You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1024 lines
36KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "internal.h"
  31. #include "mpegvideo.h"
  32. #include "mpegvideo_common.h"
  33. #include "dnxhdenc.h"
  34. #include "internal.h"
  35. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  36. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  37. static const AVOption options[]={
  38. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
  39. {NULL}
  40. };
  41. static const AVClass class = {
  42. .class_name = "dnxhd",
  43. .item_name = av_default_item_name,
  44. .option = options,
  45. .version = LIBAVUTIL_VERSION_INT,
  46. };
  47. #define LAMBDA_FRAC_BITS 10
  48. static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  49. {
  50. int i;
  51. for (i = 0; i < 4; i++) {
  52. block[0] = pixels[0]; block[1] = pixels[1];
  53. block[2] = pixels[2]; block[3] = pixels[3];
  54. block[4] = pixels[4]; block[5] = pixels[5];
  55. block[6] = pixels[6]; block[7] = pixels[7];
  56. pixels += line_size;
  57. block += 8;
  58. }
  59. memcpy(block, block - 8, sizeof(*block) * 8);
  60. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  61. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  62. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  63. }
  64. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  65. {
  66. int i;
  67. block += 32;
  68. for (i = 0; i < 4; i++) {
  69. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  70. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  71. }
  72. }
  73. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
  74. int n, int qscale, int *overflow)
  75. {
  76. const uint8_t *scantable= ctx->intra_scantable.scantable;
  77. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  78. int last_non_zero = 0;
  79. int i;
  80. ctx->dsp.fdct(block);
  81. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  82. block[0] = (block[0] + 2) >> 2;
  83. for (i = 1; i < 64; ++i) {
  84. int j = scantable[i];
  85. int sign = block[j] >> 31;
  86. int level = (block[j] ^ sign) - sign;
  87. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  88. block[j] = (level ^ sign) - sign;
  89. if (level)
  90. last_non_zero = i;
  91. }
  92. return last_non_zero;
  93. }
  94. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  95. {
  96. int i, j, level, run;
  97. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  98. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  99. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  100. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  101. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  102. ctx->vlc_codes += max_level*2;
  103. ctx->vlc_bits += max_level*2;
  104. for (level = -max_level; level < max_level; level++) {
  105. for (run = 0; run < 2; run++) {
  106. int index = (level<<1)|run;
  107. int sign, offset = 0, alevel = level;
  108. MASK_ABS(sign, alevel);
  109. if (alevel > 64) {
  110. offset = (alevel-1)>>6;
  111. alevel -= offset<<6;
  112. }
  113. for (j = 0; j < 257; j++) {
  114. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  115. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  116. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  117. av_assert1(!ctx->vlc_codes[index]);
  118. if (alevel) {
  119. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  120. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  121. } else {
  122. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  123. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  124. }
  125. break;
  126. }
  127. }
  128. av_assert0(!alevel || j < 257);
  129. if (offset) {
  130. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  131. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  132. }
  133. }
  134. }
  135. for (i = 0; i < 62; i++) {
  136. int run = ctx->cid_table->run[i];
  137. av_assert0(run < 63);
  138. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  139. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  140. }
  141. return 0;
  142. fail:
  143. return -1;
  144. }
  145. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  146. {
  147. // init first elem to 1 to avoid div by 0 in convert_matrix
  148. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  149. int qscale, i;
  150. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  151. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  152. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  153. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  154. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  155. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  156. if (ctx->cid_table->bit_depth == 8) {
  157. for (i = 1; i < 64; i++) {
  158. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  159. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  160. }
  161. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  162. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  163. for (i = 1; i < 64; i++) {
  164. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  165. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  166. }
  167. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  168. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  169. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  170. for (i = 0; i < 64; i++) {
  171. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  172. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  173. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  174. }
  175. }
  176. } else {
  177. // 10-bit
  178. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  179. for (i = 1; i < 64; i++) {
  180. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  181. // The quantization formula from the VC-3 standard is:
  182. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  183. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  184. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  185. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  186. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  187. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  188. // For 10-bit samples, p / s == 2
  189. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  190. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  191. }
  192. }
  193. }
  194. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  195. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  196. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  197. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  198. return 0;
  199. fail:
  200. return -1;
  201. }
  202. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  203. {
  204. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  205. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  206. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  207. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  208. ctx->qscale = 1;
  209. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  210. return 0;
  211. fail:
  212. return -1;
  213. }
  214. static int dnxhd_encode_init(AVCodecContext *avctx)
  215. {
  216. DNXHDEncContext *ctx = avctx->priv_data;
  217. int i, index, bit_depth;
  218. switch (avctx->pix_fmt) {
  219. case PIX_FMT_YUV422P:
  220. bit_depth = 8;
  221. break;
  222. case PIX_FMT_YUV422P10:
  223. bit_depth = 10;
  224. break;
  225. default:
  226. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  227. return -1;
  228. }
  229. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  230. if (!ctx->cid) {
  231. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  232. return -1;
  233. }
  234. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  235. index = ff_dnxhd_get_cid_table(ctx->cid);
  236. ctx->cid_table = &ff_dnxhd_cid_table[index];
  237. ctx->m.avctx = avctx;
  238. ctx->m.mb_intra = 1;
  239. ctx->m.h263_aic = 1;
  240. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  241. ff_dsputil_init(&ctx->m.dsp, avctx);
  242. ff_dct_common_init(&ctx->m);
  243. if (!ctx->m.dct_quantize)
  244. ctx->m.dct_quantize = ff_dct_quantize_c;
  245. if (ctx->cid_table->bit_depth == 10) {
  246. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  247. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  248. ctx->block_width_l2 = 4;
  249. } else {
  250. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  251. ctx->block_width_l2 = 3;
  252. }
  253. #if HAVE_MMX
  254. ff_dnxhd_init_mmx(ctx);
  255. #endif
  256. ctx->m.mb_height = (avctx->height + 15) / 16;
  257. ctx->m.mb_width = (avctx->width + 15) / 16;
  258. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  259. ctx->interlaced = 1;
  260. ctx->m.mb_height /= 2;
  261. }
  262. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  263. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  264. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  265. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  266. return -1;
  267. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  268. if (ctx->nitris_compat)
  269. ctx->min_padding = 1600;
  270. if (dnxhd_init_vlc(ctx) < 0)
  271. return -1;
  272. if (dnxhd_init_rc(ctx) < 0)
  273. return -1;
  274. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  275. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  276. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  277. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  278. ctx->frame.key_frame = 1;
  279. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  280. ctx->m.avctx->coded_frame = &ctx->frame;
  281. if (avctx->thread_count > MAX_THREADS) {
  282. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  283. return -1;
  284. }
  285. ctx->thread[0] = ctx;
  286. for (i = 1; i < avctx->thread_count; i++) {
  287. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  288. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  289. }
  290. return 0;
  291. fail: //for FF_ALLOCZ_OR_GOTO
  292. return -1;
  293. }
  294. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  295. {
  296. DNXHDEncContext *ctx = avctx->priv_data;
  297. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  298. memset(buf, 0, 640);
  299. memcpy(buf, header_prefix, 5);
  300. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  301. buf[6] = 0x80; // crc flag off
  302. buf[7] = 0xa0; // reserved
  303. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  304. AV_WB16(buf + 0x1a, avctx->width); // SPL
  305. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  306. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  307. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  308. AV_WB32(buf + 0x28, ctx->cid); // CID
  309. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  310. buf[0x5f] = 0x01; // UDL
  311. buf[0x167] = 0x02; // reserved
  312. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  313. buf[0x16d] = ctx->m.mb_height; // Ns
  314. buf[0x16f] = 0x10; // reserved
  315. ctx->msip = buf + 0x170;
  316. return 0;
  317. }
  318. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  319. {
  320. int nbits;
  321. if (diff < 0) {
  322. nbits = av_log2_16bit(-2*diff);
  323. diff--;
  324. } else {
  325. nbits = av_log2_16bit(2*diff);
  326. }
  327. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  328. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  329. }
  330. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  331. {
  332. int last_non_zero = 0;
  333. int slevel, i, j;
  334. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  335. ctx->m.last_dc[n] = block[0];
  336. for (i = 1; i <= last_index; i++) {
  337. j = ctx->m.intra_scantable.permutated[i];
  338. slevel = block[j];
  339. if (slevel) {
  340. int run_level = i - last_non_zero - 1;
  341. int rlevel = (slevel<<1)|!!run_level;
  342. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  343. if (run_level)
  344. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  345. last_non_zero = i;
  346. }
  347. }
  348. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  349. }
  350. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  351. {
  352. const uint8_t *weight_matrix;
  353. int level;
  354. int i;
  355. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  356. for (i = 1; i <= last_index; i++) {
  357. int j = ctx->m.intra_scantable.permutated[i];
  358. level = block[j];
  359. if (level) {
  360. if (level < 0) {
  361. level = (1-2*level) * qscale * weight_matrix[i];
  362. if (ctx->cid_table->bit_depth == 10) {
  363. if (weight_matrix[i] != 8)
  364. level += 8;
  365. level >>= 4;
  366. } else {
  367. if (weight_matrix[i] != 32)
  368. level += 32;
  369. level >>= 6;
  370. }
  371. level = -level;
  372. } else {
  373. level = (2*level+1) * qscale * weight_matrix[i];
  374. if (ctx->cid_table->bit_depth == 10) {
  375. if (weight_matrix[i] != 8)
  376. level += 8;
  377. level >>= 4;
  378. } else {
  379. if (weight_matrix[i] != 32)
  380. level += 32;
  381. level >>= 6;
  382. }
  383. }
  384. block[j] = level;
  385. }
  386. }
  387. }
  388. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  389. {
  390. int score = 0;
  391. int i;
  392. for (i = 0; i < 64; i++)
  393. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  394. return score;
  395. }
  396. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  397. {
  398. int last_non_zero = 0;
  399. int bits = 0;
  400. int i, j, level;
  401. for (i = 1; i <= last_index; i++) {
  402. j = ctx->m.intra_scantable.permutated[i];
  403. level = block[j];
  404. if (level) {
  405. int run_level = i - last_non_zero - 1;
  406. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  407. last_non_zero = i;
  408. }
  409. }
  410. return bits;
  411. }
  412. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  413. {
  414. const int bs = ctx->block_width_l2;
  415. const int bw = 1 << bs;
  416. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  417. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  418. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  419. DSPContext *dsp = &ctx->m.dsp;
  420. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  421. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  422. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  423. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  424. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  425. if (ctx->interlaced) {
  426. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  427. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  428. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  429. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  430. } else {
  431. dsp->clear_block(ctx->blocks[4]);
  432. dsp->clear_block(ctx->blocks[5]);
  433. dsp->clear_block(ctx->blocks[6]);
  434. dsp->clear_block(ctx->blocks[7]);
  435. }
  436. } else {
  437. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  438. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  439. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  440. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  441. }
  442. }
  443. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  444. {
  445. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  446. return component[i];
  447. }
  448. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  449. {
  450. DNXHDEncContext *ctx = avctx->priv_data;
  451. int mb_y = jobnr, mb_x;
  452. int qscale = ctx->qscale;
  453. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  454. ctx = ctx->thread[threadnr];
  455. ctx->m.last_dc[0] =
  456. ctx->m.last_dc[1] =
  457. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  458. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  459. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  460. int ssd = 0;
  461. int ac_bits = 0;
  462. int dc_bits = 0;
  463. int i;
  464. dnxhd_get_blocks(ctx, mb_x, mb_y);
  465. for (i = 0; i < 8; i++) {
  466. DCTELEM *src_block = ctx->blocks[i];
  467. int overflow, nbits, diff, last_index;
  468. int n = dnxhd_switch_matrix(ctx, i);
  469. memcpy(block, src_block, 64*sizeof(*block));
  470. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  471. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  472. diff = block[0] - ctx->m.last_dc[n];
  473. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  474. else nbits = av_log2_16bit( 2*diff);
  475. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  476. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  477. ctx->m.last_dc[n] = block[0];
  478. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  479. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  480. ctx->m.dsp.idct(block);
  481. ssd += dnxhd_ssd_block(block, src_block);
  482. }
  483. }
  484. ctx->mb_rc[qscale][mb].ssd = ssd;
  485. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  486. }
  487. return 0;
  488. }
  489. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  490. {
  491. DNXHDEncContext *ctx = avctx->priv_data;
  492. int mb_y = jobnr, mb_x;
  493. ctx = ctx->thread[threadnr];
  494. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  495. ctx->m.last_dc[0] =
  496. ctx->m.last_dc[1] =
  497. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  498. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  499. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  500. int qscale = ctx->mb_qscale[mb];
  501. int i;
  502. put_bits(&ctx->m.pb, 12, qscale<<1);
  503. dnxhd_get_blocks(ctx, mb_x, mb_y);
  504. for (i = 0; i < 8; i++) {
  505. DCTELEM *block = ctx->blocks[i];
  506. int overflow, n = dnxhd_switch_matrix(ctx, i);
  507. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  508. //START_TIMER;
  509. dnxhd_encode_block(ctx, block, last_index, n);
  510. //STOP_TIMER("encode_block");
  511. }
  512. }
  513. if (put_bits_count(&ctx->m.pb)&31)
  514. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  515. flush_put_bits(&ctx->m.pb);
  516. return 0;
  517. }
  518. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  519. {
  520. int mb_y, mb_x;
  521. int offset = 0;
  522. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  523. int thread_size;
  524. ctx->slice_offs[mb_y] = offset;
  525. ctx->slice_size[mb_y] = 0;
  526. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  527. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  528. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  529. }
  530. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  531. ctx->slice_size[mb_y] >>= 3;
  532. thread_size = ctx->slice_size[mb_y];
  533. offset += thread_size;
  534. }
  535. }
  536. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  537. {
  538. DNXHDEncContext *ctx = avctx->priv_data;
  539. int mb_y = jobnr, mb_x;
  540. ctx = ctx->thread[threadnr];
  541. if (ctx->cid_table->bit_depth == 8) {
  542. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  543. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  544. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  545. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  546. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
  547. ctx->mb_cmp[mb].value = varc;
  548. ctx->mb_cmp[mb].mb = mb;
  549. }
  550. } else { // 10-bit
  551. int const linesize = ctx->m.linesize >> 1;
  552. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  553. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  554. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  555. int sum = 0;
  556. int sqsum = 0;
  557. int mean, sqmean;
  558. int i, j;
  559. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  560. for (i = 0; i < 16; ++i) {
  561. for (j = 0; j < 16; ++j) {
  562. // Turn 16-bit pixels into 10-bit ones.
  563. int const sample = (unsigned)pix[j] >> 6;
  564. sum += sample;
  565. sqsum += sample * sample;
  566. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  567. }
  568. pix += linesize;
  569. }
  570. mean = sum >> 8; // 16*16 == 2^8
  571. sqmean = sqsum >> 8;
  572. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  573. ctx->mb_cmp[mb].mb = mb;
  574. }
  575. }
  576. return 0;
  577. }
  578. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  579. {
  580. int lambda, up_step, down_step;
  581. int last_lower = INT_MAX, last_higher = 0;
  582. int x, y, q;
  583. for (q = 1; q < avctx->qmax; q++) {
  584. ctx->qscale = q;
  585. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  586. }
  587. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  588. lambda = ctx->lambda;
  589. for (;;) {
  590. int bits = 0;
  591. int end = 0;
  592. if (lambda == last_higher) {
  593. lambda++;
  594. end = 1; // need to set final qscales/bits
  595. }
  596. for (y = 0; y < ctx->m.mb_height; y++) {
  597. for (x = 0; x < ctx->m.mb_width; x++) {
  598. unsigned min = UINT_MAX;
  599. int qscale = 1;
  600. int mb = y*ctx->m.mb_width+x;
  601. for (q = 1; q < avctx->qmax; q++) {
  602. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  603. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  604. if (score < min) {
  605. min = score;
  606. qscale = q;
  607. }
  608. }
  609. bits += ctx->mb_rc[qscale][mb].bits;
  610. ctx->mb_qscale[mb] = qscale;
  611. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  612. }
  613. bits = (bits+31)&~31; // padding
  614. if (bits > ctx->frame_bits)
  615. break;
  616. }
  617. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  618. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  619. if (end) {
  620. if (bits > ctx->frame_bits)
  621. return -1;
  622. break;
  623. }
  624. if (bits < ctx->frame_bits) {
  625. last_lower = FFMIN(lambda, last_lower);
  626. if (last_higher != 0)
  627. lambda = (lambda+last_higher)>>1;
  628. else
  629. lambda -= down_step;
  630. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  631. up_step = 1<<LAMBDA_FRAC_BITS;
  632. lambda = FFMAX(1, lambda);
  633. if (lambda == last_lower)
  634. break;
  635. } else {
  636. last_higher = FFMAX(lambda, last_higher);
  637. if (last_lower != INT_MAX)
  638. lambda = (lambda+last_lower)>>1;
  639. else if ((int64_t)lambda + up_step > INT_MAX)
  640. return -1;
  641. else
  642. lambda += up_step;
  643. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  644. down_step = 1<<LAMBDA_FRAC_BITS;
  645. }
  646. }
  647. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  648. ctx->lambda = lambda;
  649. return 0;
  650. }
  651. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  652. {
  653. int bits = 0;
  654. int up_step = 1;
  655. int down_step = 1;
  656. int last_higher = 0;
  657. int last_lower = INT_MAX;
  658. int qscale;
  659. int x, y;
  660. qscale = ctx->qscale;
  661. for (;;) {
  662. bits = 0;
  663. ctx->qscale = qscale;
  664. // XXX avoid recalculating bits
  665. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  666. for (y = 0; y < ctx->m.mb_height; y++) {
  667. for (x = 0; x < ctx->m.mb_width; x++)
  668. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  669. bits = (bits+31)&~31; // padding
  670. if (bits > ctx->frame_bits)
  671. break;
  672. }
  673. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  674. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  675. if (bits < ctx->frame_bits) {
  676. if (qscale == 1)
  677. return 1;
  678. if (last_higher == qscale - 1) {
  679. qscale = last_higher;
  680. break;
  681. }
  682. last_lower = FFMIN(qscale, last_lower);
  683. if (last_higher != 0)
  684. qscale = (qscale+last_higher)>>1;
  685. else
  686. qscale -= down_step++;
  687. if (qscale < 1)
  688. qscale = 1;
  689. up_step = 1;
  690. } else {
  691. if (last_lower == qscale + 1)
  692. break;
  693. last_higher = FFMAX(qscale, last_higher);
  694. if (last_lower != INT_MAX)
  695. qscale = (qscale+last_lower)>>1;
  696. else
  697. qscale += up_step++;
  698. down_step = 1;
  699. if (qscale >= ctx->m.avctx->qmax)
  700. return -1;
  701. }
  702. }
  703. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  704. ctx->qscale = qscale;
  705. return 0;
  706. }
  707. #define BUCKET_BITS 8
  708. #define RADIX_PASSES 4
  709. #define NBUCKETS (1 << BUCKET_BITS)
  710. static inline int get_bucket(int value, int shift)
  711. {
  712. value >>= shift;
  713. value &= NBUCKETS - 1;
  714. return NBUCKETS - 1 - value;
  715. }
  716. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  717. {
  718. int i, j;
  719. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  720. for (i = 0; i < size; i++) {
  721. int v = data[i].value;
  722. for (j = 0; j < RADIX_PASSES; j++) {
  723. buckets[j][get_bucket(v, 0)]++;
  724. v >>= BUCKET_BITS;
  725. }
  726. av_assert1(!v);
  727. }
  728. for (j = 0; j < RADIX_PASSES; j++) {
  729. int offset = size;
  730. for (i = NBUCKETS - 1; i >= 0; i--)
  731. buckets[j][i] = offset -= buckets[j][i];
  732. av_assert1(!buckets[j][0]);
  733. }
  734. }
  735. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  736. {
  737. int shift = pass * BUCKET_BITS;
  738. int i;
  739. for (i = 0; i < size; i++) {
  740. int v = get_bucket(data[i].value, shift);
  741. int pos = buckets[v]++;
  742. dst[pos] = data[i];
  743. }
  744. }
  745. static void radix_sort(RCCMPEntry *data, int size)
  746. {
  747. int buckets[RADIX_PASSES][NBUCKETS];
  748. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  749. radix_count(data, size, buckets);
  750. radix_sort_pass(tmp, data, size, buckets[0], 0);
  751. radix_sort_pass(data, tmp, size, buckets[1], 1);
  752. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  753. radix_sort_pass(tmp, data, size, buckets[2], 2);
  754. radix_sort_pass(data, tmp, size, buckets[3], 3);
  755. }
  756. av_free(tmp);
  757. }
  758. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  759. {
  760. int max_bits = 0;
  761. int ret, x, y;
  762. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  763. return -1;
  764. for (y = 0; y < ctx->m.mb_height; y++) {
  765. for (x = 0; x < ctx->m.mb_width; x++) {
  766. int mb = y*ctx->m.mb_width+x;
  767. int delta_bits;
  768. ctx->mb_qscale[mb] = ctx->qscale;
  769. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  770. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  771. if (!RC_VARIANCE) {
  772. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  773. ctx->mb_cmp[mb].mb = mb;
  774. ctx->mb_cmp[mb].value = delta_bits ?
  775. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  776. : INT_MIN; //avoid increasing qscale
  777. }
  778. }
  779. max_bits += 31; //worst padding
  780. }
  781. if (!ret) {
  782. if (RC_VARIANCE)
  783. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  784. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  785. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  786. int mb = ctx->mb_cmp[x].mb;
  787. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  788. ctx->mb_qscale[mb] = ctx->qscale+1;
  789. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  790. }
  791. }
  792. return 0;
  793. }
  794. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  795. {
  796. int i;
  797. for (i = 0; i < 3; i++) {
  798. ctx->frame.data[i] = frame->data[i];
  799. ctx->frame.linesize[i] = frame->linesize[i];
  800. }
  801. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  802. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  803. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  804. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  805. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  806. }
  807. ctx->frame.interlaced_frame = frame->interlaced_frame;
  808. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  809. }
  810. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  811. const AVFrame *frame, int *got_packet)
  812. {
  813. DNXHDEncContext *ctx = avctx->priv_data;
  814. int first_field = 1;
  815. int offset, i, ret;
  816. uint8_t *buf;
  817. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  818. return ret;
  819. buf = pkt->data;
  820. dnxhd_load_picture(ctx, frame);
  821. encode_coding_unit:
  822. for (i = 0; i < 3; i++) {
  823. ctx->src[i] = ctx->frame.data[i];
  824. if (ctx->interlaced && ctx->cur_field)
  825. ctx->src[i] += ctx->frame.linesize[i];
  826. }
  827. dnxhd_write_header(avctx, buf);
  828. if (avctx->mb_decision == FF_MB_DECISION_RD)
  829. ret = dnxhd_encode_rdo(avctx, ctx);
  830. else
  831. ret = dnxhd_encode_fast(avctx, ctx);
  832. if (ret < 0) {
  833. av_log(avctx, AV_LOG_ERROR,
  834. "picture could not fit ratecontrol constraints, increase qmax\n");
  835. return -1;
  836. }
  837. dnxhd_setup_threads_slices(ctx);
  838. offset = 0;
  839. for (i = 0; i < ctx->m.mb_height; i++) {
  840. AV_WB32(ctx->msip + i * 4, offset);
  841. offset += ctx->slice_size[i];
  842. av_assert1(!(ctx->slice_size[i] & 3));
  843. }
  844. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  845. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  846. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  847. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  848. if (ctx->interlaced && first_field) {
  849. first_field = 0;
  850. ctx->cur_field ^= 1;
  851. buf += ctx->cid_table->coding_unit_size;
  852. goto encode_coding_unit;
  853. }
  854. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  855. pkt->flags |= AV_PKT_FLAG_KEY;
  856. *got_packet = 1;
  857. return 0;
  858. }
  859. static int dnxhd_encode_end(AVCodecContext *avctx)
  860. {
  861. DNXHDEncContext *ctx = avctx->priv_data;
  862. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  863. int i;
  864. av_free(ctx->vlc_codes-max_level*2);
  865. av_free(ctx->vlc_bits -max_level*2);
  866. av_freep(&ctx->run_codes);
  867. av_freep(&ctx->run_bits);
  868. av_freep(&ctx->mb_bits);
  869. av_freep(&ctx->mb_qscale);
  870. av_freep(&ctx->mb_rc);
  871. av_freep(&ctx->mb_cmp);
  872. av_freep(&ctx->slice_size);
  873. av_freep(&ctx->slice_offs);
  874. av_freep(&ctx->qmatrix_c);
  875. av_freep(&ctx->qmatrix_l);
  876. av_freep(&ctx->qmatrix_c16);
  877. av_freep(&ctx->qmatrix_l16);
  878. for (i = 1; i < avctx->thread_count; i++)
  879. av_freep(&ctx->thread[i]);
  880. return 0;
  881. }
  882. static const AVCodecDefault dnxhd_defaults[] = {
  883. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  884. { NULL },
  885. };
  886. AVCodec ff_dnxhd_encoder = {
  887. .name = "dnxhd",
  888. .type = AVMEDIA_TYPE_VIDEO,
  889. .id = AV_CODEC_ID_DNXHD,
  890. .priv_data_size = sizeof(DNXHDEncContext),
  891. .init = dnxhd_encode_init,
  892. .encode2 = dnxhd_encode_picture,
  893. .close = dnxhd_encode_end,
  894. .capabilities = CODEC_CAP_SLICE_THREADS,
  895. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV422P,
  896. PIX_FMT_YUV422P10,
  897. PIX_FMT_NONE },
  898. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  899. .priv_class = &class,
  900. .defaults = dnxhd_defaults,
  901. };