You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4339 lines
153KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #include "mathops.h"
  37. #undef NDEBUG
  38. #include <assert.h>
  39. #define MB_INTRA_VLC_BITS 9
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /**
  44. * Init VC-1 specific tables and VC1Context members
  45. * @param v The VC1Context to initialize
  46. * @return Status
  47. */
  48. static int vc1_init_common(VC1Context *v)
  49. {
  50. static int done = 0;
  51. int i = 0;
  52. v->hrd_rate = v->hrd_buffer = NULL;
  53. /* VLC tables */
  54. if(!done)
  55. {
  56. done = 1;
  57. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  58. ff_vc1_bfraction_bits, 1, 1,
  59. ff_vc1_bfraction_codes, 1, 1, 1);
  60. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  61. ff_vc1_norm2_bits, 1, 1,
  62. ff_vc1_norm2_codes, 1, 1, 1);
  63. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  64. ff_vc1_norm6_bits, 1, 1,
  65. ff_vc1_norm6_codes, 2, 2, 1);
  66. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  67. ff_vc1_imode_bits, 1, 1,
  68. ff_vc1_imode_codes, 1, 1, 1);
  69. for (i=0; i<3; i++)
  70. {
  71. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  72. ff_vc1_ttmb_bits[i], 1, 1,
  73. ff_vc1_ttmb_codes[i], 2, 2, 1);
  74. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  75. ff_vc1_ttblk_bits[i], 1, 1,
  76. ff_vc1_ttblk_codes[i], 1, 1, 1);
  77. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  78. ff_vc1_subblkpat_bits[i], 1, 1,
  79. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  80. }
  81. for(i=0; i<4; i++)
  82. {
  83. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  84. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  85. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  86. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  87. ff_vc1_cbpcy_p_bits[i], 1, 1,
  88. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  89. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  90. ff_vc1_mv_diff_bits[i], 1, 1,
  91. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  92. }
  93. for(i=0; i<8; i++)
  94. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  95. &vc1_ac_tables[i][0][1], 8, 4,
  96. &vc1_ac_tables[i][0][0], 8, 4, 1);
  97. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  98. &ff_msmp4_mb_i_table[0][1], 4, 2,
  99. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  100. }
  101. /* Other defaults */
  102. v->pq = -1;
  103. v->mvrange = 0; /* 7.1.1.18, p80 */
  104. return 0;
  105. }
  106. /***********************************************************************/
  107. /**
  108. * @defgroup bitplane VC9 Bitplane decoding
  109. * @see 8.7, p56
  110. * @{
  111. */
  112. /** @addtogroup bitplane
  113. * Imode types
  114. * @{
  115. */
  116. enum Imode {
  117. IMODE_RAW,
  118. IMODE_NORM2,
  119. IMODE_DIFF2,
  120. IMODE_NORM6,
  121. IMODE_DIFF6,
  122. IMODE_ROWSKIP,
  123. IMODE_COLSKIP
  124. };
  125. /** @} */ //imode defines
  126. /** Decode rows by checking if they are skipped
  127. * @param plane Buffer to store decoded bits
  128. * @param[in] width Width of this buffer
  129. * @param[in] height Height of this buffer
  130. * @param[in] stride of this buffer
  131. */
  132. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  133. int x, y;
  134. for (y=0; y<height; y++){
  135. if (!get_bits1(gb)) //rowskip
  136. memset(plane, 0, width);
  137. else
  138. for (x=0; x<width; x++)
  139. plane[x] = get_bits1(gb);
  140. plane += stride;
  141. }
  142. }
  143. /** Decode columns by checking if they are skipped
  144. * @param plane Buffer to store decoded bits
  145. * @param[in] width Width of this buffer
  146. * @param[in] height Height of this buffer
  147. * @param[in] stride of this buffer
  148. * @todo FIXME: Optimize
  149. */
  150. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  151. int x, y;
  152. for (x=0; x<width; x++){
  153. if (!get_bits1(gb)) //colskip
  154. for (y=0; y<height; y++)
  155. plane[y*stride] = 0;
  156. else
  157. for (y=0; y<height; y++)
  158. plane[y*stride] = get_bits1(gb);
  159. plane ++;
  160. }
  161. }
  162. /** Decode a bitplane's bits
  163. * @param bp Bitplane where to store the decode bits
  164. * @param v VC-1 context for bit reading and logging
  165. * @return Status
  166. * @todo FIXME: Optimize
  167. */
  168. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  169. {
  170. GetBitContext *gb = &v->s.gb;
  171. int imode, x, y, code, offset;
  172. uint8_t invert, *planep = data;
  173. int width, height, stride;
  174. width = v->s.mb_width;
  175. height = v->s.mb_height;
  176. stride = v->s.mb_stride;
  177. invert = get_bits1(gb);
  178. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  179. *raw_flag = 0;
  180. switch (imode)
  181. {
  182. case IMODE_RAW:
  183. //Data is actually read in the MB layer (same for all tests == "raw")
  184. *raw_flag = 1; //invert ignored
  185. return invert;
  186. case IMODE_DIFF2:
  187. case IMODE_NORM2:
  188. if ((height * width) & 1)
  189. {
  190. *planep++ = get_bits1(gb);
  191. offset = 1;
  192. }
  193. else offset = 0;
  194. // decode bitplane as one long line
  195. for (y = offset; y < height * width; y += 2) {
  196. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  197. *planep++ = code & 1;
  198. offset++;
  199. if(offset == width) {
  200. offset = 0;
  201. planep += stride - width;
  202. }
  203. *planep++ = code >> 1;
  204. offset++;
  205. if(offset == width) {
  206. offset = 0;
  207. planep += stride - width;
  208. }
  209. }
  210. break;
  211. case IMODE_DIFF6:
  212. case IMODE_NORM6:
  213. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  214. for(y = 0; y < height; y+= 3) {
  215. for(x = width & 1; x < width; x += 2) {
  216. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  217. if(code < 0){
  218. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  219. return -1;
  220. }
  221. planep[x + 0] = (code >> 0) & 1;
  222. planep[x + 1] = (code >> 1) & 1;
  223. planep[x + 0 + stride] = (code >> 2) & 1;
  224. planep[x + 1 + stride] = (code >> 3) & 1;
  225. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  226. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  227. }
  228. planep += stride * 3;
  229. }
  230. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  231. } else { // 3x2
  232. planep += (height & 1) * stride;
  233. for(y = height & 1; y < height; y += 2) {
  234. for(x = width % 3; x < width; x += 3) {
  235. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  236. if(code < 0){
  237. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  238. return -1;
  239. }
  240. planep[x + 0] = (code >> 0) & 1;
  241. planep[x + 1] = (code >> 1) & 1;
  242. planep[x + 2] = (code >> 2) & 1;
  243. planep[x + 0 + stride] = (code >> 3) & 1;
  244. planep[x + 1 + stride] = (code >> 4) & 1;
  245. planep[x + 2 + stride] = (code >> 5) & 1;
  246. }
  247. planep += stride * 2;
  248. }
  249. x = width % 3;
  250. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  251. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  252. }
  253. break;
  254. case IMODE_ROWSKIP:
  255. decode_rowskip(data, width, height, stride, &v->s.gb);
  256. break;
  257. case IMODE_COLSKIP:
  258. decode_colskip(data, width, height, stride, &v->s.gb);
  259. break;
  260. default: break;
  261. }
  262. /* Applying diff operator */
  263. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  264. {
  265. planep = data;
  266. planep[0] ^= invert;
  267. for (x=1; x<width; x++)
  268. planep[x] ^= planep[x-1];
  269. for (y=1; y<height; y++)
  270. {
  271. planep += stride;
  272. planep[0] ^= planep[-stride];
  273. for (x=1; x<width; x++)
  274. {
  275. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  276. else planep[x] ^= planep[x-1];
  277. }
  278. }
  279. }
  280. else if (invert)
  281. {
  282. planep = data;
  283. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  284. }
  285. return (imode<<1) + invert;
  286. }
  287. /** @} */ //Bitplane group
  288. #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
  289. /**
  290. * VC-1 in-loop deblocking filter for one line
  291. * @param src source block type
  292. * @param pq block quantizer
  293. * @return whether other 3 pairs should be filtered or not
  294. * @see 8.6
  295. */
  296. static int av_always_inline vc1_filter_line(uint8_t* src, int stride, int pq){
  297. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  298. int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  299. int a0_sign = a0 >> 31; /* Store sign */
  300. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  301. if(a0 < pq){
  302. int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
  303. int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
  304. if(a1 < a0 || a2 < a0){
  305. int clip = src[-1*stride] - src[ 0*stride];
  306. int clip_sign = clip >> 31;
  307. clip = ((clip ^ clip_sign) - clip_sign)>>1;
  308. if(clip){
  309. int a3 = FFMIN(a1, a2);
  310. int d = 5 * (a3 - a0);
  311. int d_sign = (d >> 31);
  312. d = ((d ^ d_sign) - d_sign) >> 3;
  313. d_sign ^= a0_sign;
  314. if( d_sign ^ clip_sign )
  315. d = 0;
  316. else{
  317. d = FFMIN(d, clip);
  318. d = (d ^ d_sign) - d_sign; /* Restore sign */
  319. src[-1*stride] = cm[src[-1*stride] - d];
  320. src[ 0*stride] = cm[src[ 0*stride] + d];
  321. }
  322. return 1;
  323. }
  324. }
  325. }
  326. return 0;
  327. }
  328. /**
  329. * VC-1 in-loop deblocking filter
  330. * @param src source block type
  331. * @param len edge length to filter (4 or 8 pixels)
  332. * @param pq block quantizer
  333. * @see 8.6
  334. */
  335. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  336. {
  337. int i;
  338. int filt3;
  339. for(i = 0; i < len; i += 4){
  340. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  341. if(filt3){
  342. vc1_filter_line(src + 0*step, stride, pq);
  343. vc1_filter_line(src + 1*step, stride, pq);
  344. vc1_filter_line(src + 3*step, stride, pq);
  345. }
  346. src += step * 4;
  347. }
  348. }
  349. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  350. {
  351. int i, j;
  352. if(!s->first_slice_line)
  353. vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
  354. vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
  355. for(i = !s->mb_x*8; i < 16; i += 8)
  356. vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
  357. for(j = 0; j < 2; j++){
  358. if(!s->first_slice_line)
  359. vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
  360. if(s->mb_x)
  361. vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
  362. }
  363. }
  364. /***********************************************************************/
  365. /** VOP Dquant decoding
  366. * @param v VC-1 Context
  367. */
  368. static int vop_dquant_decoding(VC1Context *v)
  369. {
  370. GetBitContext *gb = &v->s.gb;
  371. int pqdiff;
  372. //variable size
  373. if (v->dquant == 2)
  374. {
  375. pqdiff = get_bits(gb, 3);
  376. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  377. else v->altpq = v->pq + pqdiff + 1;
  378. }
  379. else
  380. {
  381. v->dquantfrm = get_bits1(gb);
  382. if ( v->dquantfrm )
  383. {
  384. v->dqprofile = get_bits(gb, 2);
  385. switch (v->dqprofile)
  386. {
  387. case DQPROFILE_SINGLE_EDGE:
  388. case DQPROFILE_DOUBLE_EDGES:
  389. v->dqsbedge = get_bits(gb, 2);
  390. break;
  391. case DQPROFILE_ALL_MBS:
  392. v->dqbilevel = get_bits1(gb);
  393. if(!v->dqbilevel)
  394. v->halfpq = 0;
  395. default: break; //Forbidden ?
  396. }
  397. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  398. {
  399. pqdiff = get_bits(gb, 3);
  400. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  401. else v->altpq = v->pq + pqdiff + 1;
  402. }
  403. }
  404. }
  405. return 0;
  406. }
  407. /** Put block onto picture
  408. */
  409. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  410. {
  411. uint8_t *Y;
  412. int ys, us, vs;
  413. DSPContext *dsp = &v->s.dsp;
  414. if(v->rangeredfrm) {
  415. int i, j, k;
  416. for(k = 0; k < 6; k++)
  417. for(j = 0; j < 8; j++)
  418. for(i = 0; i < 8; i++)
  419. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  420. }
  421. ys = v->s.current_picture.linesize[0];
  422. us = v->s.current_picture.linesize[1];
  423. vs = v->s.current_picture.linesize[2];
  424. Y = v->s.dest[0];
  425. dsp->put_pixels_clamped(block[0], Y, ys);
  426. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  427. Y += ys * 8;
  428. dsp->put_pixels_clamped(block[2], Y, ys);
  429. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  430. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  431. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  432. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  433. }
  434. }
  435. /** Do motion compensation over 1 macroblock
  436. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  437. */
  438. static void vc1_mc_1mv(VC1Context *v, int dir)
  439. {
  440. MpegEncContext *s = &v->s;
  441. DSPContext *dsp = &v->s.dsp;
  442. uint8_t *srcY, *srcU, *srcV;
  443. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  444. if(!v->s.last_picture.data[0])return;
  445. mx = s->mv[dir][0][0];
  446. my = s->mv[dir][0][1];
  447. // store motion vectors for further use in B frames
  448. if(s->pict_type == FF_P_TYPE) {
  449. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  450. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  451. }
  452. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  453. uvmy = (my + ((my & 3) == 3)) >> 1;
  454. if(v->fastuvmc) {
  455. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  456. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  457. }
  458. if(!dir) {
  459. srcY = s->last_picture.data[0];
  460. srcU = s->last_picture.data[1];
  461. srcV = s->last_picture.data[2];
  462. } else {
  463. srcY = s->next_picture.data[0];
  464. srcU = s->next_picture.data[1];
  465. srcV = s->next_picture.data[2];
  466. }
  467. src_x = s->mb_x * 16 + (mx >> 2);
  468. src_y = s->mb_y * 16 + (my >> 2);
  469. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  470. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  471. if(v->profile != PROFILE_ADVANCED){
  472. src_x = av_clip( src_x, -16, s->mb_width * 16);
  473. src_y = av_clip( src_y, -16, s->mb_height * 16);
  474. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  475. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  476. }else{
  477. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  478. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  479. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  480. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  481. }
  482. srcY += src_y * s->linesize + src_x;
  483. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  484. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  485. /* for grayscale we should not try to read from unknown area */
  486. if(s->flags & CODEC_FLAG_GRAY) {
  487. srcU = s->edge_emu_buffer + 18 * s->linesize;
  488. srcV = s->edge_emu_buffer + 18 * s->linesize;
  489. }
  490. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  491. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  492. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  493. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  494. srcY -= s->mspel * (1 + s->linesize);
  495. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  496. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  497. srcY = s->edge_emu_buffer;
  498. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  499. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  500. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  501. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  502. srcU = uvbuf;
  503. srcV = uvbuf + 16;
  504. /* if we deal with range reduction we need to scale source blocks */
  505. if(v->rangeredfrm) {
  506. int i, j;
  507. uint8_t *src, *src2;
  508. src = srcY;
  509. for(j = 0; j < 17 + s->mspel*2; j++) {
  510. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  511. src += s->linesize;
  512. }
  513. src = srcU; src2 = srcV;
  514. for(j = 0; j < 9; j++) {
  515. for(i = 0; i < 9; i++) {
  516. src[i] = ((src[i] - 128) >> 1) + 128;
  517. src2[i] = ((src2[i] - 128) >> 1) + 128;
  518. }
  519. src += s->uvlinesize;
  520. src2 += s->uvlinesize;
  521. }
  522. }
  523. /* if we deal with intensity compensation we need to scale source blocks */
  524. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  525. int i, j;
  526. uint8_t *src, *src2;
  527. src = srcY;
  528. for(j = 0; j < 17 + s->mspel*2; j++) {
  529. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  530. src += s->linesize;
  531. }
  532. src = srcU; src2 = srcV;
  533. for(j = 0; j < 9; j++) {
  534. for(i = 0; i < 9; i++) {
  535. src[i] = v->lutuv[src[i]];
  536. src2[i] = v->lutuv[src2[i]];
  537. }
  538. src += s->uvlinesize;
  539. src2 += s->uvlinesize;
  540. }
  541. }
  542. srcY += s->mspel * (1 + s->linesize);
  543. }
  544. if(s->mspel) {
  545. dxy = ((my & 3) << 2) | (mx & 3);
  546. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  547. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  548. srcY += s->linesize * 8;
  549. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  550. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  551. } else { // hpel mc - always used for luma
  552. dxy = (my & 2) | ((mx & 2) >> 1);
  553. if(!v->rnd)
  554. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  555. else
  556. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  557. }
  558. if(s->flags & CODEC_FLAG_GRAY) return;
  559. /* Chroma MC always uses qpel bilinear */
  560. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  561. uvmx = (uvmx&3)<<1;
  562. uvmy = (uvmy&3)<<1;
  563. if(!v->rnd){
  564. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  565. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  566. }else{
  567. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  568. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  569. }
  570. }
  571. /** Do motion compensation for 4-MV macroblock - luminance block
  572. */
  573. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  574. {
  575. MpegEncContext *s = &v->s;
  576. DSPContext *dsp = &v->s.dsp;
  577. uint8_t *srcY;
  578. int dxy, mx, my, src_x, src_y;
  579. int off;
  580. if(!v->s.last_picture.data[0])return;
  581. mx = s->mv[0][n][0];
  582. my = s->mv[0][n][1];
  583. srcY = s->last_picture.data[0];
  584. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  585. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  586. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  587. if(v->profile != PROFILE_ADVANCED){
  588. src_x = av_clip( src_x, -16, s->mb_width * 16);
  589. src_y = av_clip( src_y, -16, s->mb_height * 16);
  590. }else{
  591. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  592. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  593. }
  594. srcY += src_y * s->linesize + src_x;
  595. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  596. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  597. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  598. srcY -= s->mspel * (1 + s->linesize);
  599. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  600. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  601. srcY = s->edge_emu_buffer;
  602. /* if we deal with range reduction we need to scale source blocks */
  603. if(v->rangeredfrm) {
  604. int i, j;
  605. uint8_t *src;
  606. src = srcY;
  607. for(j = 0; j < 9 + s->mspel*2; j++) {
  608. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  609. src += s->linesize;
  610. }
  611. }
  612. /* if we deal with intensity compensation we need to scale source blocks */
  613. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  614. int i, j;
  615. uint8_t *src;
  616. src = srcY;
  617. for(j = 0; j < 9 + s->mspel*2; j++) {
  618. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  619. src += s->linesize;
  620. }
  621. }
  622. srcY += s->mspel * (1 + s->linesize);
  623. }
  624. if(s->mspel) {
  625. dxy = ((my & 3) << 2) | (mx & 3);
  626. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  627. } else { // hpel mc - always used for luma
  628. dxy = (my & 2) | ((mx & 2) >> 1);
  629. if(!v->rnd)
  630. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  631. else
  632. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  633. }
  634. }
  635. static inline int median4(int a, int b, int c, int d)
  636. {
  637. if(a < b) {
  638. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  639. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  640. } else {
  641. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  642. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  643. }
  644. }
  645. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  646. */
  647. static void vc1_mc_4mv_chroma(VC1Context *v)
  648. {
  649. MpegEncContext *s = &v->s;
  650. DSPContext *dsp = &v->s.dsp;
  651. uint8_t *srcU, *srcV;
  652. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  653. int i, idx, tx = 0, ty = 0;
  654. int mvx[4], mvy[4], intra[4];
  655. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  656. if(!v->s.last_picture.data[0])return;
  657. if(s->flags & CODEC_FLAG_GRAY) return;
  658. for(i = 0; i < 4; i++) {
  659. mvx[i] = s->mv[0][i][0];
  660. mvy[i] = s->mv[0][i][1];
  661. intra[i] = v->mb_type[0][s->block_index[i]];
  662. }
  663. /* calculate chroma MV vector from four luma MVs */
  664. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  665. if(!idx) { // all blocks are inter
  666. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  667. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  668. } else if(count[idx] == 1) { // 3 inter blocks
  669. switch(idx) {
  670. case 0x1:
  671. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  672. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  673. break;
  674. case 0x2:
  675. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  676. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  677. break;
  678. case 0x4:
  679. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  680. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  681. break;
  682. case 0x8:
  683. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  684. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  685. break;
  686. }
  687. } else if(count[idx] == 2) {
  688. int t1 = 0, t2 = 0;
  689. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  690. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  691. tx = (mvx[t1] + mvx[t2]) / 2;
  692. ty = (mvy[t1] + mvy[t2]) / 2;
  693. } else {
  694. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  695. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  696. return; //no need to do MC for inter blocks
  697. }
  698. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  699. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  700. uvmx = (tx + ((tx&3) == 3)) >> 1;
  701. uvmy = (ty + ((ty&3) == 3)) >> 1;
  702. if(v->fastuvmc) {
  703. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  704. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  705. }
  706. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  707. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  708. if(v->profile != PROFILE_ADVANCED){
  709. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  710. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  711. }else{
  712. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  713. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  714. }
  715. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  716. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  717. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  718. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  719. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  720. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  721. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  722. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  723. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  724. srcU = s->edge_emu_buffer;
  725. srcV = s->edge_emu_buffer + 16;
  726. /* if we deal with range reduction we need to scale source blocks */
  727. if(v->rangeredfrm) {
  728. int i, j;
  729. uint8_t *src, *src2;
  730. src = srcU; src2 = srcV;
  731. for(j = 0; j < 9; j++) {
  732. for(i = 0; i < 9; i++) {
  733. src[i] = ((src[i] - 128) >> 1) + 128;
  734. src2[i] = ((src2[i] - 128) >> 1) + 128;
  735. }
  736. src += s->uvlinesize;
  737. src2 += s->uvlinesize;
  738. }
  739. }
  740. /* if we deal with intensity compensation we need to scale source blocks */
  741. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  742. int i, j;
  743. uint8_t *src, *src2;
  744. src = srcU; src2 = srcV;
  745. for(j = 0; j < 9; j++) {
  746. for(i = 0; i < 9; i++) {
  747. src[i] = v->lutuv[src[i]];
  748. src2[i] = v->lutuv[src2[i]];
  749. }
  750. src += s->uvlinesize;
  751. src2 += s->uvlinesize;
  752. }
  753. }
  754. }
  755. /* Chroma MC always uses qpel bilinear */
  756. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  757. uvmx = (uvmx&3)<<1;
  758. uvmy = (uvmy&3)<<1;
  759. if(!v->rnd){
  760. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  761. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  762. }else{
  763. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  764. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  765. }
  766. }
  767. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  768. /**
  769. * Decode Simple/Main Profiles sequence header
  770. * @see Figure 7-8, p16-17
  771. * @param avctx Codec context
  772. * @param gb GetBit context initialized from Codec context extra_data
  773. * @return Status
  774. */
  775. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  776. {
  777. VC1Context *v = avctx->priv_data;
  778. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  779. v->profile = get_bits(gb, 2);
  780. if (v->profile == PROFILE_COMPLEX)
  781. {
  782. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  783. }
  784. if (v->profile == PROFILE_ADVANCED)
  785. {
  786. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  787. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  788. return decode_sequence_header_adv(v, gb);
  789. }
  790. else
  791. {
  792. v->zz_8x4 = wmv2_scantableA;
  793. v->zz_4x8 = wmv2_scantableB;
  794. v->res_sm = get_bits(gb, 2); //reserved
  795. if (v->res_sm)
  796. {
  797. av_log(avctx, AV_LOG_ERROR,
  798. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  799. return -1;
  800. }
  801. }
  802. // (fps-2)/4 (->30)
  803. v->frmrtq_postproc = get_bits(gb, 3); //common
  804. // (bitrate-32kbps)/64kbps
  805. v->bitrtq_postproc = get_bits(gb, 5); //common
  806. v->s.loop_filter = get_bits1(gb); //common
  807. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  808. {
  809. av_log(avctx, AV_LOG_ERROR,
  810. "LOOPFILTER shell not be enabled in simple profile\n");
  811. }
  812. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  813. v->s.loop_filter = 0;
  814. v->res_x8 = get_bits1(gb); //reserved
  815. v->multires = get_bits1(gb);
  816. v->res_fasttx = get_bits1(gb);
  817. if (!v->res_fasttx)
  818. {
  819. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  820. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  821. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  822. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  823. }
  824. v->fastuvmc = get_bits1(gb); //common
  825. if (!v->profile && !v->fastuvmc)
  826. {
  827. av_log(avctx, AV_LOG_ERROR,
  828. "FASTUVMC unavailable in Simple Profile\n");
  829. return -1;
  830. }
  831. v->extended_mv = get_bits1(gb); //common
  832. if (!v->profile && v->extended_mv)
  833. {
  834. av_log(avctx, AV_LOG_ERROR,
  835. "Extended MVs unavailable in Simple Profile\n");
  836. return -1;
  837. }
  838. v->dquant = get_bits(gb, 2); //common
  839. v->vstransform = get_bits1(gb); //common
  840. v->res_transtab = get_bits1(gb);
  841. if (v->res_transtab)
  842. {
  843. av_log(avctx, AV_LOG_ERROR,
  844. "1 for reserved RES_TRANSTAB is forbidden\n");
  845. return -1;
  846. }
  847. v->overlap = get_bits1(gb); //common
  848. v->s.resync_marker = get_bits1(gb);
  849. v->rangered = get_bits1(gb);
  850. if (v->rangered && v->profile == PROFILE_SIMPLE)
  851. {
  852. av_log(avctx, AV_LOG_INFO,
  853. "RANGERED should be set to 0 in simple profile\n");
  854. }
  855. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  856. v->quantizer_mode = get_bits(gb, 2); //common
  857. v->finterpflag = get_bits1(gb); //common
  858. v->res_rtm_flag = get_bits1(gb); //reserved
  859. if (!v->res_rtm_flag)
  860. {
  861. // av_log(avctx, AV_LOG_ERROR,
  862. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  863. av_log(avctx, AV_LOG_ERROR,
  864. "Old WMV3 version detected, only I-frames will be decoded\n");
  865. //return -1;
  866. }
  867. //TODO: figure out what they mean (always 0x402F)
  868. if(!v->res_fasttx) skip_bits(gb, 16);
  869. av_log(avctx, AV_LOG_DEBUG,
  870. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  871. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  872. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  873. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  874. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  875. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  876. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  877. v->dquant, v->quantizer_mode, avctx->max_b_frames
  878. );
  879. return 0;
  880. }
  881. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  882. {
  883. v->res_rtm_flag = 1;
  884. v->level = get_bits(gb, 3);
  885. if(v->level >= 5)
  886. {
  887. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  888. }
  889. v->chromaformat = get_bits(gb, 2);
  890. if (v->chromaformat != 1)
  891. {
  892. av_log(v->s.avctx, AV_LOG_ERROR,
  893. "Only 4:2:0 chroma format supported\n");
  894. return -1;
  895. }
  896. // (fps-2)/4 (->30)
  897. v->frmrtq_postproc = get_bits(gb, 3); //common
  898. // (bitrate-32kbps)/64kbps
  899. v->bitrtq_postproc = get_bits(gb, 5); //common
  900. v->postprocflag = get_bits1(gb); //common
  901. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  902. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  903. v->s.avctx->width = v->s.avctx->coded_width;
  904. v->s.avctx->height = v->s.avctx->coded_height;
  905. v->broadcast = get_bits1(gb);
  906. v->interlace = get_bits1(gb);
  907. v->tfcntrflag = get_bits1(gb);
  908. v->finterpflag = get_bits1(gb);
  909. skip_bits1(gb); // reserved
  910. v->s.h_edge_pos = v->s.avctx->coded_width;
  911. v->s.v_edge_pos = v->s.avctx->coded_height;
  912. av_log(v->s.avctx, AV_LOG_DEBUG,
  913. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  914. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  915. "TFCTRflag=%i, FINTERPflag=%i\n",
  916. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  917. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  918. v->tfcntrflag, v->finterpflag
  919. );
  920. v->psf = get_bits1(gb);
  921. if(v->psf) { //PsF, 6.1.13
  922. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  923. return -1;
  924. }
  925. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  926. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  927. int w, h, ar = 0;
  928. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  929. v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
  930. v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
  931. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  932. if(get_bits1(gb))
  933. ar = get_bits(gb, 4);
  934. if(ar && ar < 14){
  935. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  936. }else if(ar == 15){
  937. w = get_bits(gb, 8);
  938. h = get_bits(gb, 8);
  939. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  940. }
  941. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  942. if(get_bits1(gb)){ //framerate stuff
  943. if(get_bits1(gb)) {
  944. v->s.avctx->time_base.num = 32;
  945. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  946. } else {
  947. int nr, dr;
  948. nr = get_bits(gb, 8);
  949. dr = get_bits(gb, 4);
  950. if(nr && nr < 8 && dr && dr < 3){
  951. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  952. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  953. }
  954. }
  955. }
  956. if(get_bits1(gb)){
  957. v->color_prim = get_bits(gb, 8);
  958. v->transfer_char = get_bits(gb, 8);
  959. v->matrix_coef = get_bits(gb, 8);
  960. }
  961. }
  962. v->hrd_param_flag = get_bits1(gb);
  963. if(v->hrd_param_flag) {
  964. int i;
  965. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  966. skip_bits(gb, 4); //bitrate exponent
  967. skip_bits(gb, 4); //buffer size exponent
  968. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  969. skip_bits(gb, 16); //hrd_rate[n]
  970. skip_bits(gb, 16); //hrd_buffer[n]
  971. }
  972. }
  973. return 0;
  974. }
  975. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  976. {
  977. VC1Context *v = avctx->priv_data;
  978. int i, blink, clentry;
  979. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  980. blink = get_bits1(gb); // broken link
  981. clentry = get_bits1(gb); // closed entry
  982. v->panscanflag = get_bits1(gb);
  983. v->refdist_flag = get_bits1(gb);
  984. v->s.loop_filter = get_bits1(gb);
  985. v->fastuvmc = get_bits1(gb);
  986. v->extended_mv = get_bits1(gb);
  987. v->dquant = get_bits(gb, 2);
  988. v->vstransform = get_bits1(gb);
  989. v->overlap = get_bits1(gb);
  990. v->quantizer_mode = get_bits(gb, 2);
  991. if(v->hrd_param_flag){
  992. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  993. skip_bits(gb, 8); //hrd_full[n]
  994. }
  995. }
  996. if(get_bits1(gb)){
  997. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  998. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  999. }
  1000. if(v->extended_mv)
  1001. v->extended_dmv = get_bits1(gb);
  1002. if((v->range_mapy_flag = get_bits1(gb))) {
  1003. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1004. v->range_mapy = get_bits(gb, 3);
  1005. }
  1006. if((v->range_mapuv_flag = get_bits1(gb))) {
  1007. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1008. v->range_mapuv = get_bits(gb, 3);
  1009. }
  1010. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1011. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1012. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1013. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1014. blink, clentry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  1015. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1016. return 0;
  1017. }
  1018. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1019. {
  1020. int pqindex, lowquant, status;
  1021. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1022. skip_bits(gb, 2); //framecnt unused
  1023. v->rangeredfrm = 0;
  1024. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  1025. v->s.pict_type = get_bits1(gb);
  1026. if (v->s.avctx->max_b_frames) {
  1027. if (!v->s.pict_type) {
  1028. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  1029. else v->s.pict_type = FF_B_TYPE;
  1030. } else v->s.pict_type = FF_P_TYPE;
  1031. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  1032. v->bi_type = 0;
  1033. if(v->s.pict_type == FF_B_TYPE) {
  1034. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1035. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1036. if(v->bfraction == 0) {
  1037. v->s.pict_type = FF_BI_TYPE;
  1038. }
  1039. }
  1040. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1041. skip_bits(gb, 7); // skip buffer fullness
  1042. /* calculate RND */
  1043. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1044. v->rnd = 1;
  1045. if(v->s.pict_type == FF_P_TYPE)
  1046. v->rnd ^= 1;
  1047. /* Quantizer stuff */
  1048. pqindex = get_bits(gb, 5);
  1049. if(!pqindex) return -1;
  1050. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1051. v->pq = ff_vc1_pquant_table[0][pqindex];
  1052. else
  1053. v->pq = ff_vc1_pquant_table[1][pqindex];
  1054. v->pquantizer = 1;
  1055. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1056. v->pquantizer = pqindex < 9;
  1057. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1058. v->pquantizer = 0;
  1059. v->pqindex = pqindex;
  1060. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1061. else v->halfpq = 0;
  1062. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1063. v->pquantizer = get_bits1(gb);
  1064. v->dquantfrm = 0;
  1065. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1066. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1067. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1068. v->range_x = 1 << (v->k_x - 1);
  1069. v->range_y = 1 << (v->k_y - 1);
  1070. if (v->profile == PROFILE_ADVANCED)
  1071. {
  1072. if (v->postprocflag) v->postproc = get_bits1(gb);
  1073. }
  1074. else
  1075. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1076. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1077. v->x8_type = get_bits1(gb);
  1078. }else v->x8_type = 0;
  1079. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1080. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1081. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1082. switch(v->s.pict_type) {
  1083. case FF_P_TYPE:
  1084. if (v->pq < 5) v->tt_index = 0;
  1085. else if(v->pq < 13) v->tt_index = 1;
  1086. else v->tt_index = 2;
  1087. lowquant = (v->pq > 12) ? 0 : 1;
  1088. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1089. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1090. {
  1091. int scale, shift, i;
  1092. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1093. v->lumscale = get_bits(gb, 6);
  1094. v->lumshift = get_bits(gb, 6);
  1095. v->use_ic = 1;
  1096. /* fill lookup tables for intensity compensation */
  1097. if(!v->lumscale) {
  1098. scale = -64;
  1099. shift = (255 - v->lumshift * 2) << 6;
  1100. if(v->lumshift > 31)
  1101. shift += 128 << 6;
  1102. } else {
  1103. scale = v->lumscale + 32;
  1104. if(v->lumshift > 31)
  1105. shift = (v->lumshift - 64) << 6;
  1106. else
  1107. shift = v->lumshift << 6;
  1108. }
  1109. for(i = 0; i < 256; i++) {
  1110. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1111. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1112. }
  1113. }
  1114. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1115. v->s.quarter_sample = 0;
  1116. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1117. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1118. v->s.quarter_sample = 0;
  1119. else
  1120. v->s.quarter_sample = 1;
  1121. } else
  1122. v->s.quarter_sample = 1;
  1123. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1124. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1125. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1126. || v->mv_mode == MV_PMODE_MIXED_MV)
  1127. {
  1128. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1129. if (status < 0) return -1;
  1130. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1131. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1132. } else {
  1133. v->mv_type_is_raw = 0;
  1134. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1135. }
  1136. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1137. if (status < 0) return -1;
  1138. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1139. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1140. /* Hopefully this is correct for P frames */
  1141. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1142. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1143. if (v->dquant)
  1144. {
  1145. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1146. vop_dquant_decoding(v);
  1147. }
  1148. v->ttfrm = 0; //FIXME Is that so ?
  1149. if (v->vstransform)
  1150. {
  1151. v->ttmbf = get_bits1(gb);
  1152. if (v->ttmbf)
  1153. {
  1154. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1155. }
  1156. } else {
  1157. v->ttmbf = 1;
  1158. v->ttfrm = TT_8X8;
  1159. }
  1160. break;
  1161. case FF_B_TYPE:
  1162. if (v->pq < 5) v->tt_index = 0;
  1163. else if(v->pq < 13) v->tt_index = 1;
  1164. else v->tt_index = 2;
  1165. lowquant = (v->pq > 12) ? 0 : 1;
  1166. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1167. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1168. v->s.mspel = v->s.quarter_sample;
  1169. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1170. if (status < 0) return -1;
  1171. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1172. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1173. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1174. if (status < 0) return -1;
  1175. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1176. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1177. v->s.mv_table_index = get_bits(gb, 2);
  1178. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1179. if (v->dquant)
  1180. {
  1181. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1182. vop_dquant_decoding(v);
  1183. }
  1184. v->ttfrm = 0;
  1185. if (v->vstransform)
  1186. {
  1187. v->ttmbf = get_bits1(gb);
  1188. if (v->ttmbf)
  1189. {
  1190. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1191. }
  1192. } else {
  1193. v->ttmbf = 1;
  1194. v->ttfrm = TT_8X8;
  1195. }
  1196. break;
  1197. }
  1198. if(!v->x8_type)
  1199. {
  1200. /* AC Syntax */
  1201. v->c_ac_table_index = decode012(gb);
  1202. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1203. {
  1204. v->y_ac_table_index = decode012(gb);
  1205. }
  1206. /* DC Syntax */
  1207. v->s.dc_table_index = get_bits1(gb);
  1208. }
  1209. if(v->s.pict_type == FF_BI_TYPE) {
  1210. v->s.pict_type = FF_B_TYPE;
  1211. v->bi_type = 1;
  1212. }
  1213. return 0;
  1214. }
  1215. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1216. {
  1217. int pqindex, lowquant;
  1218. int status;
  1219. v->p_frame_skipped = 0;
  1220. if(v->interlace){
  1221. v->fcm = decode012(gb);
  1222. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1223. }
  1224. switch(get_unary(gb, 0, 4)) {
  1225. case 0:
  1226. v->s.pict_type = FF_P_TYPE;
  1227. break;
  1228. case 1:
  1229. v->s.pict_type = FF_B_TYPE;
  1230. break;
  1231. case 2:
  1232. v->s.pict_type = FF_I_TYPE;
  1233. break;
  1234. case 3:
  1235. v->s.pict_type = FF_BI_TYPE;
  1236. break;
  1237. case 4:
  1238. v->s.pict_type = FF_P_TYPE; // skipped pic
  1239. v->p_frame_skipped = 1;
  1240. return 0;
  1241. }
  1242. if(v->tfcntrflag)
  1243. skip_bits(gb, 8);
  1244. if(v->broadcast) {
  1245. if(!v->interlace || v->psf) {
  1246. v->rptfrm = get_bits(gb, 2);
  1247. } else {
  1248. v->tff = get_bits1(gb);
  1249. v->rptfrm = get_bits1(gb);
  1250. }
  1251. }
  1252. if(v->panscanflag) {
  1253. //...
  1254. }
  1255. v->rnd = get_bits1(gb);
  1256. if(v->interlace)
  1257. v->uvsamp = get_bits1(gb);
  1258. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1259. if(v->s.pict_type == FF_B_TYPE) {
  1260. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1261. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1262. if(v->bfraction == 0) {
  1263. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1264. }
  1265. }
  1266. pqindex = get_bits(gb, 5);
  1267. if(!pqindex) return -1;
  1268. v->pqindex = pqindex;
  1269. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1270. v->pq = ff_vc1_pquant_table[0][pqindex];
  1271. else
  1272. v->pq = ff_vc1_pquant_table[1][pqindex];
  1273. v->pquantizer = 1;
  1274. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1275. v->pquantizer = pqindex < 9;
  1276. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1277. v->pquantizer = 0;
  1278. v->pqindex = pqindex;
  1279. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1280. else v->halfpq = 0;
  1281. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1282. v->pquantizer = get_bits1(gb);
  1283. if(v->postprocflag)
  1284. v->postproc = get_bits1(gb);
  1285. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1286. switch(v->s.pict_type) {
  1287. case FF_I_TYPE:
  1288. case FF_BI_TYPE:
  1289. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1290. if (status < 0) return -1;
  1291. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1292. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1293. v->condover = CONDOVER_NONE;
  1294. if(v->overlap && v->pq <= 8) {
  1295. v->condover = decode012(gb);
  1296. if(v->condover == CONDOVER_SELECT) {
  1297. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1298. if (status < 0) return -1;
  1299. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1300. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1301. }
  1302. }
  1303. break;
  1304. case FF_P_TYPE:
  1305. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1306. else v->mvrange = 0;
  1307. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1308. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1309. v->range_x = 1 << (v->k_x - 1);
  1310. v->range_y = 1 << (v->k_y - 1);
  1311. if (v->pq < 5) v->tt_index = 0;
  1312. else if(v->pq < 13) v->tt_index = 1;
  1313. else v->tt_index = 2;
  1314. lowquant = (v->pq > 12) ? 0 : 1;
  1315. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1316. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1317. {
  1318. int scale, shift, i;
  1319. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1320. v->lumscale = get_bits(gb, 6);
  1321. v->lumshift = get_bits(gb, 6);
  1322. /* fill lookup tables for intensity compensation */
  1323. if(!v->lumscale) {
  1324. scale = -64;
  1325. shift = (255 - v->lumshift * 2) << 6;
  1326. if(v->lumshift > 31)
  1327. shift += 128 << 6;
  1328. } else {
  1329. scale = v->lumscale + 32;
  1330. if(v->lumshift > 31)
  1331. shift = (v->lumshift - 64) << 6;
  1332. else
  1333. shift = v->lumshift << 6;
  1334. }
  1335. for(i = 0; i < 256; i++) {
  1336. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1337. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1338. }
  1339. v->use_ic = 1;
  1340. }
  1341. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1342. v->s.quarter_sample = 0;
  1343. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1344. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1345. v->s.quarter_sample = 0;
  1346. else
  1347. v->s.quarter_sample = 1;
  1348. } else
  1349. v->s.quarter_sample = 1;
  1350. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1351. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1352. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1353. || v->mv_mode == MV_PMODE_MIXED_MV)
  1354. {
  1355. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1356. if (status < 0) return -1;
  1357. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1358. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1359. } else {
  1360. v->mv_type_is_raw = 0;
  1361. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1362. }
  1363. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1364. if (status < 0) return -1;
  1365. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1366. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1367. /* Hopefully this is correct for P frames */
  1368. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1369. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1370. if (v->dquant)
  1371. {
  1372. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1373. vop_dquant_decoding(v);
  1374. }
  1375. v->ttfrm = 0; //FIXME Is that so ?
  1376. if (v->vstransform)
  1377. {
  1378. v->ttmbf = get_bits1(gb);
  1379. if (v->ttmbf)
  1380. {
  1381. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1382. }
  1383. } else {
  1384. v->ttmbf = 1;
  1385. v->ttfrm = TT_8X8;
  1386. }
  1387. break;
  1388. case FF_B_TYPE:
  1389. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1390. else v->mvrange = 0;
  1391. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1392. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1393. v->range_x = 1 << (v->k_x - 1);
  1394. v->range_y = 1 << (v->k_y - 1);
  1395. if (v->pq < 5) v->tt_index = 0;
  1396. else if(v->pq < 13) v->tt_index = 1;
  1397. else v->tt_index = 2;
  1398. lowquant = (v->pq > 12) ? 0 : 1;
  1399. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1400. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1401. v->s.mspel = v->s.quarter_sample;
  1402. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1403. if (status < 0) return -1;
  1404. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1405. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1406. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1407. if (status < 0) return -1;
  1408. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1409. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1410. v->s.mv_table_index = get_bits(gb, 2);
  1411. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1412. if (v->dquant)
  1413. {
  1414. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1415. vop_dquant_decoding(v);
  1416. }
  1417. v->ttfrm = 0;
  1418. if (v->vstransform)
  1419. {
  1420. v->ttmbf = get_bits1(gb);
  1421. if (v->ttmbf)
  1422. {
  1423. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1424. }
  1425. } else {
  1426. v->ttmbf = 1;
  1427. v->ttfrm = TT_8X8;
  1428. }
  1429. break;
  1430. }
  1431. /* AC Syntax */
  1432. v->c_ac_table_index = decode012(gb);
  1433. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1434. {
  1435. v->y_ac_table_index = decode012(gb);
  1436. }
  1437. /* DC Syntax */
  1438. v->s.dc_table_index = get_bits1(gb);
  1439. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1440. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1441. vop_dquant_decoding(v);
  1442. }
  1443. v->bi_type = 0;
  1444. if(v->s.pict_type == FF_BI_TYPE) {
  1445. v->s.pict_type = FF_B_TYPE;
  1446. v->bi_type = 1;
  1447. }
  1448. return 0;
  1449. }
  1450. /***********************************************************************/
  1451. /**
  1452. * @defgroup block VC-1 Block-level functions
  1453. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1454. * @{
  1455. */
  1456. /**
  1457. * @def GET_MQUANT
  1458. * @brief Get macroblock-level quantizer scale
  1459. */
  1460. #define GET_MQUANT() \
  1461. if (v->dquantfrm) \
  1462. { \
  1463. int edges = 0; \
  1464. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1465. { \
  1466. if (v->dqbilevel) \
  1467. { \
  1468. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1469. } \
  1470. else \
  1471. { \
  1472. mqdiff = get_bits(gb, 3); \
  1473. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1474. else mquant = get_bits(gb, 5); \
  1475. } \
  1476. } \
  1477. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1478. edges = 1 << v->dqsbedge; \
  1479. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1480. edges = (3 << v->dqsbedge) % 15; \
  1481. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1482. edges = 15; \
  1483. if((edges&1) && !s->mb_x) \
  1484. mquant = v->altpq; \
  1485. if((edges&2) && s->first_slice_line) \
  1486. mquant = v->altpq; \
  1487. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1488. mquant = v->altpq; \
  1489. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1490. mquant = v->altpq; \
  1491. }
  1492. /**
  1493. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1494. * @brief Get MV differentials
  1495. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1496. * @param _dmv_x Horizontal differential for decoded MV
  1497. * @param _dmv_y Vertical differential for decoded MV
  1498. */
  1499. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1500. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1501. VC1_MV_DIFF_VLC_BITS, 2); \
  1502. if (index > 36) \
  1503. { \
  1504. mb_has_coeffs = 1; \
  1505. index -= 37; \
  1506. } \
  1507. else mb_has_coeffs = 0; \
  1508. s->mb_intra = 0; \
  1509. if (!index) { _dmv_x = _dmv_y = 0; } \
  1510. else if (index == 35) \
  1511. { \
  1512. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1513. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1514. } \
  1515. else if (index == 36) \
  1516. { \
  1517. _dmv_x = 0; \
  1518. _dmv_y = 0; \
  1519. s->mb_intra = 1; \
  1520. } \
  1521. else \
  1522. { \
  1523. index1 = index%6; \
  1524. if (!s->quarter_sample && index1 == 5) val = 1; \
  1525. else val = 0; \
  1526. if(size_table[index1] - val > 0) \
  1527. val = get_bits(gb, size_table[index1] - val); \
  1528. else val = 0; \
  1529. sign = 0 - (val&1); \
  1530. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1531. \
  1532. index1 = index/6; \
  1533. if (!s->quarter_sample && index1 == 5) val = 1; \
  1534. else val = 0; \
  1535. if(size_table[index1] - val > 0) \
  1536. val = get_bits(gb, size_table[index1] - val); \
  1537. else val = 0; \
  1538. sign = 0 - (val&1); \
  1539. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1540. }
  1541. /** Predict and set motion vector
  1542. */
  1543. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1544. {
  1545. int xy, wrap, off = 0;
  1546. int16_t *A, *B, *C;
  1547. int px, py;
  1548. int sum;
  1549. /* scale MV difference to be quad-pel */
  1550. dmv_x <<= 1 - s->quarter_sample;
  1551. dmv_y <<= 1 - s->quarter_sample;
  1552. wrap = s->b8_stride;
  1553. xy = s->block_index[n];
  1554. if(s->mb_intra){
  1555. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1556. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1557. s->current_picture.motion_val[1][xy][0] = 0;
  1558. s->current_picture.motion_val[1][xy][1] = 0;
  1559. if(mv1) { /* duplicate motion data for 1-MV block */
  1560. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1561. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1562. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1563. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1564. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1565. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1566. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1567. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1568. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1569. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1570. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1571. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1572. }
  1573. return;
  1574. }
  1575. C = s->current_picture.motion_val[0][xy - 1];
  1576. A = s->current_picture.motion_val[0][xy - wrap];
  1577. if(mv1)
  1578. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1579. else {
  1580. //in 4-MV mode different blocks have different B predictor position
  1581. switch(n){
  1582. case 0:
  1583. off = (s->mb_x > 0) ? -1 : 1;
  1584. break;
  1585. case 1:
  1586. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1587. break;
  1588. case 2:
  1589. off = 1;
  1590. break;
  1591. case 3:
  1592. off = -1;
  1593. }
  1594. }
  1595. B = s->current_picture.motion_val[0][xy - wrap + off];
  1596. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1597. if(s->mb_width == 1) {
  1598. px = A[0];
  1599. py = A[1];
  1600. } else {
  1601. px = mid_pred(A[0], B[0], C[0]);
  1602. py = mid_pred(A[1], B[1], C[1]);
  1603. }
  1604. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1605. px = C[0];
  1606. py = C[1];
  1607. } else {
  1608. px = py = 0;
  1609. }
  1610. /* Pullback MV as specified in 8.3.5.3.4 */
  1611. {
  1612. int qx, qy, X, Y;
  1613. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1614. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1615. X = (s->mb_width << 6) - 4;
  1616. Y = (s->mb_height << 6) - 4;
  1617. if(mv1) {
  1618. if(qx + px < -60) px = -60 - qx;
  1619. if(qy + py < -60) py = -60 - qy;
  1620. } else {
  1621. if(qx + px < -28) px = -28 - qx;
  1622. if(qy + py < -28) py = -28 - qy;
  1623. }
  1624. if(qx + px > X) px = X - qx;
  1625. if(qy + py > Y) py = Y - qy;
  1626. }
  1627. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1628. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1629. if(is_intra[xy - wrap])
  1630. sum = FFABS(px) + FFABS(py);
  1631. else
  1632. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1633. if(sum > 32) {
  1634. if(get_bits1(&s->gb)) {
  1635. px = A[0];
  1636. py = A[1];
  1637. } else {
  1638. px = C[0];
  1639. py = C[1];
  1640. }
  1641. } else {
  1642. if(is_intra[xy - 1])
  1643. sum = FFABS(px) + FFABS(py);
  1644. else
  1645. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1646. if(sum > 32) {
  1647. if(get_bits1(&s->gb)) {
  1648. px = A[0];
  1649. py = A[1];
  1650. } else {
  1651. px = C[0];
  1652. py = C[1];
  1653. }
  1654. }
  1655. }
  1656. }
  1657. /* store MV using signed modulus of MV range defined in 4.11 */
  1658. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1659. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1660. if(mv1) { /* duplicate motion data for 1-MV block */
  1661. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1662. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1663. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1664. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1665. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1666. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1667. }
  1668. }
  1669. /** Motion compensation for direct or interpolated blocks in B-frames
  1670. */
  1671. static void vc1_interp_mc(VC1Context *v)
  1672. {
  1673. MpegEncContext *s = &v->s;
  1674. DSPContext *dsp = &v->s.dsp;
  1675. uint8_t *srcY, *srcU, *srcV;
  1676. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1677. if(!v->s.next_picture.data[0])return;
  1678. mx = s->mv[1][0][0];
  1679. my = s->mv[1][0][1];
  1680. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1681. uvmy = (my + ((my & 3) == 3)) >> 1;
  1682. if(v->fastuvmc) {
  1683. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1684. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1685. }
  1686. srcY = s->next_picture.data[0];
  1687. srcU = s->next_picture.data[1];
  1688. srcV = s->next_picture.data[2];
  1689. src_x = s->mb_x * 16 + (mx >> 2);
  1690. src_y = s->mb_y * 16 + (my >> 2);
  1691. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1692. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1693. if(v->profile != PROFILE_ADVANCED){
  1694. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1695. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1696. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1697. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1698. }else{
  1699. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1700. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1701. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1702. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1703. }
  1704. srcY += src_y * s->linesize + src_x;
  1705. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1706. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1707. /* for grayscale we should not try to read from unknown area */
  1708. if(s->flags & CODEC_FLAG_GRAY) {
  1709. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1710. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1711. }
  1712. if(v->rangeredfrm
  1713. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1714. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1715. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1716. srcY -= s->mspel * (1 + s->linesize);
  1717. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1718. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1719. srcY = s->edge_emu_buffer;
  1720. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1721. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1722. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1723. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1724. srcU = uvbuf;
  1725. srcV = uvbuf + 16;
  1726. /* if we deal with range reduction we need to scale source blocks */
  1727. if(v->rangeredfrm) {
  1728. int i, j;
  1729. uint8_t *src, *src2;
  1730. src = srcY;
  1731. for(j = 0; j < 17 + s->mspel*2; j++) {
  1732. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1733. src += s->linesize;
  1734. }
  1735. src = srcU; src2 = srcV;
  1736. for(j = 0; j < 9; j++) {
  1737. for(i = 0; i < 9; i++) {
  1738. src[i] = ((src[i] - 128) >> 1) + 128;
  1739. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1740. }
  1741. src += s->uvlinesize;
  1742. src2 += s->uvlinesize;
  1743. }
  1744. }
  1745. srcY += s->mspel * (1 + s->linesize);
  1746. }
  1747. mx >>= 1;
  1748. my >>= 1;
  1749. dxy = ((my & 1) << 1) | (mx & 1);
  1750. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1751. if(s->flags & CODEC_FLAG_GRAY) return;
  1752. /* Chroma MC always uses qpel blilinear */
  1753. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1754. uvmx = (uvmx&3)<<1;
  1755. uvmy = (uvmy&3)<<1;
  1756. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1757. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1758. }
  1759. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1760. {
  1761. int n = bfrac;
  1762. #if B_FRACTION_DEN==256
  1763. if(inv)
  1764. n -= 256;
  1765. if(!qs)
  1766. return 2 * ((value * n + 255) >> 9);
  1767. return (value * n + 128) >> 8;
  1768. #else
  1769. if(inv)
  1770. n -= B_FRACTION_DEN;
  1771. if(!qs)
  1772. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1773. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1774. #endif
  1775. }
  1776. /** Reconstruct motion vector for B-frame and do motion compensation
  1777. */
  1778. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1779. {
  1780. if(v->use_ic) {
  1781. v->mv_mode2 = v->mv_mode;
  1782. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1783. }
  1784. if(direct) {
  1785. vc1_mc_1mv(v, 0);
  1786. vc1_interp_mc(v);
  1787. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1788. return;
  1789. }
  1790. if(mode == BMV_TYPE_INTERPOLATED) {
  1791. vc1_mc_1mv(v, 0);
  1792. vc1_interp_mc(v);
  1793. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1794. return;
  1795. }
  1796. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1797. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1798. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1799. }
  1800. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1801. {
  1802. MpegEncContext *s = &v->s;
  1803. int xy, wrap, off = 0;
  1804. int16_t *A, *B, *C;
  1805. int px, py;
  1806. int sum;
  1807. int r_x, r_y;
  1808. const uint8_t *is_intra = v->mb_type[0];
  1809. r_x = v->range_x;
  1810. r_y = v->range_y;
  1811. /* scale MV difference to be quad-pel */
  1812. dmv_x[0] <<= 1 - s->quarter_sample;
  1813. dmv_y[0] <<= 1 - s->quarter_sample;
  1814. dmv_x[1] <<= 1 - s->quarter_sample;
  1815. dmv_y[1] <<= 1 - s->quarter_sample;
  1816. wrap = s->b8_stride;
  1817. xy = s->block_index[0];
  1818. if(s->mb_intra) {
  1819. s->current_picture.motion_val[0][xy][0] =
  1820. s->current_picture.motion_val[0][xy][1] =
  1821. s->current_picture.motion_val[1][xy][0] =
  1822. s->current_picture.motion_val[1][xy][1] = 0;
  1823. return;
  1824. }
  1825. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1826. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1827. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1828. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1829. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1830. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1831. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1832. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1833. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1834. if(direct) {
  1835. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1836. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1837. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1838. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1839. return;
  1840. }
  1841. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1842. C = s->current_picture.motion_val[0][xy - 2];
  1843. A = s->current_picture.motion_val[0][xy - wrap*2];
  1844. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1845. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1846. if(!s->mb_x) C[0] = C[1] = 0;
  1847. if(!s->first_slice_line) { // predictor A is not out of bounds
  1848. if(s->mb_width == 1) {
  1849. px = A[0];
  1850. py = A[1];
  1851. } else {
  1852. px = mid_pred(A[0], B[0], C[0]);
  1853. py = mid_pred(A[1], B[1], C[1]);
  1854. }
  1855. } else if(s->mb_x) { // predictor C is not out of bounds
  1856. px = C[0];
  1857. py = C[1];
  1858. } else {
  1859. px = py = 0;
  1860. }
  1861. /* Pullback MV as specified in 8.3.5.3.4 */
  1862. {
  1863. int qx, qy, X, Y;
  1864. if(v->profile < PROFILE_ADVANCED) {
  1865. qx = (s->mb_x << 5);
  1866. qy = (s->mb_y << 5);
  1867. X = (s->mb_width << 5) - 4;
  1868. Y = (s->mb_height << 5) - 4;
  1869. if(qx + px < -28) px = -28 - qx;
  1870. if(qy + py < -28) py = -28 - qy;
  1871. if(qx + px > X) px = X - qx;
  1872. if(qy + py > Y) py = Y - qy;
  1873. } else {
  1874. qx = (s->mb_x << 6);
  1875. qy = (s->mb_y << 6);
  1876. X = (s->mb_width << 6) - 4;
  1877. Y = (s->mb_height << 6) - 4;
  1878. if(qx + px < -60) px = -60 - qx;
  1879. if(qy + py < -60) py = -60 - qy;
  1880. if(qx + px > X) px = X - qx;
  1881. if(qy + py > Y) py = Y - qy;
  1882. }
  1883. }
  1884. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1885. if(0 && !s->first_slice_line && s->mb_x) {
  1886. if(is_intra[xy - wrap])
  1887. sum = FFABS(px) + FFABS(py);
  1888. else
  1889. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1890. if(sum > 32) {
  1891. if(get_bits1(&s->gb)) {
  1892. px = A[0];
  1893. py = A[1];
  1894. } else {
  1895. px = C[0];
  1896. py = C[1];
  1897. }
  1898. } else {
  1899. if(is_intra[xy - 2])
  1900. sum = FFABS(px) + FFABS(py);
  1901. else
  1902. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1903. if(sum > 32) {
  1904. if(get_bits1(&s->gb)) {
  1905. px = A[0];
  1906. py = A[1];
  1907. } else {
  1908. px = C[0];
  1909. py = C[1];
  1910. }
  1911. }
  1912. }
  1913. }
  1914. /* store MV using signed modulus of MV range defined in 4.11 */
  1915. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1916. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1917. }
  1918. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1919. C = s->current_picture.motion_val[1][xy - 2];
  1920. A = s->current_picture.motion_val[1][xy - wrap*2];
  1921. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1922. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1923. if(!s->mb_x) C[0] = C[1] = 0;
  1924. if(!s->first_slice_line) { // predictor A is not out of bounds
  1925. if(s->mb_width == 1) {
  1926. px = A[0];
  1927. py = A[1];
  1928. } else {
  1929. px = mid_pred(A[0], B[0], C[0]);
  1930. py = mid_pred(A[1], B[1], C[1]);
  1931. }
  1932. } else if(s->mb_x) { // predictor C is not out of bounds
  1933. px = C[0];
  1934. py = C[1];
  1935. } else {
  1936. px = py = 0;
  1937. }
  1938. /* Pullback MV as specified in 8.3.5.3.4 */
  1939. {
  1940. int qx, qy, X, Y;
  1941. if(v->profile < PROFILE_ADVANCED) {
  1942. qx = (s->mb_x << 5);
  1943. qy = (s->mb_y << 5);
  1944. X = (s->mb_width << 5) - 4;
  1945. Y = (s->mb_height << 5) - 4;
  1946. if(qx + px < -28) px = -28 - qx;
  1947. if(qy + py < -28) py = -28 - qy;
  1948. if(qx + px > X) px = X - qx;
  1949. if(qy + py > Y) py = Y - qy;
  1950. } else {
  1951. qx = (s->mb_x << 6);
  1952. qy = (s->mb_y << 6);
  1953. X = (s->mb_width << 6) - 4;
  1954. Y = (s->mb_height << 6) - 4;
  1955. if(qx + px < -60) px = -60 - qx;
  1956. if(qy + py < -60) py = -60 - qy;
  1957. if(qx + px > X) px = X - qx;
  1958. if(qy + py > Y) py = Y - qy;
  1959. }
  1960. }
  1961. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1962. if(0 && !s->first_slice_line && s->mb_x) {
  1963. if(is_intra[xy - wrap])
  1964. sum = FFABS(px) + FFABS(py);
  1965. else
  1966. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1967. if(sum > 32) {
  1968. if(get_bits1(&s->gb)) {
  1969. px = A[0];
  1970. py = A[1];
  1971. } else {
  1972. px = C[0];
  1973. py = C[1];
  1974. }
  1975. } else {
  1976. if(is_intra[xy - 2])
  1977. sum = FFABS(px) + FFABS(py);
  1978. else
  1979. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1980. if(sum > 32) {
  1981. if(get_bits1(&s->gb)) {
  1982. px = A[0];
  1983. py = A[1];
  1984. } else {
  1985. px = C[0];
  1986. py = C[1];
  1987. }
  1988. }
  1989. }
  1990. }
  1991. /* store MV using signed modulus of MV range defined in 4.11 */
  1992. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1993. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1994. }
  1995. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1996. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1997. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1998. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1999. }
  2000. /** Get predicted DC value for I-frames only
  2001. * prediction dir: left=0, top=1
  2002. * @param s MpegEncContext
  2003. * @param[in] n block index in the current MB
  2004. * @param dc_val_ptr Pointer to DC predictor
  2005. * @param dir_ptr Prediction direction for use in AC prediction
  2006. */
  2007. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2008. int16_t **dc_val_ptr, int *dir_ptr)
  2009. {
  2010. int a, b, c, wrap, pred, scale;
  2011. int16_t *dc_val;
  2012. static const uint16_t dcpred[32] = {
  2013. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2014. 114, 102, 93, 85, 79, 73, 68, 64,
  2015. 60, 57, 54, 51, 49, 47, 45, 43,
  2016. 41, 39, 38, 37, 35, 34, 33
  2017. };
  2018. /* find prediction - wmv3_dc_scale always used here in fact */
  2019. if (n < 4) scale = s->y_dc_scale;
  2020. else scale = s->c_dc_scale;
  2021. wrap = s->block_wrap[n];
  2022. dc_val= s->dc_val[0] + s->block_index[n];
  2023. /* B A
  2024. * C X
  2025. */
  2026. c = dc_val[ - 1];
  2027. b = dc_val[ - 1 - wrap];
  2028. a = dc_val[ - wrap];
  2029. if (pq < 9 || !overlap)
  2030. {
  2031. /* Set outer values */
  2032. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2033. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2034. }
  2035. else
  2036. {
  2037. /* Set outer values */
  2038. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2039. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2040. }
  2041. if (abs(a - b) <= abs(b - c)) {
  2042. pred = c;
  2043. *dir_ptr = 1;//left
  2044. } else {
  2045. pred = a;
  2046. *dir_ptr = 0;//top
  2047. }
  2048. /* update predictor */
  2049. *dc_val_ptr = &dc_val[0];
  2050. return pred;
  2051. }
  2052. /** Get predicted DC value
  2053. * prediction dir: left=0, top=1
  2054. * @param s MpegEncContext
  2055. * @param[in] n block index in the current MB
  2056. * @param dc_val_ptr Pointer to DC predictor
  2057. * @param dir_ptr Prediction direction for use in AC prediction
  2058. */
  2059. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2060. int a_avail, int c_avail,
  2061. int16_t **dc_val_ptr, int *dir_ptr)
  2062. {
  2063. int a, b, c, wrap, pred, scale;
  2064. int16_t *dc_val;
  2065. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2066. int q1, q2 = 0;
  2067. /* find prediction - wmv3_dc_scale always used here in fact */
  2068. if (n < 4) scale = s->y_dc_scale;
  2069. else scale = s->c_dc_scale;
  2070. wrap = s->block_wrap[n];
  2071. dc_val= s->dc_val[0] + s->block_index[n];
  2072. /* B A
  2073. * C X
  2074. */
  2075. c = dc_val[ - 1];
  2076. b = dc_val[ - 1 - wrap];
  2077. a = dc_val[ - wrap];
  2078. /* scale predictors if needed */
  2079. q1 = s->current_picture.qscale_table[mb_pos];
  2080. if(c_avail && (n!= 1 && n!=3)) {
  2081. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2082. if(q2 && q2 != q1)
  2083. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2084. }
  2085. if(a_avail && (n!= 2 && n!=3)) {
  2086. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2087. if(q2 && q2 != q1)
  2088. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2089. }
  2090. if(a_avail && c_avail && (n!=3)) {
  2091. int off = mb_pos;
  2092. if(n != 1) off--;
  2093. if(n != 2) off -= s->mb_stride;
  2094. q2 = s->current_picture.qscale_table[off];
  2095. if(q2 && q2 != q1)
  2096. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2097. }
  2098. if(a_avail && c_avail) {
  2099. if(abs(a - b) <= abs(b - c)) {
  2100. pred = c;
  2101. *dir_ptr = 1;//left
  2102. } else {
  2103. pred = a;
  2104. *dir_ptr = 0;//top
  2105. }
  2106. } else if(a_avail) {
  2107. pred = a;
  2108. *dir_ptr = 0;//top
  2109. } else if(c_avail) {
  2110. pred = c;
  2111. *dir_ptr = 1;//left
  2112. } else {
  2113. pred = 0;
  2114. *dir_ptr = 1;//left
  2115. }
  2116. /* update predictor */
  2117. *dc_val_ptr = &dc_val[0];
  2118. return pred;
  2119. }
  2120. /**
  2121. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2122. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2123. * @{
  2124. */
  2125. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2126. {
  2127. int xy, wrap, pred, a, b, c;
  2128. xy = s->block_index[n];
  2129. wrap = s->b8_stride;
  2130. /* B C
  2131. * A X
  2132. */
  2133. a = s->coded_block[xy - 1 ];
  2134. b = s->coded_block[xy - 1 - wrap];
  2135. c = s->coded_block[xy - wrap];
  2136. if (b == c) {
  2137. pred = a;
  2138. } else {
  2139. pred = c;
  2140. }
  2141. /* store value */
  2142. *coded_block_ptr = &s->coded_block[xy];
  2143. return pred;
  2144. }
  2145. /**
  2146. * Decode one AC coefficient
  2147. * @param v The VC1 context
  2148. * @param last Last coefficient
  2149. * @param skip How much zero coefficients to skip
  2150. * @param value Decoded AC coefficient value
  2151. * @see 8.1.3.4
  2152. */
  2153. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2154. {
  2155. GetBitContext *gb = &v->s.gb;
  2156. int index, escape, run = 0, level = 0, lst = 0;
  2157. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2158. if (index != vc1_ac_sizes[codingset] - 1) {
  2159. run = vc1_index_decode_table[codingset][index][0];
  2160. level = vc1_index_decode_table[codingset][index][1];
  2161. lst = index >= vc1_last_decode_table[codingset];
  2162. if(get_bits1(gb))
  2163. level = -level;
  2164. } else {
  2165. escape = decode210(gb);
  2166. if (escape != 2) {
  2167. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2168. run = vc1_index_decode_table[codingset][index][0];
  2169. level = vc1_index_decode_table[codingset][index][1];
  2170. lst = index >= vc1_last_decode_table[codingset];
  2171. if(escape == 0) {
  2172. if(lst)
  2173. level += vc1_last_delta_level_table[codingset][run];
  2174. else
  2175. level += vc1_delta_level_table[codingset][run];
  2176. } else {
  2177. if(lst)
  2178. run += vc1_last_delta_run_table[codingset][level] + 1;
  2179. else
  2180. run += vc1_delta_run_table[codingset][level] + 1;
  2181. }
  2182. if(get_bits1(gb))
  2183. level = -level;
  2184. } else {
  2185. int sign;
  2186. lst = get_bits1(gb);
  2187. if(v->s.esc3_level_length == 0) {
  2188. if(v->pq < 8 || v->dquantfrm) { // table 59
  2189. v->s.esc3_level_length = get_bits(gb, 3);
  2190. if(!v->s.esc3_level_length)
  2191. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2192. } else { //table 60
  2193. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2194. }
  2195. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2196. }
  2197. run = get_bits(gb, v->s.esc3_run_length);
  2198. sign = get_bits1(gb);
  2199. level = get_bits(gb, v->s.esc3_level_length);
  2200. if(sign)
  2201. level = -level;
  2202. }
  2203. }
  2204. *last = lst;
  2205. *skip = run;
  2206. *value = level;
  2207. }
  2208. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2209. * @param v VC1Context
  2210. * @param block block to decode
  2211. * @param coded are AC coeffs present or not
  2212. * @param codingset set of VLC to decode data
  2213. */
  2214. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2215. {
  2216. GetBitContext *gb = &v->s.gb;
  2217. MpegEncContext *s = &v->s;
  2218. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2219. int run_diff, i;
  2220. int16_t *dc_val;
  2221. int16_t *ac_val, *ac_val2;
  2222. int dcdiff;
  2223. /* Get DC differential */
  2224. if (n < 4) {
  2225. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2226. } else {
  2227. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2228. }
  2229. if (dcdiff < 0){
  2230. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2231. return -1;
  2232. }
  2233. if (dcdiff)
  2234. {
  2235. if (dcdiff == 119 /* ESC index value */)
  2236. {
  2237. /* TODO: Optimize */
  2238. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2239. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2240. else dcdiff = get_bits(gb, 8);
  2241. }
  2242. else
  2243. {
  2244. if (v->pq == 1)
  2245. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2246. else if (v->pq == 2)
  2247. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2248. }
  2249. if (get_bits1(gb))
  2250. dcdiff = -dcdiff;
  2251. }
  2252. /* Prediction */
  2253. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2254. *dc_val = dcdiff;
  2255. /* Store the quantized DC coeff, used for prediction */
  2256. if (n < 4) {
  2257. block[0] = dcdiff * s->y_dc_scale;
  2258. } else {
  2259. block[0] = dcdiff * s->c_dc_scale;
  2260. }
  2261. /* Skip ? */
  2262. run_diff = 0;
  2263. i = 0;
  2264. if (!coded) {
  2265. goto not_coded;
  2266. }
  2267. //AC Decoding
  2268. i = 1;
  2269. {
  2270. int last = 0, skip, value;
  2271. const int8_t *zz_table;
  2272. int scale;
  2273. int k;
  2274. scale = v->pq * 2 + v->halfpq;
  2275. if(v->s.ac_pred) {
  2276. if(!dc_pred_dir)
  2277. zz_table = wmv1_scantable[2];
  2278. else
  2279. zz_table = wmv1_scantable[3];
  2280. } else
  2281. zz_table = wmv1_scantable[1];
  2282. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2283. ac_val2 = ac_val;
  2284. if(dc_pred_dir) //left
  2285. ac_val -= 16;
  2286. else //top
  2287. ac_val -= 16 * s->block_wrap[n];
  2288. while (!last) {
  2289. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2290. i += skip;
  2291. if(i > 63)
  2292. break;
  2293. block[zz_table[i++]] = value;
  2294. }
  2295. /* apply AC prediction if needed */
  2296. if(s->ac_pred) {
  2297. if(dc_pred_dir) { //left
  2298. for(k = 1; k < 8; k++)
  2299. block[k << 3] += ac_val[k];
  2300. } else { //top
  2301. for(k = 1; k < 8; k++)
  2302. block[k] += ac_val[k + 8];
  2303. }
  2304. }
  2305. /* save AC coeffs for further prediction */
  2306. for(k = 1; k < 8; k++) {
  2307. ac_val2[k] = block[k << 3];
  2308. ac_val2[k + 8] = block[k];
  2309. }
  2310. /* scale AC coeffs */
  2311. for(k = 1; k < 64; k++)
  2312. if(block[k]) {
  2313. block[k] *= scale;
  2314. if(!v->pquantizer)
  2315. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2316. }
  2317. if(s->ac_pred) i = 63;
  2318. }
  2319. not_coded:
  2320. if(!coded) {
  2321. int k, scale;
  2322. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2323. ac_val2 = ac_val;
  2324. scale = v->pq * 2 + v->halfpq;
  2325. memset(ac_val2, 0, 16 * 2);
  2326. if(dc_pred_dir) {//left
  2327. ac_val -= 16;
  2328. if(s->ac_pred)
  2329. memcpy(ac_val2, ac_val, 8 * 2);
  2330. } else {//top
  2331. ac_val -= 16 * s->block_wrap[n];
  2332. if(s->ac_pred)
  2333. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2334. }
  2335. /* apply AC prediction if needed */
  2336. if(s->ac_pred) {
  2337. if(dc_pred_dir) { //left
  2338. for(k = 1; k < 8; k++) {
  2339. block[k << 3] = ac_val[k] * scale;
  2340. if(!v->pquantizer && block[k << 3])
  2341. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2342. }
  2343. } else { //top
  2344. for(k = 1; k < 8; k++) {
  2345. block[k] = ac_val[k + 8] * scale;
  2346. if(!v->pquantizer && block[k])
  2347. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2348. }
  2349. }
  2350. i = 63;
  2351. }
  2352. }
  2353. s->block_last_index[n] = i;
  2354. return 0;
  2355. }
  2356. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2357. * @param v VC1Context
  2358. * @param block block to decode
  2359. * @param coded are AC coeffs present or not
  2360. * @param codingset set of VLC to decode data
  2361. */
  2362. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2363. {
  2364. GetBitContext *gb = &v->s.gb;
  2365. MpegEncContext *s = &v->s;
  2366. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2367. int run_diff, i;
  2368. int16_t *dc_val;
  2369. int16_t *ac_val, *ac_val2;
  2370. int dcdiff;
  2371. int a_avail = v->a_avail, c_avail = v->c_avail;
  2372. int use_pred = s->ac_pred;
  2373. int scale;
  2374. int q1, q2 = 0;
  2375. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2376. /* Get DC differential */
  2377. if (n < 4) {
  2378. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2379. } else {
  2380. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2381. }
  2382. if (dcdiff < 0){
  2383. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2384. return -1;
  2385. }
  2386. if (dcdiff)
  2387. {
  2388. if (dcdiff == 119 /* ESC index value */)
  2389. {
  2390. /* TODO: Optimize */
  2391. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2392. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2393. else dcdiff = get_bits(gb, 8);
  2394. }
  2395. else
  2396. {
  2397. if (mquant == 1)
  2398. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2399. else if (mquant == 2)
  2400. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2401. }
  2402. if (get_bits1(gb))
  2403. dcdiff = -dcdiff;
  2404. }
  2405. /* Prediction */
  2406. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2407. *dc_val = dcdiff;
  2408. /* Store the quantized DC coeff, used for prediction */
  2409. if (n < 4) {
  2410. block[0] = dcdiff * s->y_dc_scale;
  2411. } else {
  2412. block[0] = dcdiff * s->c_dc_scale;
  2413. }
  2414. /* Skip ? */
  2415. run_diff = 0;
  2416. i = 0;
  2417. //AC Decoding
  2418. i = 1;
  2419. /* check if AC is needed at all */
  2420. if(!a_avail && !c_avail) use_pred = 0;
  2421. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2422. ac_val2 = ac_val;
  2423. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2424. if(dc_pred_dir) //left
  2425. ac_val -= 16;
  2426. else //top
  2427. ac_val -= 16 * s->block_wrap[n];
  2428. q1 = s->current_picture.qscale_table[mb_pos];
  2429. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2430. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2431. if(dc_pred_dir && n==1) q2 = q1;
  2432. if(!dc_pred_dir && n==2) q2 = q1;
  2433. if(n==3) q2 = q1;
  2434. if(coded) {
  2435. int last = 0, skip, value;
  2436. const int8_t *zz_table;
  2437. int k;
  2438. if(v->s.ac_pred) {
  2439. if(!dc_pred_dir)
  2440. zz_table = wmv1_scantable[2];
  2441. else
  2442. zz_table = wmv1_scantable[3];
  2443. } else
  2444. zz_table = wmv1_scantable[1];
  2445. while (!last) {
  2446. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2447. i += skip;
  2448. if(i > 63)
  2449. break;
  2450. block[zz_table[i++]] = value;
  2451. }
  2452. /* apply AC prediction if needed */
  2453. if(use_pred) {
  2454. /* scale predictors if needed*/
  2455. if(q2 && q1!=q2) {
  2456. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2457. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2458. if(dc_pred_dir) { //left
  2459. for(k = 1; k < 8; k++)
  2460. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2461. } else { //top
  2462. for(k = 1; k < 8; k++)
  2463. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2464. }
  2465. } else {
  2466. if(dc_pred_dir) { //left
  2467. for(k = 1; k < 8; k++)
  2468. block[k << 3] += ac_val[k];
  2469. } else { //top
  2470. for(k = 1; k < 8; k++)
  2471. block[k] += ac_val[k + 8];
  2472. }
  2473. }
  2474. }
  2475. /* save AC coeffs for further prediction */
  2476. for(k = 1; k < 8; k++) {
  2477. ac_val2[k] = block[k << 3];
  2478. ac_val2[k + 8] = block[k];
  2479. }
  2480. /* scale AC coeffs */
  2481. for(k = 1; k < 64; k++)
  2482. if(block[k]) {
  2483. block[k] *= scale;
  2484. if(!v->pquantizer)
  2485. block[k] += (block[k] < 0) ? -mquant : mquant;
  2486. }
  2487. if(use_pred) i = 63;
  2488. } else { // no AC coeffs
  2489. int k;
  2490. memset(ac_val2, 0, 16 * 2);
  2491. if(dc_pred_dir) {//left
  2492. if(use_pred) {
  2493. memcpy(ac_val2, ac_val, 8 * 2);
  2494. if(q2 && q1!=q2) {
  2495. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2496. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2497. for(k = 1; k < 8; k++)
  2498. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2499. }
  2500. }
  2501. } else {//top
  2502. if(use_pred) {
  2503. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2504. if(q2 && q1!=q2) {
  2505. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2506. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2507. for(k = 1; k < 8; k++)
  2508. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2509. }
  2510. }
  2511. }
  2512. /* apply AC prediction if needed */
  2513. if(use_pred) {
  2514. if(dc_pred_dir) { //left
  2515. for(k = 1; k < 8; k++) {
  2516. block[k << 3] = ac_val2[k] * scale;
  2517. if(!v->pquantizer && block[k << 3])
  2518. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2519. }
  2520. } else { //top
  2521. for(k = 1; k < 8; k++) {
  2522. block[k] = ac_val2[k + 8] * scale;
  2523. if(!v->pquantizer && block[k])
  2524. block[k] += (block[k] < 0) ? -mquant : mquant;
  2525. }
  2526. }
  2527. i = 63;
  2528. }
  2529. }
  2530. s->block_last_index[n] = i;
  2531. return 0;
  2532. }
  2533. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2534. * @param v VC1Context
  2535. * @param block block to decode
  2536. * @param coded are AC coeffs present or not
  2537. * @param mquant block quantizer
  2538. * @param codingset set of VLC to decode data
  2539. */
  2540. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2541. {
  2542. GetBitContext *gb = &v->s.gb;
  2543. MpegEncContext *s = &v->s;
  2544. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2545. int run_diff, i;
  2546. int16_t *dc_val;
  2547. int16_t *ac_val, *ac_val2;
  2548. int dcdiff;
  2549. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2550. int a_avail = v->a_avail, c_avail = v->c_avail;
  2551. int use_pred = s->ac_pred;
  2552. int scale;
  2553. int q1, q2 = 0;
  2554. /* XXX: Guard against dumb values of mquant */
  2555. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2556. /* Set DC scale - y and c use the same */
  2557. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2558. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2559. /* Get DC differential */
  2560. if (n < 4) {
  2561. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2562. } else {
  2563. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2564. }
  2565. if (dcdiff < 0){
  2566. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2567. return -1;
  2568. }
  2569. if (dcdiff)
  2570. {
  2571. if (dcdiff == 119 /* ESC index value */)
  2572. {
  2573. /* TODO: Optimize */
  2574. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2575. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2576. else dcdiff = get_bits(gb, 8);
  2577. }
  2578. else
  2579. {
  2580. if (mquant == 1)
  2581. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2582. else if (mquant == 2)
  2583. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2584. }
  2585. if (get_bits1(gb))
  2586. dcdiff = -dcdiff;
  2587. }
  2588. /* Prediction */
  2589. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2590. *dc_val = dcdiff;
  2591. /* Store the quantized DC coeff, used for prediction */
  2592. if (n < 4) {
  2593. block[0] = dcdiff * s->y_dc_scale;
  2594. } else {
  2595. block[0] = dcdiff * s->c_dc_scale;
  2596. }
  2597. /* Skip ? */
  2598. run_diff = 0;
  2599. i = 0;
  2600. //AC Decoding
  2601. i = 1;
  2602. /* check if AC is needed at all and adjust direction if needed */
  2603. if(!a_avail) dc_pred_dir = 1;
  2604. if(!c_avail) dc_pred_dir = 0;
  2605. if(!a_avail && !c_avail) use_pred = 0;
  2606. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2607. ac_val2 = ac_val;
  2608. scale = mquant * 2 + v->halfpq;
  2609. if(dc_pred_dir) //left
  2610. ac_val -= 16;
  2611. else //top
  2612. ac_val -= 16 * s->block_wrap[n];
  2613. q1 = s->current_picture.qscale_table[mb_pos];
  2614. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2615. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2616. if(dc_pred_dir && n==1) q2 = q1;
  2617. if(!dc_pred_dir && n==2) q2 = q1;
  2618. if(n==3) q2 = q1;
  2619. if(coded) {
  2620. int last = 0, skip, value;
  2621. const int8_t *zz_table;
  2622. int k;
  2623. zz_table = wmv1_scantable[0];
  2624. while (!last) {
  2625. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2626. i += skip;
  2627. if(i > 63)
  2628. break;
  2629. block[zz_table[i++]] = value;
  2630. }
  2631. /* apply AC prediction if needed */
  2632. if(use_pred) {
  2633. /* scale predictors if needed*/
  2634. if(q2 && q1!=q2) {
  2635. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2636. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2637. if(dc_pred_dir) { //left
  2638. for(k = 1; k < 8; k++)
  2639. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2640. } else { //top
  2641. for(k = 1; k < 8; k++)
  2642. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2643. }
  2644. } else {
  2645. if(dc_pred_dir) { //left
  2646. for(k = 1; k < 8; k++)
  2647. block[k << 3] += ac_val[k];
  2648. } else { //top
  2649. for(k = 1; k < 8; k++)
  2650. block[k] += ac_val[k + 8];
  2651. }
  2652. }
  2653. }
  2654. /* save AC coeffs for further prediction */
  2655. for(k = 1; k < 8; k++) {
  2656. ac_val2[k] = block[k << 3];
  2657. ac_val2[k + 8] = block[k];
  2658. }
  2659. /* scale AC coeffs */
  2660. for(k = 1; k < 64; k++)
  2661. if(block[k]) {
  2662. block[k] *= scale;
  2663. if(!v->pquantizer)
  2664. block[k] += (block[k] < 0) ? -mquant : mquant;
  2665. }
  2666. if(use_pred) i = 63;
  2667. } else { // no AC coeffs
  2668. int k;
  2669. memset(ac_val2, 0, 16 * 2);
  2670. if(dc_pred_dir) {//left
  2671. if(use_pred) {
  2672. memcpy(ac_val2, ac_val, 8 * 2);
  2673. if(q2 && q1!=q2) {
  2674. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2675. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2676. for(k = 1; k < 8; k++)
  2677. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2678. }
  2679. }
  2680. } else {//top
  2681. if(use_pred) {
  2682. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2683. if(q2 && q1!=q2) {
  2684. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2685. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2686. for(k = 1; k < 8; k++)
  2687. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2688. }
  2689. }
  2690. }
  2691. /* apply AC prediction if needed */
  2692. if(use_pred) {
  2693. if(dc_pred_dir) { //left
  2694. for(k = 1; k < 8; k++) {
  2695. block[k << 3] = ac_val2[k] * scale;
  2696. if(!v->pquantizer && block[k << 3])
  2697. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2698. }
  2699. } else { //top
  2700. for(k = 1; k < 8; k++) {
  2701. block[k] = ac_val2[k + 8] * scale;
  2702. if(!v->pquantizer && block[k])
  2703. block[k] += (block[k] < 0) ? -mquant : mquant;
  2704. }
  2705. }
  2706. i = 63;
  2707. }
  2708. }
  2709. s->block_last_index[n] = i;
  2710. return 0;
  2711. }
  2712. /** Decode P block
  2713. */
  2714. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2715. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2716. {
  2717. MpegEncContext *s = &v->s;
  2718. GetBitContext *gb = &s->gb;
  2719. int i, j;
  2720. int subblkpat = 0;
  2721. int scale, off, idx, last, skip, value;
  2722. int ttblk = ttmb & 7;
  2723. int pat = 0;
  2724. if(ttmb == -1) {
  2725. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2726. }
  2727. if(ttblk == TT_4X4) {
  2728. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2729. }
  2730. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2731. subblkpat = decode012(gb);
  2732. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2733. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2734. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2735. }
  2736. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2737. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2738. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2739. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2740. ttblk = TT_8X4;
  2741. }
  2742. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2743. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2744. ttblk = TT_4X8;
  2745. }
  2746. switch(ttblk) {
  2747. case TT_8X8:
  2748. pat = 0xF;
  2749. i = 0;
  2750. last = 0;
  2751. while (!last) {
  2752. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2753. i += skip;
  2754. if(i > 63)
  2755. break;
  2756. idx = wmv1_scantable[0][i++];
  2757. block[idx] = value * scale;
  2758. if(!v->pquantizer)
  2759. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2760. }
  2761. if(!skip_block){
  2762. s->dsp.vc1_inv_trans_8x8(block);
  2763. s->dsp.add_pixels_clamped(block, dst, linesize);
  2764. if(apply_filter && cbp_top & 0xC)
  2765. vc1_loop_filter(dst, 1, linesize, 8, mquant);
  2766. if(apply_filter && cbp_left & 0xA)
  2767. vc1_loop_filter(dst, linesize, 1, 8, mquant);
  2768. }
  2769. break;
  2770. case TT_4X4:
  2771. pat = ~subblkpat & 0xF;
  2772. for(j = 0; j < 4; j++) {
  2773. last = subblkpat & (1 << (3 - j));
  2774. i = 0;
  2775. off = (j & 1) * 4 + (j & 2) * 16;
  2776. while (!last) {
  2777. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2778. i += skip;
  2779. if(i > 15)
  2780. break;
  2781. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2782. block[idx + off] = value * scale;
  2783. if(!v->pquantizer)
  2784. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2785. }
  2786. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2787. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2788. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2789. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
  2790. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2791. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
  2792. }
  2793. }
  2794. break;
  2795. case TT_8X4:
  2796. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2797. for(j = 0; j < 2; j++) {
  2798. last = subblkpat & (1 << (1 - j));
  2799. i = 0;
  2800. off = j * 32;
  2801. while (!last) {
  2802. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2803. i += skip;
  2804. if(i > 31)
  2805. break;
  2806. idx = v->zz_8x4[i++]+off;
  2807. block[idx] = value * scale;
  2808. if(!v->pquantizer)
  2809. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2810. }
  2811. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2812. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2813. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2814. vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
  2815. if(apply_filter && cbp_left & (2 << j))
  2816. vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
  2817. }
  2818. }
  2819. break;
  2820. case TT_4X8:
  2821. pat = ~(subblkpat*5) & 0xF;
  2822. for(j = 0; j < 2; j++) {
  2823. last = subblkpat & (1 << (1 - j));
  2824. i = 0;
  2825. off = j * 4;
  2826. while (!last) {
  2827. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2828. i += skip;
  2829. if(i > 31)
  2830. break;
  2831. idx = v->zz_4x8[i++]+off;
  2832. block[idx] = value * scale;
  2833. if(!v->pquantizer)
  2834. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2835. }
  2836. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2837. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2838. if(apply_filter && cbp_top & (2 << j))
  2839. vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
  2840. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2841. vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
  2842. }
  2843. }
  2844. break;
  2845. }
  2846. return pat;
  2847. }
  2848. /** Decode one P-frame MB (in Simple/Main profile)
  2849. */
  2850. static int vc1_decode_p_mb(VC1Context *v)
  2851. {
  2852. MpegEncContext *s = &v->s;
  2853. GetBitContext *gb = &s->gb;
  2854. int i, j;
  2855. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2856. int cbp; /* cbp decoding stuff */
  2857. int mqdiff, mquant; /* MB quantization */
  2858. int ttmb = v->ttfrm; /* MB Transform type */
  2859. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2860. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2861. int mb_has_coeffs = 1; /* last_flag */
  2862. int dmv_x, dmv_y; /* Differential MV components */
  2863. int index, index1; /* LUT indexes */
  2864. int val, sign; /* temp values */
  2865. int first_block = 1;
  2866. int dst_idx, off;
  2867. int skipped, fourmv;
  2868. int block_cbp = 0, pat;
  2869. int apply_loop_filter;
  2870. mquant = v->pq; /* Loosy initialization */
  2871. if (v->mv_type_is_raw)
  2872. fourmv = get_bits1(gb);
  2873. else
  2874. fourmv = v->mv_type_mb_plane[mb_pos];
  2875. if (v->skip_is_raw)
  2876. skipped = get_bits1(gb);
  2877. else
  2878. skipped = v->s.mbskip_table[mb_pos];
  2879. s->dsp.clear_blocks(s->block[0]);
  2880. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2881. if (!fourmv) /* 1MV mode */
  2882. {
  2883. if (!skipped)
  2884. {
  2885. GET_MVDATA(dmv_x, dmv_y);
  2886. if (s->mb_intra) {
  2887. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2888. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2889. }
  2890. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2891. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2892. /* FIXME Set DC val for inter block ? */
  2893. if (s->mb_intra && !mb_has_coeffs)
  2894. {
  2895. GET_MQUANT();
  2896. s->ac_pred = get_bits1(gb);
  2897. cbp = 0;
  2898. }
  2899. else if (mb_has_coeffs)
  2900. {
  2901. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2902. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2903. GET_MQUANT();
  2904. }
  2905. else
  2906. {
  2907. mquant = v->pq;
  2908. cbp = 0;
  2909. }
  2910. s->current_picture.qscale_table[mb_pos] = mquant;
  2911. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2912. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2913. VC1_TTMB_VLC_BITS, 2);
  2914. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2915. dst_idx = 0;
  2916. for (i=0; i<6; i++)
  2917. {
  2918. s->dc_val[0][s->block_index[i]] = 0;
  2919. dst_idx += i >> 2;
  2920. val = ((cbp >> (5 - i)) & 1);
  2921. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2922. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2923. if(s->mb_intra) {
  2924. /* check if prediction blocks A and C are available */
  2925. v->a_avail = v->c_avail = 0;
  2926. if(i == 2 || i == 3 || !s->first_slice_line)
  2927. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2928. if(i == 1 || i == 3 || s->mb_x)
  2929. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2930. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2931. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2932. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2933. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2934. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2935. if(v->pq >= 9 && v->overlap) {
  2936. if(v->c_avail)
  2937. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2938. if(v->a_avail)
  2939. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2940. }
  2941. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2942. int left_cbp, top_cbp;
  2943. if(i & 4){
  2944. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2945. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2946. }else{
  2947. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2948. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2949. }
  2950. if(left_cbp & 0xC)
  2951. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2952. if(top_cbp & 0xA)
  2953. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2954. }
  2955. block_cbp |= 0xF << (i << 2);
  2956. } else if(val) {
  2957. int left_cbp = 0, top_cbp = 0, filter = 0;
  2958. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2959. filter = 1;
  2960. if(i & 4){
  2961. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2962. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2963. }else{
  2964. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2965. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2966. }
  2967. if(left_cbp & 0xC)
  2968. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2969. if(top_cbp & 0xA)
  2970. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2971. }
  2972. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2973. block_cbp |= pat << (i << 2);
  2974. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2975. first_block = 0;
  2976. }
  2977. }
  2978. }
  2979. else //Skipped
  2980. {
  2981. s->mb_intra = 0;
  2982. for(i = 0; i < 6; i++) {
  2983. v->mb_type[0][s->block_index[i]] = 0;
  2984. s->dc_val[0][s->block_index[i]] = 0;
  2985. }
  2986. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2987. s->current_picture.qscale_table[mb_pos] = 0;
  2988. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2989. vc1_mc_1mv(v, 0);
  2990. return 0;
  2991. }
  2992. } //1MV mode
  2993. else //4MV mode
  2994. {
  2995. if (!skipped /* unskipped MB */)
  2996. {
  2997. int intra_count = 0, coded_inter = 0;
  2998. int is_intra[6], is_coded[6];
  2999. /* Get CBPCY */
  3000. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3001. for (i=0; i<6; i++)
  3002. {
  3003. val = ((cbp >> (5 - i)) & 1);
  3004. s->dc_val[0][s->block_index[i]] = 0;
  3005. s->mb_intra = 0;
  3006. if(i < 4) {
  3007. dmv_x = dmv_y = 0;
  3008. s->mb_intra = 0;
  3009. mb_has_coeffs = 0;
  3010. if(val) {
  3011. GET_MVDATA(dmv_x, dmv_y);
  3012. }
  3013. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3014. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3015. intra_count += s->mb_intra;
  3016. is_intra[i] = s->mb_intra;
  3017. is_coded[i] = mb_has_coeffs;
  3018. }
  3019. if(i&4){
  3020. is_intra[i] = (intra_count >= 3);
  3021. is_coded[i] = val;
  3022. }
  3023. if(i == 4) vc1_mc_4mv_chroma(v);
  3024. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3025. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3026. }
  3027. // if there are no coded blocks then don't do anything more
  3028. if(!intra_count && !coded_inter) return 0;
  3029. dst_idx = 0;
  3030. GET_MQUANT();
  3031. s->current_picture.qscale_table[mb_pos] = mquant;
  3032. /* test if block is intra and has pred */
  3033. {
  3034. int intrapred = 0;
  3035. for(i=0; i<6; i++)
  3036. if(is_intra[i]) {
  3037. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3038. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3039. intrapred = 1;
  3040. break;
  3041. }
  3042. }
  3043. if(intrapred)s->ac_pred = get_bits1(gb);
  3044. else s->ac_pred = 0;
  3045. }
  3046. if (!v->ttmbf && coded_inter)
  3047. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3048. for (i=0; i<6; i++)
  3049. {
  3050. dst_idx += i >> 2;
  3051. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3052. s->mb_intra = is_intra[i];
  3053. if (is_intra[i]) {
  3054. /* check if prediction blocks A and C are available */
  3055. v->a_avail = v->c_avail = 0;
  3056. if(i == 2 || i == 3 || !s->first_slice_line)
  3057. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3058. if(i == 1 || i == 3 || s->mb_x)
  3059. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3060. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3061. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3062. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3063. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3064. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3065. if(v->pq >= 9 && v->overlap) {
  3066. if(v->c_avail)
  3067. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3068. if(v->a_avail)
  3069. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3070. }
  3071. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3072. int left_cbp, top_cbp;
  3073. if(i & 4){
  3074. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3075. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3076. }else{
  3077. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3078. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3079. }
  3080. if(left_cbp & 0xC)
  3081. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3082. if(top_cbp & 0xA)
  3083. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3084. }
  3085. block_cbp |= 0xF << (i << 2);
  3086. } else if(is_coded[i]) {
  3087. int left_cbp = 0, top_cbp = 0, filter = 0;
  3088. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3089. filter = 1;
  3090. if(i & 4){
  3091. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3092. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3093. }else{
  3094. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3095. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3096. }
  3097. if(left_cbp & 0xC)
  3098. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3099. if(top_cbp & 0xA)
  3100. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3101. }
  3102. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3103. block_cbp |= pat << (i << 2);
  3104. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3105. first_block = 0;
  3106. }
  3107. }
  3108. return 0;
  3109. }
  3110. else //Skipped MB
  3111. {
  3112. s->mb_intra = 0;
  3113. s->current_picture.qscale_table[mb_pos] = 0;
  3114. for (i=0; i<6; i++) {
  3115. v->mb_type[0][s->block_index[i]] = 0;
  3116. s->dc_val[0][s->block_index[i]] = 0;
  3117. }
  3118. for (i=0; i<4; i++)
  3119. {
  3120. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3121. vc1_mc_4mv_luma(v, i);
  3122. }
  3123. vc1_mc_4mv_chroma(v);
  3124. s->current_picture.qscale_table[mb_pos] = 0;
  3125. return 0;
  3126. }
  3127. }
  3128. v->cbp[s->mb_x] = block_cbp;
  3129. /* Should never happen */
  3130. return -1;
  3131. }
  3132. /** Decode one B-frame MB (in Main profile)
  3133. */
  3134. static void vc1_decode_b_mb(VC1Context *v)
  3135. {
  3136. MpegEncContext *s = &v->s;
  3137. GetBitContext *gb = &s->gb;
  3138. int i, j;
  3139. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3140. int cbp = 0; /* cbp decoding stuff */
  3141. int mqdiff, mquant; /* MB quantization */
  3142. int ttmb = v->ttfrm; /* MB Transform type */
  3143. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3144. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3145. int mb_has_coeffs = 0; /* last_flag */
  3146. int index, index1; /* LUT indexes */
  3147. int val, sign; /* temp values */
  3148. int first_block = 1;
  3149. int dst_idx, off;
  3150. int skipped, direct;
  3151. int dmv_x[2], dmv_y[2];
  3152. int bmvtype = BMV_TYPE_BACKWARD;
  3153. mquant = v->pq; /* Loosy initialization */
  3154. s->mb_intra = 0;
  3155. if (v->dmb_is_raw)
  3156. direct = get_bits1(gb);
  3157. else
  3158. direct = v->direct_mb_plane[mb_pos];
  3159. if (v->skip_is_raw)
  3160. skipped = get_bits1(gb);
  3161. else
  3162. skipped = v->s.mbskip_table[mb_pos];
  3163. s->dsp.clear_blocks(s->block[0]);
  3164. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3165. for(i = 0; i < 6; i++) {
  3166. v->mb_type[0][s->block_index[i]] = 0;
  3167. s->dc_val[0][s->block_index[i]] = 0;
  3168. }
  3169. s->current_picture.qscale_table[mb_pos] = 0;
  3170. if (!direct) {
  3171. if (!skipped) {
  3172. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3173. dmv_x[1] = dmv_x[0];
  3174. dmv_y[1] = dmv_y[0];
  3175. }
  3176. if(skipped || !s->mb_intra) {
  3177. bmvtype = decode012(gb);
  3178. switch(bmvtype) {
  3179. case 0:
  3180. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3181. break;
  3182. case 1:
  3183. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3184. break;
  3185. case 2:
  3186. bmvtype = BMV_TYPE_INTERPOLATED;
  3187. dmv_x[0] = dmv_y[0] = 0;
  3188. }
  3189. }
  3190. }
  3191. for(i = 0; i < 6; i++)
  3192. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3193. if (skipped) {
  3194. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3195. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3196. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3197. return;
  3198. }
  3199. if (direct) {
  3200. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3201. GET_MQUANT();
  3202. s->mb_intra = 0;
  3203. mb_has_coeffs = 0;
  3204. s->current_picture.qscale_table[mb_pos] = mquant;
  3205. if(!v->ttmbf)
  3206. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3207. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3208. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3209. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3210. } else {
  3211. if(!mb_has_coeffs && !s->mb_intra) {
  3212. /* no coded blocks - effectively skipped */
  3213. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3214. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3215. return;
  3216. }
  3217. if(s->mb_intra && !mb_has_coeffs) {
  3218. GET_MQUANT();
  3219. s->current_picture.qscale_table[mb_pos] = mquant;
  3220. s->ac_pred = get_bits1(gb);
  3221. cbp = 0;
  3222. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3223. } else {
  3224. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3225. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3226. if(!mb_has_coeffs) {
  3227. /* interpolated skipped block */
  3228. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3229. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3230. return;
  3231. }
  3232. }
  3233. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3234. if(!s->mb_intra) {
  3235. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3236. }
  3237. if(s->mb_intra)
  3238. s->ac_pred = get_bits1(gb);
  3239. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3240. GET_MQUANT();
  3241. s->current_picture.qscale_table[mb_pos] = mquant;
  3242. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3243. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3244. }
  3245. }
  3246. dst_idx = 0;
  3247. for (i=0; i<6; i++)
  3248. {
  3249. s->dc_val[0][s->block_index[i]] = 0;
  3250. dst_idx += i >> 2;
  3251. val = ((cbp >> (5 - i)) & 1);
  3252. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3253. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3254. if(s->mb_intra) {
  3255. /* check if prediction blocks A and C are available */
  3256. v->a_avail = v->c_avail = 0;
  3257. if(i == 2 || i == 3 || !s->first_slice_line)
  3258. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3259. if(i == 1 || i == 3 || s->mb_x)
  3260. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3261. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3262. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3263. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3264. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3265. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3266. } else if(val) {
  3267. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3268. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3269. first_block = 0;
  3270. }
  3271. }
  3272. }
  3273. /** Decode blocks of I-frame
  3274. */
  3275. static void vc1_decode_i_blocks(VC1Context *v)
  3276. {
  3277. int k, j;
  3278. MpegEncContext *s = &v->s;
  3279. int cbp, val;
  3280. uint8_t *coded_val;
  3281. int mb_pos;
  3282. /* select codingmode used for VLC tables selection */
  3283. switch(v->y_ac_table_index){
  3284. case 0:
  3285. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3286. break;
  3287. case 1:
  3288. v->codingset = CS_HIGH_MOT_INTRA;
  3289. break;
  3290. case 2:
  3291. v->codingset = CS_MID_RATE_INTRA;
  3292. break;
  3293. }
  3294. switch(v->c_ac_table_index){
  3295. case 0:
  3296. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3297. break;
  3298. case 1:
  3299. v->codingset2 = CS_HIGH_MOT_INTER;
  3300. break;
  3301. case 2:
  3302. v->codingset2 = CS_MID_RATE_INTER;
  3303. break;
  3304. }
  3305. /* Set DC scale - y and c use the same */
  3306. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3307. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3308. //do frame decode
  3309. s->mb_x = s->mb_y = 0;
  3310. s->mb_intra = 1;
  3311. s->first_slice_line = 1;
  3312. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3313. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3314. ff_init_block_index(s);
  3315. ff_update_block_index(s);
  3316. s->dsp.clear_blocks(s->block[0]);
  3317. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3318. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3319. s->current_picture.qscale_table[mb_pos] = v->pq;
  3320. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3321. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3322. // do actual MB decoding and displaying
  3323. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3324. v->s.ac_pred = get_bits1(&v->s.gb);
  3325. for(k = 0; k < 6; k++) {
  3326. val = ((cbp >> (5 - k)) & 1);
  3327. if (k < 4) {
  3328. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3329. val = val ^ pred;
  3330. *coded_val = val;
  3331. }
  3332. cbp |= val << (5 - k);
  3333. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3334. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3335. if(v->pq >= 9 && v->overlap) {
  3336. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3337. }
  3338. }
  3339. vc1_put_block(v, s->block);
  3340. if(v->pq >= 9 && v->overlap) {
  3341. if(s->mb_x) {
  3342. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3343. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3344. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3345. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3346. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3347. }
  3348. }
  3349. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3350. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3351. if(!s->first_slice_line) {
  3352. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3353. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3354. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3355. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3356. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3357. }
  3358. }
  3359. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3360. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3361. }
  3362. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3363. if(get_bits_count(&s->gb) > v->bits) {
  3364. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3365. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3366. return;
  3367. }
  3368. }
  3369. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3370. s->first_slice_line = 0;
  3371. }
  3372. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3373. }
  3374. /** Decode blocks of I-frame for advanced profile
  3375. */
  3376. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3377. {
  3378. int k, j;
  3379. MpegEncContext *s = &v->s;
  3380. int cbp, val;
  3381. uint8_t *coded_val;
  3382. int mb_pos;
  3383. int mquant = v->pq;
  3384. int mqdiff;
  3385. int overlap;
  3386. GetBitContext *gb = &s->gb;
  3387. /* select codingmode used for VLC tables selection */
  3388. switch(v->y_ac_table_index){
  3389. case 0:
  3390. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3391. break;
  3392. case 1:
  3393. v->codingset = CS_HIGH_MOT_INTRA;
  3394. break;
  3395. case 2:
  3396. v->codingset = CS_MID_RATE_INTRA;
  3397. break;
  3398. }
  3399. switch(v->c_ac_table_index){
  3400. case 0:
  3401. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3402. break;
  3403. case 1:
  3404. v->codingset2 = CS_HIGH_MOT_INTER;
  3405. break;
  3406. case 2:
  3407. v->codingset2 = CS_MID_RATE_INTER;
  3408. break;
  3409. }
  3410. //do frame decode
  3411. s->mb_x = s->mb_y = 0;
  3412. s->mb_intra = 1;
  3413. s->first_slice_line = 1;
  3414. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3415. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3416. ff_init_block_index(s);
  3417. ff_update_block_index(s);
  3418. s->dsp.clear_blocks(s->block[0]);
  3419. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3420. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3421. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3422. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3423. // do actual MB decoding and displaying
  3424. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3425. if(v->acpred_is_raw)
  3426. v->s.ac_pred = get_bits1(&v->s.gb);
  3427. else
  3428. v->s.ac_pred = v->acpred_plane[mb_pos];
  3429. if(v->condover == CONDOVER_SELECT) {
  3430. if(v->overflg_is_raw)
  3431. overlap = get_bits1(&v->s.gb);
  3432. else
  3433. overlap = v->over_flags_plane[mb_pos];
  3434. } else
  3435. overlap = (v->condover == CONDOVER_ALL);
  3436. GET_MQUANT();
  3437. s->current_picture.qscale_table[mb_pos] = mquant;
  3438. /* Set DC scale - y and c use the same */
  3439. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3440. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3441. for(k = 0; k < 6; k++) {
  3442. val = ((cbp >> (5 - k)) & 1);
  3443. if (k < 4) {
  3444. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3445. val = val ^ pred;
  3446. *coded_val = val;
  3447. }
  3448. cbp |= val << (5 - k);
  3449. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3450. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3451. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3452. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3453. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3454. }
  3455. vc1_put_block(v, s->block);
  3456. if(overlap) {
  3457. if(s->mb_x) {
  3458. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3459. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3460. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3461. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3462. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3463. }
  3464. }
  3465. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3466. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3467. if(!s->first_slice_line) {
  3468. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3469. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3470. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3471. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3472. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3473. }
  3474. }
  3475. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3476. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3477. }
  3478. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3479. if(get_bits_count(&s->gb) > v->bits) {
  3480. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3481. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3482. return;
  3483. }
  3484. }
  3485. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3486. s->first_slice_line = 0;
  3487. }
  3488. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3489. }
  3490. static void vc1_decode_p_blocks(VC1Context *v)
  3491. {
  3492. MpegEncContext *s = &v->s;
  3493. /* select codingmode used for VLC tables selection */
  3494. switch(v->c_ac_table_index){
  3495. case 0:
  3496. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3497. break;
  3498. case 1:
  3499. v->codingset = CS_HIGH_MOT_INTRA;
  3500. break;
  3501. case 2:
  3502. v->codingset = CS_MID_RATE_INTRA;
  3503. break;
  3504. }
  3505. switch(v->c_ac_table_index){
  3506. case 0:
  3507. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3508. break;
  3509. case 1:
  3510. v->codingset2 = CS_HIGH_MOT_INTER;
  3511. break;
  3512. case 2:
  3513. v->codingset2 = CS_MID_RATE_INTER;
  3514. break;
  3515. }
  3516. s->first_slice_line = 1;
  3517. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3518. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3519. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3520. ff_init_block_index(s);
  3521. ff_update_block_index(s);
  3522. s->dsp.clear_blocks(s->block[0]);
  3523. vc1_decode_p_mb(v);
  3524. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3525. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3526. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3527. return;
  3528. }
  3529. }
  3530. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3531. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3532. s->first_slice_line = 0;
  3533. }
  3534. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3535. }
  3536. static void vc1_decode_b_blocks(VC1Context *v)
  3537. {
  3538. MpegEncContext *s = &v->s;
  3539. /* select codingmode used for VLC tables selection */
  3540. switch(v->c_ac_table_index){
  3541. case 0:
  3542. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3543. break;
  3544. case 1:
  3545. v->codingset = CS_HIGH_MOT_INTRA;
  3546. break;
  3547. case 2:
  3548. v->codingset = CS_MID_RATE_INTRA;
  3549. break;
  3550. }
  3551. switch(v->c_ac_table_index){
  3552. case 0:
  3553. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3554. break;
  3555. case 1:
  3556. v->codingset2 = CS_HIGH_MOT_INTER;
  3557. break;
  3558. case 2:
  3559. v->codingset2 = CS_MID_RATE_INTER;
  3560. break;
  3561. }
  3562. s->first_slice_line = 1;
  3563. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3564. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3565. ff_init_block_index(s);
  3566. ff_update_block_index(s);
  3567. s->dsp.clear_blocks(s->block[0]);
  3568. vc1_decode_b_mb(v);
  3569. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3570. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3571. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3572. return;
  3573. }
  3574. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
  3575. }
  3576. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3577. s->first_slice_line = 0;
  3578. }
  3579. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3580. }
  3581. static void vc1_decode_skip_blocks(VC1Context *v)
  3582. {
  3583. MpegEncContext *s = &v->s;
  3584. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3585. s->first_slice_line = 1;
  3586. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3587. s->mb_x = 0;
  3588. ff_init_block_index(s);
  3589. ff_update_block_index(s);
  3590. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3591. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3592. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3593. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3594. s->first_slice_line = 0;
  3595. }
  3596. s->pict_type = FF_P_TYPE;
  3597. }
  3598. static void vc1_decode_blocks(VC1Context *v)
  3599. {
  3600. v->s.esc3_level_length = 0;
  3601. if(v->x8_type){
  3602. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3603. }else{
  3604. switch(v->s.pict_type) {
  3605. case FF_I_TYPE:
  3606. if(v->profile == PROFILE_ADVANCED)
  3607. vc1_decode_i_blocks_adv(v);
  3608. else
  3609. vc1_decode_i_blocks(v);
  3610. break;
  3611. case FF_P_TYPE:
  3612. if(v->p_frame_skipped)
  3613. vc1_decode_skip_blocks(v);
  3614. else
  3615. vc1_decode_p_blocks(v);
  3616. break;
  3617. case FF_B_TYPE:
  3618. if(v->bi_type){
  3619. if(v->profile == PROFILE_ADVANCED)
  3620. vc1_decode_i_blocks_adv(v);
  3621. else
  3622. vc1_decode_i_blocks(v);
  3623. }else
  3624. vc1_decode_b_blocks(v);
  3625. break;
  3626. }
  3627. }
  3628. }
  3629. /** Find VC-1 marker in buffer
  3630. * @return position where next marker starts or end of buffer if no marker found
  3631. */
  3632. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3633. {
  3634. uint32_t mrk = 0xFFFFFFFF;
  3635. if(end-src < 4) return end;
  3636. while(src < end){
  3637. mrk = (mrk << 8) | *src++;
  3638. if(IS_MARKER(mrk))
  3639. return src-4;
  3640. }
  3641. return end;
  3642. }
  3643. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3644. {
  3645. int dsize = 0, i;
  3646. if(size < 4){
  3647. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3648. return size;
  3649. }
  3650. for(i = 0; i < size; i++, src++) {
  3651. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3652. dst[dsize++] = src[1];
  3653. src++;
  3654. i++;
  3655. } else
  3656. dst[dsize++] = *src;
  3657. }
  3658. return dsize;
  3659. }
  3660. /** Initialize a VC1/WMV3 decoder
  3661. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3662. * @todo TODO: Decypher remaining bits in extra_data
  3663. */
  3664. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3665. {
  3666. VC1Context *v = avctx->priv_data;
  3667. MpegEncContext *s = &v->s;
  3668. GetBitContext gb;
  3669. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3670. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3671. avctx->pix_fmt = PIX_FMT_YUV420P;
  3672. else
  3673. avctx->pix_fmt = PIX_FMT_GRAY8;
  3674. v->s.avctx = avctx;
  3675. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3676. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3677. if(avctx->idct_algo==FF_IDCT_AUTO){
  3678. avctx->idct_algo=FF_IDCT_WMV2;
  3679. }
  3680. if(ff_h263_decode_init(avctx) < 0)
  3681. return -1;
  3682. if (vc1_init_common(v) < 0) return -1;
  3683. avctx->coded_width = avctx->width;
  3684. avctx->coded_height = avctx->height;
  3685. if (avctx->codec_id == CODEC_ID_WMV3)
  3686. {
  3687. int count = 0;
  3688. // looks like WMV3 has a sequence header stored in the extradata
  3689. // advanced sequence header may be before the first frame
  3690. // the last byte of the extradata is a version number, 1 for the
  3691. // samples we can decode
  3692. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3693. if (decode_sequence_header(avctx, &gb) < 0)
  3694. return -1;
  3695. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3696. if (count>0)
  3697. {
  3698. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3699. count, get_bits(&gb, count));
  3700. }
  3701. else if (count < 0)
  3702. {
  3703. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3704. }
  3705. } else { // VC1/WVC1
  3706. const uint8_t *start = avctx->extradata;
  3707. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3708. const uint8_t *next;
  3709. int size, buf2_size;
  3710. uint8_t *buf2 = NULL;
  3711. int seq_initialized = 0, ep_initialized = 0;
  3712. if(avctx->extradata_size < 16) {
  3713. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3714. return -1;
  3715. }
  3716. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3717. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3718. next = start;
  3719. for(; next < end; start = next){
  3720. next = find_next_marker(start + 4, end);
  3721. size = next - start - 4;
  3722. if(size <= 0) continue;
  3723. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3724. init_get_bits(&gb, buf2, buf2_size * 8);
  3725. switch(AV_RB32(start)){
  3726. case VC1_CODE_SEQHDR:
  3727. if(decode_sequence_header(avctx, &gb) < 0){
  3728. av_free(buf2);
  3729. return -1;
  3730. }
  3731. seq_initialized = 1;
  3732. break;
  3733. case VC1_CODE_ENTRYPOINT:
  3734. if(decode_entry_point(avctx, &gb) < 0){
  3735. av_free(buf2);
  3736. return -1;
  3737. }
  3738. ep_initialized = 1;
  3739. break;
  3740. }
  3741. }
  3742. av_free(buf2);
  3743. if(!seq_initialized || !ep_initialized){
  3744. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3745. return -1;
  3746. }
  3747. }
  3748. avctx->has_b_frames= !!(avctx->max_b_frames);
  3749. s->low_delay = !avctx->has_b_frames;
  3750. s->mb_width = (avctx->coded_width+15)>>4;
  3751. s->mb_height = (avctx->coded_height+15)>>4;
  3752. /* Allocate mb bitplanes */
  3753. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3754. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3755. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3756. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3757. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3758. v->cbp = v->cbp_base + s->mb_stride;
  3759. /* allocate block type info in that way so it could be used with s->block_index[] */
  3760. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3761. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3762. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3763. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3764. /* Init coded blocks info */
  3765. if (v->profile == PROFILE_ADVANCED)
  3766. {
  3767. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3768. // return -1;
  3769. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3770. // return -1;
  3771. }
  3772. ff_intrax8_common_init(&v->x8,s);
  3773. return 0;
  3774. }
  3775. /** Decode a VC1/WMV3 frame
  3776. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3777. */
  3778. static int vc1_decode_frame(AVCodecContext *avctx,
  3779. void *data, int *data_size,
  3780. const uint8_t *buf, int buf_size)
  3781. {
  3782. VC1Context *v = avctx->priv_data;
  3783. MpegEncContext *s = &v->s;
  3784. AVFrame *pict = data;
  3785. uint8_t *buf2 = NULL;
  3786. /* no supplementary picture */
  3787. if (buf_size == 0) {
  3788. /* special case for last picture */
  3789. if (s->low_delay==0 && s->next_picture_ptr) {
  3790. *pict= *(AVFrame*)s->next_picture_ptr;
  3791. s->next_picture_ptr= NULL;
  3792. *data_size = sizeof(AVFrame);
  3793. }
  3794. return 0;
  3795. }
  3796. /* We need to set current_picture_ptr before reading the header,
  3797. * otherwise we cannot store anything in there. */
  3798. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3799. int i= ff_find_unused_picture(s, 0);
  3800. s->current_picture_ptr= &s->picture[i];
  3801. }
  3802. //for advanced profile we may need to parse and unescape data
  3803. if (avctx->codec_id == CODEC_ID_VC1) {
  3804. int buf_size2 = 0;
  3805. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3806. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3807. const uint8_t *start, *end, *next;
  3808. int size;
  3809. next = buf;
  3810. for(start = buf, end = buf + buf_size; next < end; start = next){
  3811. next = find_next_marker(start + 4, end);
  3812. size = next - start - 4;
  3813. if(size <= 0) continue;
  3814. switch(AV_RB32(start)){
  3815. case VC1_CODE_FRAME:
  3816. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3817. break;
  3818. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3819. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3820. init_get_bits(&s->gb, buf2, buf_size2*8);
  3821. decode_entry_point(avctx, &s->gb);
  3822. break;
  3823. case VC1_CODE_SLICE:
  3824. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3825. av_free(buf2);
  3826. return -1;
  3827. }
  3828. }
  3829. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3830. const uint8_t *divider;
  3831. divider = find_next_marker(buf, buf + buf_size);
  3832. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3833. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3834. av_free(buf2);
  3835. return -1;
  3836. }
  3837. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3838. // TODO
  3839. av_free(buf2);return -1;
  3840. }else{
  3841. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3842. }
  3843. init_get_bits(&s->gb, buf2, buf_size2*8);
  3844. } else
  3845. init_get_bits(&s->gb, buf, buf_size*8);
  3846. // do parse frame header
  3847. if(v->profile < PROFILE_ADVANCED) {
  3848. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3849. av_free(buf2);
  3850. return -1;
  3851. }
  3852. } else {
  3853. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3854. av_free(buf2);
  3855. return -1;
  3856. }
  3857. }
  3858. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3859. av_free(buf2);
  3860. return -1;
  3861. }
  3862. // for hurry_up==5
  3863. s->current_picture.pict_type= s->pict_type;
  3864. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3865. /* skip B-frames if we don't have reference frames */
  3866. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3867. av_free(buf2);
  3868. return -1;//buf_size;
  3869. }
  3870. /* skip b frames if we are in a hurry */
  3871. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3872. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3873. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3874. || avctx->skip_frame >= AVDISCARD_ALL) {
  3875. av_free(buf2);
  3876. return buf_size;
  3877. }
  3878. /* skip everything if we are in a hurry>=5 */
  3879. if(avctx->hurry_up>=5) {
  3880. av_free(buf2);
  3881. return -1;//buf_size;
  3882. }
  3883. if(s->next_p_frame_damaged){
  3884. if(s->pict_type==FF_B_TYPE)
  3885. return buf_size;
  3886. else
  3887. s->next_p_frame_damaged=0;
  3888. }
  3889. if(MPV_frame_start(s, avctx) < 0) {
  3890. av_free(buf2);
  3891. return -1;
  3892. }
  3893. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3894. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3895. ff_er_frame_start(s);
  3896. v->bits = buf_size * 8;
  3897. vc1_decode_blocks(v);
  3898. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3899. // if(get_bits_count(&s->gb) > buf_size * 8)
  3900. // return -1;
  3901. ff_er_frame_end(s);
  3902. MPV_frame_end(s);
  3903. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3904. assert(s->current_picture.pict_type == s->pict_type);
  3905. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3906. *pict= *(AVFrame*)s->current_picture_ptr;
  3907. } else if (s->last_picture_ptr != NULL) {
  3908. *pict= *(AVFrame*)s->last_picture_ptr;
  3909. }
  3910. if(s->last_picture_ptr || s->low_delay){
  3911. *data_size = sizeof(AVFrame);
  3912. ff_print_debug_info(s, pict);
  3913. }
  3914. /* Return the Picture timestamp as the frame number */
  3915. /* we subtract 1 because it is added on utils.c */
  3916. avctx->frame_number = s->picture_number - 1;
  3917. av_free(buf2);
  3918. return buf_size;
  3919. }
  3920. /** Close a VC1/WMV3 decoder
  3921. * @warning Initial try at using MpegEncContext stuff
  3922. */
  3923. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3924. {
  3925. VC1Context *v = avctx->priv_data;
  3926. av_freep(&v->hrd_rate);
  3927. av_freep(&v->hrd_buffer);
  3928. MPV_common_end(&v->s);
  3929. av_freep(&v->mv_type_mb_plane);
  3930. av_freep(&v->direct_mb_plane);
  3931. av_freep(&v->acpred_plane);
  3932. av_freep(&v->over_flags_plane);
  3933. av_freep(&v->mb_type_base);
  3934. av_freep(&v->cbp_base);
  3935. ff_intrax8_common_end(&v->x8);
  3936. return 0;
  3937. }
  3938. AVCodec vc1_decoder = {
  3939. "vc1",
  3940. CODEC_TYPE_VIDEO,
  3941. CODEC_ID_VC1,
  3942. sizeof(VC1Context),
  3943. vc1_decode_init,
  3944. NULL,
  3945. vc1_decode_end,
  3946. vc1_decode_frame,
  3947. CODEC_CAP_DELAY,
  3948. NULL,
  3949. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3950. };
  3951. AVCodec wmv3_decoder = {
  3952. "wmv3",
  3953. CODEC_TYPE_VIDEO,
  3954. CODEC_ID_WMV3,
  3955. sizeof(VC1Context),
  3956. vc1_decode_init,
  3957. NULL,
  3958. vc1_decode_end,
  3959. vc1_decode_frame,
  3960. CODEC_CAP_DELAY,
  3961. NULL,
  3962. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3963. };