab[26] + tab[22];
  657. out[27] = tab[27] + tab[23];
  658. out[ 7] = tab[28] + tab[18];
  659. out[23] = tab[29] + tab[19];
  660. out[15] = tab[30] + tab[17];
  661. out[31] = tab[31];
  662. }
  663. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  664. #if FRAC_BITS <= 15
  665. static inline int round_sample(int sum)
  666. {
  667. int sum1;
  668. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;
  669. if (sum1 < -32768)
  670. sum1 = -32768;
  671. else if (sum1 > 32767)
  672. sum1 = 32767;
  673. return sum1;
  674. }
  675. #if defined(ARCH_POWERPC_405)
  676. /* signed 16x16 -> 32 multiply add accumulate */
  677. #define MACS(rt, ra, rb) \
  678. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  679. /* signed 16x16 -> 32 multiply */
  680. #define MULS(ra, rb) \
  681. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  682. #else
  683. /* signed 16x16 -> 32 multiply add accumulate */
  684. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  685. /* signed 16x16 -> 32 multiply */
  686. #define MULS(ra, rb) ((ra) * (rb))
  687. #endif
  688. #else
  689. static inline int round_sample(int64_t sum)
  690. {
  691. int sum1;
  692. sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);
  693. if (sum1 < -32768)
  694. sum1 = -32768;
  695. else if (sum1 > 32767)
  696. sum1 = 32767;
  697. return sum1;
  698. }
  699. #define MULS(ra, rb) MUL64(ra, rb)
  700. #endif
  701. #define SUM8(sum, op, w, p) \
  702. { \
  703. sum op MULS((w)[0 * 64], p[0 * 64]);\
  704. sum op MULS((w)[1 * 64], p[1 * 64]);\
  705. sum op MULS((w)[2 * 64], p[2 * 64]);\
  706. sum op MULS((w)[3 * 64], p[3 * 64]);\
  707. sum op MULS((w)[4 * 64], p[4 * 64]);\
  708. sum op MULS((w)[5 * 64], p[5 * 64]);\
  709. sum op MULS((w)[6 * 64], p[6 * 64]);\
  710. sum op MULS((w)[7 * 64], p[7 * 64]);\
  711. }
  712. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  713. { \
  714. int tmp;\
  715. tmp = p[0 * 64];\
  716. sum1 op1 MULS((w1)[0 * 64], tmp);\
  717. sum2 op2 MULS((w2)[0 * 64], tmp);\
  718. tmp = p[1 * 64];\
  719. sum1 op1 MULS((w1)[1 * 64], tmp);\
  720. sum2 op2 MULS((w2)[1 * 64], tmp);\
  721. tmp = p[2 * 64];\
  722. sum1 op1 MULS((w1)[2 * 64], tmp);\
  723. sum2 op2 MULS((w2)[2 * 64], tmp);\
  724. tmp = p[3 * 64];\
  725. sum1 op1 MULS((w1)[3 * 64], tmp);\
  726. sum2 op2 MULS((w2)[3 * 64], tmp);\
  727. tmp = p[4 * 64];\
  728. sum1 op1 MULS((w1)[4 * 64], tmp);\
  729. sum2 op2 MULS((w2)[4 * 64], tmp);\
  730. tmp = p[5 * 64];\
  731. sum1 op1 MULS((w1)[5 * 64], tmp);\
  732. sum2 op2 MULS((w2)[5 * 64], tmp);\
  733. tmp = p[6 * 64];\
  734. sum1 op1 MULS((w1)[6 * 64], tmp);\
  735. sum2 op2 MULS((w2)[6 * 64], tmp);\
  736. tmp = p[7 * 64];\
  737. sum1 op1 MULS((w1)[7 * 64], tmp);\
  738. sum2 op2 MULS((w2)[7 * 64], tmp);\
  739. }
  740. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  741. 32 samples. */
  742. /* XXX: optimize by avoiding ring buffer usage */
  743. static void synth_filter(MPADecodeContext *s1,
  744. int ch, int16_t *samples, int incr,
  745. int32_t sb_samples[SBLIMIT])
  746. {
  747. int32_t tmp[32];
  748. register MPA_INT *synth_buf;
  749. const register MPA_INT *w, *w2, *p;
  750. int j, offset, v;
  751. int16_t *samples2;
  752. #if FRAC_BITS <= 15
  753. int sum, sum2;
  754. #else
  755. int64_t sum, sum2;
  756. #endif
  757. dct32(tmp, sb_samples);
  758. offset = s1->synth_buf_offset[ch];
  759. synth_buf = s1->synth_buf[ch] + offset;
  760. for(j=0;j<32;j++) {
  761. v = tmp[j];
  762. #if FRAC_BITS <= 15
  763. /* NOTE: can cause a loss in precision if very high amplitude
  764. sound */
  765. if (v > 32767)
  766. v = 32767;
  767. else if (v < -32768)
  768. v = -32768;
  769. #endif
  770. synth_buf[j] = v;
  771. }
  772. /* copy to avoid wrap */
  773. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  774. samples2 = samples + 31 * incr;
  775. w = window;
  776. w2 = window + 31;
  777. sum = 0;
  778. p = synth_buf + 16;
  779. SUM8(sum, +=, w, p);
  780. p = synth_buf + 48;
  781. SUM8(sum, -=, w + 32, p);
  782. *samples = round_sample(sum);
  783. samples += incr;
  784. w++;
  785. /* we calculate two samples at the same time to avoid one memory
  786. access per two sample */
  787. for(j=1;j<16;j++) {
  788. sum = 0;
  789. sum2 = 0;
  790. p = synth_buf + 16 + j;
  791. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  792. p = synth_buf + 48 - j;
  793. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  794. *samples = round_sample(sum);
  795. samples += incr;
  796. *samples2 = round_sample(sum2);
  797. samples2 -= incr;
  798. w++;
  799. w2--;
  800. }
  801. p = synth_buf + 32;
  802. sum = 0;
  803. SUM8(sum, -=, w + 32, p);
  804. *samples = round_sample(sum);
  805. offset = (offset - 32) & 511;
  806. s1->synth_buf_offset[ch] = offset;
  807. }
  808. /* cos(pi*i/24) */
  809. #define C1 FIXR(0.99144486137381041114)
  810. #define C3 FIXR(0.92387953251128675612)
  811. #define C5 FIXR(0.79335334029123516458)
  812. #define C7 FIXR(0.60876142900872063941)
  813. #define C9 FIXR(0.38268343236508977173)
  814. #define C11 FIXR(0.13052619222005159154)
  815. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  816. cases. */
  817. static void imdct12(int *out, int *in)
  818. {
  819. int tmp;
  820. int64_t in1_3, in1_9, in4_3, in4_9;
  821. in1_3 = MUL64(in[1], C3);
  822. in1_9 = MUL64(in[1], C9);
  823. in4_3 = MUL64(in[4], C3);
  824. in4_9 = MUL64(in[4], C9);
  825. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  826. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  827. out[0] = tmp;
  828. out[5] = -tmp;
  829. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  830. MUL64(in[2] + in[5], C3) - in4_9);
  831. out[1] = tmp;
  832. out[4] = -tmp;
  833. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  834. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  835. out[2] = tmp;
  836. out[3] = -tmp;
  837. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  838. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  839. out[6] = tmp;
  840. out[11] = tmp;
  841. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  842. MUL64(in[2] + in[5], C9) + in4_3);
  843. out[7] = tmp;
  844. out[10] = tmp;
  845. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  846. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  847. out[8] = tmp;
  848. out[9] = tmp;
  849. }
  850. #undef C1
  851. #undef C3
  852. #undef C5
  853. #undef C7
  854. #undef C9
  855. #undef C11
  856. /* cos(pi*i/18) */
  857. #define C1 FIXR(0.98480775301220805936)
  858. #define C2 FIXR(0.93969262078590838405)
  859. #define C3 FIXR(0.86602540378443864676)
  860. #define C4 FIXR(0.76604444311897803520)
  861. #define C5 FIXR(0.64278760968653932632)
  862. #define C6 FIXR(0.5)
  863. #define C7 FIXR(0.34202014332566873304)
  864. #define C8 FIXR(0.17364817766693034885)
  865. /* 0.5 / cos(pi*(2*i+1)/36) */
  866. static const int icos36[9] = {
  867. FIXR(0.50190991877167369479),
  868. FIXR(0.51763809020504152469),
  869. FIXR(0.55168895948124587824),
  870. FIXR(0.61038729438072803416),
  871. FIXR(0.70710678118654752439),
  872. FIXR(0.87172339781054900991),
  873. FIXR(1.18310079157624925896),
  874. FIXR(1.93185165257813657349),
  875. FIXR(5.73685662283492756461),
  876. };
  877. static const int icos72[18] = {
  878. /* 0.5 / cos(pi*(2*i+19)/72) */
  879. FIXR(0.74009361646113053152),
  880. FIXR(0.82133981585229078570),
  881. FIXR(0.93057949835178895673),
  882. FIXR(1.08284028510010010928),
  883. FIXR(1.30656296487637652785),
  884. FIXR(1.66275476171152078719),
  885. FIXR(2.31011315767264929558),
  886. FIXR(3.83064878777019433457),
  887. FIXR(11.46279281302667383546),
  888. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  889. FIXR(-0.67817085245462840086),
  890. FIXR(-0.63023620700513223342),
  891. FIXR(-0.59284452371708034528),
  892. FIXR(-0.56369097343317117734),
  893. FIXR(-0.54119610014619698439),
  894. FIXR(-0.52426456257040533932),
  895. FIXR(-0.51213975715725461845),
  896. FIXR(-0.50431448029007636036),
  897. FIXR(-0.50047634258165998492),
  898. };
  899. /* using Lee like decomposition followed by hand coded 9 points DCT */
  900. static void imdct36(int *out, int *in)
  901. {
  902. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  903. int tmp[18], *tmp1, *in1;
  904. int64_t in3_3, in6_6;
  905. for(i=17;i>=1;i--)
  906. in[i] += in[i-1];
  907. for(i=17;i>=3;i-=2)
  908. in[i] += in[i-2];
  909. for(j=0;j<2;j++) {
  910. tmp1 = tmp + j;
  911. in1 = in + j;
  912. in3_3 = MUL64(in1[2*3], C3);
  913. in6_6 = MUL64(in1[2*6], C6);
  914. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  915. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  916. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  917. MUL64(in1[2*4], C4) + in6_6 +
  918. MUL64(in1[2*8], C8));
  919. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  920. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  921. in1[2*6] + in1[2*0];
  922. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  923. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  924. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  925. MUL64(in1[2*4], C2) + in6_6 +
  926. MUL64(in1[2*8], C4));
  927. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  928. MUL64(in1[2*5], C1) -
  929. MUL64(in1[2*7], C5));
  930. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  931. MUL64(in1[2*4], C8) + in6_6 -
  932. MUL64(in1[2*8], C2));
  933. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  934. }
  935. i = 0;
  936. for(j=0;j<4;j++) {
  937. t0 = tmp[i];
  938. t1 = tmp[i + 2];
  939. s0 = t1 + t0;
  940. s2 = t1 - t0;
  941. t2 = tmp[i + 1];
  942. t3 = tmp[i + 3];
  943. s1 = MULL(t3 + t2, icos36[j]);
  944. s3 = MULL(t3 - t2, icos36[8 - j]);
  945. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  946. t1 = MULL(s0 - s1, icos72[8 - j]);
  947. out[18 + 9 + j] = t0;
  948. out[18 + 8 - j] = t0;
  949. out[9 + j] = -t1;
  950. out[8 - j] = t1;
  951. t0 = MULL(s2 + s3, icos72[9+j]);
  952. t1 = MULL(s2 - s3, icos72[j]);
  953. out[18 + 9 + (8 - j)] = t0;
  954. out[18 + j] = t0;
  955. out[9 + (8 - j)] = -t1;
  956. out[j] = t1;
  957. i += 4;
  958. }
  959. s0 = tmp[16];
  960. s1 = MULL(tmp[17], icos36[4]);
  961. t0 = MULL(s0 + s1, icos72[9 + 4]);
  962. t1 = MULL(s0 - s1, icos72[4]);
  963. out[18 + 9 + 4] = t0;
  964. out[18 + 8 - 4] = t0;
  965. out[9 + 4] = -t1;
  966. out[8 - 4] = t1;
  967. }
  968. /* fast header check for resync */
  969. static int check_header(uint32_t header)
  970. {
  971. /* header */
  972. if ((header & 0xffe00000) != 0xffe00000)
  973. return -1;
  974. /* layer check */
  975. if (((header >> 17) & 3) == 0)
  976. return -1;
  977. /* bit rate */
  978. if (((header >> 12) & 0xf) == 0xf)
  979. return -1;
  980. /* frequency */
  981. if (((header >> 10) & 3) == 3)
  982. return -1;
  983. return 0;
  984. }
  985. /* header + layer + bitrate + freq + lsf/mpeg25 */
  986. #define SAME_HEADER_MASK \
  987. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  988. /* header decoding. MUST check the header before because no
  989. consistency check is done there. Return 1 if free format found and
  990. that the frame size must be computed externally */
  991. static int decode_header(MPADecodeContext *s, uint32_t header)
  992. {
  993. int sample_rate, frame_size, mpeg25, padding;
  994. int sample_rate_index, bitrate_index;
  995. if (header & (1<<20)) {
  996. s->lsf = (header & (1<<19)) ? 0 : 1;
  997. mpeg25 = 0;
  998. } else {
  999. s->lsf = 1;
  1000. mpeg25 = 1;
  1001. }
  1002. s->layer = 4 - ((header >> 17) & 3);
  1003. /* extract frequency */
  1004. sample_rate_index = (header >> 10) & 3;
  1005. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1006. sample_rate_index += 3 * (s->lsf + mpeg25);
  1007. s->sample_rate_index = sample_rate_index;
  1008. s->error_protection = ((header >> 16) & 1) ^ 1;
  1009. s->sample_rate = sample_rate;
  1010. bitrate_index = (header >> 12) & 0xf;
  1011. padding = (header >> 9) & 1;
  1012. //extension = (header >> 8) & 1;
  1013. s->mode = (header >> 6) & 3;
  1014. s->mode_ext = (header >> 4) & 3;
  1015. //copyright = (header >> 3) & 1;
  1016. //original = (header >> 2) & 1;
  1017. //emphasis = header & 3;
  1018. if (s->mode == MPA_MONO)
  1019. s->nb_channels = 1;
  1020. else
  1021. s->nb_channels = 2;
  1022. if (bitrate_index != 0) {
  1023. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1024. s->bit_rate = frame_size * 1000;
  1025. switch(s->layer) {
  1026. case 1:
  1027. frame_size = (frame_size * 12000) / sample_rate;
  1028. frame_size = (frame_size + padding) * 4;
  1029. break;
  1030. case 2:
  1031. frame_size = (frame_size * 144000) / sample_rate;
  1032. frame_size += padding;
  1033. break;
  1034. default:
  1035. case 3:
  1036. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1037. frame_size += padding;
  1038. break;
  1039. }
  1040. s->frame_size = frame_size;
  1041. } else {
  1042. /* if no frame size computed, signal it */
  1043. if (!s->free_format_frame_size)
  1044. return 1;
  1045. /* free format: compute bitrate and real frame size from the
  1046. frame size we extracted by reading the bitstream */
  1047. s->frame_size = s->free_format_frame_size;
  1048. switch(s->layer) {
  1049. case 1:
  1050. s->frame_size += padding * 4;
  1051. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1052. break;
  1053. case 2:
  1054. s->frame_size += padding;
  1055. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1056. break;
  1057. default:
  1058. case 3:
  1059. s->frame_size += padding;
  1060. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1061. break;
  1062. }
  1063. }
  1064. #if defined(DEBUG)
  1065. printf("layer%d, %d Hz, %d kbits/s, ",
  1066. s->layer, s->sample_rate, s->bit_rate);
  1067. if (s->nb_channels == 2) {
  1068. if (s->layer == 3) {
  1069. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1070. printf("ms-");
  1071. if (s->mode_ext & MODE_EXT_I_STEREO)
  1072. printf("i-");
  1073. }
  1074. printf("stereo");
  1075. } else {
  1076. printf("mono");
  1077. }
  1078. printf("\n");
  1079. #endif
  1080. return 0;
  1081. }
  1082. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1083. header, otherwise the coded frame size in bytes */
  1084. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1085. {
  1086. MPADecodeContext s1, *s = &s1;
  1087. if (check_header(head) != 0)
  1088. return -1;
  1089. if (decode_header(s, head) != 0) {
  1090. return -1;
  1091. }
  1092. switch(s->layer) {
  1093. case 1:
  1094. avctx->frame_size = 384;
  1095. break;
  1096. case 2:
  1097. avctx->frame_size = 1152;
  1098. break;
  1099. default:
  1100. case 3:
  1101. if (s->lsf)
  1102. avctx->frame_size = 576;
  1103. else
  1104. avctx->frame_size = 1152;
  1105. break;
  1106. }
  1107. avctx->sample_rate = s->sample_rate;
  1108. avctx->channels = s->nb_channels;
  1109. avctx->bit_rate = s->bit_rate;
  1110. avctx->sub_id = s->layer;
  1111. return s->frame_size;
  1112. }
  1113. /* return the number of decoded frames */
  1114. static int mp_decode_layer1(MPADecodeContext *s)
  1115. {
  1116. int bound, i, v, n, ch, j, mant;
  1117. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1118. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1119. if (s->mode == MPA_JSTEREO)
  1120. bound = (s->mode_ext + 1) * 4;
  1121. else
  1122. bound = SBLIMIT;
  1123. /* allocation bits */
  1124. for(i=0;i<bound;i++) {
  1125. for(ch=0;ch<s->nb_channels;ch++) {
  1126. allocation[ch][i] = get_bits(&s->gb, 4);
  1127. }
  1128. }
  1129. for(i=bound;i<SBLIMIT;i++) {
  1130. allocation[0][i] = get_bits(&s->gb, 4);
  1131. }
  1132. /* scale factors */
  1133. for(i=0;i<bound;i++) {
  1134. for(ch=0;ch<s->nb_channels;ch++) {
  1135. if (allocation[ch][i])
  1136. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1137. }
  1138. }
  1139. for(i=bound;i<SBLIMIT;i++) {
  1140. if (allocation[0][i]) {
  1141. scale_factors[0][i] = get_bits(&s->gb, 6);
  1142. scale_factors[1][i] = get_bits(&s->gb, 6);
  1143. }
  1144. }
  1145. /* compute samples */
  1146. for(j=0;j<12;j++) {
  1147. for(i=0;i<bound;i++) {
  1148. for(ch=0;ch<s->nb_channels;ch++) {
  1149. n = allocation[ch][i];
  1150. if (n) {
  1151. mant = get_bits(&s->gb, n + 1);
  1152. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1153. } else {
  1154. v = 0;
  1155. }
  1156. s->sb_samples[ch][j][i] = v;
  1157. }
  1158. }
  1159. for(i=bound;i<SBLIMIT;i++) {
  1160. n = allocation[0][i];
  1161. if (n) {
  1162. mant = get_bits(&s->gb, n + 1);
  1163. v = l1_unscale(n, mant, scale_factors[0][i]);
  1164. s->sb_samples[0][j][i] = v;
  1165. v = l1_unscale(n, mant, scale_factors[1][i]);
  1166. s->sb_samples[1][j][i] = v;
  1167. } else {
  1168. s->sb_samples[0][j][i] = 0;
  1169. s->sb_samples[1][j][i] = 0;
  1170. }
  1171. }
  1172. }
  1173. return 12;
  1174. }
  1175. /* bitrate is in kb/s */
  1176. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1177. {
  1178. int ch_bitrate, table;
  1179. ch_bitrate = bitrate / nb_channels;
  1180. if (!lsf) {
  1181. if ((freq == 48000 && ch_bitrate >= 56) ||
  1182. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1183. table = 0;
  1184. else if (freq != 48000 && ch_bitrate >= 96)
  1185. table = 1;
  1186. else if (freq != 32000 && ch_bitrate <= 48)
  1187. table = 2;
  1188. else
  1189. table = 3;
  1190. } else {
  1191. table = 4;
  1192. }
  1193. return table;
  1194. }
  1195. static int mp_decode_layer2(MPADecodeContext *s)
  1196. {
  1197. int sblimit; /* number of used subbands */
  1198. const unsigned char *alloc_table;
  1199. int table, bit_alloc_bits, i, j, ch, bound, v;
  1200. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1201. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1202. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1203. int scale, qindex, bits, steps, k, l, m, b;
  1204. /* select decoding table */
  1205. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1206. s->sample_rate, s->lsf);
  1207. sblimit = sblimit_table[table];
  1208. alloc_table = alloc_tables[table];
  1209. if (s->mode == MPA_JSTEREO)
  1210. bound = (s->mode_ext + 1) * 4;
  1211. else
  1212. bound = sblimit;
  1213. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1214. /* parse bit allocation */
  1215. j = 0;
  1216. for(i=0;i<bound;i++) {
  1217. bit_alloc_bits = alloc_table[j];
  1218. for(ch=0;ch<s->nb_channels;ch++) {
  1219. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1220. }
  1221. j += 1 << bit_alloc_bits;
  1222. }
  1223. for(i=bound;i<sblimit;i++) {
  1224. bit_alloc_bits = alloc_table[j];
  1225. v = get_bits(&s->gb, bit_alloc_bits);
  1226. bit_alloc[0][i] = v;
  1227. bit_alloc[1][i] = v;
  1228. j += 1 << bit_alloc_bits;
  1229. }
  1230. #ifdef DEBUG
  1231. {
  1232. for(ch=0;ch<s->nb_channels;ch++) {
  1233. for(i=0;i<sblimit;i++)
  1234. printf(" %d", bit_alloc[ch][i]);
  1235. printf("\n");
  1236. }
  1237. }
  1238. #endif
  1239. /* scale codes */
  1240. for(i=0;i<sblimit;i++) {
  1241. for(ch=0;ch<s->nb_channels;ch++) {
  1242. if (bit_alloc[ch][i])
  1243. scale_code[ch][i] = get_bits(&s->gb, 2);
  1244. }
  1245. }
  1246. /* scale factors */
  1247. for(i=0;i<sblimit;i++) {
  1248. for(ch=0;ch<s->nb_channels;ch++) {
  1249. if (bit_alloc[ch][i]) {
  1250. sf = scale_factors[ch][i];
  1251. switch(scale_code[ch][i]) {
  1252. default:
  1253. case 0:
  1254. sf[0] = get_bits(&s->gb, 6);
  1255. sf[1] = get_bits(&s->gb, 6);
  1256. sf[2] = get_bits(&s->gb, 6);
  1257. break;
  1258. case 2:
  1259. sf[0] = get_bits(&s->gb, 6);
  1260. sf[1] = sf[0];
  1261. sf[2] = sf[0];
  1262. break;
  1263. case 1:
  1264. sf[0] = get_bits(&s->gb, 6);
  1265. sf[2] = get_bits(&s->gb, 6);
  1266. sf[1] = sf[0];
  1267. break;
  1268. case 3:
  1269. sf[0] = get_bits(&s->gb, 6);
  1270. sf[2] = get_bits(&s->gb, 6);
  1271. sf[1] = sf[2];
  1272. break;
  1273. }
  1274. }
  1275. }
  1276. }
  1277. #ifdef DEBUG
  1278. for(ch=0;ch<s->nb_channels;ch++) {
  1279. for(i=0;i<sblimit;i++) {
  1280. if (bit_alloc[ch][i]) {
  1281. sf = scale_factors[ch][i];
  1282. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1283. } else {
  1284. printf(" -");
  1285. }
  1286. }
  1287. printf("\n");
  1288. }
  1289. #endif
  1290. /* samples */
  1291. for(k=0;k<3;k++) {
  1292. for(l=0;l<12;l+=3) {
  1293. j = 0;
  1294. for(i=0;i<bound;i++) {
  1295. bit_alloc_bits = alloc_table[j];
  1296. for(ch=0;ch<s->nb_channels;ch++) {
  1297. b = bit_alloc[ch][i];
  1298. if (b) {
  1299. scale = scale_factors[ch][i][k];
  1300. qindex = alloc_table[j+b];
  1301. bits = quant_bits[qindex];
  1302. if (bits < 0) {
  1303. /* 3 values at the same time */
  1304. v = get_bits(&s->gb, -bits);
  1305. steps = quant_steps[qindex];
  1306. s->sb_samples[ch][k * 12 + l + 0][i] =
  1307. l2_unscale_group(steps, v % steps, scale);
  1308. v = v / steps;
  1309. s->sb_samples[ch][k * 12 + l + 1][i] =
  1310. l2_unscale_group(steps, v % steps, scale);
  1311. v = v / steps;
  1312. s->sb_samples[ch][k * 12 + l + 2][i] =
  1313. l2_unscale_group(steps, v, scale);
  1314. } else {
  1315. for(m=0;m<3;m++) {
  1316. v = get_bits(&s->gb, bits);
  1317. v = l1_unscale(bits - 1, v, scale);
  1318. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1319. }
  1320. }
  1321. } else {
  1322. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1323. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1324. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1325. }
  1326. }
  1327. /* next subband in alloc table */
  1328. j += 1 << bit_alloc_bits;
  1329. }
  1330. /* XXX: find a way to avoid this duplication of code */
  1331. for(i=bound;i<sblimit;i++) {
  1332. bit_alloc_bits = alloc_table[j];
  1333. b = bit_alloc[0][i];
  1334. if (b) {
  1335. int mant, scale0, scale1;
  1336. scale0 = scale_factors[0][i][k];
  1337. scale1 = scale_factors[1][i][k];
  1338. qindex = alloc_table[j+b];
  1339. bits = quant_bits[qindex];
  1340. if (bits < 0) {
  1341. /* 3 values at the same time */
  1342. v = get_bits(&s->gb, -bits);
  1343. steps = quant_steps[qindex];
  1344. mant = v % steps;
  1345. v = v / steps;
  1346. s->sb_samples[0][k * 12 + l + 0][i] =
  1347. l2_unscale_group(steps, mant, scale0);
  1348. s->sb_samples[1][k * 12 + l + 0][i] =
  1349. l2_unscale_group(steps, mant, scale1);
  1350. mant = v % steps;
  1351. v = v / steps;
  1352. s->sb_samples[0][k * 12 + l + 1][i] =
  1353. l2_unscale_group(steps, mant, scale0);
  1354. s->sb_samples[1][k * 12 + l + 1][i] =
  1355. l2_unscale_group(steps, mant, scale1);
  1356. s->sb_samples[0][k * 12 + l + 2][i] =
  1357. l2_unscale_group(steps, v, scale0);
  1358. s->sb_samples[1][k * 12 + l + 2][i] =
  1359. l2_unscale_group(steps, v, scale1);
  1360. } else {
  1361. for(m=0;m<3;m++) {
  1362. mant = get_bits(&s->gb, bits);
  1363. s->sb_samples[0][k * 12 + l + m][i] =
  1364. l1_unscale(bits - 1, mant, scale0);
  1365. s->sb_samples[1][k * 12 + l + m][i] =
  1366. l1_unscale(bits - 1, mant, scale1);
  1367. }
  1368. }
  1369. } else {
  1370. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1371. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1372. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1373. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1374. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1375. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1376. }
  1377. /* next subband in alloc table */
  1378. j += 1 << bit_alloc_bits;
  1379. }
  1380. /* fill remaining samples to zero */
  1381. for(i=sblimit;i<SBLIMIT;i++) {
  1382. for(ch=0;ch<s->nb_channels;ch++) {
  1383. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1384. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1385. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1386. }
  1387. }
  1388. }
  1389. }
  1390. return 3 * 12;
  1391. }
  1392. /*
  1393. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1394. */
  1395. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1396. {
  1397. uint8_t *ptr;
  1398. /* compute current position in stream */
  1399. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1400. /* copy old data before current one */
  1401. ptr -= backstep;
  1402. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1403. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1404. /* init get bits again */
  1405. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1406. /* prepare next buffer */
  1407. s->inbuf_index ^= 1;
  1408. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1409. s->old_frame_size = s->frame_size;
  1410. }
  1411. static inline void lsf_sf_expand(int *slen,
  1412. int sf, int n1, int n2, int n3)
  1413. {
  1414. if (n3) {
  1415. slen[3] = sf % n3;
  1416. sf /= n3;
  1417. } else {
  1418. slen[3] = 0;
  1419. }
  1420. if (n2) {
  1421. slen[2] = sf % n2;
  1422. sf /= n2;
  1423. } else {
  1424. slen[2] = 0;
  1425. }
  1426. slen[1] = sf % n1;
  1427. sf /= n1;
  1428. slen[0] = sf;
  1429. }
  1430. static void exponents_from_scale_factors(MPADecodeContext *s,
  1431. GranuleDef *g,
  1432. int16_t *exponents)
  1433. {
  1434. const uint8_t *bstab, *pretab;
  1435. int len, i, j, k, l, v0, shift, gain, gains[3];
  1436. int16_t *exp_ptr;
  1437. exp_ptr = exponents;
  1438. gain = g->global_gain - 210;
  1439. shift = g->scalefac_scale + 1;
  1440. bstab = band_size_long[s->sample_rate_index];
  1441. pretab = mpa_pretab[g->preflag];
  1442. for(i=0;i<g->long_end;i++) {
  1443. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1444. len = bstab[i];
  1445. for(j=len;j>0;j--)
  1446. *exp_ptr++ = v0;
  1447. }
  1448. if (g->short_start < 13) {
  1449. bstab = band_size_short[s->sample_rate_index];
  1450. gains[0] = gain - (g->subblock_gain[0] << 3);
  1451. gains[1] = gain - (g->subblock_gain[1] << 3);
  1452. gains[2] = gain - (g->subblock_gain[2] << 3);
  1453. k = g->long_end;
  1454. for(i=g->short_start;i<13;i++) {
  1455. len = bstab[i];
  1456. for(l=0;l<3;l++) {
  1457. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1458. for(j=len;j>0;j--)
  1459. *exp_ptr++ = v0;
  1460. }
  1461. }
  1462. }
  1463. }
  1464. /* handle n = 0 too */
  1465. static inline int get_bitsz(GetBitContext *s, int n)
  1466. {
  1467. if (n == 0)
  1468. return 0;
  1469. else
  1470. return get_bits(s, n);
  1471. }
  1472. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1473. int16_t *exponents, int end_pos)
  1474. {
  1475. int s_index;
  1476. int linbits, code, x, y, l, v, i, j, k, pos;
  1477. GetBitContext last_gb;
  1478. VLC *vlc;
  1479. uint8_t *code_table;
  1480. /* low frequencies (called big values) */
  1481. s_index = 0;
  1482. for(i=0;i<3;i++) {
  1483. j = g->region_size[i];
  1484. if (j == 0)
  1485. continue;
  1486. /* select vlc table */
  1487. k = g->table_select[i];
  1488. l = mpa_huff_data[k][0];
  1489. linbits = mpa_huff_data[k][1];
  1490. vlc = &huff_vlc[l];
  1491. code_table = huff_code_table[l];
  1492. /* read huffcode and compute each couple */
  1493. for(;j>0;j--) {
  1494. if (get_bits_count(&s->gb) >= end_pos)
  1495. break;
  1496. if (code_table) {
  1497. code = get_vlc(&s->gb, vlc);
  1498. if (code < 0)
  1499. return -1;
  1500. y = code_table[code];
  1501. x = y >> 4;
  1502. y = y & 0x0f;
  1503. } else {
  1504. x = 0;
  1505. y = 0;
  1506. }
  1507. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1508. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1509. if (x) {
  1510. if (x == 15)
  1511. x += get_bitsz(&s->gb, linbits);
  1512. v = l3_unscale(x, exponents[s_index]);
  1513. if (get_bits1(&s->gb))
  1514. v = -v;
  1515. } else {
  1516. v = 0;
  1517. }
  1518. g->sb_hybrid[s_index++] = v;
  1519. if (y) {
  1520. if (y == 15)
  1521. y += get_bitsz(&s->gb, linbits);
  1522. v = l3_unscale(y, exponents[s_index]);
  1523. if (get_bits1(&s->gb))
  1524. v = -v;
  1525. } else {
  1526. v = 0;
  1527. }
  1528. g->sb_hybrid[s_index++] = v;
  1529. }
  1530. }
  1531. /* high frequencies */
  1532. vlc = &huff_quad_vlc[g->count1table_select];
  1533. last_gb.buffer = NULL;
  1534. while (s_index <= 572) {
  1535. pos = get_bits_count(&s->gb);
  1536. if (pos >= end_pos) {
  1537. if (pos > end_pos && last_gb.buffer != NULL) {
  1538. /* some encoders generate an incorrect size for this
  1539. part. We must go back into the data */
  1540. s_index -= 4;
  1541. s->gb = last_gb;
  1542. }
  1543. break;
  1544. }
  1545. last_gb= s->gb;
  1546. code = get_vlc(&s->gb, vlc);
  1547. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1548. if (code < 0)
  1549. return -1;
  1550. for(i=0;i<4;i++) {
  1551. if (code & (8 >> i)) {
  1552. /* non zero value. Could use a hand coded function for
  1553. 'one' value */
  1554. v = l3_unscale(1, exponents[s_index]);
  1555. if(get_bits1(&s->gb))
  1556. v = -v;
  1557. } else {
  1558. v = 0;
  1559. }
  1560. g->sb_hybrid[s_index++] = v;
  1561. }
  1562. }
  1563. while (s_index < 576)
  1564. g->sb_hybrid[s_index++] = 0;
  1565. return 0;
  1566. }
  1567. /* Reorder short blocks from bitstream order to interleaved order. It
  1568. would be faster to do it in parsing, but the code would be far more
  1569. complicated */
  1570. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1571. {
  1572. int i, j, k, len;
  1573. int32_t *ptr, *dst, *ptr1;
  1574. int32_t tmp[576];
  1575. if (g->block_type != 2)
  1576. return;
  1577. if (g->switch_point) {
  1578. if (s->sample_rate_index != 8) {
  1579. ptr = g->sb_hybrid + 36;
  1580. } else {
  1581. ptr = g->sb_hybrid + 48;
  1582. }
  1583. } else {
  1584. ptr = g->sb_hybrid;
  1585. }
  1586. for(i=g->short_start;i<13;i++) {
  1587. len = band_size_short[s->sample_rate_index][i];
  1588. ptr1 = ptr;
  1589. for(k=0;k<3;k++) {
  1590. dst = tmp + k;
  1591. for(j=len;j>0;j--) {
  1592. *dst = *ptr++;
  1593. dst += 3;
  1594. }
  1595. }
  1596. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1597. }
  1598. }
  1599. #define ISQRT2 FIXR(0.70710678118654752440)
  1600. static void compute_stereo(MPADecodeContext *s,
  1601. GranuleDef *g0, GranuleDef *g1)
  1602. {
  1603. int i, j, k, l;
  1604. int32_t v1, v2;
  1605. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1606. int32_t (*is_tab)[16];
  1607. int32_t *tab0, *tab1;
  1608. int non_zero_found_short[3];
  1609. /* intensity stereo */
  1610. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1611. if (!s->lsf) {
  1612. is_tab = is_table;
  1613. sf_max = 7;
  1614. } else {
  1615. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1616. sf_max = 16;
  1617. }
  1618. tab0 = g0->sb_hybrid + 576;
  1619. tab1 = g1->sb_hybrid + 576;
  1620. non_zero_found_short[0] = 0;
  1621. non_zero_found_short[1] = 0;
  1622. non_zero_found_short[2] = 0;
  1623. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1624. for(i = 12;i >= g1->short_start;i--) {
  1625. /* for last band, use previous scale factor */
  1626. if (i != 11)
  1627. k -= 3;
  1628. len = band_size_short[s->sample_rate_index][i];
  1629. for(l=2;l>=0;l--) {
  1630. tab0 -= len;
  1631. tab1 -= len;
  1632. if (!non_zero_found_short[l]) {
  1633. /* test if non zero band. if so, stop doing i-stereo */
  1634. for(j=0;j<len;j++) {
  1635. if (tab1[j] != 0) {
  1636. non_zero_found_short[l] = 1;
  1637. goto found1;
  1638. }
  1639. }
  1640. sf = g1->scale_factors[k + l];
  1641. if (sf >= sf_max)
  1642. goto found1;
  1643. v1 = is_tab[0][sf];
  1644. v2 = is_tab[1][sf];
  1645. for(j=0;j<len;j++) {
  1646. tmp0 = tab0[j];
  1647. tab0[j] = MULL(tmp0, v1);
  1648. tab1[j] = MULL(tmp0, v2);
  1649. }
  1650. } else {
  1651. found1:
  1652. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1653. /* lower part of the spectrum : do ms stereo
  1654. if enabled */
  1655. for(j=0;j<len;j++) {
  1656. tmp0 = tab0[j];
  1657. tmp1 = tab1[j];
  1658. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1659. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1660. }
  1661. }
  1662. }
  1663. }
  1664. }
  1665. non_zero_found = non_zero_found_short[0] |
  1666. non_zero_found_short[1] |
  1667. non_zero_found_short[2];
  1668. for(i = g1->long_end - 1;i >= 0;i--) {
  1669. len = band_size_long[s->sample_rate_index][i];
  1670. tab0 -= len;
  1671. tab1 -= len;
  1672. /* test if non zero band. if so, stop doing i-stereo */
  1673. if (!non_zero_found) {
  1674. for(j=0;j<len;j++) {
  1675. if (tab1[j] != 0) {
  1676. non_zero_found = 1;
  1677. goto found2;
  1678. }
  1679. }
  1680. /* for last band, use previous scale factor */
  1681. k = (i == 21) ? 20 : i;
  1682. sf = g1->scale_factors[k];
  1683. if (sf >= sf_max)
  1684. goto found2;
  1685. v1 = is_tab[0][sf];
  1686. v2 = is_tab[1][sf];
  1687. for(j=0;j<len;j++) {
  1688. tmp0 = tab0[j];
  1689. tab0[j] = MULL(tmp0, v1);
  1690. tab1[j] = MULL(tmp0, v2);
  1691. }
  1692. } else {
  1693. found2:
  1694. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1695. /* lower part of the spectrum : do ms stereo
  1696. if enabled */
  1697. for(j=0;j<len;j++) {
  1698. tmp0 = tab0[j];
  1699. tmp1 = tab1[j];
  1700. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1701. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1702. }
  1703. }
  1704. }
  1705. }
  1706. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1707. /* ms stereo ONLY */
  1708. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1709. global gain */
  1710. tab0 = g0->sb_hybrid;
  1711. tab1 = g1->sb_hybrid;
  1712. for(i=0;i<576;i++) {
  1713. tmp0 = tab0[i];
  1714. tmp1 = tab1[i];
  1715. tab0[i] = tmp0 + tmp1;
  1716. tab1[i] = tmp0 - tmp1;
  1717. }
  1718. }
  1719. }
  1720. static void compute_antialias_integer(MPADecodeContext *s,
  1721. GranuleDef *g)
  1722. {
  1723. int32_t *ptr, *p0, *p1, *csa;
  1724. int n, i, j;
  1725. /* we antialias only "long" bands */
  1726. if (g->block_type == 2) {
  1727. if (!g->switch_point)
  1728. return;
  1729. /* XXX: check this for 8000Hz case */
  1730. n = 1;
  1731. } else {
  1732. n = SBLIMIT - 1;
  1733. }
  1734. ptr = g->sb_hybrid + 18;
  1735. for(i = n;i > 0;i--) {
  1736. p0 = ptr - 1;
  1737. p1 = ptr;
  1738. csa = &csa_table[0][0];
  1739. for(j=0;j<4;j++) {
  1740. int tmp0 = *p0;
  1741. int tmp1 = *p1;
  1742. #if 0
  1743. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1744. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1745. #else
  1746. int64_t tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1747. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1748. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1749. #endif
  1750. p0--; p1++;
  1751. csa += 4;
  1752. tmp0 = *p0;
  1753. tmp1 = *p1;
  1754. #if 0
  1755. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1756. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1757. #else
  1758. tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1759. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1760. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1761. #endif
  1762. p0--; p1++;
  1763. csa += 4;
  1764. }
  1765. ptr += 18;
  1766. }
  1767. }
  1768. static void compute_antialias_float(MPADecodeContext *s,
  1769. GranuleDef *g)
  1770. {
  1771. int32_t *ptr, *p0, *p1;
  1772. int n, i, j;
  1773. /* we antialias only "long" bands */
  1774. if (g->block_type == 2) {
  1775. if (!g->switch_point)
  1776. return;
  1777. /* XXX: check this for 8000Hz case */
  1778. n = 1;
  1779. } else {
  1780. n = SBLIMIT - 1;
  1781. }
  1782. ptr = g->sb_hybrid + 18;
  1783. for(i = n;i > 0;i--) {
  1784. float *csa = &csa_table_float[0][0];
  1785. p0 = ptr - 1;
  1786. p1 = ptr;
  1787. for(j=0;j<4;j++) {
  1788. float tmp0 = *p0;
  1789. float tmp1 = *p1;
  1790. #if 1
  1791. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1792. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1793. #else
  1794. float tmp2= (tmp0 + tmp1) * csa[0];
  1795. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1796. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1797. #endif
  1798. p0--; p1++;
  1799. csa += 4;
  1800. tmp0 = *p0;
  1801. tmp1 = *p1;
  1802. #if 1
  1803. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1804. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1805. #else
  1806. tmp2= (tmp0 + tmp1) * csa[0];
  1807. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1808. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1809. #endif
  1810. p0--; p1++;
  1811. csa += 4;
  1812. }
  1813. ptr += 18;
  1814. }
  1815. }
  1816. static void compute_imdct(MPADecodeContext *s,
  1817. GranuleDef *g,
  1818. int32_t *sb_samples,
  1819. int32_t *mdct_buf)
  1820. {
  1821. int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1822. int32_t in[6];
  1823. int32_t out[36];
  1824. int32_t out2[12];
  1825. int i, j, k, mdct_long_end, v, sblimit;
  1826. /* find last non zero block */
  1827. ptr = g->sb_hybrid + 576;
  1828. ptr1 = g->sb_hybrid + 2 * 18;
  1829. while (ptr >= ptr1) {
  1830. ptr -= 6;
  1831. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1832. if (v != 0)
  1833. break;
  1834. }
  1835. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1836. if (g->block_type == 2) {
  1837. /* XXX: check for 8000 Hz */
  1838. if (g->switch_point)
  1839. mdct_long_end = 2;
  1840. else
  1841. mdct_long_end = 0;
  1842. } else {
  1843. mdct_long_end = sblimit;
  1844. }
  1845. buf = mdct_buf;
  1846. ptr = g->sb_hybrid;
  1847. for(j=0;j<mdct_long_end;j++) {
  1848. imdct36(out, ptr);
  1849. /* apply window & overlap with previous buffer */
  1850. out_ptr = sb_samples + j;
  1851. /* select window */
  1852. if (g->switch_point && j < 2)
  1853. win1 = mdct_win[0];
  1854. else
  1855. win1 = mdct_win[g->block_type];
  1856. /* select frequency inversion */
  1857. win = win1 + ((4 * 36) & -(j & 1));
  1858. for(i=0;i<18;i++) {
  1859. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1860. buf[i] = MULL(out[i + 18], win[i + 18]);
  1861. out_ptr += SBLIMIT;
  1862. }
  1863. ptr += 18;
  1864. buf += 18;
  1865. }
  1866. for(j=mdct_long_end;j<sblimit;j++) {
  1867. for(i=0;i<6;i++) {
  1868. out[i] = 0;
  1869. out[6 + i] = 0;
  1870. out[30+i] = 0;
  1871. }
  1872. /* select frequency inversion */
  1873. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1874. buf2 = out + 6;
  1875. for(k=0;k<3;k++) {
  1876. /* reorder input for short mdct */
  1877. ptr1 = ptr + k;
  1878. for(i=0;i<6;i++) {
  1879. in[i] = *ptr1;
  1880. ptr1 += 3;
  1881. }
  1882. imdct12(out2, in);
  1883. /* apply 12 point window and do small overlap */
  1884. for(i=0;i<6;i++) {
  1885. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1886. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1887. }
  1888. buf2 += 6;
  1889. }
  1890. /* overlap */
  1891. out_ptr = sb_samples + j;
  1892. for(i=0;i<18;i++) {
  1893. *out_ptr = out[i] + buf[i];
  1894. buf[i] = out[i + 18];
  1895. out_ptr += SBLIMIT;
  1896. }
  1897. ptr += 18;
  1898. buf += 18;
  1899. }
  1900. /* zero bands */
  1901. for(j=sblimit;j<SBLIMIT;j++) {
  1902. /* overlap */
  1903. out_ptr = sb_samples + j;
  1904. for(i=0;i<18;i++) {
  1905. *out_ptr = buf[i];
  1906. buf[i] = 0;
  1907. out_ptr += SBLIMIT;
  1908. }
  1909. buf += 18;
  1910. }
  1911. }
  1912. #if defined(DEBUG)
  1913. void sample_dump(int fnum, int32_t *tab, int n)
  1914. {
  1915. static FILE *files[16], *f;
  1916. char buf[512];
  1917. int i;
  1918. int32_t v;
  1919. f = files[fnum];
  1920. if (!f) {
  1921. sprintf(buf, "/tmp/out%d.%s.pcm",
  1922. fnum,
  1923. #ifdef USE_HIGHPRECISION
  1924. "hp"
  1925. #else
  1926. "lp"
  1927. #endif
  1928. );
  1929. f = fopen(buf, "w");
  1930. if (!f)
  1931. return;
  1932. files[fnum] = f;
  1933. }
  1934. if (fnum == 0) {
  1935. static int pos = 0;
  1936. printf("pos=%d\n", pos);
  1937. for(i=0;i<n;i++) {
  1938. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1939. if ((i % 18) == 17)
  1940. printf("\n");
  1941. }
  1942. pos += n;
  1943. }
  1944. for(i=0;i<n;i++) {
  1945. /* normalize to 23 frac bits */
  1946. v = tab[i] << (23 - FRAC_BITS);
  1947. fwrite(&v, 1, sizeof(int32_t), f);
  1948. }
  1949. }
  1950. #endif
  1951. /* main layer3 decoding function */
  1952. static int mp_decode_layer3(MPADecodeContext *s)
  1953. {
  1954. int nb_granules, main_data_begin, private_bits;
  1955. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1956. GranuleDef granules[2][2], *g;
  1957. int16_t exponents[576];
  1958. /* read side info */
  1959. if (s->lsf) {
  1960. main_data_begin = get_bits(&s->gb, 8);
  1961. if (s->nb_channels == 2)
  1962. private_bits = get_bits(&s->gb, 2);
  1963. else
  1964. private_bits = get_bits(&s->gb, 1);
  1965. nb_granules = 1;
  1966. } else {
  1967. main_data_begin = get_bits(&s->gb, 9);
  1968. if (s->nb_channels == 2)
  1969. private_bits = get_bits(&s->gb, 3);
  1970. else
  1971. private_bits = get_bits(&s->gb, 5);
  1972. nb_granules = 2;
  1973. for(ch=0;ch<s->nb_channels;ch++) {
  1974. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1975. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1976. }
  1977. }
  1978. for(gr=0;gr<nb_granules;gr++) {
  1979. for(ch=0;ch<s->nb_channels;ch++) {
  1980. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1981. g = &granules[ch][gr];
  1982. g->part2_3_length = get_bits(&s->gb, 12);
  1983. g->big_values = get_bits(&s->gb, 9);
  1984. g->global_gain = get_bits(&s->gb, 8);
  1985. /* if MS stereo only is selected, we precompute the
  1986. 1/sqrt(2) renormalization factor */
  1987. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1988. MODE_EXT_MS_STEREO)
  1989. g->global_gain -= 2;
  1990. if (s->lsf)
  1991. g->scalefac_compress = get_bits(&s->gb, 9);
  1992. else
  1993. g->scalefac_compress = get_bits(&s->gb, 4);
  1994. blocksplit_flag = get_bits(&s->gb, 1);
  1995. if (blocksplit_flag) {
  1996. g->block_type = get_bits(&s->gb, 2);
  1997. if (g->block_type == 0)
  1998. return -1;
  1999. g->switch_point = get_bits(&s->gb, 1);
  2000. for(i=0;i<2;i++)
  2001. g->table_select[i] = get_bits(&s->gb, 5);
  2002. for(i=0;i<3;i++)
  2003. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2004. /* compute huffman coded region sizes */
  2005. if (g->block_type == 2)
  2006. g->region_size[0] = (36 / 2);
  2007. else {
  2008. if (s->sample_rate_index <= 2)
  2009. g->region_size[0] = (36 / 2);
  2010. else if (s->sample_rate_index != 8)
  2011. g->region_size[0] = (54 / 2);
  2012. else
  2013. g->region_size[0] = (108 / 2);
  2014. }
  2015. g->region_size[1] = (576 / 2);
  2016. } else {
  2017. int region_address1, region_address2, l;
  2018. g->block_type = 0;
  2019. g->switch_point = 0;
  2020. for(i=0;i<3;i++)
  2021. g->table_select[i] = get_bits(&s->gb, 5);
  2022. /* compute huffman coded region sizes */
  2023. region_address1 = get_bits(&s->gb, 4);
  2024. region_address2 = get_bits(&s->gb, 3);
  2025. dprintf("region1=%d region2=%d\n",
  2026. region_address1, region_address2);
  2027. g->region_size[0] =
  2028. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2029. l = region_address1 + region_address2 + 2;
  2030. /* should not overflow */
  2031. if (l > 22)
  2032. l = 22;
  2033. g->region_size[1] =
  2034. band_index_long[s->sample_rate_index][l] >> 1;
  2035. }
  2036. /* convert region offsets to region sizes and truncate
  2037. size to big_values */
  2038. g->region_size[2] = (576 / 2);
  2039. j = 0;
  2040. for(i=0;i<3;i++) {
  2041. k = g->region_size[i];
  2042. if (k > g->big_values)
  2043. k = g->big_values;
  2044. g->region_size[i] = k - j;
  2045. j = k;
  2046. }
  2047. /* compute band indexes */
  2048. if (g->block_type == 2) {
  2049. if (g->switch_point) {
  2050. /* if switched mode, we handle the 36 first samples as
  2051. long blocks. For 8000Hz, we handle the 48 first
  2052. exponents as long blocks (XXX: check this!) */
  2053. if (s->sample_rate_index <= 2)
  2054. g->long_end = 8;
  2055. else if (s->sample_rate_index != 8)
  2056. g->long_end = 6;
  2057. else
  2058. g->long_end = 4; /* 8000 Hz */
  2059. if (s->sample_rate_index != 8)
  2060. g->short_start = 3;
  2061. else
  2062. g->short_start = 2;
  2063. } else {
  2064. g->long_end = 0;
  2065. g->short_start = 0;
  2066. }
  2067. } else {
  2068. g->short_start = 13;
  2069. g->long_end = 22;
  2070. }
  2071. g->preflag = 0;
  2072. if (!s->lsf)
  2073. g->preflag = get_bits(&s->gb, 1);
  2074. g->scalefac_scale = get_bits(&s->gb, 1);
  2075. g->count1table_select = get_bits(&s->gb, 1);
  2076. dprintf("block_type=%d switch_point=%d\n",
  2077. g->block_type, g->switch_point);
  2078. }
  2079. }
  2080. /* now we get bits from the main_data_begin offset */
  2081. dprintf("seekback: %d\n", main_data_begin);
  2082. seek_to_maindata(s, main_data_begin);
  2083. for(gr=0;gr<nb_granules;gr++) {
  2084. for(ch=0;ch<s->nb_channels;ch++) {
  2085. g = &granules[ch][gr];
  2086. bits_pos = get_bits_count(&s->gb);
  2087. if (!s->lsf) {
  2088. uint8_t *sc;
  2089. int slen, slen1, slen2;
  2090. /* MPEG1 scale factors */
  2091. slen1 = slen_table[0][g->scalefac_compress];
  2092. slen2 = slen_table[1][g->scalefac_compress];
  2093. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2094. if (g->block_type == 2) {
  2095. n = g->switch_point ? 17 : 18;
  2096. j = 0;
  2097. for(i=0;i<n;i++)
  2098. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2099. for(i=0;i<18;i++)
  2100. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2101. for(i=0;i<3;i++)
  2102. g->scale_factors[j++] = 0;
  2103. } else {
  2104. sc = granules[ch][0].scale_factors;
  2105. j = 0;
  2106. for(k=0;k<4;k++) {
  2107. n = (k == 0 ? 6 : 5);
  2108. if ((g->scfsi & (0x8 >> k)) == 0) {
  2109. slen = (k < 2) ? slen1 : slen2;
  2110. for(i=0;i<n;i++)
  2111. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2112. } else {
  2113. /* simply copy from last granule */
  2114. for(i=0;i<n;i++) {
  2115. g->scale_factors[j] = sc[j];
  2116. j++;
  2117. }
  2118. }
  2119. }
  2120. g->scale_factors[j++] = 0;
  2121. }
  2122. #if defined(DEBUG)
  2123. {
  2124. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2125. g->scfsi, gr, ch);
  2126. for(i=0;i<j;i++)
  2127. printf(" %d", g->scale_factors[i]);
  2128. printf("\n");
  2129. }
  2130. #endif
  2131. } else {
  2132. int tindex, tindex2, slen[4], sl, sf;
  2133. /* LSF scale factors */
  2134. if (g->block_type == 2) {
  2135. tindex = g->switch_point ? 2 : 1;
  2136. } else {
  2137. tindex = 0;
  2138. }
  2139. sf = g->scalefac_compress;
  2140. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2141. /* intensity stereo case */
  2142. sf >>= 1;
  2143. if (sf < 180) {
  2144. lsf_sf_expand(slen, sf, 6, 6, 0);
  2145. tindex2 = 3;
  2146. } else if (sf < 244) {
  2147. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2148. tindex2 = 4;
  2149. } else {
  2150. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2151. tindex2 = 5;
  2152. }
  2153. } else {
  2154. /* normal case */
  2155. if (sf < 400) {
  2156. lsf_sf_expand(slen, sf, 5, 4, 4);
  2157. tindex2 = 0;
  2158. } else if (sf < 500) {
  2159. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2160. tindex2 = 1;
  2161. } else {
  2162. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2163. tindex2 = 2;
  2164. g->preflag = 1;
  2165. }
  2166. }
  2167. j = 0;
  2168. for(k=0;k<4;k++) {
  2169. n = lsf_nsf_table[tindex2][tindex][k];
  2170. sl = slen[k];
  2171. for(i=0;i<n;i++)
  2172. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2173. }
  2174. /* XXX: should compute exact size */
  2175. for(;j<40;j++)
  2176. g->scale_factors[j] = 0;
  2177. #if defined(DEBUG)
  2178. {
  2179. printf("gr=%d ch=%d scale_factors:\n",
  2180. gr, ch);
  2181. for(i=0;i<40;i++)
  2182. printf(" %d", g->scale_factors[i]);
  2183. printf("\n");
  2184. }
  2185. #endif
  2186. }
  2187. exponents_from_scale_factors(s, g, exponents);
  2188. /* read Huffman coded residue */
  2189. if (huffman_decode(s, g, exponents,
  2190. bits_pos + g->part2_3_length) < 0)
  2191. return -1;
  2192. #if defined(DEBUG)
  2193. sample_dump(0, g->sb_hybrid, 576);
  2194. #endif
  2195. /* skip extension bits */
  2196. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2197. if (bits_left < 0) {
  2198. dprintf("bits_left=%d\n", bits_left);
  2199. return -1;
  2200. }
  2201. while (bits_left >= 16) {
  2202. skip_bits(&s->gb, 16);
  2203. bits_left -= 16;
  2204. }
  2205. if (bits_left > 0)
  2206. skip_bits(&s->gb, bits_left);
  2207. } /* ch */
  2208. if (s->nb_channels == 2)
  2209. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2210. for(ch=0;ch<s->nb_channels;ch++) {
  2211. g = &granules[ch][gr];
  2212. reorder_block(s, g);
  2213. #if defined(DEBUG)
  2214. sample_dump(0, g->sb_hybrid, 576);
  2215. #endif
  2216. s->compute_antialias(s, g);
  2217. #if defined(DEBUG)
  2218. sample_dump(1, g->sb_hybrid, 576);
  2219. #endif
  2220. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2221. #if defined(DEBUG)
  2222. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2223. #endif
  2224. }
  2225. } /* gr */
  2226. return nb_granules * 18;
  2227. }
  2228. static int mp_decode_frame(MPADecodeContext *s,
  2229. short *samples)
  2230. {
  2231. int i, nb_frames, ch;
  2232. short *samples_ptr;
  2233. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2234. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2235. /* skip error protection field */
  2236. if (s->error_protection)
  2237. get_bits(&s->gb, 16);
  2238. dprintf("frame %d:\n", s->frame_count);
  2239. switch(s->layer) {
  2240. case 1:
  2241. nb_frames = mp_decode_layer1(s);
  2242. break;
  2243. case 2:
  2244. nb_frames = mp_decode_layer2(s);
  2245. break;
  2246. case 3:
  2247. default:
  2248. nb_frames = mp_decode_layer3(s);
  2249. break;
  2250. }
  2251. #if defined(DEBUG)
  2252. for(i=0;i<nb_frames;i++) {
  2253. for(ch=0;ch<s->nb_channels;ch++) {
  2254. int j;
  2255. printf("%d-%d:", i, ch);
  2256. for(j=0;j<SBLIMIT;j++)
  2257. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2258. printf("\n");
  2259. }
  2260. }
  2261. #endif
  2262. /* apply the synthesis filter */
  2263. for(ch=0;ch<s->nb_channels;ch++) {
  2264. samples_ptr = samples + ch;
  2265. for(i=0;i<nb_frames;i++) {
  2266. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2267. s->sb_samples[ch][i]);
  2268. samples_ptr += 32 * s->nb_channels;
  2269. }
  2270. }
  2271. #ifdef DEBUG
  2272. s->frame_count++;
  2273. #endif
  2274. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2275. }
  2276. static int decode_frame(AVCodecContext * avctx,
  2277. void *data, int *data_size,
  2278. uint8_t * buf, int buf_size)
  2279. {
  2280. MPADecodeContext *s = avctx->priv_data;
  2281. uint32_t header;
  2282. uint8_t *buf_ptr;
  2283. int len, out_size;
  2284. short *out_samples = data;
  2285. *data_size = 0;
  2286. buf_ptr = buf;
  2287. while (buf_size > 0) {
  2288. len = s->inbuf_ptr - s->inbuf;
  2289. if (s->frame_size == 0) {
  2290. /* special case for next header for first frame in free
  2291. format case (XXX: find a simpler method) */
  2292. if (s->free_format_next_header != 0) {
  2293. s->inbuf[0] = s->free_format_next_header >> 24;
  2294. s->inbuf[1] = s->free_format_next_header >> 16;
  2295. s->inbuf[2] = s->free_format_next_header >> 8;
  2296. s->inbuf[3] = s->free_format_next_header;
  2297. s->inbuf_ptr = s->inbuf + 4;
  2298. s->free_format_next_header = 0;
  2299. goto got_header;
  2300. }
  2301. /* no header seen : find one. We need at least HEADER_SIZE
  2302. bytes to parse it */
  2303. len = HEADER_SIZE - len;
  2304. if (len > buf_size)
  2305. len = buf_size;
  2306. if (len > 0) {
  2307. memcpy(s->inbuf_ptr, buf_ptr, len);
  2308. buf_ptr += len;
  2309. buf_size -= len;
  2310. s->inbuf_ptr += len;
  2311. }
  2312. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2313. got_header:
  2314. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2315. (s->inbuf[2] << 8) | s->inbuf[3];
  2316. if (check_header(header) < 0) {
  2317. /* no sync found : move by one byte (inefficient, but simple!) */
  2318. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2319. s->inbuf_ptr--;
  2320. dprintf("skip %x\n", header);
  2321. /* reset free format frame size to give a chance
  2322. to get a new bitrate */
  2323. s->free_format_frame_size = 0;
  2324. } else {
  2325. if (decode_header(s, header) == 1) {
  2326. /* free format: prepare to compute frame size */
  2327. s->frame_size = -1;
  2328. }
  2329. /* update codec info */
  2330. avctx->sample_rate = s->sample_rate;
  2331. avctx->channels = s->nb_channels;
  2332. avctx->bit_rate = s->bit_rate;
  2333. avctx->sub_id = s->layer;
  2334. switch(s->layer) {
  2335. case 1:
  2336. avctx->frame_size = 384;
  2337. break;
  2338. case 2:
  2339. avctx->frame_size = 1152;
  2340. break;
  2341. case 3:
  2342. if (s->lsf)
  2343. avctx->frame_size = 576;
  2344. else
  2345. avctx->frame_size = 1152;
  2346. break;
  2347. }
  2348. }
  2349. }
  2350. } else if (s->frame_size == -1) {
  2351. /* free format : find next sync to compute frame size */
  2352. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2353. if (len > buf_size)
  2354. len = buf_size;
  2355. if (len == 0) {
  2356. /* frame too long: resync */
  2357. s->frame_size = 0;
  2358. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2359. s->inbuf_ptr--;
  2360. } else {
  2361. uint8_t *p, *pend;
  2362. uint32_t header1;
  2363. int padding;
  2364. memcpy(s->inbuf_ptr, buf_ptr, len);
  2365. /* check for header */
  2366. p = s->inbuf_ptr - 3;
  2367. pend = s->inbuf_ptr + len - 4;
  2368. while (p <= pend) {
  2369. header = (p[0] << 24) | (p[1] << 16) |
  2370. (p[2] << 8) | p[3];
  2371. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2372. (s->inbuf[2] << 8) | s->inbuf[3];
  2373. /* check with high probability that we have a
  2374. valid header */
  2375. if ((header & SAME_HEADER_MASK) ==
  2376. (header1 & SAME_HEADER_MASK)) {
  2377. /* header found: update pointers */
  2378. len = (p + 4) - s->inbuf_ptr;
  2379. buf_ptr += len;
  2380. buf_size -= len;
  2381. s->inbuf_ptr = p;
  2382. /* compute frame size */
  2383. s->free_format_next_header = header;
  2384. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2385. padding = (header1 >> 9) & 1;
  2386. if (s->layer == 1)
  2387. s->free_format_frame_size -= padding * 4;
  2388. else
  2389. s->free_format_frame_size -= padding;
  2390. dprintf("free frame size=%d padding=%d\n",
  2391. s->free_format_frame_size, padding);
  2392. decode_header(s, header1);
  2393. goto next_data;
  2394. }
  2395. p++;
  2396. }
  2397. /* not found: simply increase pointers */
  2398. buf_ptr += len;
  2399. s->inbuf_ptr += len;
  2400. buf_size -= len;
  2401. }
  2402. } else if (len < s->frame_size) {
  2403. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2404. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2405. len = s->frame_size - len;
  2406. if (len > buf_size)
  2407. len = buf_size;
  2408. memcpy(s->inbuf_ptr, buf_ptr, len);
  2409. buf_ptr += len;
  2410. s->inbuf_ptr += len;
  2411. buf_size -= len;
  2412. }
  2413. next_data:
  2414. if (s->frame_size > 0 &&
  2415. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2416. if (avctx->parse_only) {
  2417. /* simply return the frame data */
  2418. *(uint8_t **)data = s->inbuf;
  2419. out_size = s->inbuf_ptr - s->inbuf;
  2420. } else {
  2421. out_size = mp_decode_frame(s, out_samples);
  2422. }
  2423. s->inbuf_ptr = s->inbuf;
  2424. s->frame_size = 0;
  2425. *data_size = out_size;
  2426. break;
  2427. }
  2428. }
  2429. return buf_ptr - buf;
  2430. }
  2431. AVCodec mp2_decoder =
  2432. {
  2433. "mp2",
  2434. CODEC_TYPE_AUDIO,
  2435. CODEC_ID_MP2,
  2436. sizeof(MPADecodeContext),
  2437. decode_init,
  2438. NULL,
  2439. NULL,
  2440. decode_frame,
  2441. CODEC_CAP_PARSE_ONLY,
  2442. };
  2443. AVCodec mp3_decoder =
  2444. {
  2445. "mp3",
  2446. CODEC_TYPE_AUDIO,
  2447. CODEC_ID_MP3,
  2448. sizeof(MPADecodeContext),
  2449. decode_init,
  2450. NULL,
  2451. NULL,
  2452. decode_frame,
  2453. CODEC_CAP_PARSE_ONLY,
  2454. };