You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

478 lines
18KB

  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * audio resampling
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/avassert.h"
  27. #include "resample.h"
  28. /**
  29. * 0th order modified bessel function of the first kind.
  30. */
  31. static double bessel(double x){
  32. double lastv=0;
  33. double t, v;
  34. int i;
  35. static const double inv[100]={
  36. 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
  37. 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
  38. 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
  39. 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
  40. 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
  41. 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
  42. 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
  43. 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
  44. 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
  45. 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
  46. };
  47. x= x*x/4;
  48. t = x;
  49. v = 1 + x;
  50. for(i=1; v != lastv; i+=2){
  51. t *= x*inv[i];
  52. v += t;
  53. lastv=v;
  54. t *= x*inv[i + 1];
  55. v += t;
  56. av_assert2(i<98);
  57. }
  58. return v;
  59. }
  60. /**
  61. * builds a polyphase filterbank.
  62. * @param factor resampling factor
  63. * @param scale wanted sum of coefficients for each filter
  64. * @param filter_type filter type
  65. * @param kaiser_beta kaiser window beta
  66. * @return 0 on success, negative on error
  67. */
  68. static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
  69. int filter_type, int kaiser_beta){
  70. int ph, i;
  71. double x, y, w, t;
  72. double *tab = av_malloc_array(tap_count+1, sizeof(*tab));
  73. const int center= (tap_count-1)/2;
  74. if (!tab)
  75. return AVERROR(ENOMEM);
  76. /* if upsampling, only need to interpolate, no filter */
  77. if (factor > 1.0)
  78. factor = 1.0;
  79. av_assert0(phase_count == 1 || phase_count % 2 == 0);
  80. for(ph = 0; ph <= phase_count / 2; ph++) {
  81. double norm = 0;
  82. for(i=0;i<=tap_count;i++) {
  83. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  84. if (x == 0) y = 1.0;
  85. else y = sin(x) / x;
  86. switch(filter_type){
  87. case SWR_FILTER_TYPE_CUBIC:{
  88. const float d= -0.5; //first order derivative = -0.5
  89. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  90. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  91. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  92. break;}
  93. case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
  94. w = 2.0*x / (factor*tap_count) + M_PI;
  95. t = cos(w);
  96. y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
  97. break;
  98. case SWR_FILTER_TYPE_KAISER:
  99. w = 2.0*x / (factor*tap_count*M_PI);
  100. y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
  101. break;
  102. default:
  103. av_assert0(0);
  104. }
  105. tab[i] = y;
  106. if (i < tap_count)
  107. norm += y;
  108. }
  109. /* normalize so that an uniform color remains the same */
  110. switch(c->format){
  111. case AV_SAMPLE_FMT_S16P:
  112. for(i=0;i<tap_count;i++)
  113. ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
  114. if (tap_count % 2 == 0) {
  115. for (i = 0; i < tap_count; i++)
  116. ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
  117. }
  118. else {
  119. for (i = 1; i <= tap_count; i++)
  120. ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-i] =
  121. av_clip(lrintf(tab[i] * scale / (norm - tab[0] + tab[tap_count])), INT16_MIN, INT16_MAX);
  122. }
  123. break;
  124. case AV_SAMPLE_FMT_S32P:
  125. for(i=0;i<tap_count;i++)
  126. ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
  127. if (tap_count % 2 == 0) {
  128. for (i = 0; i < tap_count; i++)
  129. ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
  130. }
  131. else {
  132. for (i = 1; i <= tap_count; i++)
  133. ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-i] =
  134. av_clipl_int32(llrint(tab[i] * scale / (norm - tab[0] + tab[tap_count])));
  135. }
  136. break;
  137. case AV_SAMPLE_FMT_FLTP:
  138. for(i=0;i<tap_count;i++)
  139. ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
  140. if (tap_count % 2 == 0) {
  141. for (i = 0; i < tap_count; i++)
  142. ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
  143. }
  144. else {
  145. for (i = 1; i <= tap_count; i++)
  146. ((float*)filter)[(phase_count-ph) * alloc + tap_count-i] = tab[i] * scale / (norm - tab[0] + tab[tap_count]);
  147. }
  148. break;
  149. case AV_SAMPLE_FMT_DBLP:
  150. for(i=0;i<tap_count;i++)
  151. ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
  152. if (tap_count % 2 == 0) {
  153. for (i = 0; i < tap_count; i++)
  154. ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
  155. }
  156. else {
  157. for (i = 1; i <= tap_count; i++)
  158. ((double*)filter)[(phase_count-ph) * alloc + tap_count-i] = tab[i] * scale / (norm - tab[0] + tab[tap_count]);
  159. }
  160. break;
  161. }
  162. }
  163. #if 0
  164. {
  165. #define LEN 1024
  166. int j,k;
  167. double sine[LEN + tap_count];
  168. double filtered[LEN];
  169. double maxff=-2, minff=2, maxsf=-2, minsf=2;
  170. for(i=0; i<LEN; i++){
  171. double ss=0, sf=0, ff=0;
  172. for(j=0; j<LEN+tap_count; j++)
  173. sine[j]= cos(i*j*M_PI/LEN);
  174. for(j=0; j<LEN; j++){
  175. double sum=0;
  176. ph=0;
  177. for(k=0; k<tap_count; k++)
  178. sum += filter[ph * tap_count + k] * sine[k+j];
  179. filtered[j]= sum / (1<<FILTER_SHIFT);
  180. ss+= sine[j + center] * sine[j + center];
  181. ff+= filtered[j] * filtered[j];
  182. sf+= sine[j + center] * filtered[j];
  183. }
  184. ss= sqrt(2*ss/LEN);
  185. ff= sqrt(2*ff/LEN);
  186. sf= 2*sf/LEN;
  187. maxff= FFMAX(maxff, ff);
  188. minff= FFMIN(minff, ff);
  189. maxsf= FFMAX(maxsf, sf);
  190. minsf= FFMIN(minsf, sf);
  191. if(i%11==0){
  192. av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
  193. minff=minsf= 2;
  194. maxff=maxsf= -2;
  195. }
  196. }
  197. }
  198. #endif
  199. av_free(tab);
  200. return 0;
  201. }
  202. static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
  203. double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
  204. double precision, int cheby)
  205. {
  206. double cutoff = cutoff0? cutoff0 : 0.97;
  207. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  208. int phase_count= 1<<phase_shift;
  209. if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
  210. || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
  211. || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
  212. c = av_mallocz(sizeof(*c));
  213. if (!c)
  214. return NULL;
  215. c->format= format;
  216. c->felem_size= av_get_bytes_per_sample(c->format);
  217. switch(c->format){
  218. case AV_SAMPLE_FMT_S16P:
  219. c->filter_shift = 15;
  220. break;
  221. case AV_SAMPLE_FMT_S32P:
  222. c->filter_shift = 30;
  223. break;
  224. case AV_SAMPLE_FMT_FLTP:
  225. case AV_SAMPLE_FMT_DBLP:
  226. c->filter_shift = 0;
  227. break;
  228. default:
  229. av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
  230. av_assert0(0);
  231. }
  232. if (filter_size/factor > INT32_MAX/256) {
  233. av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
  234. goto error;
  235. }
  236. c->phase_shift = phase_shift;
  237. c->phase_mask = phase_count - 1;
  238. c->linear = linear;
  239. c->factor = factor;
  240. c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
  241. c->filter_alloc = FFALIGN(c->filter_length, 8);
  242. c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
  243. c->filter_type = filter_type;
  244. c->kaiser_beta = kaiser_beta;
  245. if (!c->filter_bank)
  246. goto error;
  247. if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
  248. goto error;
  249. memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
  250. memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
  251. }
  252. c->compensation_distance= 0;
  253. if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
  254. goto error;
  255. c->ideal_dst_incr = c->dst_incr;
  256. c->dst_incr_div = c->dst_incr / c->src_incr;
  257. c->dst_incr_mod = c->dst_incr % c->src_incr;
  258. c->index= -phase_count*((c->filter_length-1)/2);
  259. c->frac= 0;
  260. swri_resample_dsp_init(c);
  261. return c;
  262. error:
  263. av_freep(&c->filter_bank);
  264. av_free(c);
  265. return NULL;
  266. }
  267. static void resample_free(ResampleContext **c){
  268. if(!*c)
  269. return;
  270. av_freep(&(*c)->filter_bank);
  271. av_freep(c);
  272. }
  273. static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
  274. c->compensation_distance= compensation_distance;
  275. if (compensation_distance)
  276. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  277. else
  278. c->dst_incr = c->ideal_dst_incr;
  279. c->dst_incr_div = c->dst_incr / c->src_incr;
  280. c->dst_incr_mod = c->dst_incr % c->src_incr;
  281. return 0;
  282. }
  283. static int swri_resample(ResampleContext *c,
  284. uint8_t *dst, const uint8_t *src, int *consumed,
  285. int src_size, int dst_size, int update_ctx)
  286. {
  287. if (c->filter_length == 1 && c->phase_shift == 0) {
  288. int index= c->index;
  289. int frac= c->frac;
  290. int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
  291. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  292. int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr;
  293. dst_size= FFMIN(dst_size, new_size);
  294. c->dsp.resample_one(dst, src, dst_size, index2, incr);
  295. index += dst_size * c->dst_incr_div;
  296. index += (frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
  297. av_assert2(index >= 0);
  298. *consumed= index;
  299. if (update_ctx) {
  300. c->frac = (frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
  301. c->index = 0;
  302. }
  303. } else {
  304. int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift;
  305. int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
  306. int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
  307. dst_size = FFMIN(dst_size, delta_n);
  308. if (dst_size > 0) {
  309. *consumed = c->dsp.resample(c, dst, src, dst_size, update_ctx);
  310. } else {
  311. *consumed = 0;
  312. }
  313. }
  314. return dst_size;
  315. }
  316. static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
  317. int i, ret= -1;
  318. int av_unused mm_flags = av_get_cpu_flags();
  319. int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
  320. (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
  321. int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr;
  322. if (c->compensation_distance)
  323. dst_size = FFMIN(dst_size, c->compensation_distance);
  324. src_size = FFMIN(src_size, max_src_size);
  325. for(i=0; i<dst->ch_count; i++){
  326. ret= swri_resample(c, dst->ch[i], src->ch[i],
  327. consumed, src_size, dst_size, i+1==dst->ch_count);
  328. }
  329. if(need_emms)
  330. emms_c();
  331. if (c->compensation_distance) {
  332. c->compensation_distance -= ret;
  333. if (!c->compensation_distance) {
  334. c->dst_incr = c->ideal_dst_incr;
  335. c->dst_incr_div = c->dst_incr / c->src_incr;
  336. c->dst_incr_mod = c->dst_incr % c->src_incr;
  337. }
  338. }
  339. return ret;
  340. }
  341. static int64_t get_delay(struct SwrContext *s, int64_t base){
  342. ResampleContext *c = s->resample;
  343. int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
  344. num *= 1 << c->phase_shift;
  345. num -= c->index;
  346. num *= c->src_incr;
  347. num -= c->frac;
  348. return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
  349. }
  350. static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
  351. ResampleContext *c = s->resample;
  352. // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
  353. // They also make it easier to proof that changes and optimizations do not
  354. // break the upper bound.
  355. int64_t num = s->in_buffer_count + 2LL + in_samples;
  356. num *= 1 << c->phase_shift;
  357. num -= c->index;
  358. num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) << c->phase_shift, AV_ROUND_UP) + 2;
  359. if (c->compensation_distance) {
  360. if (num > INT_MAX)
  361. return AVERROR(EINVAL);
  362. num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
  363. }
  364. return num;
  365. }
  366. static int resample_flush(struct SwrContext *s) {
  367. AudioData *a= &s->in_buffer;
  368. int i, j, ret;
  369. if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
  370. return ret;
  371. av_assert0(a->planar);
  372. for(i=0; i<a->ch_count; i++){
  373. for(j=0; j<s->in_buffer_count; j++){
  374. memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
  375. a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
  376. }
  377. }
  378. s->in_buffer_count += (s->in_buffer_count+1)/2;
  379. return 0;
  380. }
  381. // in fact the whole handle multiple ridiculously small buffers might need more thinking...
  382. static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
  383. int in_count, int *out_idx, int *out_sz)
  384. {
  385. int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
  386. if (c->index >= 0)
  387. return 0;
  388. if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
  389. return res;
  390. // copy
  391. for (n = *out_sz; n < num; n++) {
  392. for (ch = 0; ch < src->ch_count; ch++) {
  393. memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
  394. src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
  395. }
  396. }
  397. // if not enough data is in, return and wait for more
  398. if (num < c->filter_length + 1) {
  399. *out_sz = num;
  400. *out_idx = c->filter_length;
  401. return INT_MAX;
  402. }
  403. // else invert
  404. for (n = 1; n <= c->filter_length; n++) {
  405. for (ch = 0; ch < src->ch_count; ch++) {
  406. memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
  407. dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
  408. c->felem_size);
  409. }
  410. }
  411. res = num - *out_sz;
  412. *out_idx = c->filter_length + (c->index >> c->phase_shift);
  413. *out_sz = FFMAX(*out_sz + c->filter_length,
  414. 1 + c->filter_length * 2) - *out_idx;
  415. c->index &= c->phase_mask;
  416. return FFMAX(res, 0);
  417. }
  418. struct Resampler const swri_resampler={
  419. resample_init,
  420. resample_free,
  421. multiple_resample,
  422. resample_flush,
  423. set_compensation,
  424. get_delay,
  425. invert_initial_buffer,
  426. get_out_samples,
  427. };