You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4933 lines
139KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  64. a complete self-contained graph, with its inputs and outputs explicitly defined.
  65. For example if your command line is of the form:
  66. @example
  67. ffmpeg -i infile -vf scale=640:360 outfile
  68. @end example
  69. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  70. @example
  71. nullsrc,scale=640:360,nullsink
  72. @end example
  73. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  74. filter in order to simulate a specific input file.
  75. @c man end GRAPH2DOT
  76. @chapter Filtergraph description
  77. @c man begin FILTERGRAPH DESCRIPTION
  78. A filtergraph is a directed graph of connected filters. It can contain
  79. cycles, and there can be multiple links between a pair of
  80. filters. Each link has one input pad on one side connecting it to one
  81. filter from which it takes its input, and one output pad on the other
  82. side connecting it to the one filter accepting its output.
  83. Each filter in a filtergraph is an instance of a filter class
  84. registered in the application, which defines the features and the
  85. number of input and output pads of the filter.
  86. A filter with no input pads is called a "source", a filter with no
  87. output pads is called a "sink".
  88. @anchor{Filtergraph syntax}
  89. @section Filtergraph syntax
  90. A filtergraph can be represented using a textual representation, which is
  91. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  92. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  93. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  94. @file{libavfilter/avfiltergraph.h}.
  95. A filterchain consists of a sequence of connected filters, each one
  96. connected to the previous one in the sequence. A filterchain is
  97. represented by a list of ","-separated filter descriptions.
  98. A filtergraph consists of a sequence of filterchains. A sequence of
  99. filterchains is represented by a list of ";"-separated filterchain
  100. descriptions.
  101. A filter is represented by a string of the form:
  102. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  103. @var{filter_name} is the name of the filter class of which the
  104. described filter is an instance of, and has to be the name of one of
  105. the filter classes registered in the program.
  106. The name of the filter class is optionally followed by a string
  107. "=@var{arguments}".
  108. @var{arguments} is a string which contains the parameters used to
  109. initialize the filter instance, and are described in the filter
  110. descriptions below.
  111. The list of arguments can be quoted using the character "'" as initial
  112. and ending mark, and the character '\' for escaping the characters
  113. within the quoted text; otherwise the argument string is considered
  114. terminated when the next special character (belonging to the set
  115. "[]=;,") is encountered.
  116. The name and arguments of the filter are optionally preceded and
  117. followed by a list of link labels.
  118. A link label allows to name a link and associate it to a filter output
  119. or input pad. The preceding labels @var{in_link_1}
  120. ... @var{in_link_N}, are associated to the filter input pads,
  121. the following labels @var{out_link_1} ... @var{out_link_M}, are
  122. associated to the output pads.
  123. When two link labels with the same name are found in the
  124. filtergraph, a link between the corresponding input and output pad is
  125. created.
  126. If an output pad is not labelled, it is linked by default to the first
  127. unlabelled input pad of the next filter in the filterchain.
  128. For example in the filterchain:
  129. @example
  130. nullsrc, split[L1], [L2]overlay, nullsink
  131. @end example
  132. the split filter instance has two output pads, and the overlay filter
  133. instance two input pads. The first output pad of split is labelled
  134. "L1", the first input pad of overlay is labelled "L2", and the second
  135. output pad of split is linked to the second input pad of overlay,
  136. which are both unlabelled.
  137. In a complete filterchain all the unlabelled filter input and output
  138. pads must be connected. A filtergraph is considered valid if all the
  139. filter input and output pads of all the filterchains are connected.
  140. Libavfilter will automatically insert scale filters where format
  141. conversion is required. It is possible to specify swscale flags
  142. for those automatically inserted scalers by prepending
  143. @code{sws_flags=@var{flags};}
  144. to the filtergraph description.
  145. Follows a BNF description for the filtergraph syntax:
  146. @example
  147. @var{NAME} ::= sequence of alphanumeric characters and '_'
  148. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  149. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  150. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  151. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  152. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  153. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  154. @end example
  155. @c man end FILTERGRAPH DESCRIPTION
  156. @chapter Audio Filters
  157. @c man begin AUDIO FILTERS
  158. When you configure your FFmpeg build, you can disable any of the
  159. existing filters using @code{--disable-filters}.
  160. The configure output will show the audio filters included in your
  161. build.
  162. Below is a description of the currently available audio filters.
  163. @section aconvert
  164. Convert the input audio format to the specified formats.
  165. The filter accepts a string of the form:
  166. "@var{sample_format}:@var{channel_layout}".
  167. @var{sample_format} specifies the sample format, and can be a string or the
  168. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  169. suffix for a planar sample format.
  170. @var{channel_layout} specifies the channel layout, and can be a string
  171. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  172. The special parameter "auto", signifies that the filter will
  173. automatically select the output format depending on the output filter.
  174. Some examples follow.
  175. @itemize
  176. @item
  177. Convert input to float, planar, stereo:
  178. @example
  179. aconvert=fltp:stereo
  180. @end example
  181. @item
  182. Convert input to unsigned 8-bit, automatically select out channel layout:
  183. @example
  184. aconvert=u8:auto
  185. @end example
  186. @end itemize
  187. @section aformat
  188. Convert the input audio to one of the specified formats. The framework will
  189. negotiate the most appropriate format to minimize conversions.
  190. The filter accepts the following named parameters:
  191. @table @option
  192. @item sample_fmts
  193. A comma-separated list of requested sample formats.
  194. @item sample_rates
  195. A comma-separated list of requested sample rates.
  196. @item channel_layouts
  197. A comma-separated list of requested channel layouts.
  198. @end table
  199. If a parameter is omitted, all values are allowed.
  200. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  201. @example
  202. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  203. @end example
  204. @section amerge
  205. Merge two or more audio streams into a single multi-channel stream.
  206. The filter accepts the following named options:
  207. @table @option
  208. @item inputs
  209. Set the number of inputs. Default is 2.
  210. @end table
  211. If the channel layouts of the inputs are disjoint, and therefore compatible,
  212. the channel layout of the output will be set accordingly and the channels
  213. will be reordered as necessary. If the channel layouts of the inputs are not
  214. disjoint, the output will have all the channels of the first input then all
  215. the channels of the second input, in that order, and the channel layout of
  216. the output will be the default value corresponding to the total number of
  217. channels.
  218. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  219. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  220. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  221. first input, b1 is the first channel of the second input).
  222. On the other hand, if both input are in stereo, the output channels will be
  223. in the default order: a1, a2, b1, b2, and the channel layout will be
  224. arbitrarily set to 4.0, which may or may not be the expected value.
  225. All inputs must have the same sample rate, and format.
  226. If inputs do not have the same duration, the output will stop with the
  227. shortest.
  228. Example: merge two mono files into a stereo stream:
  229. @example
  230. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  231. @end example
  232. Example: multiple merges:
  233. @example
  234. ffmpeg -f lavfi -i "
  235. amovie=input.mkv:si=0 [a0];
  236. amovie=input.mkv:si=1 [a1];
  237. amovie=input.mkv:si=2 [a2];
  238. amovie=input.mkv:si=3 [a3];
  239. amovie=input.mkv:si=4 [a4];
  240. amovie=input.mkv:si=5 [a5];
  241. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  242. @end example
  243. @section amix
  244. Mixes multiple audio inputs into a single output.
  245. For example
  246. @example
  247. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  248. @end example
  249. will mix 3 input audio streams to a single output with the same duration as the
  250. first input and a dropout transition time of 3 seconds.
  251. The filter accepts the following named parameters:
  252. @table @option
  253. @item inputs
  254. Number of inputs. If unspecified, it defaults to 2.
  255. @item duration
  256. How to determine the end-of-stream.
  257. @table @option
  258. @item longest
  259. Duration of longest input. (default)
  260. @item shortest
  261. Duration of shortest input.
  262. @item first
  263. Duration of first input.
  264. @end table
  265. @item dropout_transition
  266. Transition time, in seconds, for volume renormalization when an input
  267. stream ends. The default value is 2 seconds.
  268. @end table
  269. @section anull
  270. Pass the audio source unchanged to the output.
  271. @section aresample
  272. Resample the input audio to the specified sample rate.
  273. The filter accepts exactly one parameter, the output sample rate. If not
  274. specified then the filter will automatically convert between its input
  275. and output sample rates.
  276. For example, to resample the input audio to 44100Hz:
  277. @example
  278. aresample=44100
  279. @end example
  280. @section asetnsamples
  281. Set the number of samples per each output audio frame.
  282. The last output packet may contain a different number of samples, as
  283. the filter will flush all the remaining samples when the input audio
  284. signal its end.
  285. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  286. separated by ":".
  287. @table @option
  288. @item nb_out_samples, n
  289. Set the number of frames per each output audio frame. The number is
  290. intended as the number of samples @emph{per each channel}.
  291. Default value is 1024.
  292. @item pad, p
  293. If set to 1, the filter will pad the last audio frame with zeroes, so
  294. that the last frame will contain the same number of samples as the
  295. previous ones. Default value is 1.
  296. @end table
  297. For example, to set the number of per-frame samples to 1234 and
  298. disable padding for the last frame, use:
  299. @example
  300. asetnsamples=n=1234:p=0
  301. @end example
  302. @section ashowinfo
  303. Show a line containing various information for each input audio frame.
  304. The input audio is not modified.
  305. The shown line contains a sequence of key/value pairs of the form
  306. @var{key}:@var{value}.
  307. A description of each shown parameter follows:
  308. @table @option
  309. @item n
  310. sequential number of the input frame, starting from 0
  311. @item pts
  312. Presentation timestamp of the input frame, in time base units; the time base
  313. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  314. @item pts_time
  315. presentation timestamp of the input frame in seconds
  316. @item pos
  317. position of the frame in the input stream, -1 if this information in
  318. unavailable and/or meaningless (for example in case of synthetic audio)
  319. @item fmt
  320. sample format
  321. @item chlayout
  322. channel layout
  323. @item rate
  324. sample rate for the audio frame
  325. @item nb_samples
  326. number of samples (per channel) in the frame
  327. @item checksum
  328. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  329. the data is treated as if all the planes were concatenated.
  330. @item plane_checksums
  331. A list of Adler-32 checksums for each data plane.
  332. @end table
  333. @section asplit
  334. Split input audio into several identical outputs.
  335. The filter accepts a single parameter which specifies the number of outputs. If
  336. unspecified, it defaults to 2.
  337. For example:
  338. @example
  339. [in] asplit [out0][out1]
  340. @end example
  341. will create two separate outputs from the same input.
  342. To create 3 or more outputs, you need to specify the number of
  343. outputs, like in:
  344. @example
  345. [in] asplit=3 [out0][out1][out2]
  346. @end example
  347. @example
  348. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  349. @end example
  350. will create 5 copies of the input audio.
  351. @section astreamsync
  352. Forward two audio streams and control the order the buffers are forwarded.
  353. The argument to the filter is an expression deciding which stream should be
  354. forwarded next: if the result is negative, the first stream is forwarded; if
  355. the result is positive or zero, the second stream is forwarded. It can use
  356. the following variables:
  357. @table @var
  358. @item b1 b2
  359. number of buffers forwarded so far on each stream
  360. @item s1 s2
  361. number of samples forwarded so far on each stream
  362. @item t1 t2
  363. current timestamp of each stream
  364. @end table
  365. The default value is @code{t1-t2}, which means to always forward the stream
  366. that has a smaller timestamp.
  367. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  368. input, while avoiding too much of a desynchronization:
  369. @example
  370. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  371. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  372. [a2] [b2] amerge
  373. @end example
  374. @section atempo
  375. Adjust audio tempo.
  376. The filter accepts exactly one parameter, the audio tempo. If not
  377. specified then the filter will assume nominal 1.0 tempo. Tempo must
  378. be in the [0.5, 2.0] range.
  379. For example, to slow down audio to 80% tempo:
  380. @example
  381. atempo=0.8
  382. @end example
  383. For example, to speed up audio to 125% tempo:
  384. @example
  385. atempo=1.25
  386. @end example
  387. @section earwax
  388. Make audio easier to listen to on headphones.
  389. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  390. so that when listened to on headphones the stereo image is moved from
  391. inside your head (standard for headphones) to outside and in front of
  392. the listener (standard for speakers).
  393. Ported from SoX.
  394. @section pan
  395. Mix channels with specific gain levels. The filter accepts the output
  396. channel layout followed by a set of channels definitions.
  397. This filter is also designed to remap efficiently the channels of an audio
  398. stream.
  399. The filter accepts parameters of the form:
  400. "@var{l}:@var{outdef}:@var{outdef}:..."
  401. @table @option
  402. @item l
  403. output channel layout or number of channels
  404. @item outdef
  405. output channel specification, of the form:
  406. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  407. @item out_name
  408. output channel to define, either a channel name (FL, FR, etc.) or a channel
  409. number (c0, c1, etc.)
  410. @item gain
  411. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  412. @item in_name
  413. input channel to use, see out_name for details; it is not possible to mix
  414. named and numbered input channels
  415. @end table
  416. If the `=' in a channel specification is replaced by `<', then the gains for
  417. that specification will be renormalized so that the total is 1, thus
  418. avoiding clipping noise.
  419. @subsection Mixing examples
  420. For example, if you want to down-mix from stereo to mono, but with a bigger
  421. factor for the left channel:
  422. @example
  423. pan=1:c0=0.9*c0+0.1*c1
  424. @end example
  425. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  426. 7-channels surround:
  427. @example
  428. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  429. @end example
  430. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  431. that should be preferred (see "-ac" option) unless you have very specific
  432. needs.
  433. @subsection Remapping examples
  434. The channel remapping will be effective if, and only if:
  435. @itemize
  436. @item gain coefficients are zeroes or ones,
  437. @item only one input per channel output,
  438. @end itemize
  439. If all these conditions are satisfied, the filter will notify the user ("Pure
  440. channel mapping detected"), and use an optimized and lossless method to do the
  441. remapping.
  442. For example, if you have a 5.1 source and want a stereo audio stream by
  443. dropping the extra channels:
  444. @example
  445. pan="stereo: c0=FL : c1=FR"
  446. @end example
  447. Given the same source, you can also switch front left and front right channels
  448. and keep the input channel layout:
  449. @example
  450. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  451. @end example
  452. If the input is a stereo audio stream, you can mute the front left channel (and
  453. still keep the stereo channel layout) with:
  454. @example
  455. pan="stereo:c1=c1"
  456. @end example
  457. Still with a stereo audio stream input, you can copy the right channel in both
  458. front left and right:
  459. @example
  460. pan="stereo: c0=FR : c1=FR"
  461. @end example
  462. @section silencedetect
  463. Detect silence in an audio stream.
  464. This filter logs a message when it detects that the input audio volume is less
  465. or equal to a noise tolerance value for a duration greater or equal to the
  466. minimum detected noise duration.
  467. The printed times and duration are expressed in seconds.
  468. @table @option
  469. @item duration, d
  470. Set silence duration until notification (default is 2 seconds).
  471. @item noise, n
  472. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  473. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  474. @end table
  475. Detect 5 seconds of silence with -50dB noise tolerance:
  476. @example
  477. silencedetect=n=-50dB:d=5
  478. @end example
  479. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  480. tolerance in @file{silence.mp3}:
  481. @example
  482. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  483. @end example
  484. @section volume
  485. Adjust the input audio volume.
  486. The filter accepts exactly one parameter @var{vol}, which expresses
  487. how the audio volume will be increased or decreased.
  488. Output values are clipped to the maximum value.
  489. If @var{vol} is expressed as a decimal number, the output audio
  490. volume is given by the relation:
  491. @example
  492. @var{output_volume} = @var{vol} * @var{input_volume}
  493. @end example
  494. If @var{vol} is expressed as a decimal number followed by the string
  495. "dB", the value represents the requested change in decibels of the
  496. input audio power, and the output audio volume is given by the
  497. relation:
  498. @example
  499. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  500. @end example
  501. Otherwise @var{vol} is considered an expression and its evaluated
  502. value is used for computing the output audio volume according to the
  503. first relation.
  504. Default value for @var{vol} is 1.0.
  505. @subsection Examples
  506. @itemize
  507. @item
  508. Half the input audio volume:
  509. @example
  510. volume=0.5
  511. @end example
  512. The above example is equivalent to:
  513. @example
  514. volume=1/2
  515. @end example
  516. @item
  517. Decrease input audio power by 12 decibels:
  518. @example
  519. volume=-12dB
  520. @end example
  521. @end itemize
  522. @section volumedetect
  523. Detect the volume of the input video.
  524. The filter has no parameters. The input is not modified. Statistics about
  525. the volume will be printed in the log when the input stream end is reached.
  526. In particular it will show the mean volume (root mean square), maximum
  527. volume (on a per-sample basis), and the beginning of an histogram of the
  528. registered volume values (from the maximum value to a cumulated 1/1000 of
  529. the samples).
  530. All volumes are in decibels relative to the maximum PCM value.
  531. Here is an excerpt of the output:
  532. @example
  533. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  534. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  535. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  536. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  537. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  538. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  539. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  540. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  541. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  542. @end example
  543. It means that:
  544. @itemize
  545. @item
  546. The mean square energy is approximately -27 dB, or 10^-2.7.
  547. @item
  548. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  549. @item
  550. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  551. @end itemize
  552. In other words, raising the volume by +4 dB does not cause any clipping,
  553. raising it by +5 dB causes clipping for 6 samples, etc.
  554. @section asyncts
  555. Synchronize audio data with timestamps by squeezing/stretching it and/or
  556. dropping samples/adding silence when needed.
  557. The filter accepts the following named parameters:
  558. @table @option
  559. @item compensate
  560. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  561. by default. When disabled, time gaps are covered with silence.
  562. @item min_delta
  563. Minimum difference between timestamps and audio data (in seconds) to trigger
  564. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  565. this filter, try setting this parameter to 0.
  566. @item max_comp
  567. Maximum compensation in samples per second. Relevant only with compensate=1.
  568. Default value 500.
  569. @item first_pts
  570. Assume the first pts should be this value.
  571. This allows for padding/trimming at the start of stream. By default, no
  572. assumption is made about the first frame's expected pts, so no padding or
  573. trimming is done. For example, this could be set to 0 to pad the beginning with
  574. silence if an audio stream starts after the video stream.
  575. @end table
  576. @section channelsplit
  577. Split each channel in input audio stream into a separate output stream.
  578. This filter accepts the following named parameters:
  579. @table @option
  580. @item channel_layout
  581. Channel layout of the input stream. Default is "stereo".
  582. @end table
  583. For example, assuming a stereo input MP3 file
  584. @example
  585. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  586. @end example
  587. will create an output Matroska file with two audio streams, one containing only
  588. the left channel and the other the right channel.
  589. To split a 5.1 WAV file into per-channel files
  590. @example
  591. ffmpeg -i in.wav -filter_complex
  592. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  593. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  594. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  595. side_right.wav
  596. @end example
  597. @section channelmap
  598. Remap input channels to new locations.
  599. This filter accepts the following named parameters:
  600. @table @option
  601. @item channel_layout
  602. Channel layout of the output stream.
  603. @item map
  604. Map channels from input to output. The argument is a comma-separated list of
  605. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  606. @var{in_channel} form. @var{in_channel} can be either the name of the input
  607. channel (e.g. FL for front left) or its index in the input channel layout.
  608. @var{out_channel} is the name of the output channel or its index in the output
  609. channel layout. If @var{out_channel} is not given then it is implicitly an
  610. index, starting with zero and increasing by one for each mapping.
  611. @end table
  612. If no mapping is present, the filter will implicitly map input channels to
  613. output channels preserving index.
  614. For example, assuming a 5.1+downmix input MOV file
  615. @example
  616. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  617. @end example
  618. will create an output WAV file tagged as stereo from the downmix channels of
  619. the input.
  620. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  621. @example
  622. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  623. @end example
  624. @section join
  625. Join multiple input streams into one multi-channel stream.
  626. The filter accepts the following named parameters:
  627. @table @option
  628. @item inputs
  629. Number of input streams. Defaults to 2.
  630. @item channel_layout
  631. Desired output channel layout. Defaults to stereo.
  632. @item map
  633. Map channels from inputs to output. The argument is a comma-separated list of
  634. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  635. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  636. can be either the name of the input channel (e.g. FL for front left) or its
  637. index in the specified input stream. @var{out_channel} is the name of the output
  638. channel.
  639. @end table
  640. The filter will attempt to guess the mappings when those are not specified
  641. explicitly. It does so by first trying to find an unused matching input channel
  642. and if that fails it picks the first unused input channel.
  643. E.g. to join 3 inputs (with properly set channel layouts)
  644. @example
  645. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  646. @end example
  647. To build a 5.1 output from 6 single-channel streams:
  648. @example
  649. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  650. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  651. out
  652. @end example
  653. @section resample
  654. Convert the audio sample format, sample rate and channel layout. This filter is
  655. not meant to be used directly.
  656. @c man end AUDIO FILTERS
  657. @chapter Audio Sources
  658. @c man begin AUDIO SOURCES
  659. Below is a description of the currently available audio sources.
  660. @section abuffer
  661. Buffer audio frames, and make them available to the filter chain.
  662. This source is mainly intended for a programmatic use, in particular
  663. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  664. It accepts the following mandatory parameters:
  665. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  666. @table @option
  667. @item sample_rate
  668. The sample rate of the incoming audio buffers.
  669. @item sample_fmt
  670. The sample format of the incoming audio buffers.
  671. Either a sample format name or its corresponging integer representation from
  672. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  673. @item channel_layout
  674. The channel layout of the incoming audio buffers.
  675. Either a channel layout name from channel_layout_map in
  676. @file{libavutil/audioconvert.c} or its corresponding integer representation
  677. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  678. @end table
  679. For example:
  680. @example
  681. abuffer=44100:s16p:stereo
  682. @end example
  683. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  684. Since the sample format with name "s16p" corresponds to the number
  685. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  686. equivalent to:
  687. @example
  688. abuffer=44100:6:0x3
  689. @end example
  690. @section aevalsrc
  691. Generate an audio signal specified by an expression.
  692. This source accepts in input one or more expressions (one for each
  693. channel), which are evaluated and used to generate a corresponding
  694. audio signal.
  695. It accepts the syntax: @var{exprs}[::@var{options}].
  696. @var{exprs} is a list of expressions separated by ":", one for each
  697. separate channel. In case the @var{channel_layout} is not
  698. specified, the selected channel layout depends on the number of
  699. provided expressions.
  700. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  701. separated by ":".
  702. The description of the accepted options follows.
  703. @table @option
  704. @item channel_layout, c
  705. Set the channel layout. The number of channels in the specified layout
  706. must be equal to the number of specified expressions.
  707. @item duration, d
  708. Set the minimum duration of the sourced audio. See the function
  709. @code{av_parse_time()} for the accepted format.
  710. Note that the resulting duration may be greater than the specified
  711. duration, as the generated audio is always cut at the end of a
  712. complete frame.
  713. If not specified, or the expressed duration is negative, the audio is
  714. supposed to be generated forever.
  715. @item nb_samples, n
  716. Set the number of samples per channel per each output frame,
  717. default to 1024.
  718. @item sample_rate, s
  719. Specify the sample rate, default to 44100.
  720. @end table
  721. Each expression in @var{exprs} can contain the following constants:
  722. @table @option
  723. @item n
  724. number of the evaluated sample, starting from 0
  725. @item t
  726. time of the evaluated sample expressed in seconds, starting from 0
  727. @item s
  728. sample rate
  729. @end table
  730. @subsection Examples
  731. @itemize
  732. @item
  733. Generate silence:
  734. @example
  735. aevalsrc=0
  736. @end example
  737. @item
  738. Generate a sin signal with frequency of 440 Hz, set sample rate to
  739. 8000 Hz:
  740. @example
  741. aevalsrc="sin(440*2*PI*t)::s=8000"
  742. @end example
  743. @item
  744. Generate a two channels signal, specify the channel layout (Front
  745. Center + Back Center) explicitly:
  746. @example
  747. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  748. @end example
  749. @item
  750. Generate white noise:
  751. @example
  752. aevalsrc="-2+random(0)"
  753. @end example
  754. @item
  755. Generate an amplitude modulated signal:
  756. @example
  757. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  758. @end example
  759. @item
  760. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  761. @example
  762. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  763. @end example
  764. @end itemize
  765. @section anullsrc
  766. Null audio source, return unprocessed audio frames. It is mainly useful
  767. as a template and to be employed in analysis / debugging tools, or as
  768. the source for filters which ignore the input data (for example the sox
  769. synth filter).
  770. It accepts an optional sequence of @var{key}=@var{value} pairs,
  771. separated by ":".
  772. The description of the accepted options follows.
  773. @table @option
  774. @item sample_rate, s
  775. Specify the sample rate, and defaults to 44100.
  776. @item channel_layout, cl
  777. Specify the channel layout, and can be either an integer or a string
  778. representing a channel layout. The default value of @var{channel_layout}
  779. is "stereo".
  780. Check the channel_layout_map definition in
  781. @file{libavcodec/audioconvert.c} for the mapping between strings and
  782. channel layout values.
  783. @item nb_samples, n
  784. Set the number of samples per requested frames.
  785. @end table
  786. Follow some examples:
  787. @example
  788. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  789. anullsrc=r=48000:cl=4
  790. # same as
  791. anullsrc=r=48000:cl=mono
  792. @end example
  793. @section abuffer
  794. Buffer audio frames, and make them available to the filter chain.
  795. This source is not intended to be part of user-supplied graph descriptions but
  796. for insertion by calling programs through the interface defined in
  797. @file{libavfilter/buffersrc.h}.
  798. It accepts the following named parameters:
  799. @table @option
  800. @item time_base
  801. Timebase which will be used for timestamps of submitted frames. It must be
  802. either a floating-point number or in @var{numerator}/@var{denominator} form.
  803. @item sample_rate
  804. Audio sample rate.
  805. @item sample_fmt
  806. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  807. @item channel_layout
  808. Channel layout of the audio data, in the form that can be accepted by
  809. @code{av_get_channel_layout()}.
  810. @end table
  811. All the parameters need to be explicitly defined.
  812. @section flite
  813. Synthesize a voice utterance using the libflite library.
  814. To enable compilation of this filter you need to configure FFmpeg with
  815. @code{--enable-libflite}.
  816. Note that the flite library is not thread-safe.
  817. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  818. separated by ":".
  819. The description of the accepted parameters follows.
  820. @table @option
  821. @item list_voices
  822. If set to 1, list the names of the available voices and exit
  823. immediately. Default value is 0.
  824. @item nb_samples, n
  825. Set the maximum number of samples per frame. Default value is 512.
  826. @item textfile
  827. Set the filename containing the text to speak.
  828. @item text
  829. Set the text to speak.
  830. @item voice, v
  831. Set the voice to use for the speech synthesis. Default value is
  832. @code{kal}. See also the @var{list_voices} option.
  833. @end table
  834. @subsection Examples
  835. @itemize
  836. @item
  837. Read from file @file{speech.txt}, and synthetize the text using the
  838. standard flite voice:
  839. @example
  840. flite=textfile=speech.txt
  841. @end example
  842. @item
  843. Read the specified text selecting the @code{slt} voice:
  844. @example
  845. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  846. @end example
  847. @item
  848. Input text to ffmpeg:
  849. @example
  850. ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  851. @end example
  852. @item
  853. Make @file{ffplay} speak the specified text, using @code{flite} and
  854. the @code{lavfi} device:
  855. @example
  856. ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'
  857. @end example
  858. @end itemize
  859. For more information about libflite, check:
  860. @url{http://www.speech.cs.cmu.edu/flite/}
  861. @c man end AUDIO SOURCES
  862. @chapter Audio Sinks
  863. @c man begin AUDIO SINKS
  864. Below is a description of the currently available audio sinks.
  865. @section abuffersink
  866. Buffer audio frames, and make them available to the end of filter chain.
  867. This sink is mainly intended for programmatic use, in particular
  868. through the interface defined in @file{libavfilter/buffersink.h}.
  869. It requires a pointer to an AVABufferSinkContext structure, which
  870. defines the incoming buffers' formats, to be passed as the opaque
  871. parameter to @code{avfilter_init_filter} for initialization.
  872. @section anullsink
  873. Null audio sink, do absolutely nothing with the input audio. It is
  874. mainly useful as a template and to be employed in analysis / debugging
  875. tools.
  876. @section abuffersink
  877. This sink is intended for programmatic use. Frames that arrive on this sink can
  878. be retrieved by the calling program using the interface defined in
  879. @file{libavfilter/buffersink.h}.
  880. This filter accepts no parameters.
  881. @c man end AUDIO SINKS
  882. @chapter Video Filters
  883. @c man begin VIDEO FILTERS
  884. When you configure your FFmpeg build, you can disable any of the
  885. existing filters using @code{--disable-filters}.
  886. The configure output will show the video filters included in your
  887. build.
  888. Below is a description of the currently available video filters.
  889. @section alphaextract
  890. Extract the alpha component from the input as a grayscale video. This
  891. is especially useful with the @var{alphamerge} filter.
  892. @section alphamerge
  893. Add or replace the alpha component of the primary input with the
  894. grayscale value of a second input. This is intended for use with
  895. @var{alphaextract} to allow the transmission or storage of frame
  896. sequences that have alpha in a format that doesn't support an alpha
  897. channel.
  898. For example, to reconstruct full frames from a normal YUV-encoded video
  899. and a separate video created with @var{alphaextract}, you might use:
  900. @example
  901. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  902. @end example
  903. Since this filter is designed for reconstruction, it operates on frame
  904. sequences without considering timestamps, and terminates when either
  905. input reaches end of stream. This will cause problems if your encoding
  906. pipeline drops frames. If you're trying to apply an image as an
  907. overlay to a video stream, consider the @var{overlay} filter instead.
  908. @section ass
  909. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  910. using the libass library.
  911. To enable compilation of this filter you need to configure FFmpeg with
  912. @code{--enable-libass}.
  913. This filter accepts the following named options, expressed as a
  914. sequence of @var{key}=@var{value} pairs, separated by ":".
  915. @table @option
  916. @item filename, f
  917. Set the filename of the ASS file to read. It must be specified.
  918. @item original_size
  919. Specify the size of the original video, the video for which the ASS file
  920. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  921. necessary to correctly scale the fonts if the aspect ratio has been changed.
  922. @end table
  923. If the first key is not specified, it is assumed that the first value
  924. specifies the @option{filename}.
  925. For example, to render the file @file{sub.ass} on top of the input
  926. video, use the command:
  927. @example
  928. ass=sub.ass
  929. @end example
  930. which is equivalent to:
  931. @example
  932. ass=filename=sub.ass
  933. @end example
  934. @section bbox
  935. Compute the bounding box for the non-black pixels in the input frame
  936. luminance plane.
  937. This filter computes the bounding box containing all the pixels with a
  938. luminance value greater than the minimum allowed value.
  939. The parameters describing the bounding box are printed on the filter
  940. log.
  941. @section blackdetect
  942. Detect video intervals that are (almost) completely black. Can be
  943. useful to detect chapter transitions, commercials, or invalid
  944. recordings. Output lines contains the time for the start, end and
  945. duration of the detected black interval expressed in seconds.
  946. In order to display the output lines, you need to set the loglevel at
  947. least to the AV_LOG_INFO value.
  948. This filter accepts a list of options in the form of
  949. @var{key}=@var{value} pairs separated by ":". A description of the
  950. accepted options follows.
  951. @table @option
  952. @item black_min_duration, d
  953. Set the minimum detected black duration expressed in seconds. It must
  954. be a non-negative floating point number.
  955. Default value is 2.0.
  956. @item picture_black_ratio_th, pic_th
  957. Set the threshold for considering a picture "black".
  958. Express the minimum value for the ratio:
  959. @example
  960. @var{nb_black_pixels} / @var{nb_pixels}
  961. @end example
  962. for which a picture is considered black.
  963. Default value is 0.98.
  964. @item pixel_black_th, pix_th
  965. Set the threshold for considering a pixel "black".
  966. The threshold expresses the maximum pixel luminance value for which a
  967. pixel is considered "black". The provided value is scaled according to
  968. the following equation:
  969. @example
  970. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  971. @end example
  972. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  973. the input video format, the range is [0-255] for YUV full-range
  974. formats and [16-235] for YUV non full-range formats.
  975. Default value is 0.10.
  976. @end table
  977. The following example sets the maximum pixel threshold to the minimum
  978. value, and detects only black intervals of 2 or more seconds:
  979. @example
  980. blackdetect=d=2:pix_th=0.00
  981. @end example
  982. @section blackframe
  983. Detect frames that are (almost) completely black. Can be useful to
  984. detect chapter transitions or commercials. Output lines consist of
  985. the frame number of the detected frame, the percentage of blackness,
  986. the position in the file if known or -1 and the timestamp in seconds.
  987. In order to display the output lines, you need to set the loglevel at
  988. least to the AV_LOG_INFO value.
  989. The filter accepts the syntax:
  990. @example
  991. blackframe[=@var{amount}:[@var{threshold}]]
  992. @end example
  993. @var{amount} is the percentage of the pixels that have to be below the
  994. threshold, and defaults to 98.
  995. @var{threshold} is the threshold below which a pixel value is
  996. considered black, and defaults to 32.
  997. @section boxblur
  998. Apply boxblur algorithm to the input video.
  999. This filter accepts the parameters:
  1000. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  1001. Chroma and alpha parameters are optional, if not specified they default
  1002. to the corresponding values set for @var{luma_radius} and
  1003. @var{luma_power}.
  1004. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  1005. the radius in pixels of the box used for blurring the corresponding
  1006. input plane. They are expressions, and can contain the following
  1007. constants:
  1008. @table @option
  1009. @item w, h
  1010. the input width and height in pixels
  1011. @item cw, ch
  1012. the input chroma image width and height in pixels
  1013. @item hsub, vsub
  1014. horizontal and vertical chroma subsample values. For example for the
  1015. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1016. @end table
  1017. The radius must be a non-negative number, and must not be greater than
  1018. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1019. and of @code{min(cw,ch)/2} for the chroma planes.
  1020. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1021. how many times the boxblur filter is applied to the corresponding
  1022. plane.
  1023. Some examples follow:
  1024. @itemize
  1025. @item
  1026. Apply a boxblur filter with luma, chroma, and alpha radius
  1027. set to 2:
  1028. @example
  1029. boxblur=2:1
  1030. @end example
  1031. @item
  1032. Set luma radius to 2, alpha and chroma radius to 0
  1033. @example
  1034. boxblur=2:1:0:0:0:0
  1035. @end example
  1036. @item
  1037. Set luma and chroma radius to a fraction of the video dimension
  1038. @example
  1039. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1040. @end example
  1041. @end itemize
  1042. @section colormatrix
  1043. The colormatrix filter allows conversion between any of the following color
  1044. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1045. and FCC (@var{fcc}).
  1046. The syntax of the parameters is @var{source}:@var{destination}:
  1047. @example
  1048. colormatrix=bt601:smpte240m
  1049. @end example
  1050. @section copy
  1051. Copy the input source unchanged to the output. Mainly useful for
  1052. testing purposes.
  1053. @section crop
  1054. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1055. The @var{keep_aspect} parameter is optional, if specified and set to a
  1056. non-zero value will force the output display aspect ratio to be the
  1057. same of the input, by changing the output sample aspect ratio.
  1058. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1059. expressions containing the following constants:
  1060. @table @option
  1061. @item x, y
  1062. the computed values for @var{x} and @var{y}. They are evaluated for
  1063. each new frame.
  1064. @item in_w, in_h
  1065. the input width and height
  1066. @item iw, ih
  1067. same as @var{in_w} and @var{in_h}
  1068. @item out_w, out_h
  1069. the output (cropped) width and height
  1070. @item ow, oh
  1071. same as @var{out_w} and @var{out_h}
  1072. @item a
  1073. same as @var{iw} / @var{ih}
  1074. @item sar
  1075. input sample aspect ratio
  1076. @item dar
  1077. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1078. @item hsub, vsub
  1079. horizontal and vertical chroma subsample values. For example for the
  1080. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1081. @item n
  1082. the number of input frame, starting from 0
  1083. @item pos
  1084. the position in the file of the input frame, NAN if unknown
  1085. @item t
  1086. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1087. @end table
  1088. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1089. the width and height of the output (cropped) video. They are
  1090. evaluated just at the configuration of the filter.
  1091. The default value of @var{out_w} is "in_w", and the default value of
  1092. @var{out_h} is "in_h".
  1093. The expression for @var{out_w} may depend on the value of @var{out_h},
  1094. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1095. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1096. evaluated after @var{out_w} and @var{out_h}.
  1097. The @var{x} and @var{y} parameters specify the expressions for the
  1098. position of the top-left corner of the output (non-cropped) area. They
  1099. are evaluated for each frame. If the evaluated value is not valid, it
  1100. is approximated to the nearest valid value.
  1101. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1102. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1103. the center of the input image.
  1104. The expression for @var{x} may depend on @var{y}, and the expression
  1105. for @var{y} may depend on @var{x}.
  1106. Follow some examples:
  1107. @example
  1108. # crop the central input area with size 100x100
  1109. crop=100:100
  1110. # crop the central input area with size 2/3 of the input video
  1111. "crop=2/3*in_w:2/3*in_h"
  1112. # crop the input video central square
  1113. crop=in_h
  1114. # delimit the rectangle with the top-left corner placed at position
  1115. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1116. # corner of the input image.
  1117. crop=in_w-100:in_h-100:100:100
  1118. # crop 10 pixels from the left and right borders, and 20 pixels from
  1119. # the top and bottom borders
  1120. "crop=in_w-2*10:in_h-2*20"
  1121. # keep only the bottom right quarter of the input image
  1122. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1123. # crop height for getting Greek harmony
  1124. "crop=in_w:1/PHI*in_w"
  1125. # trembling effect
  1126. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1127. # erratic camera effect depending on timestamp
  1128. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1129. # set x depending on the value of y
  1130. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1131. @end example
  1132. @section cropdetect
  1133. Auto-detect crop size.
  1134. Calculate necessary cropping parameters and prints the recommended
  1135. parameters through the logging system. The detected dimensions
  1136. correspond to the non-black area of the input video.
  1137. It accepts the syntax:
  1138. @example
  1139. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1140. @end example
  1141. @table @option
  1142. @item limit
  1143. Threshold, which can be optionally specified from nothing (0) to
  1144. everything (255), defaults to 24.
  1145. @item round
  1146. Value which the width/height should be divisible by, defaults to
  1147. 16. The offset is automatically adjusted to center the video. Use 2 to
  1148. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1149. encoding to most video codecs.
  1150. @item reset
  1151. Counter that determines after how many frames cropdetect will reset
  1152. the previously detected largest video area and start over to detect
  1153. the current optimal crop area. Defaults to 0.
  1154. This can be useful when channel logos distort the video area. 0
  1155. indicates never reset and return the largest area encountered during
  1156. playback.
  1157. @end table
  1158. @section decimate
  1159. This filter drops frames that do not differ greatly from the previous
  1160. frame in order to reduce framerate. The main use of this filter is
  1161. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1162. it could in theory be used for fixing movies that were
  1163. inverse-telecined incorrectly.
  1164. It accepts the following parameters:
  1165. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1166. @table @option
  1167. @item max
  1168. Set the maximum number of consecutive frames which can be dropped (if
  1169. positive), or the minimum interval between dropped frames (if
  1170. negative). If the value is 0, the frame is dropped unregarding the
  1171. number of previous sequentially dropped frames.
  1172. Default value is 0.
  1173. @item hi, lo, frac
  1174. Set the dropping threshold values.
  1175. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1176. represent actual pixel value differences, so a threshold of 64
  1177. corresponds to 1 unit of difference for each pixel, or the same spread
  1178. out differently over the block.
  1179. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1180. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1181. meaning the whole image) differ by more than a threshold of @var{lo}.
  1182. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1183. 64*5, and default value for @var{frac} is 0.33.
  1184. @end table
  1185. @section delogo
  1186. Suppress a TV station logo by a simple interpolation of the surrounding
  1187. pixels. Just set a rectangle covering the logo and watch it disappear
  1188. (and sometimes something even uglier appear - your mileage may vary).
  1189. The filter accepts parameters as a string of the form
  1190. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1191. @var{key}=@var{value} pairs, separated by ":".
  1192. The description of the accepted parameters follows.
  1193. @table @option
  1194. @item x, y
  1195. Specify the top left corner coordinates of the logo. They must be
  1196. specified.
  1197. @item w, h
  1198. Specify the width and height of the logo to clear. They must be
  1199. specified.
  1200. @item band, t
  1201. Specify the thickness of the fuzzy edge of the rectangle (added to
  1202. @var{w} and @var{h}). The default value is 4.
  1203. @item show
  1204. When set to 1, a green rectangle is drawn on the screen to simplify
  1205. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1206. @var{band} is set to 4. The default value is 0.
  1207. @end table
  1208. Some examples follow.
  1209. @itemize
  1210. @item
  1211. Set a rectangle covering the area with top left corner coordinates 0,0
  1212. and size 100x77, setting a band of size 10:
  1213. @example
  1214. delogo=0:0:100:77:10
  1215. @end example
  1216. @item
  1217. As the previous example, but use named options:
  1218. @example
  1219. delogo=x=0:y=0:w=100:h=77:band=10
  1220. @end example
  1221. @end itemize
  1222. @section deshake
  1223. Attempt to fix small changes in horizontal and/or vertical shift. This
  1224. filter helps remove camera shake from hand-holding a camera, bumping a
  1225. tripod, moving on a vehicle, etc.
  1226. The filter accepts parameters as a string of the form
  1227. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1228. A description of the accepted parameters follows.
  1229. @table @option
  1230. @item x, y, w, h
  1231. Specify a rectangular area where to limit the search for motion
  1232. vectors.
  1233. If desired the search for motion vectors can be limited to a
  1234. rectangular area of the frame defined by its top left corner, width
  1235. and height. These parameters have the same meaning as the drawbox
  1236. filter which can be used to visualise the position of the bounding
  1237. box.
  1238. This is useful when simultaneous movement of subjects within the frame
  1239. might be confused for camera motion by the motion vector search.
  1240. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1241. then the full frame is used. This allows later options to be set
  1242. without specifying the bounding box for the motion vector search.
  1243. Default - search the whole frame.
  1244. @item rx, ry
  1245. Specify the maximum extent of movement in x and y directions in the
  1246. range 0-64 pixels. Default 16.
  1247. @item edge
  1248. Specify how to generate pixels to fill blanks at the edge of the
  1249. frame. An integer from 0 to 3 as follows:
  1250. @table @option
  1251. @item 0
  1252. Fill zeroes at blank locations
  1253. @item 1
  1254. Original image at blank locations
  1255. @item 2
  1256. Extruded edge value at blank locations
  1257. @item 3
  1258. Mirrored edge at blank locations
  1259. @end table
  1260. The default setting is mirror edge at blank locations.
  1261. @item blocksize
  1262. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1263. default 8.
  1264. @item contrast
  1265. Specify the contrast threshold for blocks. Only blocks with more than
  1266. the specified contrast (difference between darkest and lightest
  1267. pixels) will be considered. Range 1-255, default 125.
  1268. @item search
  1269. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1270. search. Default - exhaustive search.
  1271. @item filename
  1272. If set then a detailed log of the motion search is written to the
  1273. specified file.
  1274. @end table
  1275. @section drawbox
  1276. Draw a colored box on the input image.
  1277. It accepts the syntax:
  1278. @example
  1279. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1280. @end example
  1281. @table @option
  1282. @item x, y
  1283. Specify the top left corner coordinates of the box. Default to 0.
  1284. @item width, height
  1285. Specify the width and height of the box, if 0 they are interpreted as
  1286. the input width and height. Default to 0.
  1287. @item color
  1288. Specify the color of the box to write, it can be the name of a color
  1289. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1290. @end table
  1291. Follow some examples:
  1292. @example
  1293. # draw a black box around the edge of the input image
  1294. drawbox
  1295. # draw a box with color red and an opacity of 50%
  1296. drawbox=10:20:200:60:red@@0.5"
  1297. @end example
  1298. @section drawtext
  1299. Draw text string or text from specified file on top of video using the
  1300. libfreetype library.
  1301. To enable compilation of this filter you need to configure FFmpeg with
  1302. @code{--enable-libfreetype}.
  1303. The filter also recognizes strftime() sequences in the provided text
  1304. and expands them accordingly. Check the documentation of strftime().
  1305. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1306. separated by ":".
  1307. The description of the accepted parameters follows.
  1308. @table @option
  1309. @item box
  1310. Used to draw a box around text using background color.
  1311. Value should be either 1 (enable) or 0 (disable).
  1312. The default value of @var{box} is 0.
  1313. @item boxcolor
  1314. The color to be used for drawing box around text.
  1315. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1316. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1317. The default value of @var{boxcolor} is "white".
  1318. @item draw
  1319. Set an expression which specifies if the text should be drawn. If the
  1320. expression evaluates to 0, the text is not drawn. This is useful for
  1321. specifying that the text should be drawn only when specific conditions
  1322. are met.
  1323. Default value is "1".
  1324. See below for the list of accepted constants and functions.
  1325. @item fix_bounds
  1326. If true, check and fix text coords to avoid clipping.
  1327. @item fontcolor
  1328. The color to be used for drawing fonts.
  1329. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1330. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1331. The default value of @var{fontcolor} is "black".
  1332. @item fontfile
  1333. The font file to be used for drawing text. Path must be included.
  1334. This parameter is mandatory.
  1335. @item fontsize
  1336. The font size to be used for drawing text.
  1337. The default value of @var{fontsize} is 16.
  1338. @item ft_load_flags
  1339. Flags to be used for loading the fonts.
  1340. The flags map the corresponding flags supported by libfreetype, and are
  1341. a combination of the following values:
  1342. @table @var
  1343. @item default
  1344. @item no_scale
  1345. @item no_hinting
  1346. @item render
  1347. @item no_bitmap
  1348. @item vertical_layout
  1349. @item force_autohint
  1350. @item crop_bitmap
  1351. @item pedantic
  1352. @item ignore_global_advance_width
  1353. @item no_recurse
  1354. @item ignore_transform
  1355. @item monochrome
  1356. @item linear_design
  1357. @item no_autohint
  1358. @item end table
  1359. @end table
  1360. Default value is "render".
  1361. For more information consult the documentation for the FT_LOAD_*
  1362. libfreetype flags.
  1363. @item shadowcolor
  1364. The color to be used for drawing a shadow behind the drawn text. It
  1365. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1366. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1367. The default value of @var{shadowcolor} is "black".
  1368. @item shadowx, shadowy
  1369. The x and y offsets for the text shadow position with respect to the
  1370. position of the text. They can be either positive or negative
  1371. values. Default value for both is "0".
  1372. @item tabsize
  1373. The size in number of spaces to use for rendering the tab.
  1374. Default value is 4.
  1375. @item timecode
  1376. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1377. format. It can be used with or without text parameter. @var{timecode_rate}
  1378. option must be specified.
  1379. @item timecode_rate, rate, r
  1380. Set the timecode frame rate (timecode only).
  1381. @item text
  1382. The text string to be drawn. The text must be a sequence of UTF-8
  1383. encoded characters.
  1384. This parameter is mandatory if no file is specified with the parameter
  1385. @var{textfile}.
  1386. @item textfile
  1387. A text file containing text to be drawn. The text must be a sequence
  1388. of UTF-8 encoded characters.
  1389. This parameter is mandatory if no text string is specified with the
  1390. parameter @var{text}.
  1391. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1392. @item x, y
  1393. The expressions which specify the offsets where text will be drawn
  1394. within the video frame. They are relative to the top/left border of the
  1395. output image.
  1396. The default value of @var{x} and @var{y} is "0".
  1397. See below for the list of accepted constants and functions.
  1398. @end table
  1399. The parameters for @var{x} and @var{y} are expressions containing the
  1400. following constants and functions:
  1401. @table @option
  1402. @item dar
  1403. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1404. @item hsub, vsub
  1405. horizontal and vertical chroma subsample values. For example for the
  1406. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1407. @item line_h, lh
  1408. the height of each text line
  1409. @item main_h, h, H
  1410. the input height
  1411. @item main_w, w, W
  1412. the input width
  1413. @item max_glyph_a, ascent
  1414. the maximum distance from the baseline to the highest/upper grid
  1415. coordinate used to place a glyph outline point, for all the rendered
  1416. glyphs.
  1417. It is a positive value, due to the grid's orientation with the Y axis
  1418. upwards.
  1419. @item max_glyph_d, descent
  1420. the maximum distance from the baseline to the lowest grid coordinate
  1421. used to place a glyph outline point, for all the rendered glyphs.
  1422. This is a negative value, due to the grid's orientation, with the Y axis
  1423. upwards.
  1424. @item max_glyph_h
  1425. maximum glyph height, that is the maximum height for all the glyphs
  1426. contained in the rendered text, it is equivalent to @var{ascent} -
  1427. @var{descent}.
  1428. @item max_glyph_w
  1429. maximum glyph width, that is the maximum width for all the glyphs
  1430. contained in the rendered text
  1431. @item n
  1432. the number of input frame, starting from 0
  1433. @item rand(min, max)
  1434. return a random number included between @var{min} and @var{max}
  1435. @item sar
  1436. input sample aspect ratio
  1437. @item t
  1438. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1439. @item text_h, th
  1440. the height of the rendered text
  1441. @item text_w, tw
  1442. the width of the rendered text
  1443. @item x, y
  1444. the x and y offset coordinates where the text is drawn.
  1445. These parameters allow the @var{x} and @var{y} expressions to refer
  1446. each other, so you can for example specify @code{y=x/dar}.
  1447. @end table
  1448. If libavfilter was built with @code{--enable-fontconfig}, then
  1449. @option{fontfile} can be a fontconfig pattern or omitted.
  1450. Some examples follow.
  1451. @itemize
  1452. @item
  1453. Draw "Test Text" with font FreeSerif, using the default values for the
  1454. optional parameters.
  1455. @example
  1456. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1457. @end example
  1458. @item
  1459. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1460. and y=50 (counting from the top-left corner of the screen), text is
  1461. yellow with a red box around it. Both the text and the box have an
  1462. opacity of 20%.
  1463. @example
  1464. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1465. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1466. @end example
  1467. Note that the double quotes are not necessary if spaces are not used
  1468. within the parameter list.
  1469. @item
  1470. Show the text at the center of the video frame:
  1471. @example
  1472. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1473. @end example
  1474. @item
  1475. Show a text line sliding from right to left in the last row of the video
  1476. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1477. with no newlines.
  1478. @example
  1479. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1480. @end example
  1481. @item
  1482. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1483. @example
  1484. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1485. @end example
  1486. @item
  1487. Draw a single green letter "g", at the center of the input video.
  1488. The glyph baseline is placed at half screen height.
  1489. @example
  1490. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1491. @end example
  1492. @item
  1493. Show text for 1 second every 3 seconds:
  1494. @example
  1495. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\,3)\,1):text='blink'"
  1496. @end example
  1497. @item
  1498. Use fontconfig to set the font. Note that the colons need to be escaped.
  1499. @example
  1500. drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'
  1501. @end example
  1502. @end itemize
  1503. For more information about libfreetype, check:
  1504. @url{http://www.freetype.org/}.
  1505. For more information about fontconfig, check:
  1506. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1507. @section edgedetect
  1508. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1509. This filter accepts the following optional named parameters:
  1510. @table @option
  1511. @item low, high
  1512. Set low and high threshold values used by the Canny thresholding
  1513. algorithm.
  1514. The high threshold selects the "strong" edge pixels, which are then
  1515. connected through 8-connectivity with the "weak" edge pixels selected
  1516. by the low threshold.
  1517. @var{low} and @var{high} threshold values must be choosen in the range
  1518. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1519. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1520. is @code{50/255}.
  1521. @end table
  1522. Example:
  1523. @example
  1524. edgedetect=low=0.1:high=0.4
  1525. @end example
  1526. @section fade
  1527. Apply fade-in/out effect to input video.
  1528. It accepts the parameters:
  1529. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1530. @var{type} specifies if the effect type, can be either "in" for
  1531. fade-in, or "out" for a fade-out effect.
  1532. @var{start_frame} specifies the number of the start frame for starting
  1533. to apply the fade effect.
  1534. @var{nb_frames} specifies the number of frames for which the fade
  1535. effect has to last. At the end of the fade-in effect the output video
  1536. will have the same intensity as the input video, at the end of the
  1537. fade-out transition the output video will be completely black.
  1538. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1539. separated by ":". The description of the accepted options follows.
  1540. @table @option
  1541. @item type, t
  1542. See @var{type}.
  1543. @item start_frame, s
  1544. See @var{start_frame}.
  1545. @item nb_frames, n
  1546. See @var{nb_frames}.
  1547. @item alpha
  1548. If set to 1, fade only alpha channel, if one exists on the input.
  1549. Default value is 0.
  1550. @end table
  1551. A few usage examples follow, usable too as test scenarios.
  1552. @example
  1553. # fade in first 30 frames of video
  1554. fade=in:0:30
  1555. # fade out last 45 frames of a 200-frame video
  1556. fade=out:155:45
  1557. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1558. fade=in:0:25, fade=out:975:25
  1559. # make first 5 frames black, then fade in from frame 5-24
  1560. fade=in:5:20
  1561. # fade in alpha over first 25 frames of video
  1562. fade=in:0:25:alpha=1
  1563. @end example
  1564. @section fieldorder
  1565. Transform the field order of the input video.
  1566. It accepts one parameter which specifies the required field order that
  1567. the input interlaced video will be transformed to. The parameter can
  1568. assume one of the following values:
  1569. @table @option
  1570. @item 0 or bff
  1571. output bottom field first
  1572. @item 1 or tff
  1573. output top field first
  1574. @end table
  1575. Default value is "tff".
  1576. Transformation is achieved by shifting the picture content up or down
  1577. by one line, and filling the remaining line with appropriate picture content.
  1578. This method is consistent with most broadcast field order converters.
  1579. If the input video is not flagged as being interlaced, or it is already
  1580. flagged as being of the required output field order then this filter does
  1581. not alter the incoming video.
  1582. This filter is very useful when converting to or from PAL DV material,
  1583. which is bottom field first.
  1584. For example:
  1585. @example
  1586. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1587. @end example
  1588. @section fifo
  1589. Buffer input images and send them when they are requested.
  1590. This filter is mainly useful when auto-inserted by the libavfilter
  1591. framework.
  1592. The filter does not take parameters.
  1593. @section format
  1594. Convert the input video to one of the specified pixel formats.
  1595. Libavfilter will try to pick one that is supported for the input to
  1596. the next filter.
  1597. The filter accepts a list of pixel format names, separated by ":",
  1598. for example "yuv420p:monow:rgb24".
  1599. Some examples follow:
  1600. @example
  1601. # convert the input video to the format "yuv420p"
  1602. format=yuv420p
  1603. # convert the input video to any of the formats in the list
  1604. format=yuv420p:yuv444p:yuv410p
  1605. @end example
  1606. @section fps
  1607. Convert the video to specified constant framerate by duplicating or dropping
  1608. frames as necessary.
  1609. This filter accepts the following named parameters:
  1610. @table @option
  1611. @item fps
  1612. Desired output framerate.
  1613. @item round
  1614. Rounding method. The default is @code{near}.
  1615. @end table
  1616. @section framestep
  1617. Select one frame every N.
  1618. This filter accepts in input a string representing a positive
  1619. integer. Default argument is @code{1}.
  1620. @anchor{frei0r}
  1621. @section frei0r
  1622. Apply a frei0r effect to the input video.
  1623. To enable compilation of this filter you need to install the frei0r
  1624. header and configure FFmpeg with @code{--enable-frei0r}.
  1625. The filter supports the syntax:
  1626. @example
  1627. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1628. @end example
  1629. @var{filter_name} is the name to the frei0r effect to load. If the
  1630. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1631. is searched in each one of the directories specified by the colon (or
  1632. semicolon on Windows platforms) separated list in @env{FREIOR_PATH},
  1633. otherwise in the standard frei0r paths, which are in this order:
  1634. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1635. @file{/usr/lib/frei0r-1/}.
  1636. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1637. for the frei0r effect.
  1638. A frei0r effect parameter can be a boolean (whose values are specified
  1639. with "y" and "n"), a double, a color (specified by the syntax
  1640. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1641. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1642. description), a position (specified by the syntax @var{X}/@var{Y},
  1643. @var{X} and @var{Y} being float numbers) and a string.
  1644. The number and kind of parameters depend on the loaded effect. If an
  1645. effect parameter is not specified the default value is set.
  1646. Some examples follow:
  1647. @itemize
  1648. @item
  1649. Apply the distort0r effect, set the first two double parameters:
  1650. @example
  1651. frei0r=distort0r:0.5:0.01
  1652. @end example
  1653. @item
  1654. Apply the colordistance effect, takes a color as first parameter:
  1655. @example
  1656. frei0r=colordistance:0.2/0.3/0.4
  1657. frei0r=colordistance:violet
  1658. frei0r=colordistance:0x112233
  1659. @end example
  1660. @item
  1661. Apply the perspective effect, specify the top left and top right image
  1662. positions:
  1663. @example
  1664. frei0r=perspective:0.2/0.2:0.8/0.2
  1665. @end example
  1666. @end itemize
  1667. For more information see:
  1668. @url{http://frei0r.dyne.org}
  1669. @section gradfun
  1670. Fix the banding artifacts that are sometimes introduced into nearly flat
  1671. regions by truncation to 8bit color depth.
  1672. Interpolate the gradients that should go where the bands are, and
  1673. dither them.
  1674. This filter is designed for playback only. Do not use it prior to
  1675. lossy compression, because compression tends to lose the dither and
  1676. bring back the bands.
  1677. The filter takes two optional parameters, separated by ':':
  1678. @var{strength}:@var{radius}
  1679. @var{strength} is the maximum amount by which the filter will change
  1680. any one pixel. Also the threshold for detecting nearly flat
  1681. regions. Acceptable values range from .51 to 255, default value is
  1682. 1.2, out-of-range values will be clipped to the valid range.
  1683. @var{radius} is the neighborhood to fit the gradient to. A larger
  1684. radius makes for smoother gradients, but also prevents the filter from
  1685. modifying the pixels near detailed regions. Acceptable values are
  1686. 8-32, default value is 16, out-of-range values will be clipped to the
  1687. valid range.
  1688. @example
  1689. # default parameters
  1690. gradfun=1.2:16
  1691. # omitting radius
  1692. gradfun=1.2
  1693. @end example
  1694. @section hflip
  1695. Flip the input video horizontally.
  1696. For example to horizontally flip the input video with @command{ffmpeg}:
  1697. @example
  1698. ffmpeg -i in.avi -vf "hflip" out.avi
  1699. @end example
  1700. @section hqdn3d
  1701. High precision/quality 3d denoise filter. This filter aims to reduce
  1702. image noise producing smooth images and making still images really
  1703. still. It should enhance compressibility.
  1704. It accepts the following optional parameters:
  1705. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1706. @table @option
  1707. @item luma_spatial
  1708. a non-negative float number which specifies spatial luma strength,
  1709. defaults to 4.0
  1710. @item chroma_spatial
  1711. a non-negative float number which specifies spatial chroma strength,
  1712. defaults to 3.0*@var{luma_spatial}/4.0
  1713. @item luma_tmp
  1714. a float number which specifies luma temporal strength, defaults to
  1715. 6.0*@var{luma_spatial}/4.0
  1716. @item chroma_tmp
  1717. a float number which specifies chroma temporal strength, defaults to
  1718. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1719. @end table
  1720. @section hue
  1721. Modify the hue and/or the saturation of the input.
  1722. This filter accepts the following optional named options:
  1723. @table @option
  1724. @item h
  1725. Specify the hue angle as a number of degrees. It accepts a float
  1726. number or an expression, and defaults to 0.0.
  1727. @item H
  1728. Specify the hue angle as a number of degrees. It accepts a float
  1729. number or an expression, and defaults to 0.0.
  1730. @item s
  1731. Specify the saturation in the [-10,10] range. It accepts a float number and
  1732. defaults to 1.0.
  1733. @end table
  1734. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1735. following constants:
  1736. @table @option
  1737. @item n
  1738. frame count of the input frame starting from 0
  1739. @item pts
  1740. presentation timestamp of the input frame expressed in time base units
  1741. @item r
  1742. frame rate of the input video, NAN if the input frame rate is unknown
  1743. @item t
  1744. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1745. @item tb
  1746. time base of the input video
  1747. @end table
  1748. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1749. In this case @var{hue} is expressed in degrees.
  1750. Some examples follow:
  1751. @itemize
  1752. @item
  1753. Set the hue to 90 degrees and the saturation to 1.0:
  1754. @example
  1755. hue=h=90:s=1
  1756. @end example
  1757. @item
  1758. Same command but expressing the hue in radians:
  1759. @example
  1760. hue=H=PI/2:s=1
  1761. @end example
  1762. @item
  1763. Same command without named options, hue must be expressed in degrees:
  1764. @example
  1765. hue=90:1
  1766. @end example
  1767. @item
  1768. Note that "h:s" syntax does not support expressions for the values of
  1769. h and s, so the following example will issue an error:
  1770. @example
  1771. hue=PI/2:1
  1772. @end example
  1773. @item
  1774. Rotate hue and make the saturation swing between 0
  1775. and 2 over a period of 1 second:
  1776. @example
  1777. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  1778. @end example
  1779. @item
  1780. Apply a 3 seconds saturation fade-in effect starting at 0:
  1781. @example
  1782. hue="s=min(t/3\,1)"
  1783. @end example
  1784. The general fade-in expression can be written as:
  1785. @example
  1786. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  1787. @end example
  1788. @item
  1789. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  1790. @example
  1791. hue="s=max(0\, min(1\, (8-t)/3))"
  1792. @end example
  1793. The general fade-out expression can be written as:
  1794. @example
  1795. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  1796. @end example
  1797. @end itemize
  1798. @subsection Commands
  1799. This filter supports the following command:
  1800. @table @option
  1801. @item reinit
  1802. Modify the hue and/or the saturation of the input video.
  1803. The command accepts the same named options and syntax than when calling the
  1804. filter from the command-line.
  1805. If a parameter is omitted, it is kept at its current value.
  1806. @end table
  1807. @section idet
  1808. Interlaceing detect filter. This filter tries to detect if the input is
  1809. interlaced or progressive. Top or bottom field first.
  1810. @section lut, lutrgb, lutyuv
  1811. Compute a look-up table for binding each pixel component input value
  1812. to an output value, and apply it to input video.
  1813. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1814. to an RGB input video.
  1815. These filters accept in input a ":"-separated list of options, which
  1816. specify the expressions used for computing the lookup table for the
  1817. corresponding pixel component values.
  1818. The @var{lut} filter requires either YUV or RGB pixel formats in
  1819. input, and accepts the options:
  1820. @table @option
  1821. @item @var{c0} (first pixel component)
  1822. @item @var{c1} (second pixel component)
  1823. @item @var{c2} (third pixel component)
  1824. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1825. @end table
  1826. The exact component associated to each option depends on the format in
  1827. input.
  1828. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1829. accepts the options:
  1830. @table @option
  1831. @item @var{r} (red component)
  1832. @item @var{g} (green component)
  1833. @item @var{b} (blue component)
  1834. @item @var{a} (alpha component)
  1835. @end table
  1836. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1837. accepts the options:
  1838. @table @option
  1839. @item @var{y} (Y/luminance component)
  1840. @item @var{u} (U/Cb component)
  1841. @item @var{v} (V/Cr component)
  1842. @item @var{a} (alpha component)
  1843. @end table
  1844. The expressions can contain the following constants and functions:
  1845. @table @option
  1846. @item w, h
  1847. the input width and height
  1848. @item val
  1849. input value for the pixel component
  1850. @item clipval
  1851. the input value clipped in the @var{minval}-@var{maxval} range
  1852. @item maxval
  1853. maximum value for the pixel component
  1854. @item minval
  1855. minimum value for the pixel component
  1856. @item negval
  1857. the negated value for the pixel component value clipped in the
  1858. @var{minval}-@var{maxval} range , it corresponds to the expression
  1859. "maxval-clipval+minval"
  1860. @item clip(val)
  1861. the computed value in @var{val} clipped in the
  1862. @var{minval}-@var{maxval} range
  1863. @item gammaval(gamma)
  1864. the computed gamma correction value of the pixel component value
  1865. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1866. expression
  1867. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1868. @end table
  1869. All expressions default to "val".
  1870. Some examples follow:
  1871. @example
  1872. # negate input video
  1873. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1874. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1875. # the above is the same as
  1876. lutrgb="r=negval:g=negval:b=negval"
  1877. lutyuv="y=negval:u=negval:v=negval"
  1878. # negate luminance
  1879. lutyuv=y=negval
  1880. # remove chroma components, turns the video into a graytone image
  1881. lutyuv="u=128:v=128"
  1882. # apply a luma burning effect
  1883. lutyuv="y=2*val"
  1884. # remove green and blue components
  1885. lutrgb="g=0:b=0"
  1886. # set a constant alpha channel value on input
  1887. format=rgba,lutrgb=a="maxval-minval/2"
  1888. # correct luminance gamma by a 0.5 factor
  1889. lutyuv=y=gammaval(0.5)
  1890. @end example
  1891. @section mp
  1892. Apply an MPlayer filter to the input video.
  1893. This filter provides a wrapper around most of the filters of
  1894. MPlayer/MEncoder.
  1895. This wrapper is considered experimental. Some of the wrapped filters
  1896. may not work properly and we may drop support for them, as they will
  1897. be implemented natively into FFmpeg. Thus you should avoid
  1898. depending on them when writing portable scripts.
  1899. The filters accepts the parameters:
  1900. @var{filter_name}[:=]@var{filter_params}
  1901. @var{filter_name} is the name of a supported MPlayer filter,
  1902. @var{filter_params} is a string containing the parameters accepted by
  1903. the named filter.
  1904. The list of the currently supported filters follows:
  1905. @table @var
  1906. @item denoise3d
  1907. @item detc
  1908. @item dint
  1909. @item divtc
  1910. @item down3dright
  1911. @item dsize
  1912. @item eq2
  1913. @item eq
  1914. @item field
  1915. @item fil
  1916. @item fixpts
  1917. @item fspp
  1918. @item geq
  1919. @item harddup
  1920. @item hqdn3d
  1921. @item il
  1922. @item ilpack
  1923. @item ivtc
  1924. @item kerndeint
  1925. @item mcdeint
  1926. @item noise
  1927. @item ow
  1928. @item perspective
  1929. @item phase
  1930. @item pp7
  1931. @item pullup
  1932. @item qp
  1933. @item rectangle
  1934. @item sab
  1935. @item softpulldown
  1936. @item softskip
  1937. @item spp
  1938. @item telecine
  1939. @item tile
  1940. @item tinterlace
  1941. @item unsharp
  1942. @item uspp
  1943. @end table
  1944. The parameter syntax and behavior for the listed filters are the same
  1945. of the corresponding MPlayer filters. For detailed instructions check
  1946. the "VIDEO FILTERS" section in the MPlayer manual.
  1947. Some examples follow:
  1948. @itemize
  1949. @item
  1950. Adjust gamma, brightness, contrast:
  1951. @example
  1952. mp=eq2=1.0:2:0.5
  1953. @end example
  1954. @item
  1955. Add temporal noise to input video:
  1956. @example
  1957. mp=noise=20t
  1958. @end example
  1959. @end itemize
  1960. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1961. @section negate
  1962. Negate input video.
  1963. This filter accepts an integer in input, if non-zero it negates the
  1964. alpha component (if available). The default value in input is 0.
  1965. @section noformat
  1966. Force libavfilter not to use any of the specified pixel formats for the
  1967. input to the next filter.
  1968. The filter accepts a list of pixel format names, separated by ":",
  1969. for example "yuv420p:monow:rgb24".
  1970. Some examples follow:
  1971. @example
  1972. # force libavfilter to use a format different from "yuv420p" for the
  1973. # input to the vflip filter
  1974. noformat=yuv420p,vflip
  1975. # convert the input video to any of the formats not contained in the list
  1976. noformat=yuv420p:yuv444p:yuv410p
  1977. @end example
  1978. @section null
  1979. Pass the video source unchanged to the output.
  1980. @section ocv
  1981. Apply video transform using libopencv.
  1982. To enable this filter install libopencv library and headers and
  1983. configure FFmpeg with @code{--enable-libopencv}.
  1984. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1985. @var{filter_name} is the name of the libopencv filter to apply.
  1986. @var{filter_params} specifies the parameters to pass to the libopencv
  1987. filter. If not specified the default values are assumed.
  1988. Refer to the official libopencv documentation for more precise
  1989. information:
  1990. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1991. Follows the list of supported libopencv filters.
  1992. @anchor{dilate}
  1993. @subsection dilate
  1994. Dilate an image by using a specific structuring element.
  1995. This filter corresponds to the libopencv function @code{cvDilate}.
  1996. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1997. @var{struct_el} represents a structuring element, and has the syntax:
  1998. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1999. @var{cols} and @var{rows} represent the number of columns and rows of
  2000. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  2001. point, and @var{shape} the shape for the structuring element, and
  2002. can be one of the values "rect", "cross", "ellipse", "custom".
  2003. If the value for @var{shape} is "custom", it must be followed by a
  2004. string of the form "=@var{filename}". The file with name
  2005. @var{filename} is assumed to represent a binary image, with each
  2006. printable character corresponding to a bright pixel. When a custom
  2007. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2008. or columns and rows of the read file are assumed instead.
  2009. The default value for @var{struct_el} is "3x3+0x0/rect".
  2010. @var{nb_iterations} specifies the number of times the transform is
  2011. applied to the image, and defaults to 1.
  2012. Follow some example:
  2013. @example
  2014. # use the default values
  2015. ocv=dilate
  2016. # dilate using a structuring element with a 5x5 cross, iterate two times
  2017. ocv=dilate=5x5+2x2/cross:2
  2018. # read the shape from the file diamond.shape, iterate two times
  2019. # the file diamond.shape may contain a pattern of characters like this:
  2020. # *
  2021. # ***
  2022. # *****
  2023. # ***
  2024. # *
  2025. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2026. ocv=0x0+2x2/custom=diamond.shape:2
  2027. @end example
  2028. @subsection erode
  2029. Erode an image by using a specific structuring element.
  2030. This filter corresponds to the libopencv function @code{cvErode}.
  2031. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2032. with the same syntax and semantics as the @ref{dilate} filter.
  2033. @subsection smooth
  2034. Smooth the input video.
  2035. The filter takes the following parameters:
  2036. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2037. @var{type} is the type of smooth filter to apply, and can be one of
  2038. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2039. "bilateral". The default value is "gaussian".
  2040. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2041. parameters whose meanings depend on smooth type. @var{param1} and
  2042. @var{param2} accept integer positive values or 0, @var{param3} and
  2043. @var{param4} accept float values.
  2044. The default value for @var{param1} is 3, the default value for the
  2045. other parameters is 0.
  2046. These parameters correspond to the parameters assigned to the
  2047. libopencv function @code{cvSmooth}.
  2048. @anchor{overlay}
  2049. @section overlay
  2050. Overlay one video on top of another.
  2051. It takes two inputs and one output, the first input is the "main"
  2052. video on which the second input is overlayed.
  2053. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2054. @var{x} is the x coordinate of the overlayed video on the main video,
  2055. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2056. the following parameters:
  2057. @table @option
  2058. @item main_w, main_h
  2059. main input width and height
  2060. @item W, H
  2061. same as @var{main_w} and @var{main_h}
  2062. @item overlay_w, overlay_h
  2063. overlay input width and height
  2064. @item w, h
  2065. same as @var{overlay_w} and @var{overlay_h}
  2066. @end table
  2067. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2068. separated by ":".
  2069. The description of the accepted options follows.
  2070. @table @option
  2071. @item rgb
  2072. If set to 1, force the filter to accept inputs in the RGB
  2073. color space. Default value is 0.
  2074. @end table
  2075. Be aware that frames are taken from each input video in timestamp
  2076. order, hence, if their initial timestamps differ, it is a a good idea
  2077. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2078. have them begin in the same zero timestamp, as it does the example for
  2079. the @var{movie} filter.
  2080. Follow some examples:
  2081. @example
  2082. # draw the overlay at 10 pixels from the bottom right
  2083. # corner of the main video.
  2084. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2085. # insert a transparent PNG logo in the bottom left corner of the input
  2086. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2087. # insert 2 different transparent PNG logos (second logo on bottom
  2088. # right corner):
  2089. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2090. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2091. # add a transparent color layer on top of the main video,
  2092. # WxH specifies the size of the main input to the overlay filter
  2093. color=red@@.3:WxH [over]; [in][over] overlay [out]
  2094. # play an original video and a filtered version (here with the deshake filter)
  2095. # side by side
  2096. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2097. # the previous example is the same as:
  2098. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2099. @end example
  2100. You can chain together more overlays but the efficiency of such
  2101. approach is yet to be tested.
  2102. @section pad
  2103. Add paddings to the input image, and places the original input at the
  2104. given coordinates @var{x}, @var{y}.
  2105. It accepts the following parameters:
  2106. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2107. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2108. expressions containing the following constants:
  2109. @table @option
  2110. @item in_w, in_h
  2111. the input video width and height
  2112. @item iw, ih
  2113. same as @var{in_w} and @var{in_h}
  2114. @item out_w, out_h
  2115. the output width and height, that is the size of the padded area as
  2116. specified by the @var{width} and @var{height} expressions
  2117. @item ow, oh
  2118. same as @var{out_w} and @var{out_h}
  2119. @item x, y
  2120. x and y offsets as specified by the @var{x} and @var{y}
  2121. expressions, or NAN if not yet specified
  2122. @item a
  2123. same as @var{iw} / @var{ih}
  2124. @item sar
  2125. input sample aspect ratio
  2126. @item dar
  2127. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2128. @item hsub, vsub
  2129. horizontal and vertical chroma subsample values. For example for the
  2130. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2131. @end table
  2132. Follows the description of the accepted parameters.
  2133. @table @option
  2134. @item width, height
  2135. Specify the size of the output image with the paddings added. If the
  2136. value for @var{width} or @var{height} is 0, the corresponding input size
  2137. is used for the output.
  2138. The @var{width} expression can reference the value set by the
  2139. @var{height} expression, and vice versa.
  2140. The default value of @var{width} and @var{height} is 0.
  2141. @item x, y
  2142. Specify the offsets where to place the input image in the padded area
  2143. with respect to the top/left border of the output image.
  2144. The @var{x} expression can reference the value set by the @var{y}
  2145. expression, and vice versa.
  2146. The default value of @var{x} and @var{y} is 0.
  2147. @item color
  2148. Specify the color of the padded area, it can be the name of a color
  2149. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2150. The default value of @var{color} is "black".
  2151. @end table
  2152. @subsection Examples
  2153. @itemize
  2154. @item
  2155. Add paddings with color "violet" to the input video. Output video
  2156. size is 640x480, the top-left corner of the input video is placed at
  2157. column 0, row 40:
  2158. @example
  2159. pad=640:480:0:40:violet
  2160. @end example
  2161. @item
  2162. Pad the input to get an output with dimensions increased by 3/2,
  2163. and put the input video at the center of the padded area:
  2164. @example
  2165. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2166. @end example
  2167. @item
  2168. Pad the input to get a squared output with size equal to the maximum
  2169. value between the input width and height, and put the input video at
  2170. the center of the padded area:
  2171. @example
  2172. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2173. @end example
  2174. @item
  2175. Pad the input to get a final w/h ratio of 16:9:
  2176. @example
  2177. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2178. @end example
  2179. @item
  2180. In case of anamorphic video, in order to set the output display aspect
  2181. correctly, it is necessary to use @var{sar} in the expression,
  2182. according to the relation:
  2183. @example
  2184. (ih * X / ih) * sar = output_dar
  2185. X = output_dar / sar
  2186. @end example
  2187. Thus the previous example needs to be modified to:
  2188. @example
  2189. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2190. @end example
  2191. @item
  2192. Double output size and put the input video in the bottom-right
  2193. corner of the output padded area:
  2194. @example
  2195. pad="2*iw:2*ih:ow-iw:oh-ih"
  2196. @end example
  2197. @end itemize
  2198. @section pixdesctest
  2199. Pixel format descriptor test filter, mainly useful for internal
  2200. testing. The output video should be equal to the input video.
  2201. For example:
  2202. @example
  2203. format=monow, pixdesctest
  2204. @end example
  2205. can be used to test the monowhite pixel format descriptor definition.
  2206. @section removelogo
  2207. Suppress a TV station logo, using an image file to determine which
  2208. pixels comprise the logo. It works by filling in the pixels that
  2209. comprise the logo with neighboring pixels.
  2210. This filter requires one argument which specifies the filter bitmap
  2211. file, which can be any image format supported by libavformat. The
  2212. width and height of the image file must match those of the video
  2213. stream being processed.
  2214. Pixels in the provided bitmap image with a value of zero are not
  2215. considered part of the logo, non-zero pixels are considered part of
  2216. the logo. If you use white (255) for the logo and black (0) for the
  2217. rest, you will be safe. For making the filter bitmap, it is
  2218. recommended to take a screen capture of a black frame with the logo
  2219. visible, and then using a threshold filter followed by the erode
  2220. filter once or twice.
  2221. If needed, little splotches can be fixed manually. Remember that if
  2222. logo pixels are not covered, the filter quality will be much
  2223. reduced. Marking too many pixels as part of the logo does not hurt as
  2224. much, but it will increase the amount of blurring needed to cover over
  2225. the image and will destroy more information than necessary, and extra
  2226. pixels will slow things down on a large logo.
  2227. @section scale
  2228. Scale (resize) the input video, using the libswscale library.
  2229. The scale filter forces the output display aspect ratio to be the same
  2230. of the input, by changing the output sample aspect ratio.
  2231. This filter accepts a list of named options in the form of
  2232. @var{key}=@var{value} pairs separated by ":". If the key for the first
  2233. two options is not specified, the assumed keys for the first two
  2234. values are @code{w} and @code{h}. If the first option has no key and
  2235. can be interpreted like a video size specification, it will be used
  2236. to set the video size.
  2237. A description of the accepted options follows.
  2238. @table @option
  2239. @item width, w
  2240. Set the video width expression, default value is @code{iw}. See below
  2241. for the list of accepted constants.
  2242. @item height, h
  2243. Set the video heiht expression, default value is @code{ih}.
  2244. See below for the list of accepted constants.
  2245. @item interl
  2246. Set the interlacing. It accepts the following values:
  2247. @table @option
  2248. @item 1
  2249. force interlaced aware scaling
  2250. @item 0
  2251. do not apply interlaced scaling
  2252. @item -1
  2253. select interlaced aware scaling depending on whether the source frames
  2254. are flagged as interlaced or not
  2255. @end table
  2256. Default value is @code{0}.
  2257. @item flags
  2258. Set libswscale scaling flags. If not explictly specified the filter
  2259. applies a bilinear scaling algorithm.
  2260. @item size, s
  2261. Set the video size, the value must be a valid abbreviation or in the
  2262. form @var{width}x@var{height}.
  2263. @end table
  2264. The values of the @var{w} and @var{h} options are expressions
  2265. containing the following constants:
  2266. @table @option
  2267. @item in_w, in_h
  2268. the input width and height
  2269. @item iw, ih
  2270. same as @var{in_w} and @var{in_h}
  2271. @item out_w, out_h
  2272. the output (cropped) width and height
  2273. @item ow, oh
  2274. same as @var{out_w} and @var{out_h}
  2275. @item a
  2276. same as @var{iw} / @var{ih}
  2277. @item sar
  2278. input sample aspect ratio
  2279. @item dar
  2280. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2281. @item hsub, vsub
  2282. horizontal and vertical chroma subsample values. For example for the
  2283. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2284. @end table
  2285. If the input image format is different from the format requested by
  2286. the next filter, the scale filter will convert the input to the
  2287. requested format.
  2288. If the value for @var{width} or @var{height} is 0, the respective input
  2289. size is used for the output.
  2290. If the value for @var{width} or @var{height} is -1, the scale filter will
  2291. use, for the respective output size, a value that maintains the aspect
  2292. ratio of the input image.
  2293. @subsection Examples
  2294. @itemize
  2295. @item
  2296. Scale the input video to a size of 200x100:
  2297. @example
  2298. scale=200:100
  2299. @end example
  2300. This is equivalent to:
  2301. @example
  2302. scale=w=200:h=100
  2303. @end example
  2304. or:
  2305. @example
  2306. scale=200x100
  2307. @end example
  2308. @item
  2309. Specify a size abbreviation for the output size:
  2310. @example
  2311. scale=qcif
  2312. @end example
  2313. which can also be written as:
  2314. @example
  2315. scale=size=qcif
  2316. @end example
  2317. @item
  2318. Scale the input to 2x:
  2319. @example
  2320. scale=2*iw:2*ih
  2321. @end example
  2322. @item
  2323. The above is the same as:
  2324. @example
  2325. scale=2*in_w:2*in_h
  2326. @end example
  2327. @item
  2328. Scale the input to 2x with forced interlaced scaling:
  2329. @example
  2330. scale=2*iw:2*ih:interl=1
  2331. @end example
  2332. @item
  2333. Scale the input to half size:
  2334. @example
  2335. scale=iw/2:ih/2
  2336. @end example
  2337. @item
  2338. Increase the width, and set the height to the same size:
  2339. @example
  2340. scale=3/2*iw:ow
  2341. @end example
  2342. @item
  2343. Seek for Greek harmony:
  2344. @example
  2345. scale=iw:1/PHI*iw
  2346. scale=ih*PHI:ih
  2347. @end example
  2348. @item
  2349. Increase the height, and set the width to 3/2 of the height:
  2350. @example
  2351. scale=3/2*oh:3/5*ih
  2352. @end example
  2353. @item
  2354. Increase the size, but make the size a multiple of the chroma:
  2355. @example
  2356. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2357. @end example
  2358. @item
  2359. Increase the width to a maximum of 500 pixels, keep the same input
  2360. aspect ratio:
  2361. @example
  2362. scale='min(500\, iw*3/2):-1'
  2363. @end example
  2364. @end itemize
  2365. @section select
  2366. Select frames to pass in output.
  2367. It accepts in input an expression, which is evaluated for each input
  2368. frame. If the expression is evaluated to a non-zero value, the frame
  2369. is selected and passed to the output, otherwise it is discarded.
  2370. The expression can contain the following constants:
  2371. @table @option
  2372. @item n
  2373. the sequential number of the filtered frame, starting from 0
  2374. @item selected_n
  2375. the sequential number of the selected frame, starting from 0
  2376. @item prev_selected_n
  2377. the sequential number of the last selected frame, NAN if undefined
  2378. @item TB
  2379. timebase of the input timestamps
  2380. @item pts
  2381. the PTS (Presentation TimeStamp) of the filtered video frame,
  2382. expressed in @var{TB} units, NAN if undefined
  2383. @item t
  2384. the PTS (Presentation TimeStamp) of the filtered video frame,
  2385. expressed in seconds, NAN if undefined
  2386. @item prev_pts
  2387. the PTS of the previously filtered video frame, NAN if undefined
  2388. @item prev_selected_pts
  2389. the PTS of the last previously filtered video frame, NAN if undefined
  2390. @item prev_selected_t
  2391. the PTS of the last previously selected video frame, NAN if undefined
  2392. @item start_pts
  2393. the PTS of the first video frame in the video, NAN if undefined
  2394. @item start_t
  2395. the time of the first video frame in the video, NAN if undefined
  2396. @item pict_type
  2397. the type of the filtered frame, can assume one of the following
  2398. values:
  2399. @table @option
  2400. @item I
  2401. @item P
  2402. @item B
  2403. @item S
  2404. @item SI
  2405. @item SP
  2406. @item BI
  2407. @end table
  2408. @item interlace_type
  2409. the frame interlace type, can assume one of the following values:
  2410. @table @option
  2411. @item PROGRESSIVE
  2412. the frame is progressive (not interlaced)
  2413. @item TOPFIRST
  2414. the frame is top-field-first
  2415. @item BOTTOMFIRST
  2416. the frame is bottom-field-first
  2417. @end table
  2418. @item key
  2419. 1 if the filtered frame is a key-frame, 0 otherwise
  2420. @item pos
  2421. the position in the file of the filtered frame, -1 if the information
  2422. is not available (e.g. for synthetic video)
  2423. @item scene
  2424. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2425. probability for the current frame to introduce a new scene, while a higher
  2426. value means the current frame is more likely to be one (see the example below)
  2427. @end table
  2428. The default value of the select expression is "1".
  2429. Some examples follow:
  2430. @example
  2431. # select all frames in input
  2432. select
  2433. # the above is the same as:
  2434. select=1
  2435. # skip all frames:
  2436. select=0
  2437. # select only I-frames
  2438. select='eq(pict_type\,I)'
  2439. # select one frame every 100
  2440. select='not(mod(n\,100))'
  2441. # select only frames contained in the 10-20 time interval
  2442. select='gte(t\,10)*lte(t\,20)'
  2443. # select only I frames contained in the 10-20 time interval
  2444. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2445. # select frames with a minimum distance of 10 seconds
  2446. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2447. @end example
  2448. Complete example to create a mosaic of the first scenes:
  2449. @example
  2450. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2451. @end example
  2452. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2453. choice.
  2454. @section setdar, setsar
  2455. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2456. output video.
  2457. This is done by changing the specified Sample (aka Pixel) Aspect
  2458. Ratio, according to the following equation:
  2459. @example
  2460. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2461. @end example
  2462. Keep in mind that the @code{setdar} filter does not modify the pixel
  2463. dimensions of the video frame. Also the display aspect ratio set by
  2464. this filter may be changed by later filters in the filterchain,
  2465. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2466. applied.
  2467. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2468. the filter output video.
  2469. Note that as a consequence of the application of this filter, the
  2470. output display aspect ratio will change according to the equation
  2471. above.
  2472. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2473. filter may be changed by later filters in the filterchain, e.g. if
  2474. another "setsar" or a "setdar" filter is applied.
  2475. The @code{setdar} and @code{setsar} filters accept a string in the
  2476. form @var{num}:@var{den} expressing an aspect ratio, or the following
  2477. named options, expressed as a sequence of @var{key}=@var{value} pairs,
  2478. separated by ":".
  2479. @table @option
  2480. @item max
  2481. Set the maximum integer value to use for expressing numerator and
  2482. denominator when reducing the expressed aspect ratio to a rational.
  2483. Default value is @code{100}.
  2484. @item r, ratio:
  2485. Set the aspect ratio used by the filter.
  2486. The parameter can be a floating point number string, an expression, or
  2487. a string of the form @var{num}:@var{den}, where @var{num} and
  2488. @var{den} are the numerator and denominator of the aspect ratio. If
  2489. the parameter is not specified, it is assumed the value "0".
  2490. In case the form "@var{num}:@var{den}" the @code{:} character should
  2491. be escaped.
  2492. @end table
  2493. If the keys are omitted in the named options list, the specifed values
  2494. are assumed to be @var{ratio} and @var{max} in that order.
  2495. For example to change the display aspect ratio to 16:9, specify:
  2496. @example
  2497. setdar='16:9'
  2498. @end example
  2499. The example above is equivalent to:
  2500. @example
  2501. setdar=1.77777
  2502. @end example
  2503. To change the sample aspect ratio to 10:11, specify:
  2504. @example
  2505. setsar='10:11'
  2506. @end example
  2507. To set a display aspect ratio of 16:9, and specify a maximum integer value of
  2508. 1000 in the aspect ratio reduction, use the command:
  2509. @example
  2510. setdar=ratio='16:9':max=1000
  2511. @end example
  2512. @section setfield
  2513. Force field for the output video frame.
  2514. The @code{setfield} filter marks the interlace type field for the
  2515. output frames. It does not change the input frame, but only sets the
  2516. corresponding property, which affects how the frame is treated by
  2517. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2518. It accepts a string parameter, which can assume the following values:
  2519. @table @samp
  2520. @item auto
  2521. Keep the same field property.
  2522. @item bff
  2523. Mark the frame as bottom-field-first.
  2524. @item tff
  2525. Mark the frame as top-field-first.
  2526. @item prog
  2527. Mark the frame as progressive.
  2528. @end table
  2529. @section showinfo
  2530. Show a line containing various information for each input video frame.
  2531. The input video is not modified.
  2532. The shown line contains a sequence of key/value pairs of the form
  2533. @var{key}:@var{value}.
  2534. A description of each shown parameter follows:
  2535. @table @option
  2536. @item n
  2537. sequential number of the input frame, starting from 0
  2538. @item pts
  2539. Presentation TimeStamp of the input frame, expressed as a number of
  2540. time base units. The time base unit depends on the filter input pad.
  2541. @item pts_time
  2542. Presentation TimeStamp of the input frame, expressed as a number of
  2543. seconds
  2544. @item pos
  2545. position of the frame in the input stream, -1 if this information in
  2546. unavailable and/or meaningless (for example in case of synthetic video)
  2547. @item fmt
  2548. pixel format name
  2549. @item sar
  2550. sample aspect ratio of the input frame, expressed in the form
  2551. @var{num}/@var{den}
  2552. @item s
  2553. size of the input frame, expressed in the form
  2554. @var{width}x@var{height}
  2555. @item i
  2556. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2557. for bottom field first)
  2558. @item iskey
  2559. 1 if the frame is a key frame, 0 otherwise
  2560. @item type
  2561. picture type of the input frame ("I" for an I-frame, "P" for a
  2562. P-frame, "B" for a B-frame, "?" for unknown type).
  2563. Check also the documentation of the @code{AVPictureType} enum and of
  2564. the @code{av_get_picture_type_char} function defined in
  2565. @file{libavutil/avutil.h}.
  2566. @item checksum
  2567. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2568. @item plane_checksum
  2569. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2570. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2571. @end table
  2572. @section slicify
  2573. Pass the images of input video on to next video filter as multiple
  2574. slices.
  2575. @example
  2576. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2577. @end example
  2578. The filter accepts the slice height as parameter. If the parameter is
  2579. not specified it will use the default value of 16.
  2580. Adding this in the beginning of filter chains should make filtering
  2581. faster due to better use of the memory cache.
  2582. @section smartblur
  2583. Blur the input video without impacting the outlines.
  2584. The filter accepts the following parameters:
  2585. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2586. Parameters prefixed by @var{luma} indicate that they work on the
  2587. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2588. refer to the chrominance of the pixels.
  2589. If the chroma parameters are not set, the luma parameters are used for
  2590. either the luminance and the chrominance of the pixels.
  2591. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2592. range [0.1,5.0] that specifies the variance of the gaussian filter
  2593. used to blur the image (slower if larger).
  2594. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2595. the range [-1.0,1.0] that configures the blurring. A value included in
  2596. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2597. will sharpen the image.
  2598. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2599. the range [-30,30] that is used as a coefficient to determine whether
  2600. a pixel should be blurred or not. A value of 0 will filter all the
  2601. image, a value included in [0,30] will filter flat areas and a value
  2602. included in [-30,0] will filter edges.
  2603. @section split
  2604. Split input video into several identical outputs.
  2605. The filter accepts a single parameter which specifies the number of outputs. If
  2606. unspecified, it defaults to 2.
  2607. For example
  2608. @example
  2609. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2610. @end example
  2611. will create 5 copies of the input video.
  2612. For example:
  2613. @example
  2614. [in] split [splitout1][splitout2];
  2615. [splitout1] crop=100:100:0:0 [cropout];
  2616. [splitout2] pad=200:200:100:100 [padout];
  2617. @end example
  2618. will create two separate outputs from the same input, one cropped and
  2619. one padded.
  2620. @section super2xsai
  2621. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2622. Interpolate) pixel art scaling algorithm.
  2623. Useful for enlarging pixel art images without reducing sharpness.
  2624. @section swapuv
  2625. Swap U & V plane.
  2626. @section thumbnail
  2627. Select the most representative frame in a given sequence of consecutive frames.
  2628. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2629. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2630. the next batch of @var{N} frames until the end.
  2631. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2632. value will result in a higher memory usage, so a high value is not recommended.
  2633. The following example extract one picture each 50 frames:
  2634. @example
  2635. thumbnail=50
  2636. @end example
  2637. Complete example of a thumbnail creation with @command{ffmpeg}:
  2638. @example
  2639. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2640. @end example
  2641. @section tile
  2642. Tile several successive frames together.
  2643. It accepts as argument the tile size (i.e. the number of lines and columns)
  2644. in the form "@var{w}x@var{h}".
  2645. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2646. nokey}) in a movie:
  2647. @example
  2648. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2649. @end example
  2650. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2651. duplicating each output frame to accomodate the originally detected frame
  2652. rate.
  2653. @section tinterlace
  2654. Perform various types of temporal field interlacing.
  2655. Frames are counted starting from 1, so the first input frame is
  2656. considered odd.
  2657. This filter accepts a single parameter specifying the mode. Available
  2658. modes are:
  2659. @table @samp
  2660. @item merge, 0
  2661. Move odd frames into the upper field, even into the lower field,
  2662. generating a double height frame at half framerate.
  2663. @item drop_odd, 1
  2664. Only output even frames, odd frames are dropped, generating a frame with
  2665. unchanged height at half framerate.
  2666. @item drop_even, 2
  2667. Only output odd frames, even frames are dropped, generating a frame with
  2668. unchanged height at half framerate.
  2669. @item pad, 3
  2670. Expand each frame to full height, but pad alternate lines with black,
  2671. generating a frame with double height at the same input framerate.
  2672. @item interleave_top, 4
  2673. Interleave the upper field from odd frames with the lower field from
  2674. even frames, generating a frame with unchanged height at half framerate.
  2675. @item interleave_bottom, 5
  2676. Interleave the lower field from odd frames with the upper field from
  2677. even frames, generating a frame with unchanged height at half framerate.
  2678. @item interlacex2, 6
  2679. Double frame rate with unchanged height. Frames are inserted each
  2680. containing the second temporal field from the previous input frame and
  2681. the first temporal field from the next input frame. This mode relies on
  2682. the top_field_first flag. Useful for interlaced video displays with no
  2683. field synchronisation.
  2684. @end table
  2685. Numeric values are deprecated but are accepted for backward
  2686. compatibility reasons.
  2687. Default mode is @code{merge}.
  2688. @section transpose
  2689. Transpose rows with columns in the input video and optionally flip it.
  2690. This filter accepts the following named parameters:
  2691. @table @option
  2692. @item dir
  2693. Specify the transposition direction. Can assume the following values:
  2694. @table @samp
  2695. @item 0, 4
  2696. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2697. @example
  2698. L.R L.l
  2699. . . -> . .
  2700. l.r R.r
  2701. @end example
  2702. @item 1, 5
  2703. Rotate by 90 degrees clockwise, that is:
  2704. @example
  2705. L.R l.L
  2706. . . -> . .
  2707. l.r r.R
  2708. @end example
  2709. @item 2, 6
  2710. Rotate by 90 degrees counterclockwise, that is:
  2711. @example
  2712. L.R R.r
  2713. . . -> . .
  2714. l.r L.l
  2715. @end example
  2716. @item 3, 7
  2717. Rotate by 90 degrees clockwise and vertically flip, that is:
  2718. @example
  2719. L.R r.R
  2720. . . -> . .
  2721. l.r l.L
  2722. @end example
  2723. @end table
  2724. For values between 4-7, the transposition is only done if the input
  2725. video geometry is portrait and not landscape. These values are
  2726. deprecated, the @code{passthrough} option should be used instead.
  2727. @item passthrough
  2728. Do not apply the transposition if the input geometry matches the one
  2729. specified by the specified value. It accepts the following values:
  2730. @table @samp
  2731. @item none
  2732. Always apply transposition.
  2733. @item portrait
  2734. Preserve portrait geometry (when @var{height} >= @var{width}).
  2735. @item landscape
  2736. Preserve landscape geometry (when @var{width} >= @var{height}).
  2737. @end table
  2738. Default value is @code{none}.
  2739. @end table
  2740. @section unsharp
  2741. Sharpen or blur the input video.
  2742. It accepts the following parameters:
  2743. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2744. Negative values for the amount will blur the input video, while positive
  2745. values will sharpen. All parameters are optional and default to the
  2746. equivalent of the string '5:5:1.0:5:5:0.0'.
  2747. @table @option
  2748. @item luma_msize_x
  2749. Set the luma matrix horizontal size. It can be an integer between 3
  2750. and 13, default value is 5.
  2751. @item luma_msize_y
  2752. Set the luma matrix vertical size. It can be an integer between 3
  2753. and 13, default value is 5.
  2754. @item luma_amount
  2755. Set the luma effect strength. It can be a float number between -2.0
  2756. and 5.0, default value is 1.0.
  2757. @item chroma_msize_x
  2758. Set the chroma matrix horizontal size. It can be an integer between 3
  2759. and 13, default value is 5.
  2760. @item chroma_msize_y
  2761. Set the chroma matrix vertical size. It can be an integer between 3
  2762. and 13, default value is 5.
  2763. @item chroma_amount
  2764. Set the chroma effect strength. It can be a float number between -2.0
  2765. and 5.0, default value is 0.0.
  2766. @end table
  2767. @example
  2768. # Strong luma sharpen effect parameters
  2769. unsharp=7:7:2.5
  2770. # Strong blur of both luma and chroma parameters
  2771. unsharp=7:7:-2:7:7:-2
  2772. # Use the default values with @command{ffmpeg}
  2773. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2774. @end example
  2775. @section vflip
  2776. Flip the input video vertically.
  2777. @example
  2778. ffmpeg -i in.avi -vf "vflip" out.avi
  2779. @end example
  2780. @section yadif
  2781. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2782. filter").
  2783. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2784. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2785. following values:
  2786. @table @option
  2787. @item 0
  2788. output 1 frame for each frame
  2789. @item 1
  2790. output 1 frame for each field
  2791. @item 2
  2792. like 0 but skips spatial interlacing check
  2793. @item 3
  2794. like 1 but skips spatial interlacing check
  2795. @end table
  2796. Default value is 0.
  2797. @var{parity} specifies the picture field parity assumed for the input
  2798. interlaced video, accepts one of the following values:
  2799. @table @option
  2800. @item 0
  2801. assume top field first
  2802. @item 1
  2803. assume bottom field first
  2804. @item -1
  2805. enable automatic detection
  2806. @end table
  2807. Default value is -1.
  2808. If interlacing is unknown or decoder does not export this information,
  2809. top field first will be assumed.
  2810. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2811. and only deinterlace frames marked as interlaced
  2812. @table @option
  2813. @item 0
  2814. deinterlace all frames
  2815. @item 1
  2816. only deinterlace frames marked as interlaced
  2817. @end table
  2818. Default value is 0.
  2819. @c man end VIDEO FILTERS
  2820. @chapter Video Sources
  2821. @c man begin VIDEO SOURCES
  2822. Below is a description of the currently available video sources.
  2823. @section buffer
  2824. Buffer video frames, and make them available to the filter chain.
  2825. This source is mainly intended for a programmatic use, in particular
  2826. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2827. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2828. separated by ":". A description of the accepted options follows.
  2829. @table @option
  2830. @item video_size
  2831. Specify the size (width and height) of the buffered video frames.
  2832. @item pix_fmt
  2833. A string representing the pixel format of the buffered video frames.
  2834. It may be a number corresponding to a pixel format, or a pixel format
  2835. name.
  2836. @item time_base
  2837. Specify the timebase assumed by the timestamps of the buffered frames.
  2838. @item time_base
  2839. Specify the frame rate expected for the video stream.
  2840. @item pixel_aspect
  2841. Specify the sample aspect ratio assumed by the video frames.
  2842. @item sws_param
  2843. Specify the optional parameters to be used for the scale filter which
  2844. is automatically inserted when an input change is detected in the
  2845. input size or format.
  2846. @end table
  2847. For example:
  2848. @example
  2849. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2850. @end example
  2851. will instruct the source to accept video frames with size 320x240 and
  2852. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2853. square pixels (1:1 sample aspect ratio).
  2854. Since the pixel format with name "yuv410p" corresponds to the number 6
  2855. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  2856. this example corresponds to:
  2857. @example
  2858. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2859. @end example
  2860. Alternatively, the options can be specified as a flat string, but this
  2861. syntax is deprecated:
  2862. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2863. @section cellauto
  2864. Create a pattern generated by an elementary cellular automaton.
  2865. The initial state of the cellular automaton can be defined through the
  2866. @option{filename}, and @option{pattern} options. If such options are
  2867. not specified an initial state is created randomly.
  2868. At each new frame a new row in the video is filled with the result of
  2869. the cellular automaton next generation. The behavior when the whole
  2870. frame is filled is defined by the @option{scroll} option.
  2871. This source accepts a list of options in the form of
  2872. @var{key}=@var{value} pairs separated by ":". A description of the
  2873. accepted options follows.
  2874. @table @option
  2875. @item filename, f
  2876. Read the initial cellular automaton state, i.e. the starting row, from
  2877. the specified file.
  2878. In the file, each non-whitespace character is considered an alive
  2879. cell, a newline will terminate the row, and further characters in the
  2880. file will be ignored.
  2881. @item pattern, p
  2882. Read the initial cellular automaton state, i.e. the starting row, from
  2883. the specified string.
  2884. Each non-whitespace character in the string is considered an alive
  2885. cell, a newline will terminate the row, and further characters in the
  2886. string will be ignored.
  2887. @item rate, r
  2888. Set the video rate, that is the number of frames generated per second.
  2889. Default is 25.
  2890. @item random_fill_ratio, ratio
  2891. Set the random fill ratio for the initial cellular automaton row. It
  2892. is a floating point number value ranging from 0 to 1, defaults to
  2893. 1/PHI.
  2894. This option is ignored when a file or a pattern is specified.
  2895. @item random_seed, seed
  2896. Set the seed for filling randomly the initial row, must be an integer
  2897. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2898. set to -1, the filter will try to use a good random seed on a best
  2899. effort basis.
  2900. @item rule
  2901. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2902. Default value is 110.
  2903. @item size, s
  2904. Set the size of the output video.
  2905. If @option{filename} or @option{pattern} is specified, the size is set
  2906. by default to the width of the specified initial state row, and the
  2907. height is set to @var{width} * PHI.
  2908. If @option{size} is set, it must contain the width of the specified
  2909. pattern string, and the specified pattern will be centered in the
  2910. larger row.
  2911. If a filename or a pattern string is not specified, the size value
  2912. defaults to "320x518" (used for a randomly generated initial state).
  2913. @item scroll
  2914. If set to 1, scroll the output upward when all the rows in the output
  2915. have been already filled. If set to 0, the new generated row will be
  2916. written over the top row just after the bottom row is filled.
  2917. Defaults to 1.
  2918. @item start_full, full
  2919. If set to 1, completely fill the output with generated rows before
  2920. outputting the first frame.
  2921. This is the default behavior, for disabling set the value to 0.
  2922. @item stitch
  2923. If set to 1, stitch the left and right row edges together.
  2924. This is the default behavior, for disabling set the value to 0.
  2925. @end table
  2926. @subsection Examples
  2927. @itemize
  2928. @item
  2929. Read the initial state from @file{pattern}, and specify an output of
  2930. size 200x400.
  2931. @example
  2932. cellauto=f=pattern:s=200x400
  2933. @end example
  2934. @item
  2935. Generate a random initial row with a width of 200 cells, with a fill
  2936. ratio of 2/3:
  2937. @example
  2938. cellauto=ratio=2/3:s=200x200
  2939. @end example
  2940. @item
  2941. Create a pattern generated by rule 18 starting by a single alive cell
  2942. centered on an initial row with width 100:
  2943. @example
  2944. cellauto=p=@@:s=100x400:full=0:rule=18
  2945. @end example
  2946. @item
  2947. Specify a more elaborated initial pattern:
  2948. @example
  2949. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2950. @end example
  2951. @end itemize
  2952. @section mandelbrot
  2953. Generate a Mandelbrot set fractal, and progressively zoom towards the
  2954. point specified with @var{start_x} and @var{start_y}.
  2955. This source accepts a list of options in the form of
  2956. @var{key}=@var{value} pairs separated by ":". A description of the
  2957. accepted options follows.
  2958. @table @option
  2959. @item end_pts
  2960. Set the terminal pts value. Default value is 400.
  2961. @item end_scale
  2962. Set the terminal scale value.
  2963. Must be a floating point value. Default value is 0.3.
  2964. @item inner
  2965. Set the inner coloring mode, that is the algorithm used to draw the
  2966. Mandelbrot fractal internal region.
  2967. It shall assume one of the following values:
  2968. @table @option
  2969. @item black
  2970. Set black mode.
  2971. @item convergence
  2972. Show time until convergence.
  2973. @item mincol
  2974. Set color based on point closest to the origin of the iterations.
  2975. @item period
  2976. Set period mode.
  2977. @end table
  2978. Default value is @var{mincol}.
  2979. @item bailout
  2980. Set the bailout value. Default value is 10.0.
  2981. @item maxiter
  2982. Set the maximum of iterations performed by the rendering
  2983. algorithm. Default value is 7189.
  2984. @item outer
  2985. Set outer coloring mode.
  2986. It shall assume one of following values:
  2987. @table @option
  2988. @item iteration_count
  2989. Set iteration cound mode.
  2990. @item normalized_iteration_count
  2991. set normalized iteration count mode.
  2992. @end table
  2993. Default value is @var{normalized_iteration_count}.
  2994. @item rate, r
  2995. Set frame rate, expressed as number of frames per second. Default
  2996. value is "25".
  2997. @item size, s
  2998. Set frame size. Default value is "640x480".
  2999. @item start_scale
  3000. Set the initial scale value. Default value is 3.0.
  3001. @item start_x
  3002. Set the initial x position. Must be a floating point value between
  3003. -100 and 100. Default value is -0.743643887037158704752191506114774.
  3004. @item start_y
  3005. Set the initial y position. Must be a floating point value between
  3006. -100 and 100. Default value is -0.131825904205311970493132056385139.
  3007. @end table
  3008. @section mptestsrc
  3009. Generate various test patterns, as generated by the MPlayer test filter.
  3010. The size of the generated video is fixed, and is 256x256.
  3011. This source is useful in particular for testing encoding features.
  3012. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  3013. separated by ":". The description of the accepted options follows.
  3014. @table @option
  3015. @item rate, r
  3016. Specify the frame rate of the sourced video, as the number of frames
  3017. generated per second. It has to be a string in the format
  3018. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3019. number or a valid video frame rate abbreviation. The default value is
  3020. "25".
  3021. @item duration, d
  3022. Set the video duration of the sourced video. The accepted syntax is:
  3023. @example
  3024. [-]HH:MM:SS[.m...]
  3025. [-]S+[.m...]
  3026. @end example
  3027. See also the function @code{av_parse_time()}.
  3028. If not specified, or the expressed duration is negative, the video is
  3029. supposed to be generated forever.
  3030. @item test, t
  3031. Set the number or the name of the test to perform. Supported tests are:
  3032. @table @option
  3033. @item dc_luma
  3034. @item dc_chroma
  3035. @item freq_luma
  3036. @item freq_chroma
  3037. @item amp_luma
  3038. @item amp_chroma
  3039. @item cbp
  3040. @item mv
  3041. @item ring1
  3042. @item ring2
  3043. @item all
  3044. @end table
  3045. Default value is "all", which will cycle through the list of all tests.
  3046. @end table
  3047. For example the following:
  3048. @example
  3049. testsrc=t=dc_luma
  3050. @end example
  3051. will generate a "dc_luma" test pattern.
  3052. @section frei0r_src
  3053. Provide a frei0r source.
  3054. To enable compilation of this filter you need to install the frei0r
  3055. header and configure FFmpeg with @code{--enable-frei0r}.
  3056. The source supports the syntax:
  3057. @example
  3058. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  3059. @end example
  3060. @var{size} is the size of the video to generate, may be a string of the
  3061. form @var{width}x@var{height} or a frame size abbreviation.
  3062. @var{rate} is the rate of the video to generate, may be a string of
  3063. the form @var{num}/@var{den} or a frame rate abbreviation.
  3064. @var{src_name} is the name to the frei0r source to load. For more
  3065. information regarding frei0r and how to set the parameters read the
  3066. section @ref{frei0r} in the description of the video filters.
  3067. For example, to generate a frei0r partik0l source with size 200x200
  3068. and frame rate 10 which is overlayed on the overlay filter main input:
  3069. @example
  3070. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  3071. @end example
  3072. @section life
  3073. Generate a life pattern.
  3074. This source is based on a generalization of John Conway's life game.
  3075. The sourced input represents a life grid, each pixel represents a cell
  3076. which can be in one of two possible states, alive or dead. Every cell
  3077. interacts with its eight neighbours, which are the cells that are
  3078. horizontally, vertically, or diagonally adjacent.
  3079. At each interaction the grid evolves according to the adopted rule,
  3080. which specifies the number of neighbor alive cells which will make a
  3081. cell stay alive or born. The @option{rule} option allows to specify
  3082. the rule to adopt.
  3083. This source accepts a list of options in the form of
  3084. @var{key}=@var{value} pairs separated by ":". A description of the
  3085. accepted options follows.
  3086. @table @option
  3087. @item filename, f
  3088. Set the file from which to read the initial grid state. In the file,
  3089. each non-whitespace character is considered an alive cell, and newline
  3090. is used to delimit the end of each row.
  3091. If this option is not specified, the initial grid is generated
  3092. randomly.
  3093. @item rate, r
  3094. Set the video rate, that is the number of frames generated per second.
  3095. Default is 25.
  3096. @item random_fill_ratio, ratio
  3097. Set the random fill ratio for the initial random grid. It is a
  3098. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  3099. It is ignored when a file is specified.
  3100. @item random_seed, seed
  3101. Set the seed for filling the initial random grid, must be an integer
  3102. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3103. set to -1, the filter will try to use a good random seed on a best
  3104. effort basis.
  3105. @item rule
  3106. Set the life rule.
  3107. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  3108. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  3109. @var{NS} specifies the number of alive neighbor cells which make a
  3110. live cell stay alive, and @var{NB} the number of alive neighbor cells
  3111. which make a dead cell to become alive (i.e. to "born").
  3112. "s" and "b" can be used in place of "S" and "B", respectively.
  3113. Alternatively a rule can be specified by an 18-bits integer. The 9
  3114. high order bits are used to encode the next cell state if it is alive
  3115. for each number of neighbor alive cells, the low order bits specify
  3116. the rule for "borning" new cells. Higher order bits encode for an
  3117. higher number of neighbor cells.
  3118. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3119. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3120. Default value is "S23/B3", which is the original Conway's game of life
  3121. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3122. cells, and will born a new cell if there are three alive cells around
  3123. a dead cell.
  3124. @item size, s
  3125. Set the size of the output video.
  3126. If @option{filename} is specified, the size is set by default to the
  3127. same size of the input file. If @option{size} is set, it must contain
  3128. the size specified in the input file, and the initial grid defined in
  3129. that file is centered in the larger resulting area.
  3130. If a filename is not specified, the size value defaults to "320x240"
  3131. (used for a randomly generated initial grid).
  3132. @item stitch
  3133. If set to 1, stitch the left and right grid edges together, and the
  3134. top and bottom edges also. Defaults to 1.
  3135. @item mold
  3136. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3137. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3138. value from 0 to 255.
  3139. @item life_color
  3140. Set the color of living (or new born) cells.
  3141. @item death_color
  3142. Set the color of dead cells. If @option{mold} is set, this is the first color
  3143. used to represent a dead cell.
  3144. @item mold_color
  3145. Set mold color, for definitely dead and moldy cells.
  3146. @end table
  3147. @subsection Examples
  3148. @itemize
  3149. @item
  3150. Read a grid from @file{pattern}, and center it on a grid of size
  3151. 300x300 pixels:
  3152. @example
  3153. life=f=pattern:s=300x300
  3154. @end example
  3155. @item
  3156. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3157. @example
  3158. life=ratio=2/3:s=200x200
  3159. @end example
  3160. @item
  3161. Specify a custom rule for evolving a randomly generated grid:
  3162. @example
  3163. life=rule=S14/B34
  3164. @end example
  3165. @item
  3166. Full example with slow death effect (mold) using @command{ffplay}:
  3167. @example
  3168. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3169. @end example
  3170. @end itemize
  3171. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3172. The @code{color} source provides an uniformly colored input.
  3173. The @code{nullsrc} source returns unprocessed video frames. It is
  3174. mainly useful to be employed in analysis / debugging tools, or as the
  3175. source for filters which ignore the input data.
  3176. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3177. detecting RGB vs BGR issues. You should see a red, green and blue
  3178. stripe from top to bottom.
  3179. The @code{smptebars} source generates a color bars pattern, based on
  3180. the SMPTE Engineering Guideline EG 1-1990.
  3181. The @code{testsrc} source generates a test video pattern, showing a
  3182. color pattern, a scrolling gradient and a timestamp. This is mainly
  3183. intended for testing purposes.
  3184. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3185. separated by ":". The description of the accepted options follows.
  3186. @table @option
  3187. @item color, c
  3188. Specify the color of the source, only used in the @code{color}
  3189. source. It can be the name of a color (case insensitive match) or a
  3190. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3191. default value is "black".
  3192. @item size, s
  3193. Specify the size of the sourced video, it may be a string of the form
  3194. @var{width}x@var{height}, or the name of a size abbreviation. The
  3195. default value is "320x240".
  3196. @item rate, r
  3197. Specify the frame rate of the sourced video, as the number of frames
  3198. generated per second. It has to be a string in the format
  3199. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3200. number or a valid video frame rate abbreviation. The default value is
  3201. "25".
  3202. @item sar
  3203. Set the sample aspect ratio of the sourced video.
  3204. @item duration, d
  3205. Set the video duration of the sourced video. The accepted syntax is:
  3206. @example
  3207. [-]HH[:MM[:SS[.m...]]]
  3208. [-]S+[.m...]
  3209. @end example
  3210. See also the function @code{av_parse_time()}.
  3211. If not specified, or the expressed duration is negative, the video is
  3212. supposed to be generated forever.
  3213. @item decimals, n
  3214. Set the number of decimals to show in the timestamp, only used in the
  3215. @code{testsrc} source.
  3216. The displayed timestamp value will correspond to the original
  3217. timestamp value multiplied by the power of 10 of the specified
  3218. value. Default value is 0.
  3219. @end table
  3220. For example the following:
  3221. @example
  3222. testsrc=duration=5.3:size=qcif:rate=10
  3223. @end example
  3224. will generate a video with a duration of 5.3 seconds, with size
  3225. 176x144 and a frame rate of 10 frames per second.
  3226. The following graph description will generate a red source
  3227. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3228. frames per second.
  3229. @example
  3230. color=c=red@@0.2:s=qcif:r=10
  3231. @end example
  3232. If the input content is to be ignored, @code{nullsrc} can be used. The
  3233. following command generates noise in the luminance plane by employing
  3234. the @code{mp=geq} filter:
  3235. @example
  3236. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  3237. @end example
  3238. @c man end VIDEO SOURCES
  3239. @chapter Video Sinks
  3240. @c man begin VIDEO SINKS
  3241. Below is a description of the currently available video sinks.
  3242. @section buffersink
  3243. Buffer video frames, and make them available to the end of the filter
  3244. graph.
  3245. This sink is mainly intended for a programmatic use, in particular
  3246. through the interface defined in @file{libavfilter/buffersink.h}.
  3247. It does not require a string parameter in input, but you need to
  3248. specify a pointer to a list of supported pixel formats terminated by
  3249. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3250. when initializing this sink.
  3251. @section nullsink
  3252. Null video sink, do absolutely nothing with the input video. It is
  3253. mainly useful as a template and to be employed in analysis / debugging
  3254. tools.
  3255. @c man end VIDEO SINKS
  3256. @chapter Multimedia Filters
  3257. @c man begin MULTIMEDIA FILTERS
  3258. Below is a description of the currently available multimedia filters.
  3259. @section asendcmd, sendcmd
  3260. Send commands to filters in the filtergraph.
  3261. These filters read commands to be sent to other filters in the
  3262. filtergraph.
  3263. @code{asendcmd} must be inserted between two audio filters,
  3264. @code{sendcmd} must be inserted between two video filters, but apart
  3265. from that they act the same way.
  3266. The specification of commands can be provided in the filter arguments
  3267. with the @var{commands} option, or in a file specified by the
  3268. @var{filename} option.
  3269. These filters accept the following options:
  3270. @table @option
  3271. @item commands, c
  3272. Set the commands to be read and sent to the other filters.
  3273. @item filename, f
  3274. Set the filename of the commands to be read and sent to the other
  3275. filters.
  3276. @end table
  3277. @subsection Commands syntax
  3278. A commands description consists of a sequence of interval
  3279. specifications, comprising a list of commands to be executed when a
  3280. particular event related to that interval occurs. The occurring event
  3281. is typically the current frame time entering or leaving a given time
  3282. interval.
  3283. An interval is specified by the following syntax:
  3284. @example
  3285. @var{START}[-@var{END}] @var{COMMANDS};
  3286. @end example
  3287. The time interval is specified by the @var{START} and @var{END} times.
  3288. @var{END} is optional and defaults to the maximum time.
  3289. The current frame time is considered within the specified interval if
  3290. it is included in the interval [@var{START}, @var{END}), that is when
  3291. the time is greater or equal to @var{START} and is lesser than
  3292. @var{END}.
  3293. @var{COMMANDS} consists of a sequence of one or more command
  3294. specifications, separated by ",", relating to that interval. The
  3295. syntax of a command specification is given by:
  3296. @example
  3297. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  3298. @end example
  3299. @var{FLAGS} is optional and specifies the type of events relating to
  3300. the time interval which enable sending the specified command, and must
  3301. be a non-null sequence of identifier flags separated by "+" or "|" and
  3302. enclosed between "[" and "]".
  3303. The following flags are recognized:
  3304. @table @option
  3305. @item enter
  3306. The command is sent when the current frame timestamp enters the
  3307. specified interval. In other words, the command is sent when the
  3308. previous frame timestamp was not in the given interval, and the
  3309. current is.
  3310. @item leave
  3311. The command is sent when the current frame timestamp leaves the
  3312. specified interval. In other words, the command is sent when the
  3313. previous frame timestamp was in the given interval, and the
  3314. current is not.
  3315. @end table
  3316. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  3317. assumed.
  3318. @var{TARGET} specifies the target of the command, usually the name of
  3319. the filter class or a specific filter instance name.
  3320. @var{COMMAND} specifies the name of the command for the target filter.
  3321. @var{ARG} is optional and specifies the optional list of argument for
  3322. the given @var{COMMAND}.
  3323. Between one interval specification and another, whitespaces, or
  3324. sequences of characters starting with @code{#} until the end of line,
  3325. are ignored and can be used to annotate comments.
  3326. A simplified BNF description of the commands specification syntax
  3327. follows:
  3328. @example
  3329. @var{COMMAND_FLAG} ::= "enter" | "leave"
  3330. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  3331. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  3332. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  3333. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  3334. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  3335. @end example
  3336. @subsection Examples
  3337. @itemize
  3338. @item
  3339. Specify audio tempo change at second 4:
  3340. @example
  3341. asendcmd=c='4.0 atempo tempo 1.5',atempo
  3342. @end example
  3343. @item
  3344. Specify a list of drawtext and hue commands in a file.
  3345. @example
  3346. # show text in the interval 5-10
  3347. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  3348. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  3349. # desaturate the image in the interval 15-20
  3350. 15.0-20.0 [enter] hue reinit s=0,
  3351. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  3352. [leave] hue reinit s=1,
  3353. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  3354. # apply an exponential saturation fade-out effect, starting from time 25
  3355. 25 [enter] hue s=exp(t-25)
  3356. @end example
  3357. A filtergraph allowing to read and process the above command list
  3358. stored in a file @file{test.cmd}, can be specified with:
  3359. @example
  3360. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  3361. @end example
  3362. @end itemize
  3363. @section asetpts, setpts
  3364. Change the PTS (presentation timestamp) of the input frames.
  3365. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3366. Accept in input an expression evaluated through the eval API, which
  3367. can contain the following constants:
  3368. @table @option
  3369. @item FRAME_RATE
  3370. frame rate, only defined for constant frame-rate video
  3371. @item PTS
  3372. the presentation timestamp in input
  3373. @item N
  3374. the count of the input frame, starting from 0.
  3375. @item NB_CONSUMED_SAMPLES
  3376. the number of consumed samples, not including the current frame (only
  3377. audio)
  3378. @item NB_SAMPLES
  3379. the number of samples in the current frame (only audio)
  3380. @item SAMPLE_RATE
  3381. audio sample rate
  3382. @item STARTPTS
  3383. the PTS of the first frame
  3384. @item STARTT
  3385. the time in seconds of the first frame
  3386. @item INTERLACED
  3387. tell if the current frame is interlaced
  3388. @item T
  3389. the time in seconds of the current frame
  3390. @item TB
  3391. the time base
  3392. @item POS
  3393. original position in the file of the frame, or undefined if undefined
  3394. for the current frame
  3395. @item PREV_INPTS
  3396. previous input PTS
  3397. @item PREV_INT
  3398. previous input time in seconds
  3399. @item PREV_OUTPTS
  3400. previous output PTS
  3401. @item PREV_OUTT
  3402. previous output time in seconds
  3403. @end table
  3404. @subsection Examples
  3405. @itemize
  3406. @item
  3407. Start counting PTS from zero
  3408. @example
  3409. setpts=PTS-STARTPTS
  3410. @end example
  3411. @item
  3412. Apply fast motion effect:
  3413. @example
  3414. setpts=0.5*PTS
  3415. @end example
  3416. @item
  3417. Apply slow motion effect:
  3418. @example
  3419. setpts=2.0*PTS
  3420. @end example
  3421. @item
  3422. Set fixed rate of 25 frames per second:
  3423. @example
  3424. setpts=N/(25*TB)
  3425. @end example
  3426. @item
  3427. Set fixed rate 25 fps with some jitter:
  3428. @example
  3429. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3430. @end example
  3431. @item
  3432. Apply an offset of 10 seconds to the input PTS:
  3433. @example
  3434. setpts=PTS+10/TB
  3435. @end example
  3436. @end itemize
  3437. @section ebur128
  3438. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  3439. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  3440. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  3441. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  3442. The filter also has a video output (see the @var{video} option) with a real
  3443. time graph to observe the loudness evolution. The graphic contains the logged
  3444. message mentioned above, so it is not printed anymore when this option is set,
  3445. unless the verbose logging is set. The main graphing area contains the
  3446. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  3447. the momentary loudness (400 milliseconds).
  3448. More information about the Loudness Recommendation EBU R128 on
  3449. @url{http://tech.ebu.ch/loudness}.
  3450. The filter accepts the following named parameters:
  3451. @table @option
  3452. @item video
  3453. Activate the video output. The audio stream is passed unchanged whether this
  3454. option is set or no. The video stream will be the first output stream if
  3455. activated. Default is @code{0}.
  3456. @item size
  3457. Set the video size. This option is for video only. Default and minimum
  3458. resolution is @code{640x480}.
  3459. @item meter
  3460. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  3461. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  3462. other integer value between this range is allowed.
  3463. @end table
  3464. Example of real-time graph using @command{ffplay}, with a EBU scale meter +18:
  3465. @example
  3466. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  3467. @end example
  3468. Run an analysis with @command{ffmpeg}:
  3469. @example
  3470. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  3471. @end example
  3472. @section settb, asettb
  3473. Set the timebase to use for the output frames timestamps.
  3474. It is mainly useful for testing timebase configuration.
  3475. It accepts in input an arithmetic expression representing a rational.
  3476. The expression can contain the constants "AVTB" (the
  3477. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3478. audio only).
  3479. The default value for the input is "intb".
  3480. @subsection Examples
  3481. @itemize
  3482. @item
  3483. Set the timebase to 1/25:
  3484. @example
  3485. settb=1/25
  3486. @end example
  3487. @item
  3488. Set the timebase to 1/10:
  3489. @example
  3490. settb=0.1
  3491. @end example
  3492. @item
  3493. Set the timebase to 1001/1000:
  3494. @example
  3495. settb=1+0.001
  3496. @end example
  3497. @item
  3498. Set the timebase to 2*intb:
  3499. @example
  3500. settb=2*intb
  3501. @end example
  3502. @item
  3503. Set the default timebase value:
  3504. @example
  3505. settb=AVTB
  3506. @end example
  3507. @end itemize
  3508. @section concat
  3509. Concatenate audio and video streams, joining them together one after the
  3510. other.
  3511. The filter works on segments of synchronized video and audio streams. All
  3512. segments must have the same number of streams of each type, and that will
  3513. also be the number of streams at output.
  3514. The filter accepts the following named parameters:
  3515. @table @option
  3516. @item n
  3517. Set the number of segments. Default is 2.
  3518. @item v
  3519. Set the number of output video streams, that is also the number of video
  3520. streams in each segment. Default is 1.
  3521. @item a
  3522. Set the number of output audio streams, that is also the number of video
  3523. streams in each segment. Default is 0.
  3524. @item unsafe
  3525. Activate unsafe mode: do not fail if segments have a different format.
  3526. @end table
  3527. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3528. @var{a} audio outputs.
  3529. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3530. segment, in the same order as the outputs, then the inputs for the second
  3531. segment, etc.
  3532. Related streams do not always have exactly the same duration, for various
  3533. reasons including codec frame size or sloppy authoring. For that reason,
  3534. related synchronized streams (e.g. a video and its audio track) should be
  3535. concatenated at once. The concat filter will use the duration of the longest
  3536. stream in each segment (except the last one), and if necessary pad shorter
  3537. audio streams with silence.
  3538. For this filter to work correctly, all segments must start at timestamp 0.
  3539. All corresponding streams must have the same parameters in all segments; the
  3540. filtering system will automatically select a common pixel format for video
  3541. streams, and a common sample format, sample rate and channel layout for
  3542. audio streams, but other settings, such as resolution, must be converted
  3543. explicitly by the user.
  3544. Different frame rates are acceptable but will result in variable frame rate
  3545. at output; be sure to configure the output file to handle it.
  3546. Examples:
  3547. @itemize
  3548. @item
  3549. Concatenate an opening, an episode and an ending, all in bilingual version
  3550. (video in stream 0, audio in streams 1 and 2):
  3551. @example
  3552. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3553. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3554. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3555. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3556. @end example
  3557. @item
  3558. Concatenate two parts, handling audio and video separately, using the
  3559. (a)movie sources, and adjusting the resolution:
  3560. @example
  3561. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3562. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3563. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3564. @end example
  3565. Note that a desync will happen at the stitch if the audio and video streams
  3566. do not have exactly the same duration in the first file.
  3567. @end itemize
  3568. @section showspectrum
  3569. Convert input audio to a video output, representing the audio frequency
  3570. spectrum.
  3571. The filter accepts the following named parameters:
  3572. @table @option
  3573. @item size, s
  3574. Specify the video size for the output. Default value is @code{640x480}.
  3575. @item slide
  3576. Specify if the spectrum should slide along the window. Default value is
  3577. @code{0}.
  3578. @end table
  3579. The usage is very similar to the showwaves filter; see the examples in that
  3580. section.
  3581. @section showwaves
  3582. Convert input audio to a video output, representing the samples waves.
  3583. The filter accepts the following named parameters:
  3584. @table @option
  3585. @item n
  3586. Set the number of samples which are printed on the same column. A
  3587. larger value will decrease the frame rate. Must be a positive
  3588. integer. This option can be set only if the value for @var{rate}
  3589. is not explicitly specified.
  3590. @item rate, r
  3591. Set the (approximate) output frame rate. This is done by setting the
  3592. option @var{n}. Default value is "25".
  3593. @item size, s
  3594. Specify the video size for the output. Default value is "600x240".
  3595. @end table
  3596. Some examples follow.
  3597. @itemize
  3598. @item
  3599. Output the input file audio and the corresponding video representation
  3600. at the same time:
  3601. @example
  3602. amovie=a.mp3,asplit[out0],showwaves[out1]
  3603. @end example
  3604. @item
  3605. Create a synthetic signal and show it with showwaves, forcing a
  3606. framerate of 30 frames per second:
  3607. @example
  3608. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3609. @end example
  3610. @end itemize
  3611. @c man end MULTIMEDIA FILTERS
  3612. @chapter Multimedia Sources
  3613. @c man begin MULTIMEDIA SOURCES
  3614. Below is a description of the currently available multimedia sources.
  3615. @section amovie
  3616. This is the same as @ref{src_movie} source, except it selects an audio
  3617. stream by default.
  3618. @anchor{src_movie}
  3619. @section movie
  3620. Read audio and/or video stream(s) from a movie container.
  3621. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3622. @var{movie_name} is the name of the resource to read (not necessarily
  3623. a file but also a device or a stream accessed through some protocol),
  3624. and @var{options} is an optional sequence of @var{key}=@var{value}
  3625. pairs, separated by ":".
  3626. The description of the accepted options follows.
  3627. @table @option
  3628. @item format_name, f
  3629. Specifies the format assumed for the movie to read, and can be either
  3630. the name of a container or an input device. If not specified the
  3631. format is guessed from @var{movie_name} or by probing.
  3632. @item seek_point, sp
  3633. Specifies the seek point in seconds, the frames will be output
  3634. starting from this seek point, the parameter is evaluated with
  3635. @code{av_strtod} so the numerical value may be suffixed by an IS
  3636. postfix. Default value is "0".
  3637. @item streams, s
  3638. Specifies the streams to read. Several streams can be specified, separated
  3639. by "+". The source will then have as many outputs, in the same order. The
  3640. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3641. names, "dv" and "da" specify respectively the default (best suited) video
  3642. and audio stream. Default is "dv", or "da" if the filter is called as
  3643. "amovie".
  3644. @item stream_index, si
  3645. Specifies the index of the video stream to read. If the value is -1,
  3646. the best suited video stream will be automatically selected. Default
  3647. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3648. audio instead of video.
  3649. @item loop
  3650. Specifies how many times to read the stream in sequence.
  3651. If the value is less than 1, the stream will be read again and again.
  3652. Default value is "1".
  3653. Note that when the movie is looped the source timestamps are not
  3654. changed, so it will generate non monotonically increasing timestamps.
  3655. @end table
  3656. This filter allows to overlay a second video on top of main input of
  3657. a filtergraph as shown in this graph:
  3658. @example
  3659. input -----------> deltapts0 --> overlay --> output
  3660. ^
  3661. |
  3662. movie --> scale--> deltapts1 -------+
  3663. @end example
  3664. Some examples follow.
  3665. @itemize
  3666. @item
  3667. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3668. on top of the input labelled as "in":
  3669. @example
  3670. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3671. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3672. @end example
  3673. @item
  3674. Read from a video4linux2 device, and overlay it on top of the input
  3675. labelled as "in":
  3676. @example
  3677. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3678. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3679. @end example
  3680. @item
  3681. Read the first video stream and the audio stream with id 0x81 from
  3682. dvd.vob; the video is connected to the pad named "video" and the audio is
  3683. connected to the pad named "audio":
  3684. @example
  3685. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3686. @end example
  3687. @end itemize
  3688. @c man end MULTIMEDIA SOURCES