You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

312 lines
7.8KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * FFT/IFFT transforms.
  26. */
  27. #include <stdlib.h>
  28. #include <string.h>
  29. #include "libavutil/mathematics.h"
  30. #include "fft.h"
  31. #include "fft-internal.h"
  32. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  33. #if !CONFIG_HARDCODED_TABLES
  34. COSTABLE(16);
  35. COSTABLE(32);
  36. COSTABLE(64);
  37. COSTABLE(128);
  38. COSTABLE(256);
  39. COSTABLE(512);
  40. COSTABLE(1024);
  41. COSTABLE(2048);
  42. COSTABLE(4096);
  43. COSTABLE(8192);
  44. COSTABLE(16384);
  45. COSTABLE(32768);
  46. COSTABLE(65536);
  47. #endif
  48. COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
  49. NULL, NULL, NULL, NULL,
  50. FFT_NAME(ff_cos_16),
  51. FFT_NAME(ff_cos_32),
  52. FFT_NAME(ff_cos_64),
  53. FFT_NAME(ff_cos_128),
  54. FFT_NAME(ff_cos_256),
  55. FFT_NAME(ff_cos_512),
  56. FFT_NAME(ff_cos_1024),
  57. FFT_NAME(ff_cos_2048),
  58. FFT_NAME(ff_cos_4096),
  59. FFT_NAME(ff_cos_8192),
  60. FFT_NAME(ff_cos_16384),
  61. FFT_NAME(ff_cos_32768),
  62. FFT_NAME(ff_cos_65536),
  63. };
  64. static void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  65. static void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  66. static int split_radix_permutation(int i, int n, int inverse)
  67. {
  68. int m;
  69. if(n <= 2) return i&1;
  70. m = n >> 1;
  71. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  72. m >>= 1;
  73. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  74. else return split_radix_permutation(i, m, inverse)*4 - 1;
  75. }
  76. av_cold void ff_init_ff_cos_tabs(int index)
  77. {
  78. #if !CONFIG_HARDCODED_TABLES
  79. int i;
  80. int m = 1<<index;
  81. double freq = 2*M_PI/m;
  82. FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
  83. for(i=0; i<=m/4; i++)
  84. tab[i] = FIX15(cos(i*freq));
  85. for(i=1; i<m/4; i++)
  86. tab[m/2-i] = tab[i];
  87. #endif
  88. }
  89. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  90. {
  91. int i, j, n;
  92. if (nbits < 2 || nbits > 16)
  93. goto fail;
  94. s->nbits = nbits;
  95. n = 1 << nbits;
  96. s->revtab = av_malloc(n * sizeof(uint16_t));
  97. if (!s->revtab)
  98. goto fail;
  99. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  100. if (!s->tmp_buf)
  101. goto fail;
  102. s->inverse = inverse;
  103. s->fft_permutation = FF_FFT_PERM_DEFAULT;
  104. s->fft_permute = ff_fft_permute_c;
  105. s->fft_calc = ff_fft_calc_c;
  106. #if CONFIG_MDCT
  107. s->imdct_calc = ff_imdct_calc_c;
  108. s->imdct_half = ff_imdct_half_c;
  109. s->mdct_calc = ff_mdct_calc_c;
  110. #endif
  111. #if CONFIG_FFT_FLOAT
  112. if (ARCH_ARM) ff_fft_init_arm(s);
  113. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  114. if (HAVE_MMX) ff_fft_init_mmx(s);
  115. #endif
  116. for(j=4; j<=nbits; j++) {
  117. ff_init_ff_cos_tabs(j);
  118. }
  119. for(i=0; i<n; i++) {
  120. int j = i;
  121. if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
  122. j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
  123. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
  124. }
  125. return 0;
  126. fail:
  127. av_freep(&s->revtab);
  128. av_freep(&s->tmp_buf);
  129. return -1;
  130. }
  131. static void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  132. {
  133. int j, np;
  134. const uint16_t *revtab = s->revtab;
  135. np = 1 << s->nbits;
  136. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  137. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  138. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  139. }
  140. av_cold void ff_fft_end(FFTContext *s)
  141. {
  142. av_freep(&s->revtab);
  143. av_freep(&s->tmp_buf);
  144. }
  145. #define BUTTERFLIES(a0,a1,a2,a3) {\
  146. BF(t3, t5, t5, t1);\
  147. BF(a2.re, a0.re, a0.re, t5);\
  148. BF(a3.im, a1.im, a1.im, t3);\
  149. BF(t4, t6, t2, t6);\
  150. BF(a3.re, a1.re, a1.re, t4);\
  151. BF(a2.im, a0.im, a0.im, t6);\
  152. }
  153. // force loading all the inputs before storing any.
  154. // this is slightly slower for small data, but avoids store->load aliasing
  155. // for addresses separated by large powers of 2.
  156. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  157. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  158. BF(t3, t5, t5, t1);\
  159. BF(a2.re, a0.re, r0, t5);\
  160. BF(a3.im, a1.im, i1, t3);\
  161. BF(t4, t6, t2, t6);\
  162. BF(a3.re, a1.re, r1, t4);\
  163. BF(a2.im, a0.im, i0, t6);\
  164. }
  165. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  166. CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
  167. CMUL(t5, t6, a3.re, a3.im, wre, wim);\
  168. BUTTERFLIES(a0,a1,a2,a3)\
  169. }
  170. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  171. t1 = a2.re;\
  172. t2 = a2.im;\
  173. t5 = a3.re;\
  174. t6 = a3.im;\
  175. BUTTERFLIES(a0,a1,a2,a3)\
  176. }
  177. /* z[0...8n-1], w[1...2n-1] */
  178. #define PASS(name)\
  179. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  180. {\
  181. FFTDouble t1, t2, t3, t4, t5, t6;\
  182. int o1 = 2*n;\
  183. int o2 = 4*n;\
  184. int o3 = 6*n;\
  185. const FFTSample *wim = wre+o1;\
  186. n--;\
  187. \
  188. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  189. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  190. do {\
  191. z += 2;\
  192. wre += 2;\
  193. wim -= 2;\
  194. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  195. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  196. } while(--n);\
  197. }
  198. PASS(pass)
  199. #undef BUTTERFLIES
  200. #define BUTTERFLIES BUTTERFLIES_BIG
  201. PASS(pass_big)
  202. #define DECL_FFT(n,n2,n4)\
  203. static void fft##n(FFTComplex *z)\
  204. {\
  205. fft##n2(z);\
  206. fft##n4(z+n4*2);\
  207. fft##n4(z+n4*3);\
  208. pass(z,FFT_NAME(ff_cos_##n),n4/2);\
  209. }
  210. static void fft4(FFTComplex *z)
  211. {
  212. FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
  213. BF(t3, t1, z[0].re, z[1].re);
  214. BF(t8, t6, z[3].re, z[2].re);
  215. BF(z[2].re, z[0].re, t1, t6);
  216. BF(t4, t2, z[0].im, z[1].im);
  217. BF(t7, t5, z[2].im, z[3].im);
  218. BF(z[3].im, z[1].im, t4, t8);
  219. BF(z[3].re, z[1].re, t3, t7);
  220. BF(z[2].im, z[0].im, t2, t5);
  221. }
  222. static void fft8(FFTComplex *z)
  223. {
  224. FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
  225. fft4(z);
  226. BF(t1, z[5].re, z[4].re, -z[5].re);
  227. BF(t2, z[5].im, z[4].im, -z[5].im);
  228. BF(t3, z[7].re, z[6].re, -z[7].re);
  229. BF(t4, z[7].im, z[6].im, -z[7].im);
  230. BF(t8, t1, t3, t1);
  231. BF(t7, t2, t2, t4);
  232. BF(z[4].re, z[0].re, z[0].re, t1);
  233. BF(z[4].im, z[0].im, z[0].im, t2);
  234. BF(z[6].re, z[2].re, z[2].re, t7);
  235. BF(z[6].im, z[2].im, z[2].im, t8);
  236. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  237. }
  238. #if !CONFIG_SMALL
  239. static void fft16(FFTComplex *z)
  240. {
  241. FFTDouble t1, t2, t3, t4, t5, t6;
  242. FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
  243. FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
  244. fft8(z);
  245. fft4(z+8);
  246. fft4(z+12);
  247. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  248. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  249. TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
  250. TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
  251. }
  252. #else
  253. DECL_FFT(16,8,4)
  254. #endif
  255. DECL_FFT(32,16,8)
  256. DECL_FFT(64,32,16)
  257. DECL_FFT(128,64,32)
  258. DECL_FFT(256,128,64)
  259. DECL_FFT(512,256,128)
  260. #if !CONFIG_SMALL
  261. #define pass pass_big
  262. #endif
  263. DECL_FFT(1024,512,256)
  264. DECL_FFT(2048,1024,512)
  265. DECL_FFT(4096,2048,1024)
  266. DECL_FFT(8192,4096,2048)
  267. DECL_FFT(16384,8192,4096)
  268. DECL_FFT(32768,16384,8192)
  269. DECL_FFT(65536,32768,16384)
  270. static void (* const fft_dispatch[])(FFTComplex*) = {
  271. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  272. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  273. };
  274. static void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  275. {
  276. fft_dispatch[s->nbits-2](z);
  277. }