You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3400 lines
131KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "profiles.h"
  43. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  44. /**
  45. * NOTE: Each function hls_foo correspond to the function foo in the
  46. * specification (HLS stands for High Level Syntax).
  47. */
  48. /**
  49. * Section 5.7
  50. */
  51. /* free everything allocated by pic_arrays_init() */
  52. static void pic_arrays_free(HEVCContext *s)
  53. {
  54. av_freep(&s->sao);
  55. av_freep(&s->deblock);
  56. av_freep(&s->skip_flag);
  57. av_freep(&s->tab_ct_depth);
  58. av_freep(&s->tab_ipm);
  59. av_freep(&s->cbf_luma);
  60. av_freep(&s->is_pcm);
  61. av_freep(&s->qp_y_tab);
  62. av_freep(&s->tab_slice_address);
  63. av_freep(&s->filter_slice_edges);
  64. av_freep(&s->horizontal_bs);
  65. av_freep(&s->vertical_bs);
  66. av_freep(&s->sh.entry_point_offset);
  67. av_freep(&s->sh.size);
  68. av_freep(&s->sh.offset);
  69. av_buffer_pool_uninit(&s->tab_mvf_pool);
  70. av_buffer_pool_uninit(&s->rpl_tab_pool);
  71. }
  72. /* allocate arrays that depend on frame dimensions */
  73. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  74. {
  75. int log2_min_cb_size = sps->log2_min_cb_size;
  76. int width = sps->width;
  77. int height = sps->height;
  78. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  79. ((height >> log2_min_cb_size) + 1);
  80. int ctb_count = sps->ctb_width * sps->ctb_height;
  81. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  82. s->bs_width = (width >> 2) + 1;
  83. s->bs_height = (height >> 2) + 1;
  84. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  85. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  86. if (!s->sao || !s->deblock)
  87. goto fail;
  88. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. if (!s->skip_flag || !s->tab_ct_depth)
  91. goto fail;
  92. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  93. s->tab_ipm = av_mallocz(min_pu_size);
  94. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  95. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  96. goto fail;
  97. s->filter_slice_edges = av_mallocz(ctb_count);
  98. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->tab_slice_address));
  100. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->qp_y_tab));
  102. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  103. goto fail;
  104. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. if (!s->horizontal_bs || !s->vertical_bs)
  107. goto fail;
  108. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  109. av_buffer_allocz);
  110. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  111. av_buffer_allocz);
  112. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  113. goto fail;
  114. return 0;
  115. fail:
  116. pic_arrays_free(s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  120. {
  121. int i = 0;
  122. int j = 0;
  123. uint8_t luma_weight_l0_flag[16];
  124. uint8_t chroma_weight_l0_flag[16];
  125. uint8_t luma_weight_l1_flag[16];
  126. uint8_t chroma_weight_l1_flag[16];
  127. int luma_log2_weight_denom;
  128. luma_log2_weight_denom = get_ue_golomb_long(gb);
  129. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  130. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  131. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  132. if (s->ps.sps->chroma_format_idc != 0) {
  133. int delta = get_se_golomb(gb);
  134. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  135. }
  136. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  137. luma_weight_l0_flag[i] = get_bits1(gb);
  138. if (!luma_weight_l0_flag[i]) {
  139. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  140. s->sh.luma_offset_l0[i] = 0;
  141. }
  142. }
  143. if (s->ps.sps->chroma_format_idc != 0) {
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  145. chroma_weight_l0_flag[i] = get_bits1(gb);
  146. } else {
  147. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  148. chroma_weight_l0_flag[i] = 0;
  149. }
  150. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  151. if (luma_weight_l0_flag[i]) {
  152. int delta_luma_weight_l0 = get_se_golomb(gb);
  153. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  154. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  155. }
  156. if (chroma_weight_l0_flag[i]) {
  157. for (j = 0; j < 2; j++) {
  158. int delta_chroma_weight_l0 = get_se_golomb(gb);
  159. int delta_chroma_offset_l0 = get_se_golomb(gb);
  160. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  161. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  162. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  163. }
  164. } else {
  165. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  166. s->sh.chroma_offset_l0[i][0] = 0;
  167. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  168. s->sh.chroma_offset_l0[i][1] = 0;
  169. }
  170. }
  171. if (s->sh.slice_type == HEVC_SLICE_B) {
  172. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  173. luma_weight_l1_flag[i] = get_bits1(gb);
  174. if (!luma_weight_l1_flag[i]) {
  175. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  176. s->sh.luma_offset_l1[i] = 0;
  177. }
  178. }
  179. if (s->ps.sps->chroma_format_idc != 0) {
  180. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  181. chroma_weight_l1_flag[i] = get_bits1(gb);
  182. } else {
  183. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  184. chroma_weight_l1_flag[i] = 0;
  185. }
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  187. if (luma_weight_l1_flag[i]) {
  188. int delta_luma_weight_l1 = get_se_golomb(gb);
  189. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  190. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  191. }
  192. if (chroma_weight_l1_flag[i]) {
  193. for (j = 0; j < 2; j++) {
  194. int delta_chroma_weight_l1 = get_se_golomb(gb);
  195. int delta_chroma_offset_l1 = get_se_golomb(gb);
  196. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  197. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  198. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  199. }
  200. } else {
  201. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  202. s->sh.chroma_offset_l1[i][0] = 0;
  203. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  204. s->sh.chroma_offset_l1[i][1] = 0;
  205. }
  206. }
  207. }
  208. }
  209. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  210. {
  211. const HEVCSPS *sps = s->ps.sps;
  212. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  213. int prev_delta_msb = 0;
  214. unsigned int nb_sps = 0, nb_sh;
  215. int i;
  216. rps->nb_refs = 0;
  217. if (!sps->long_term_ref_pics_present_flag)
  218. return 0;
  219. if (sps->num_long_term_ref_pics_sps > 0)
  220. nb_sps = get_ue_golomb_long(gb);
  221. nb_sh = get_ue_golomb_long(gb);
  222. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  223. return AVERROR_INVALIDDATA;
  224. rps->nb_refs = nb_sh + nb_sps;
  225. for (i = 0; i < rps->nb_refs; i++) {
  226. uint8_t delta_poc_msb_present;
  227. if (i < nb_sps) {
  228. uint8_t lt_idx_sps = 0;
  229. if (sps->num_long_term_ref_pics_sps > 1)
  230. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  231. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  232. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  233. } else {
  234. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  235. rps->used[i] = get_bits1(gb);
  236. }
  237. delta_poc_msb_present = get_bits1(gb);
  238. if (delta_poc_msb_present) {
  239. int delta = get_ue_golomb_long(gb);
  240. if (i && i != nb_sps)
  241. delta += prev_delta_msb;
  242. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  243. prev_delta_msb = delta;
  244. }
  245. }
  246. return 0;
  247. }
  248. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  249. const HEVCSPS *sps)
  250. {
  251. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  252. unsigned int num = 0, den = 0;
  253. avctx->pix_fmt = sps->pix_fmt;
  254. avctx->coded_width = sps->width;
  255. avctx->coded_height = sps->height;
  256. avctx->width = sps->output_width;
  257. avctx->height = sps->output_height;
  258. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  259. avctx->profile = sps->ptl.general_ptl.profile_idc;
  260. avctx->level = sps->ptl.general_ptl.level_idc;
  261. ff_set_sar(avctx, sps->vui.sar);
  262. if (sps->vui.video_signal_type_present_flag)
  263. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  264. : AVCOL_RANGE_MPEG;
  265. else
  266. avctx->color_range = AVCOL_RANGE_MPEG;
  267. if (sps->vui.colour_description_present_flag) {
  268. avctx->color_primaries = sps->vui.colour_primaries;
  269. avctx->color_trc = sps->vui.transfer_characteristic;
  270. avctx->colorspace = sps->vui.matrix_coeffs;
  271. } else {
  272. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  273. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  274. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  275. }
  276. if (vps->vps_timing_info_present_flag) {
  277. num = vps->vps_num_units_in_tick;
  278. den = vps->vps_time_scale;
  279. } else if (sps->vui.vui_timing_info_present_flag) {
  280. num = sps->vui.vui_num_units_in_tick;
  281. den = sps->vui.vui_time_scale;
  282. }
  283. if (num != 0 && den != 0)
  284. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  285. num, den, 1 << 30);
  286. }
  287. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  288. {
  289. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  290. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  291. switch (sps->pix_fmt) {
  292. case AV_PIX_FMT_YUV420P:
  293. case AV_PIX_FMT_YUVJ420P:
  294. #if CONFIG_HEVC_DXVA2_HWACCEL
  295. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  296. #endif
  297. #if CONFIG_HEVC_D3D11VA_HWACCEL
  298. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  299. #endif
  300. #if CONFIG_HEVC_VAAPI_HWACCEL
  301. *fmt++ = AV_PIX_FMT_VAAPI;
  302. #endif
  303. #if CONFIG_HEVC_VDPAU_HWACCEL
  304. *fmt++ = AV_PIX_FMT_VDPAU;
  305. #endif
  306. break;
  307. case AV_PIX_FMT_YUV420P10:
  308. #if CONFIG_HEVC_DXVA2_HWACCEL
  309. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  310. #endif
  311. #if CONFIG_HEVC_D3D11VA_HWACCEL
  312. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  313. #endif
  314. #if CONFIG_HEVC_VAAPI_HWACCEL
  315. *fmt++ = AV_PIX_FMT_VAAPI;
  316. #endif
  317. break;
  318. }
  319. *fmt++ = sps->pix_fmt;
  320. *fmt = AV_PIX_FMT_NONE;
  321. return ff_thread_get_format(s->avctx, pix_fmts);
  322. }
  323. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  324. enum AVPixelFormat pix_fmt)
  325. {
  326. int ret, i;
  327. pic_arrays_free(s);
  328. s->ps.sps = NULL;
  329. s->ps.vps = NULL;
  330. if (!sps)
  331. return 0;
  332. ret = pic_arrays_init(s, sps);
  333. if (ret < 0)
  334. goto fail;
  335. export_stream_params(s->avctx, &s->ps, sps);
  336. s->avctx->pix_fmt = pix_fmt;
  337. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  338. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  339. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  340. for (i = 0; i < 3; i++) {
  341. av_freep(&s->sao_pixel_buffer_h[i]);
  342. av_freep(&s->sao_pixel_buffer_v[i]);
  343. }
  344. if (sps->sao_enabled && !s->avctx->hwaccel) {
  345. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  346. int c_idx;
  347. for(c_idx = 0; c_idx < c_count; c_idx++) {
  348. int w = sps->width >> sps->hshift[c_idx];
  349. int h = sps->height >> sps->vshift[c_idx];
  350. s->sao_pixel_buffer_h[c_idx] =
  351. av_malloc((w * 2 * sps->ctb_height) <<
  352. sps->pixel_shift);
  353. s->sao_pixel_buffer_v[c_idx] =
  354. av_malloc((h * 2 * sps->ctb_width) <<
  355. sps->pixel_shift);
  356. }
  357. }
  358. s->ps.sps = sps;
  359. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  360. return 0;
  361. fail:
  362. pic_arrays_free(s);
  363. s->ps.sps = NULL;
  364. return ret;
  365. }
  366. static int hls_slice_header(HEVCContext *s)
  367. {
  368. GetBitContext *gb = &s->HEVClc->gb;
  369. SliceHeader *sh = &s->sh;
  370. int i, ret;
  371. // Coded parameters
  372. sh->first_slice_in_pic_flag = get_bits1(gb);
  373. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  374. s->seq_decode = (s->seq_decode + 1) & 0xff;
  375. s->max_ra = INT_MAX;
  376. if (IS_IDR(s))
  377. ff_hevc_clear_refs(s);
  378. }
  379. sh->no_output_of_prior_pics_flag = 0;
  380. if (IS_IRAP(s))
  381. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  382. sh->pps_id = get_ue_golomb_long(gb);
  383. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  384. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  385. return AVERROR_INVALIDDATA;
  386. }
  387. if (!sh->first_slice_in_pic_flag &&
  388. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  389. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  390. return AVERROR_INVALIDDATA;
  391. }
  392. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  393. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  394. sh->no_output_of_prior_pics_flag = 1;
  395. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  396. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  397. const HEVCSPS *last_sps = s->ps.sps;
  398. enum AVPixelFormat pix_fmt;
  399. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  400. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  401. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  402. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  403. sh->no_output_of_prior_pics_flag = 0;
  404. }
  405. ff_hevc_clear_refs(s);
  406. pix_fmt = get_format(s, sps);
  407. if (pix_fmt < 0)
  408. return pix_fmt;
  409. ret = set_sps(s, sps, pix_fmt);
  410. if (ret < 0)
  411. return ret;
  412. s->seq_decode = (s->seq_decode + 1) & 0xff;
  413. s->max_ra = INT_MAX;
  414. }
  415. sh->dependent_slice_segment_flag = 0;
  416. if (!sh->first_slice_in_pic_flag) {
  417. int slice_address_length;
  418. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  419. sh->dependent_slice_segment_flag = get_bits1(gb);
  420. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  421. s->ps.sps->ctb_height);
  422. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  423. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  424. av_log(s->avctx, AV_LOG_ERROR,
  425. "Invalid slice segment address: %u.\n",
  426. sh->slice_segment_addr);
  427. return AVERROR_INVALIDDATA;
  428. }
  429. if (!sh->dependent_slice_segment_flag) {
  430. sh->slice_addr = sh->slice_segment_addr;
  431. s->slice_idx++;
  432. }
  433. } else {
  434. sh->slice_segment_addr = sh->slice_addr = 0;
  435. s->slice_idx = 0;
  436. s->slice_initialized = 0;
  437. }
  438. if (!sh->dependent_slice_segment_flag) {
  439. s->slice_initialized = 0;
  440. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  441. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  442. sh->slice_type = get_ue_golomb_long(gb);
  443. if (!(sh->slice_type == HEVC_SLICE_I ||
  444. sh->slice_type == HEVC_SLICE_P ||
  445. sh->slice_type == HEVC_SLICE_B)) {
  446. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  447. sh->slice_type);
  448. return AVERROR_INVALIDDATA;
  449. }
  450. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  451. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  452. return AVERROR_INVALIDDATA;
  453. }
  454. // when flag is not present, picture is inferred to be output
  455. sh->pic_output_flag = 1;
  456. if (s->ps.pps->output_flag_present_flag)
  457. sh->pic_output_flag = get_bits1(gb);
  458. if (s->ps.sps->separate_colour_plane_flag)
  459. sh->colour_plane_id = get_bits(gb, 2);
  460. if (!IS_IDR(s)) {
  461. int poc, pos;
  462. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  463. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  464. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  465. av_log(s->avctx, AV_LOG_WARNING,
  466. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  467. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  468. return AVERROR_INVALIDDATA;
  469. poc = s->poc;
  470. }
  471. s->poc = poc;
  472. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  473. pos = get_bits_left(gb);
  474. if (!sh->short_term_ref_pic_set_sps_flag) {
  475. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  476. if (ret < 0)
  477. return ret;
  478. sh->short_term_rps = &sh->slice_rps;
  479. } else {
  480. int numbits, rps_idx;
  481. if (!s->ps.sps->nb_st_rps) {
  482. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  483. return AVERROR_INVALIDDATA;
  484. }
  485. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  486. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  487. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  488. }
  489. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  490. pos = get_bits_left(gb);
  491. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  492. if (ret < 0) {
  493. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  494. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  495. return AVERROR_INVALIDDATA;
  496. }
  497. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  498. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  499. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  500. else
  501. sh->slice_temporal_mvp_enabled_flag = 0;
  502. } else {
  503. s->sh.short_term_rps = NULL;
  504. s->poc = 0;
  505. }
  506. /* 8.3.1 */
  507. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  508. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  509. s->nal_unit_type != HEVC_NAL_TSA_N &&
  510. s->nal_unit_type != HEVC_NAL_STSA_N &&
  511. s->nal_unit_type != HEVC_NAL_RADL_N &&
  512. s->nal_unit_type != HEVC_NAL_RADL_R &&
  513. s->nal_unit_type != HEVC_NAL_RASL_N &&
  514. s->nal_unit_type != HEVC_NAL_RASL_R)
  515. s->pocTid0 = s->poc;
  516. if (s->ps.sps->sao_enabled) {
  517. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  518. if (s->ps.sps->chroma_format_idc) {
  519. sh->slice_sample_adaptive_offset_flag[1] =
  520. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  521. }
  522. } else {
  523. sh->slice_sample_adaptive_offset_flag[0] = 0;
  524. sh->slice_sample_adaptive_offset_flag[1] = 0;
  525. sh->slice_sample_adaptive_offset_flag[2] = 0;
  526. }
  527. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  528. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  529. int nb_refs;
  530. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  531. if (sh->slice_type == HEVC_SLICE_B)
  532. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  533. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  534. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  535. if (sh->slice_type == HEVC_SLICE_B)
  536. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  537. }
  538. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  539. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  540. sh->nb_refs[L0], sh->nb_refs[L1]);
  541. return AVERROR_INVALIDDATA;
  542. }
  543. sh->rpl_modification_flag[0] = 0;
  544. sh->rpl_modification_flag[1] = 0;
  545. nb_refs = ff_hevc_frame_nb_refs(s);
  546. if (!nb_refs) {
  547. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  548. return AVERROR_INVALIDDATA;
  549. }
  550. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  551. sh->rpl_modification_flag[0] = get_bits1(gb);
  552. if (sh->rpl_modification_flag[0]) {
  553. for (i = 0; i < sh->nb_refs[L0]; i++)
  554. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  555. }
  556. if (sh->slice_type == HEVC_SLICE_B) {
  557. sh->rpl_modification_flag[1] = get_bits1(gb);
  558. if (sh->rpl_modification_flag[1] == 1)
  559. for (i = 0; i < sh->nb_refs[L1]; i++)
  560. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  561. }
  562. }
  563. if (sh->slice_type == HEVC_SLICE_B)
  564. sh->mvd_l1_zero_flag = get_bits1(gb);
  565. if (s->ps.pps->cabac_init_present_flag)
  566. sh->cabac_init_flag = get_bits1(gb);
  567. else
  568. sh->cabac_init_flag = 0;
  569. sh->collocated_ref_idx = 0;
  570. if (sh->slice_temporal_mvp_enabled_flag) {
  571. sh->collocated_list = L0;
  572. if (sh->slice_type == HEVC_SLICE_B)
  573. sh->collocated_list = !get_bits1(gb);
  574. if (sh->nb_refs[sh->collocated_list] > 1) {
  575. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  576. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  577. av_log(s->avctx, AV_LOG_ERROR,
  578. "Invalid collocated_ref_idx: %d.\n",
  579. sh->collocated_ref_idx);
  580. return AVERROR_INVALIDDATA;
  581. }
  582. }
  583. }
  584. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  585. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  586. pred_weight_table(s, gb);
  587. }
  588. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  589. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  590. av_log(s->avctx, AV_LOG_ERROR,
  591. "Invalid number of merging MVP candidates: %d.\n",
  592. sh->max_num_merge_cand);
  593. return AVERROR_INVALIDDATA;
  594. }
  595. }
  596. sh->slice_qp_delta = get_se_golomb(gb);
  597. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  598. sh->slice_cb_qp_offset = get_se_golomb(gb);
  599. sh->slice_cr_qp_offset = get_se_golomb(gb);
  600. } else {
  601. sh->slice_cb_qp_offset = 0;
  602. sh->slice_cr_qp_offset = 0;
  603. }
  604. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  605. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  606. else
  607. sh->cu_chroma_qp_offset_enabled_flag = 0;
  608. if (s->ps.pps->deblocking_filter_control_present_flag) {
  609. int deblocking_filter_override_flag = 0;
  610. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  611. deblocking_filter_override_flag = get_bits1(gb);
  612. if (deblocking_filter_override_flag) {
  613. sh->disable_deblocking_filter_flag = get_bits1(gb);
  614. if (!sh->disable_deblocking_filter_flag) {
  615. sh->beta_offset = get_se_golomb(gb) * 2;
  616. sh->tc_offset = get_se_golomb(gb) * 2;
  617. }
  618. } else {
  619. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  620. sh->beta_offset = s->ps.pps->beta_offset;
  621. sh->tc_offset = s->ps.pps->tc_offset;
  622. }
  623. } else {
  624. sh->disable_deblocking_filter_flag = 0;
  625. sh->beta_offset = 0;
  626. sh->tc_offset = 0;
  627. }
  628. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  629. (sh->slice_sample_adaptive_offset_flag[0] ||
  630. sh->slice_sample_adaptive_offset_flag[1] ||
  631. !sh->disable_deblocking_filter_flag)) {
  632. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  633. } else {
  634. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  635. }
  636. } else if (!s->slice_initialized) {
  637. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  638. return AVERROR_INVALIDDATA;
  639. }
  640. sh->num_entry_point_offsets = 0;
  641. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  642. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  643. // It would be possible to bound this tighter but this here is simpler
  644. if (num_entry_point_offsets > get_bits_left(gb)) {
  645. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  646. return AVERROR_INVALIDDATA;
  647. }
  648. sh->num_entry_point_offsets = num_entry_point_offsets;
  649. if (sh->num_entry_point_offsets > 0) {
  650. int offset_len = get_ue_golomb_long(gb) + 1;
  651. if (offset_len < 1 || offset_len > 32) {
  652. sh->num_entry_point_offsets = 0;
  653. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  654. return AVERROR_INVALIDDATA;
  655. }
  656. av_freep(&sh->entry_point_offset);
  657. av_freep(&sh->offset);
  658. av_freep(&sh->size);
  659. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  660. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  661. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  662. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  663. sh->num_entry_point_offsets = 0;
  664. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  665. return AVERROR(ENOMEM);
  666. }
  667. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  668. unsigned val = get_bits_long(gb, offset_len);
  669. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  670. }
  671. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  672. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  673. s->threads_number = 1;
  674. } else
  675. s->enable_parallel_tiles = 0;
  676. } else
  677. s->enable_parallel_tiles = 0;
  678. }
  679. if (s->ps.pps->slice_header_extension_present_flag) {
  680. unsigned int length = get_ue_golomb_long(gb);
  681. if (length*8LL > get_bits_left(gb)) {
  682. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  683. return AVERROR_INVALIDDATA;
  684. }
  685. for (i = 0; i < length; i++)
  686. skip_bits(gb, 8); // slice_header_extension_data_byte
  687. }
  688. // Inferred parameters
  689. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  690. if (sh->slice_qp > 51 ||
  691. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  692. av_log(s->avctx, AV_LOG_ERROR,
  693. "The slice_qp %d is outside the valid range "
  694. "[%d, 51].\n",
  695. sh->slice_qp,
  696. -s->ps.sps->qp_bd_offset);
  697. return AVERROR_INVALIDDATA;
  698. }
  699. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  700. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  701. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  702. return AVERROR_INVALIDDATA;
  703. }
  704. if (get_bits_left(gb) < 0) {
  705. av_log(s->avctx, AV_LOG_ERROR,
  706. "Overread slice header by %d bits\n", -get_bits_left(gb));
  707. return AVERROR_INVALIDDATA;
  708. }
  709. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  710. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  711. s->HEVClc->qp_y = s->sh.slice_qp;
  712. s->slice_initialized = 1;
  713. s->HEVClc->tu.cu_qp_offset_cb = 0;
  714. s->HEVClc->tu.cu_qp_offset_cr = 0;
  715. return 0;
  716. }
  717. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  718. #define SET_SAO(elem, value) \
  719. do { \
  720. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  721. sao->elem = value; \
  722. else if (sao_merge_left_flag) \
  723. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  724. else if (sao_merge_up_flag) \
  725. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  726. else \
  727. sao->elem = 0; \
  728. } while (0)
  729. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  730. {
  731. HEVCLocalContext *lc = s->HEVClc;
  732. int sao_merge_left_flag = 0;
  733. int sao_merge_up_flag = 0;
  734. SAOParams *sao = &CTB(s->sao, rx, ry);
  735. int c_idx, i;
  736. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  737. s->sh.slice_sample_adaptive_offset_flag[1]) {
  738. if (rx > 0) {
  739. if (lc->ctb_left_flag)
  740. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  741. }
  742. if (ry > 0 && !sao_merge_left_flag) {
  743. if (lc->ctb_up_flag)
  744. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  745. }
  746. }
  747. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  748. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  749. s->ps.pps->log2_sao_offset_scale_chroma;
  750. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  751. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  752. continue;
  753. }
  754. if (c_idx == 2) {
  755. sao->type_idx[2] = sao->type_idx[1];
  756. sao->eo_class[2] = sao->eo_class[1];
  757. } else {
  758. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  759. }
  760. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  761. continue;
  762. for (i = 0; i < 4; i++)
  763. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  764. if (sao->type_idx[c_idx] == SAO_BAND) {
  765. for (i = 0; i < 4; i++) {
  766. if (sao->offset_abs[c_idx][i]) {
  767. SET_SAO(offset_sign[c_idx][i],
  768. ff_hevc_sao_offset_sign_decode(s));
  769. } else {
  770. sao->offset_sign[c_idx][i] = 0;
  771. }
  772. }
  773. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  774. } else if (c_idx != 2) {
  775. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  776. }
  777. // Inferred parameters
  778. sao->offset_val[c_idx][0] = 0;
  779. for (i = 0; i < 4; i++) {
  780. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  781. if (sao->type_idx[c_idx] == SAO_EDGE) {
  782. if (i > 1)
  783. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  784. } else if (sao->offset_sign[c_idx][i]) {
  785. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  786. }
  787. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  788. }
  789. }
  790. }
  791. #undef SET_SAO
  792. #undef CTB
  793. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  794. HEVCLocalContext *lc = s->HEVClc;
  795. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  796. if (log2_res_scale_abs_plus1 != 0) {
  797. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  798. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  799. (1 - 2 * res_scale_sign_flag);
  800. } else {
  801. lc->tu.res_scale_val = 0;
  802. }
  803. return 0;
  804. }
  805. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  806. int xBase, int yBase, int cb_xBase, int cb_yBase,
  807. int log2_cb_size, int log2_trafo_size,
  808. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  809. {
  810. HEVCLocalContext *lc = s->HEVClc;
  811. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  812. int i;
  813. if (lc->cu.pred_mode == MODE_INTRA) {
  814. int trafo_size = 1 << log2_trafo_size;
  815. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  816. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  817. }
  818. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  819. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  820. int scan_idx = SCAN_DIAG;
  821. int scan_idx_c = SCAN_DIAG;
  822. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  823. (s->ps.sps->chroma_format_idc == 2 &&
  824. (cbf_cb[1] || cbf_cr[1]));
  825. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  826. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  827. if (lc->tu.cu_qp_delta != 0)
  828. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  829. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  830. lc->tu.is_cu_qp_delta_coded = 1;
  831. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  832. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  833. av_log(s->avctx, AV_LOG_ERROR,
  834. "The cu_qp_delta %d is outside the valid range "
  835. "[%d, %d].\n",
  836. lc->tu.cu_qp_delta,
  837. -(26 + s->ps.sps->qp_bd_offset / 2),
  838. (25 + s->ps.sps->qp_bd_offset / 2));
  839. return AVERROR_INVALIDDATA;
  840. }
  841. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  842. }
  843. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  844. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  845. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  846. if (cu_chroma_qp_offset_flag) {
  847. int cu_chroma_qp_offset_idx = 0;
  848. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  849. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  850. av_log(s->avctx, AV_LOG_ERROR,
  851. "cu_chroma_qp_offset_idx not yet tested.\n");
  852. }
  853. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  854. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  855. } else {
  856. lc->tu.cu_qp_offset_cb = 0;
  857. lc->tu.cu_qp_offset_cr = 0;
  858. }
  859. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  860. }
  861. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  862. if (lc->tu.intra_pred_mode >= 6 &&
  863. lc->tu.intra_pred_mode <= 14) {
  864. scan_idx = SCAN_VERT;
  865. } else if (lc->tu.intra_pred_mode >= 22 &&
  866. lc->tu.intra_pred_mode <= 30) {
  867. scan_idx = SCAN_HORIZ;
  868. }
  869. if (lc->tu.intra_pred_mode_c >= 6 &&
  870. lc->tu.intra_pred_mode_c <= 14) {
  871. scan_idx_c = SCAN_VERT;
  872. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  873. lc->tu.intra_pred_mode_c <= 30) {
  874. scan_idx_c = SCAN_HORIZ;
  875. }
  876. }
  877. lc->tu.cross_pf = 0;
  878. if (cbf_luma)
  879. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  880. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  881. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  882. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  883. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  884. (lc->cu.pred_mode == MODE_INTER ||
  885. (lc->tu.chroma_mode_c == 4)));
  886. if (lc->tu.cross_pf) {
  887. hls_cross_component_pred(s, 0);
  888. }
  889. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  890. if (lc->cu.pred_mode == MODE_INTRA) {
  891. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  892. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  893. }
  894. if (cbf_cb[i])
  895. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  896. log2_trafo_size_c, scan_idx_c, 1);
  897. else
  898. if (lc->tu.cross_pf) {
  899. ptrdiff_t stride = s->frame->linesize[1];
  900. int hshift = s->ps.sps->hshift[1];
  901. int vshift = s->ps.sps->vshift[1];
  902. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  903. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  904. int size = 1 << log2_trafo_size_c;
  905. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  906. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  907. for (i = 0; i < (size * size); i++) {
  908. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  909. }
  910. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  911. }
  912. }
  913. if (lc->tu.cross_pf) {
  914. hls_cross_component_pred(s, 1);
  915. }
  916. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  917. if (lc->cu.pred_mode == MODE_INTRA) {
  918. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  919. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  920. }
  921. if (cbf_cr[i])
  922. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  923. log2_trafo_size_c, scan_idx_c, 2);
  924. else
  925. if (lc->tu.cross_pf) {
  926. ptrdiff_t stride = s->frame->linesize[2];
  927. int hshift = s->ps.sps->hshift[2];
  928. int vshift = s->ps.sps->vshift[2];
  929. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  930. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  931. int size = 1 << log2_trafo_size_c;
  932. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  933. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  934. for (i = 0; i < (size * size); i++) {
  935. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  936. }
  937. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  938. }
  939. }
  940. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  941. int trafo_size_h = 1 << (log2_trafo_size + 1);
  942. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  943. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  944. if (lc->cu.pred_mode == MODE_INTRA) {
  945. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  946. trafo_size_h, trafo_size_v);
  947. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  948. }
  949. if (cbf_cb[i])
  950. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  951. log2_trafo_size, scan_idx_c, 1);
  952. }
  953. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  954. if (lc->cu.pred_mode == MODE_INTRA) {
  955. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  956. trafo_size_h, trafo_size_v);
  957. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  958. }
  959. if (cbf_cr[i])
  960. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  961. log2_trafo_size, scan_idx_c, 2);
  962. }
  963. }
  964. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  965. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  966. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  967. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  968. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  969. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  970. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  971. if (s->ps.sps->chroma_format_idc == 2) {
  972. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  973. trafo_size_h, trafo_size_v);
  974. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  975. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  976. }
  977. } else if (blk_idx == 3) {
  978. int trafo_size_h = 1 << (log2_trafo_size + 1);
  979. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  980. ff_hevc_set_neighbour_available(s, xBase, yBase,
  981. trafo_size_h, trafo_size_v);
  982. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  983. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  984. if (s->ps.sps->chroma_format_idc == 2) {
  985. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  986. trafo_size_h, trafo_size_v);
  987. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  988. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  989. }
  990. }
  991. }
  992. return 0;
  993. }
  994. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  995. {
  996. int cb_size = 1 << log2_cb_size;
  997. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  998. int min_pu_width = s->ps.sps->min_pu_width;
  999. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1000. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1001. int i, j;
  1002. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1003. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1004. s->is_pcm[i + j * min_pu_width] = 2;
  1005. }
  1006. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1007. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1008. int log2_cb_size, int log2_trafo_size,
  1009. int trafo_depth, int blk_idx,
  1010. const int *base_cbf_cb, const int *base_cbf_cr)
  1011. {
  1012. HEVCLocalContext *lc = s->HEVClc;
  1013. uint8_t split_transform_flag;
  1014. int cbf_cb[2];
  1015. int cbf_cr[2];
  1016. int ret;
  1017. cbf_cb[0] = base_cbf_cb[0];
  1018. cbf_cb[1] = base_cbf_cb[1];
  1019. cbf_cr[0] = base_cbf_cr[0];
  1020. cbf_cr[1] = base_cbf_cr[1];
  1021. if (lc->cu.intra_split_flag) {
  1022. if (trafo_depth == 1) {
  1023. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1024. if (s->ps.sps->chroma_format_idc == 3) {
  1025. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1026. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1027. } else {
  1028. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1029. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1030. }
  1031. }
  1032. } else {
  1033. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1034. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1035. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1036. }
  1037. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1038. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1039. trafo_depth < lc->cu.max_trafo_depth &&
  1040. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1041. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1042. } else {
  1043. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1044. lc->cu.pred_mode == MODE_INTER &&
  1045. lc->cu.part_mode != PART_2Nx2N &&
  1046. trafo_depth == 0;
  1047. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1048. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1049. inter_split;
  1050. }
  1051. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1052. if (trafo_depth == 0 || cbf_cb[0]) {
  1053. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1054. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1055. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1056. }
  1057. }
  1058. if (trafo_depth == 0 || cbf_cr[0]) {
  1059. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1060. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1061. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1062. }
  1063. }
  1064. }
  1065. if (split_transform_flag) {
  1066. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1067. const int x1 = x0 + trafo_size_split;
  1068. const int y1 = y0 + trafo_size_split;
  1069. #define SUBDIVIDE(x, y, idx) \
  1070. do { \
  1071. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1072. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1073. cbf_cb, cbf_cr); \
  1074. if (ret < 0) \
  1075. return ret; \
  1076. } while (0)
  1077. SUBDIVIDE(x0, y0, 0);
  1078. SUBDIVIDE(x1, y0, 1);
  1079. SUBDIVIDE(x0, y1, 2);
  1080. SUBDIVIDE(x1, y1, 3);
  1081. #undef SUBDIVIDE
  1082. } else {
  1083. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1084. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1085. int min_tu_width = s->ps.sps->min_tb_width;
  1086. int cbf_luma = 1;
  1087. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1088. cbf_cb[0] || cbf_cr[0] ||
  1089. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1090. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1091. }
  1092. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1093. log2_cb_size, log2_trafo_size,
  1094. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1095. if (ret < 0)
  1096. return ret;
  1097. // TODO: store cbf_luma somewhere else
  1098. if (cbf_luma) {
  1099. int i, j;
  1100. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1101. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1102. int x_tu = (x0 + j) >> log2_min_tu_size;
  1103. int y_tu = (y0 + i) >> log2_min_tu_size;
  1104. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1105. }
  1106. }
  1107. if (!s->sh.disable_deblocking_filter_flag) {
  1108. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1109. if (s->ps.pps->transquant_bypass_enable_flag &&
  1110. lc->cu.cu_transquant_bypass_flag)
  1111. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1112. }
  1113. }
  1114. return 0;
  1115. }
  1116. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1117. {
  1118. HEVCLocalContext *lc = s->HEVClc;
  1119. GetBitContext gb;
  1120. int cb_size = 1 << log2_cb_size;
  1121. ptrdiff_t stride0 = s->frame->linesize[0];
  1122. ptrdiff_t stride1 = s->frame->linesize[1];
  1123. ptrdiff_t stride2 = s->frame->linesize[2];
  1124. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1125. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1126. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1127. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1128. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1129. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1130. s->ps.sps->pcm.bit_depth_chroma;
  1131. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1132. int ret;
  1133. if (!s->sh.disable_deblocking_filter_flag)
  1134. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1135. ret = init_get_bits(&gb, pcm, length);
  1136. if (ret < 0)
  1137. return ret;
  1138. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1139. if (s->ps.sps->chroma_format_idc) {
  1140. s->hevcdsp.put_pcm(dst1, stride1,
  1141. cb_size >> s->ps.sps->hshift[1],
  1142. cb_size >> s->ps.sps->vshift[1],
  1143. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1144. s->hevcdsp.put_pcm(dst2, stride2,
  1145. cb_size >> s->ps.sps->hshift[2],
  1146. cb_size >> s->ps.sps->vshift[2],
  1147. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1148. }
  1149. return 0;
  1150. }
  1151. /**
  1152. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1153. *
  1154. * @param s HEVC decoding context
  1155. * @param dst target buffer for block data at block position
  1156. * @param dststride stride of the dst buffer
  1157. * @param ref reference picture buffer at origin (0, 0)
  1158. * @param mv motion vector (relative to block position) to get pixel data from
  1159. * @param x_off horizontal position of block from origin (0, 0)
  1160. * @param y_off vertical position of block from origin (0, 0)
  1161. * @param block_w width of block
  1162. * @param block_h height of block
  1163. * @param luma_weight weighting factor applied to the luma prediction
  1164. * @param luma_offset additive offset applied to the luma prediction value
  1165. */
  1166. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1167. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1168. int block_w, int block_h, int luma_weight, int luma_offset)
  1169. {
  1170. HEVCLocalContext *lc = s->HEVClc;
  1171. uint8_t *src = ref->data[0];
  1172. ptrdiff_t srcstride = ref->linesize[0];
  1173. int pic_width = s->ps.sps->width;
  1174. int pic_height = s->ps.sps->height;
  1175. int mx = mv->x & 3;
  1176. int my = mv->y & 3;
  1177. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1178. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1179. int idx = ff_hevc_pel_weight[block_w];
  1180. x_off += mv->x >> 2;
  1181. y_off += mv->y >> 2;
  1182. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1183. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1184. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1185. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1186. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1187. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1188. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1189. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1190. edge_emu_stride, srcstride,
  1191. block_w + QPEL_EXTRA,
  1192. block_h + QPEL_EXTRA,
  1193. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1194. pic_width, pic_height);
  1195. src = lc->edge_emu_buffer + buf_offset;
  1196. srcstride = edge_emu_stride;
  1197. }
  1198. if (!weight_flag)
  1199. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1200. block_h, mx, my, block_w);
  1201. else
  1202. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1203. block_h, s->sh.luma_log2_weight_denom,
  1204. luma_weight, luma_offset, mx, my, block_w);
  1205. }
  1206. /**
  1207. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1208. *
  1209. * @param s HEVC decoding context
  1210. * @param dst target buffer for block data at block position
  1211. * @param dststride stride of the dst buffer
  1212. * @param ref0 reference picture0 buffer at origin (0, 0)
  1213. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1214. * @param x_off horizontal position of block from origin (0, 0)
  1215. * @param y_off vertical position of block from origin (0, 0)
  1216. * @param block_w width of block
  1217. * @param block_h height of block
  1218. * @param ref1 reference picture1 buffer at origin (0, 0)
  1219. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1220. * @param current_mv current motion vector structure
  1221. */
  1222. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1223. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1224. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1225. {
  1226. HEVCLocalContext *lc = s->HEVClc;
  1227. ptrdiff_t src0stride = ref0->linesize[0];
  1228. ptrdiff_t src1stride = ref1->linesize[0];
  1229. int pic_width = s->ps.sps->width;
  1230. int pic_height = s->ps.sps->height;
  1231. int mx0 = mv0->x & 3;
  1232. int my0 = mv0->y & 3;
  1233. int mx1 = mv1->x & 3;
  1234. int my1 = mv1->y & 3;
  1235. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1236. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1237. int x_off0 = x_off + (mv0->x >> 2);
  1238. int y_off0 = y_off + (mv0->y >> 2);
  1239. int x_off1 = x_off + (mv1->x >> 2);
  1240. int y_off1 = y_off + (mv1->y >> 2);
  1241. int idx = ff_hevc_pel_weight[block_w];
  1242. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1243. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1244. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1245. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1246. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1247. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1248. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1249. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1250. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1251. edge_emu_stride, src0stride,
  1252. block_w + QPEL_EXTRA,
  1253. block_h + QPEL_EXTRA,
  1254. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1255. pic_width, pic_height);
  1256. src0 = lc->edge_emu_buffer + buf_offset;
  1257. src0stride = edge_emu_stride;
  1258. }
  1259. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1260. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1261. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1262. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1263. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1264. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1265. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1266. edge_emu_stride, src1stride,
  1267. block_w + QPEL_EXTRA,
  1268. block_h + QPEL_EXTRA,
  1269. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1270. pic_width, pic_height);
  1271. src1 = lc->edge_emu_buffer2 + buf_offset;
  1272. src1stride = edge_emu_stride;
  1273. }
  1274. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1275. block_h, mx0, my0, block_w);
  1276. if (!weight_flag)
  1277. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1278. block_h, mx1, my1, block_w);
  1279. else
  1280. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1281. block_h, s->sh.luma_log2_weight_denom,
  1282. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1283. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1284. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1285. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1286. mx1, my1, block_w);
  1287. }
  1288. /**
  1289. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1290. *
  1291. * @param s HEVC decoding context
  1292. * @param dst1 target buffer for block data at block position (U plane)
  1293. * @param dst2 target buffer for block data at block position (V plane)
  1294. * @param dststride stride of the dst1 and dst2 buffers
  1295. * @param ref reference picture buffer at origin (0, 0)
  1296. * @param mv motion vector (relative to block position) to get pixel data from
  1297. * @param x_off horizontal position of block from origin (0, 0)
  1298. * @param y_off vertical position of block from origin (0, 0)
  1299. * @param block_w width of block
  1300. * @param block_h height of block
  1301. * @param chroma_weight weighting factor applied to the chroma prediction
  1302. * @param chroma_offset additive offset applied to the chroma prediction value
  1303. */
  1304. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1305. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1306. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1307. {
  1308. HEVCLocalContext *lc = s->HEVClc;
  1309. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1310. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1311. const Mv *mv = &current_mv->mv[reflist];
  1312. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1313. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1314. int idx = ff_hevc_pel_weight[block_w];
  1315. int hshift = s->ps.sps->hshift[1];
  1316. int vshift = s->ps.sps->vshift[1];
  1317. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1318. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1319. intptr_t _mx = mx << (1 - hshift);
  1320. intptr_t _my = my << (1 - vshift);
  1321. x_off += mv->x >> (2 + hshift);
  1322. y_off += mv->y >> (2 + vshift);
  1323. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1324. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1325. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1326. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1327. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1328. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1329. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1330. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1331. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1332. edge_emu_stride, srcstride,
  1333. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1334. x_off - EPEL_EXTRA_BEFORE,
  1335. y_off - EPEL_EXTRA_BEFORE,
  1336. pic_width, pic_height);
  1337. src0 = lc->edge_emu_buffer + buf_offset0;
  1338. srcstride = edge_emu_stride;
  1339. }
  1340. if (!weight_flag)
  1341. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1342. block_h, _mx, _my, block_w);
  1343. else
  1344. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1345. block_h, s->sh.chroma_log2_weight_denom,
  1346. chroma_weight, chroma_offset, _mx, _my, block_w);
  1347. }
  1348. /**
  1349. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1350. *
  1351. * @param s HEVC decoding context
  1352. * @param dst target buffer for block data at block position
  1353. * @param dststride stride of the dst buffer
  1354. * @param ref0 reference picture0 buffer at origin (0, 0)
  1355. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1356. * @param x_off horizontal position of block from origin (0, 0)
  1357. * @param y_off vertical position of block from origin (0, 0)
  1358. * @param block_w width of block
  1359. * @param block_h height of block
  1360. * @param ref1 reference picture1 buffer at origin (0, 0)
  1361. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1362. * @param current_mv current motion vector structure
  1363. * @param cidx chroma component(cb, cr)
  1364. */
  1365. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1366. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1367. {
  1368. HEVCLocalContext *lc = s->HEVClc;
  1369. uint8_t *src1 = ref0->data[cidx+1];
  1370. uint8_t *src2 = ref1->data[cidx+1];
  1371. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1372. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1373. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1374. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1375. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1376. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1377. Mv *mv0 = &current_mv->mv[0];
  1378. Mv *mv1 = &current_mv->mv[1];
  1379. int hshift = s->ps.sps->hshift[1];
  1380. int vshift = s->ps.sps->vshift[1];
  1381. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1382. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1383. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1384. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1385. intptr_t _mx0 = mx0 << (1 - hshift);
  1386. intptr_t _my0 = my0 << (1 - vshift);
  1387. intptr_t _mx1 = mx1 << (1 - hshift);
  1388. intptr_t _my1 = my1 << (1 - vshift);
  1389. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1390. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1391. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1392. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1393. int idx = ff_hevc_pel_weight[block_w];
  1394. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1395. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1396. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1397. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1398. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1399. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1400. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1401. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1402. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1403. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1404. edge_emu_stride, src1stride,
  1405. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1406. x_off0 - EPEL_EXTRA_BEFORE,
  1407. y_off0 - EPEL_EXTRA_BEFORE,
  1408. pic_width, pic_height);
  1409. src1 = lc->edge_emu_buffer + buf_offset1;
  1410. src1stride = edge_emu_stride;
  1411. }
  1412. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1413. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1414. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1415. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1416. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1417. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1418. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1419. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1420. edge_emu_stride, src2stride,
  1421. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1422. x_off1 - EPEL_EXTRA_BEFORE,
  1423. y_off1 - EPEL_EXTRA_BEFORE,
  1424. pic_width, pic_height);
  1425. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1426. src2stride = edge_emu_stride;
  1427. }
  1428. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1429. block_h, _mx0, _my0, block_w);
  1430. if (!weight_flag)
  1431. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1432. src2, src2stride, lc->tmp,
  1433. block_h, _mx1, _my1, block_w);
  1434. else
  1435. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1436. src2, src2stride, lc->tmp,
  1437. block_h,
  1438. s->sh.chroma_log2_weight_denom,
  1439. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1440. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1441. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1442. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1443. _mx1, _my1, block_w);
  1444. }
  1445. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1446. const Mv *mv, int y0, int height)
  1447. {
  1448. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1449. if (s->threads_type == FF_THREAD_FRAME )
  1450. ff_thread_await_progress(&ref->tf, y, 0);
  1451. }
  1452. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1453. int nPbH, int log2_cb_size, int part_idx,
  1454. int merge_idx, MvField *mv)
  1455. {
  1456. HEVCLocalContext *lc = s->HEVClc;
  1457. enum InterPredIdc inter_pred_idc = PRED_L0;
  1458. int mvp_flag;
  1459. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1460. mv->pred_flag = 0;
  1461. if (s->sh.slice_type == HEVC_SLICE_B)
  1462. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1463. if (inter_pred_idc != PRED_L1) {
  1464. if (s->sh.nb_refs[L0])
  1465. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1466. mv->pred_flag = PF_L0;
  1467. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1468. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1469. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1470. part_idx, merge_idx, mv, mvp_flag, 0);
  1471. mv->mv[0].x += lc->pu.mvd.x;
  1472. mv->mv[0].y += lc->pu.mvd.y;
  1473. }
  1474. if (inter_pred_idc != PRED_L0) {
  1475. if (s->sh.nb_refs[L1])
  1476. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1477. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1478. AV_ZERO32(&lc->pu.mvd);
  1479. } else {
  1480. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1481. }
  1482. mv->pred_flag += PF_L1;
  1483. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1484. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1485. part_idx, merge_idx, mv, mvp_flag, 1);
  1486. mv->mv[1].x += lc->pu.mvd.x;
  1487. mv->mv[1].y += lc->pu.mvd.y;
  1488. }
  1489. }
  1490. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1491. int nPbW, int nPbH,
  1492. int log2_cb_size, int partIdx, int idx)
  1493. {
  1494. #define POS(c_idx, x, y) \
  1495. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1496. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1497. HEVCLocalContext *lc = s->HEVClc;
  1498. int merge_idx = 0;
  1499. struct MvField current_mv = {{{ 0 }}};
  1500. int min_pu_width = s->ps.sps->min_pu_width;
  1501. MvField *tab_mvf = s->ref->tab_mvf;
  1502. RefPicList *refPicList = s->ref->refPicList;
  1503. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1504. uint8_t *dst0 = POS(0, x0, y0);
  1505. uint8_t *dst1 = POS(1, x0, y0);
  1506. uint8_t *dst2 = POS(2, x0, y0);
  1507. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1508. int min_cb_width = s->ps.sps->min_cb_width;
  1509. int x_cb = x0 >> log2_min_cb_size;
  1510. int y_cb = y0 >> log2_min_cb_size;
  1511. int x_pu, y_pu;
  1512. int i, j;
  1513. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1514. if (!skip_flag)
  1515. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1516. if (skip_flag || lc->pu.merge_flag) {
  1517. if (s->sh.max_num_merge_cand > 1)
  1518. merge_idx = ff_hevc_merge_idx_decode(s);
  1519. else
  1520. merge_idx = 0;
  1521. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1522. partIdx, merge_idx, &current_mv);
  1523. } else {
  1524. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1525. partIdx, merge_idx, &current_mv);
  1526. }
  1527. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1528. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1529. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1530. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1531. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1532. if (current_mv.pred_flag & PF_L0) {
  1533. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1534. if (!ref0)
  1535. return;
  1536. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1537. }
  1538. if (current_mv.pred_flag & PF_L1) {
  1539. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1540. if (!ref1)
  1541. return;
  1542. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1543. }
  1544. if (current_mv.pred_flag == PF_L0) {
  1545. int x0_c = x0 >> s->ps.sps->hshift[1];
  1546. int y0_c = y0 >> s->ps.sps->vshift[1];
  1547. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1548. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1549. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1550. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1551. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1552. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1553. if (s->ps.sps->chroma_format_idc) {
  1554. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1555. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1556. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1557. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1558. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1559. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1560. }
  1561. } else if (current_mv.pred_flag == PF_L1) {
  1562. int x0_c = x0 >> s->ps.sps->hshift[1];
  1563. int y0_c = y0 >> s->ps.sps->vshift[1];
  1564. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1565. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1566. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1567. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1568. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1569. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1570. if (s->ps.sps->chroma_format_idc) {
  1571. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1572. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1573. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1574. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1575. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1576. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1577. }
  1578. } else if (current_mv.pred_flag == PF_BI) {
  1579. int x0_c = x0 >> s->ps.sps->hshift[1];
  1580. int y0_c = y0 >> s->ps.sps->vshift[1];
  1581. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1582. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1583. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1584. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1585. ref1->frame, &current_mv.mv[1], &current_mv);
  1586. if (s->ps.sps->chroma_format_idc) {
  1587. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1588. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1589. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1590. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1591. }
  1592. }
  1593. }
  1594. /**
  1595. * 8.4.1
  1596. */
  1597. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1598. int prev_intra_luma_pred_flag)
  1599. {
  1600. HEVCLocalContext *lc = s->HEVClc;
  1601. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1602. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1603. int min_pu_width = s->ps.sps->min_pu_width;
  1604. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1605. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1606. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1607. int cand_up = (lc->ctb_up_flag || y0b) ?
  1608. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1609. int cand_left = (lc->ctb_left_flag || x0b) ?
  1610. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1611. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1612. MvField *tab_mvf = s->ref->tab_mvf;
  1613. int intra_pred_mode;
  1614. int candidate[3];
  1615. int i, j;
  1616. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1617. if ((y0 - 1) < y_ctb)
  1618. cand_up = INTRA_DC;
  1619. if (cand_left == cand_up) {
  1620. if (cand_left < 2) {
  1621. candidate[0] = INTRA_PLANAR;
  1622. candidate[1] = INTRA_DC;
  1623. candidate[2] = INTRA_ANGULAR_26;
  1624. } else {
  1625. candidate[0] = cand_left;
  1626. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1627. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1628. }
  1629. } else {
  1630. candidate[0] = cand_left;
  1631. candidate[1] = cand_up;
  1632. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1633. candidate[2] = INTRA_PLANAR;
  1634. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1635. candidate[2] = INTRA_DC;
  1636. } else {
  1637. candidate[2] = INTRA_ANGULAR_26;
  1638. }
  1639. }
  1640. if (prev_intra_luma_pred_flag) {
  1641. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1642. } else {
  1643. if (candidate[0] > candidate[1])
  1644. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1645. if (candidate[0] > candidate[2])
  1646. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1647. if (candidate[1] > candidate[2])
  1648. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1649. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1650. for (i = 0; i < 3; i++)
  1651. if (intra_pred_mode >= candidate[i])
  1652. intra_pred_mode++;
  1653. }
  1654. /* write the intra prediction units into the mv array */
  1655. if (!size_in_pus)
  1656. size_in_pus = 1;
  1657. for (i = 0; i < size_in_pus; i++) {
  1658. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1659. intra_pred_mode, size_in_pus);
  1660. for (j = 0; j < size_in_pus; j++) {
  1661. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1662. }
  1663. }
  1664. return intra_pred_mode;
  1665. }
  1666. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1667. int log2_cb_size, int ct_depth)
  1668. {
  1669. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1670. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1671. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1672. int y;
  1673. for (y = 0; y < length; y++)
  1674. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1675. ct_depth, length);
  1676. }
  1677. static const uint8_t tab_mode_idx[] = {
  1678. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1679. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1680. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1681. int log2_cb_size)
  1682. {
  1683. HEVCLocalContext *lc = s->HEVClc;
  1684. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1685. uint8_t prev_intra_luma_pred_flag[4];
  1686. int split = lc->cu.part_mode == PART_NxN;
  1687. int pb_size = (1 << log2_cb_size) >> split;
  1688. int side = split + 1;
  1689. int chroma_mode;
  1690. int i, j;
  1691. for (i = 0; i < side; i++)
  1692. for (j = 0; j < side; j++)
  1693. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1694. for (i = 0; i < side; i++) {
  1695. for (j = 0; j < side; j++) {
  1696. if (prev_intra_luma_pred_flag[2 * i + j])
  1697. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1698. else
  1699. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1700. lc->pu.intra_pred_mode[2 * i + j] =
  1701. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1702. prev_intra_luma_pred_flag[2 * i + j]);
  1703. }
  1704. }
  1705. if (s->ps.sps->chroma_format_idc == 3) {
  1706. for (i = 0; i < side; i++) {
  1707. for (j = 0; j < side; j++) {
  1708. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1709. if (chroma_mode != 4) {
  1710. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1711. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1712. else
  1713. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1714. } else {
  1715. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1716. }
  1717. }
  1718. }
  1719. } else if (s->ps.sps->chroma_format_idc == 2) {
  1720. int mode_idx;
  1721. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1722. if (chroma_mode != 4) {
  1723. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1724. mode_idx = 34;
  1725. else
  1726. mode_idx = intra_chroma_table[chroma_mode];
  1727. } else {
  1728. mode_idx = lc->pu.intra_pred_mode[0];
  1729. }
  1730. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1731. } else if (s->ps.sps->chroma_format_idc != 0) {
  1732. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1733. if (chroma_mode != 4) {
  1734. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1735. lc->pu.intra_pred_mode_c[0] = 34;
  1736. else
  1737. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1738. } else {
  1739. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1740. }
  1741. }
  1742. }
  1743. static void intra_prediction_unit_default_value(HEVCContext *s,
  1744. int x0, int y0,
  1745. int log2_cb_size)
  1746. {
  1747. HEVCLocalContext *lc = s->HEVClc;
  1748. int pb_size = 1 << log2_cb_size;
  1749. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1750. int min_pu_width = s->ps.sps->min_pu_width;
  1751. MvField *tab_mvf = s->ref->tab_mvf;
  1752. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1753. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1754. int j, k;
  1755. if (size_in_pus == 0)
  1756. size_in_pus = 1;
  1757. for (j = 0; j < size_in_pus; j++)
  1758. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1759. if (lc->cu.pred_mode == MODE_INTRA)
  1760. for (j = 0; j < size_in_pus; j++)
  1761. for (k = 0; k < size_in_pus; k++)
  1762. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1763. }
  1764. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1765. {
  1766. int cb_size = 1 << log2_cb_size;
  1767. HEVCLocalContext *lc = s->HEVClc;
  1768. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1769. int length = cb_size >> log2_min_cb_size;
  1770. int min_cb_width = s->ps.sps->min_cb_width;
  1771. int x_cb = x0 >> log2_min_cb_size;
  1772. int y_cb = y0 >> log2_min_cb_size;
  1773. int idx = log2_cb_size - 2;
  1774. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1775. int x, y, ret;
  1776. lc->cu.x = x0;
  1777. lc->cu.y = y0;
  1778. lc->cu.pred_mode = MODE_INTRA;
  1779. lc->cu.part_mode = PART_2Nx2N;
  1780. lc->cu.intra_split_flag = 0;
  1781. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1782. for (x = 0; x < 4; x++)
  1783. lc->pu.intra_pred_mode[x] = 1;
  1784. if (s->ps.pps->transquant_bypass_enable_flag) {
  1785. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1786. if (lc->cu.cu_transquant_bypass_flag)
  1787. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1788. } else
  1789. lc->cu.cu_transquant_bypass_flag = 0;
  1790. if (s->sh.slice_type != HEVC_SLICE_I) {
  1791. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1792. x = y_cb * min_cb_width + x_cb;
  1793. for (y = 0; y < length; y++) {
  1794. memset(&s->skip_flag[x], skip_flag, length);
  1795. x += min_cb_width;
  1796. }
  1797. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1798. } else {
  1799. x = y_cb * min_cb_width + x_cb;
  1800. for (y = 0; y < length; y++) {
  1801. memset(&s->skip_flag[x], 0, length);
  1802. x += min_cb_width;
  1803. }
  1804. }
  1805. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1806. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1807. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1808. if (!s->sh.disable_deblocking_filter_flag)
  1809. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1810. } else {
  1811. int pcm_flag = 0;
  1812. if (s->sh.slice_type != HEVC_SLICE_I)
  1813. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1814. if (lc->cu.pred_mode != MODE_INTRA ||
  1815. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1816. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1817. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1818. lc->cu.pred_mode == MODE_INTRA;
  1819. }
  1820. if (lc->cu.pred_mode == MODE_INTRA) {
  1821. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1822. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1823. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1824. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1825. }
  1826. if (pcm_flag) {
  1827. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1828. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1829. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1830. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1831. if (ret < 0)
  1832. return ret;
  1833. } else {
  1834. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1835. }
  1836. } else {
  1837. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1838. switch (lc->cu.part_mode) {
  1839. case PART_2Nx2N:
  1840. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1841. break;
  1842. case PART_2NxN:
  1843. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1844. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1845. break;
  1846. case PART_Nx2N:
  1847. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1848. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1849. break;
  1850. case PART_2NxnU:
  1851. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1852. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1853. break;
  1854. case PART_2NxnD:
  1855. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1856. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1857. break;
  1858. case PART_nLx2N:
  1859. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1860. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1861. break;
  1862. case PART_nRx2N:
  1863. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1864. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1865. break;
  1866. case PART_NxN:
  1867. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1868. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1869. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1870. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1871. break;
  1872. }
  1873. }
  1874. if (!pcm_flag) {
  1875. int rqt_root_cbf = 1;
  1876. if (lc->cu.pred_mode != MODE_INTRA &&
  1877. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1878. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1879. }
  1880. if (rqt_root_cbf) {
  1881. const static int cbf[2] = { 0 };
  1882. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1883. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1884. s->ps.sps->max_transform_hierarchy_depth_inter;
  1885. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1886. log2_cb_size,
  1887. log2_cb_size, 0, 0, cbf, cbf);
  1888. if (ret < 0)
  1889. return ret;
  1890. } else {
  1891. if (!s->sh.disable_deblocking_filter_flag)
  1892. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1893. }
  1894. }
  1895. }
  1896. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1897. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1898. x = y_cb * min_cb_width + x_cb;
  1899. for (y = 0; y < length; y++) {
  1900. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1901. x += min_cb_width;
  1902. }
  1903. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1904. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1905. lc->qPy_pred = lc->qp_y;
  1906. }
  1907. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1908. return 0;
  1909. }
  1910. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1911. int log2_cb_size, int cb_depth)
  1912. {
  1913. HEVCLocalContext *lc = s->HEVClc;
  1914. const int cb_size = 1 << log2_cb_size;
  1915. int ret;
  1916. int split_cu;
  1917. lc->ct_depth = cb_depth;
  1918. if (x0 + cb_size <= s->ps.sps->width &&
  1919. y0 + cb_size <= s->ps.sps->height &&
  1920. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1921. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1922. } else {
  1923. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1924. }
  1925. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1926. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1927. lc->tu.is_cu_qp_delta_coded = 0;
  1928. lc->tu.cu_qp_delta = 0;
  1929. }
  1930. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1931. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1932. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1933. }
  1934. if (split_cu) {
  1935. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1936. const int cb_size_split = cb_size >> 1;
  1937. const int x1 = x0 + cb_size_split;
  1938. const int y1 = y0 + cb_size_split;
  1939. int more_data = 0;
  1940. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1941. if (more_data < 0)
  1942. return more_data;
  1943. if (more_data && x1 < s->ps.sps->width) {
  1944. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1945. if (more_data < 0)
  1946. return more_data;
  1947. }
  1948. if (more_data && y1 < s->ps.sps->height) {
  1949. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1950. if (more_data < 0)
  1951. return more_data;
  1952. }
  1953. if (more_data && x1 < s->ps.sps->width &&
  1954. y1 < s->ps.sps->height) {
  1955. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1956. if (more_data < 0)
  1957. return more_data;
  1958. }
  1959. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1960. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1961. lc->qPy_pred = lc->qp_y;
  1962. if (more_data)
  1963. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1964. (y1 + cb_size_split) < s->ps.sps->height);
  1965. else
  1966. return 0;
  1967. } else {
  1968. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1969. if (ret < 0)
  1970. return ret;
  1971. if ((!((x0 + cb_size) %
  1972. (1 << (s->ps.sps->log2_ctb_size))) ||
  1973. (x0 + cb_size >= s->ps.sps->width)) &&
  1974. (!((y0 + cb_size) %
  1975. (1 << (s->ps.sps->log2_ctb_size))) ||
  1976. (y0 + cb_size >= s->ps.sps->height))) {
  1977. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1978. return !end_of_slice_flag;
  1979. } else {
  1980. return 1;
  1981. }
  1982. }
  1983. return 0;
  1984. }
  1985. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1986. int ctb_addr_ts)
  1987. {
  1988. HEVCLocalContext *lc = s->HEVClc;
  1989. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1990. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1991. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1992. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1993. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  1994. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1995. lc->first_qp_group = 1;
  1996. lc->end_of_tiles_x = s->ps.sps->width;
  1997. } else if (s->ps.pps->tiles_enabled_flag) {
  1998. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  1999. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2000. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2001. lc->first_qp_group = 1;
  2002. }
  2003. } else {
  2004. lc->end_of_tiles_x = s->ps.sps->width;
  2005. }
  2006. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2007. lc->boundary_flags = 0;
  2008. if (s->ps.pps->tiles_enabled_flag) {
  2009. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2010. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2011. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2012. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2013. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2014. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2015. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2016. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2017. } else {
  2018. if (ctb_addr_in_slice <= 0)
  2019. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2020. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2021. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2022. }
  2023. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2024. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2025. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2026. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2027. }
  2028. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2029. {
  2030. HEVCContext *s = avctxt->priv_data;
  2031. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2032. int more_data = 1;
  2033. int x_ctb = 0;
  2034. int y_ctb = 0;
  2035. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2036. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2037. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2038. return AVERROR_INVALIDDATA;
  2039. }
  2040. if (s->sh.dependent_slice_segment_flag) {
  2041. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2042. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2043. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2044. return AVERROR_INVALIDDATA;
  2045. }
  2046. }
  2047. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2048. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2049. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2050. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2051. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2052. ff_hevc_cabac_init(s, ctb_addr_ts);
  2053. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2054. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2055. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2056. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2057. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2058. if (more_data < 0) {
  2059. s->tab_slice_address[ctb_addr_rs] = -1;
  2060. return more_data;
  2061. }
  2062. ctb_addr_ts++;
  2063. ff_hevc_save_states(s, ctb_addr_ts);
  2064. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2065. }
  2066. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2067. y_ctb + ctb_size >= s->ps.sps->height)
  2068. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2069. return ctb_addr_ts;
  2070. }
  2071. static int hls_slice_data(HEVCContext *s)
  2072. {
  2073. int arg[2];
  2074. int ret[2];
  2075. arg[0] = 0;
  2076. arg[1] = 1;
  2077. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2078. return ret[0];
  2079. }
  2080. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2081. {
  2082. HEVCContext *s1 = avctxt->priv_data, *s;
  2083. HEVCLocalContext *lc;
  2084. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2085. int more_data = 1;
  2086. int *ctb_row_p = input_ctb_row;
  2087. int ctb_row = ctb_row_p[job];
  2088. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2089. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2090. int thread = ctb_row % s1->threads_number;
  2091. int ret;
  2092. s = s1->sList[self_id];
  2093. lc = s->HEVClc;
  2094. if(ctb_row) {
  2095. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2096. if (ret < 0)
  2097. return ret;
  2098. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2099. }
  2100. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2101. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2102. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2103. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2104. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2105. if (atomic_load(&s1->wpp_err)) {
  2106. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2107. return 0;
  2108. }
  2109. ff_hevc_cabac_init(s, ctb_addr_ts);
  2110. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2111. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2112. if (more_data < 0) {
  2113. s->tab_slice_address[ctb_addr_rs] = -1;
  2114. atomic_store(&s1->wpp_err, 1);
  2115. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2116. return more_data;
  2117. }
  2118. ctb_addr_ts++;
  2119. ff_hevc_save_states(s, ctb_addr_ts);
  2120. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2121. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2122. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2123. atomic_store(&s1->wpp_err, 1);
  2124. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2125. return 0;
  2126. }
  2127. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2128. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2129. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2130. return ctb_addr_ts;
  2131. }
  2132. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2133. x_ctb+=ctb_size;
  2134. if(x_ctb >= s->ps.sps->width) {
  2135. break;
  2136. }
  2137. }
  2138. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2139. return 0;
  2140. }
  2141. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2142. {
  2143. const uint8_t *data = nal->data;
  2144. int length = nal->size;
  2145. HEVCLocalContext *lc = s->HEVClc;
  2146. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2147. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2148. int64_t offset;
  2149. int64_t startheader, cmpt = 0;
  2150. int i, j, res = 0;
  2151. if (!ret || !arg) {
  2152. av_free(ret);
  2153. av_free(arg);
  2154. return AVERROR(ENOMEM);
  2155. }
  2156. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2157. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2158. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2159. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2160. );
  2161. res = AVERROR_INVALIDDATA;
  2162. goto error;
  2163. }
  2164. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2165. if (!s->sList[1]) {
  2166. for (i = 1; i < s->threads_number; i++) {
  2167. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2168. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2169. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2170. s->sList[i]->HEVClc = s->HEVClcList[i];
  2171. }
  2172. }
  2173. offset = (lc->gb.index >> 3);
  2174. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2175. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2176. startheader--;
  2177. cmpt++;
  2178. }
  2179. }
  2180. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2181. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2182. for (j = 0, cmpt = 0, startheader = offset
  2183. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2184. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2185. startheader--;
  2186. cmpt++;
  2187. }
  2188. }
  2189. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2190. s->sh.offset[i - 1] = offset;
  2191. }
  2192. if (s->sh.num_entry_point_offsets != 0) {
  2193. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2194. if (length < offset) {
  2195. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2196. res = AVERROR_INVALIDDATA;
  2197. goto error;
  2198. }
  2199. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2200. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2201. }
  2202. s->data = data;
  2203. for (i = 1; i < s->threads_number; i++) {
  2204. s->sList[i]->HEVClc->first_qp_group = 1;
  2205. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2206. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2207. s->sList[i]->HEVClc = s->HEVClcList[i];
  2208. }
  2209. atomic_store(&s->wpp_err, 0);
  2210. ff_reset_entries(s->avctx);
  2211. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2212. arg[i] = i;
  2213. ret[i] = 0;
  2214. }
  2215. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2216. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2217. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2218. res += ret[i];
  2219. error:
  2220. av_free(ret);
  2221. av_free(arg);
  2222. return res;
  2223. }
  2224. static int set_side_data(HEVCContext *s)
  2225. {
  2226. AVFrame *out = s->ref->frame;
  2227. if (s->sei_frame_packing_present &&
  2228. s->frame_packing_arrangement_type >= 3 &&
  2229. s->frame_packing_arrangement_type <= 5 &&
  2230. s->content_interpretation_type > 0 &&
  2231. s->content_interpretation_type < 3) {
  2232. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2233. if (!stereo)
  2234. return AVERROR(ENOMEM);
  2235. switch (s->frame_packing_arrangement_type) {
  2236. case 3:
  2237. if (s->quincunx_subsampling)
  2238. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2239. else
  2240. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2241. break;
  2242. case 4:
  2243. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2244. break;
  2245. case 5:
  2246. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2247. break;
  2248. }
  2249. if (s->content_interpretation_type == 2)
  2250. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2251. }
  2252. if (s->sei_display_orientation_present &&
  2253. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2254. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2255. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2256. AV_FRAME_DATA_DISPLAYMATRIX,
  2257. sizeof(int32_t) * 9);
  2258. if (!rotation)
  2259. return AVERROR(ENOMEM);
  2260. av_display_rotation_set((int32_t *)rotation->data, angle);
  2261. av_display_matrix_flip((int32_t *)rotation->data,
  2262. s->sei_hflip, s->sei_vflip);
  2263. }
  2264. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2265. // so the side data persists for the entire coded video sequence.
  2266. if (s->sei_mastering_display_info_present > 0 &&
  2267. IS_IRAP(s) && s->no_rasl_output_flag) {
  2268. s->sei_mastering_display_info_present--;
  2269. }
  2270. if (s->sei_mastering_display_info_present) {
  2271. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2272. const int mapping[3] = {2, 0, 1};
  2273. const int chroma_den = 50000;
  2274. const int luma_den = 10000;
  2275. int i;
  2276. AVMasteringDisplayMetadata *metadata =
  2277. av_mastering_display_metadata_create_side_data(out);
  2278. if (!metadata)
  2279. return AVERROR(ENOMEM);
  2280. for (i = 0; i < 3; i++) {
  2281. const int j = mapping[i];
  2282. metadata->display_primaries[i][0].num = s->display_primaries[j][0];
  2283. metadata->display_primaries[i][0].den = chroma_den;
  2284. metadata->display_primaries[i][1].num = s->display_primaries[j][1];
  2285. metadata->display_primaries[i][1].den = chroma_den;
  2286. }
  2287. metadata->white_point[0].num = s->white_point[0];
  2288. metadata->white_point[0].den = chroma_den;
  2289. metadata->white_point[1].num = s->white_point[1];
  2290. metadata->white_point[1].den = chroma_den;
  2291. metadata->max_luminance.num = s->max_mastering_luminance;
  2292. metadata->max_luminance.den = luma_den;
  2293. metadata->min_luminance.num = s->min_mastering_luminance;
  2294. metadata->min_luminance.den = luma_den;
  2295. metadata->has_luminance = 1;
  2296. metadata->has_primaries = 1;
  2297. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2298. av_log(s->avctx, AV_LOG_DEBUG,
  2299. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2300. av_q2d(metadata->display_primaries[0][0]),
  2301. av_q2d(metadata->display_primaries[0][1]),
  2302. av_q2d(metadata->display_primaries[1][0]),
  2303. av_q2d(metadata->display_primaries[1][1]),
  2304. av_q2d(metadata->display_primaries[2][0]),
  2305. av_q2d(metadata->display_primaries[2][1]),
  2306. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2307. av_log(s->avctx, AV_LOG_DEBUG,
  2308. "min_luminance=%f, max_luminance=%f\n",
  2309. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2310. }
  2311. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2312. // so the side data persists for the entire coded video sequence.
  2313. if (s->sei_content_light_present > 0 &&
  2314. IS_IRAP(s) && s->no_rasl_output_flag) {
  2315. s->sei_content_light_present--;
  2316. }
  2317. if (s->sei_content_light_present) {
  2318. AVContentLightMetadata *metadata =
  2319. av_content_light_metadata_create_side_data(out);
  2320. if (!metadata)
  2321. return AVERROR(ENOMEM);
  2322. metadata->MaxCLL = s->max_content_light_level;
  2323. metadata->MaxFALL = s->max_pic_average_light_level;
  2324. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2325. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2326. metadata->MaxCLL, metadata->MaxFALL);
  2327. }
  2328. if (s->a53_caption) {
  2329. AVFrameSideData* sd = av_frame_new_side_data(out,
  2330. AV_FRAME_DATA_A53_CC,
  2331. s->a53_caption_size);
  2332. if (sd)
  2333. memcpy(sd->data, s->a53_caption, s->a53_caption_size);
  2334. av_freep(&s->a53_caption);
  2335. s->a53_caption_size = 0;
  2336. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2337. }
  2338. return 0;
  2339. }
  2340. static int hevc_frame_start(HEVCContext *s)
  2341. {
  2342. HEVCLocalContext *lc = s->HEVClc;
  2343. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2344. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2345. int ret;
  2346. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2347. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2348. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2349. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2350. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2351. s->is_decoded = 0;
  2352. s->first_nal_type = s->nal_unit_type;
  2353. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2354. if (s->ps.pps->tiles_enabled_flag)
  2355. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2356. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2357. if (ret < 0)
  2358. goto fail;
  2359. ret = ff_hevc_frame_rps(s);
  2360. if (ret < 0) {
  2361. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2362. goto fail;
  2363. }
  2364. s->ref->frame->key_frame = IS_IRAP(s);
  2365. ret = set_side_data(s);
  2366. if (ret < 0)
  2367. goto fail;
  2368. s->frame->pict_type = 3 - s->sh.slice_type;
  2369. if (!IS_IRAP(s))
  2370. ff_hevc_bump_frame(s);
  2371. av_frame_unref(s->output_frame);
  2372. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2373. if (ret < 0)
  2374. goto fail;
  2375. if (!s->avctx->hwaccel)
  2376. ff_thread_finish_setup(s->avctx);
  2377. return 0;
  2378. fail:
  2379. if (s->ref)
  2380. ff_hevc_unref_frame(s, s->ref, ~0);
  2381. s->ref = NULL;
  2382. return ret;
  2383. }
  2384. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2385. {
  2386. HEVCLocalContext *lc = s->HEVClc;
  2387. GetBitContext *gb = &lc->gb;
  2388. int ctb_addr_ts, ret;
  2389. *gb = nal->gb;
  2390. s->nal_unit_type = nal->type;
  2391. s->temporal_id = nal->temporal_id;
  2392. switch (s->nal_unit_type) {
  2393. case HEVC_NAL_VPS:
  2394. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2395. if (ret < 0)
  2396. goto fail;
  2397. break;
  2398. case HEVC_NAL_SPS:
  2399. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2400. s->apply_defdispwin);
  2401. if (ret < 0)
  2402. goto fail;
  2403. break;
  2404. case HEVC_NAL_PPS:
  2405. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2406. if (ret < 0)
  2407. goto fail;
  2408. break;
  2409. case HEVC_NAL_SEI_PREFIX:
  2410. case HEVC_NAL_SEI_SUFFIX:
  2411. ret = ff_hevc_decode_nal_sei(s);
  2412. if (ret < 0)
  2413. goto fail;
  2414. break;
  2415. case HEVC_NAL_TRAIL_R:
  2416. case HEVC_NAL_TRAIL_N:
  2417. case HEVC_NAL_TSA_N:
  2418. case HEVC_NAL_TSA_R:
  2419. case HEVC_NAL_STSA_N:
  2420. case HEVC_NAL_STSA_R:
  2421. case HEVC_NAL_BLA_W_LP:
  2422. case HEVC_NAL_BLA_W_RADL:
  2423. case HEVC_NAL_BLA_N_LP:
  2424. case HEVC_NAL_IDR_W_RADL:
  2425. case HEVC_NAL_IDR_N_LP:
  2426. case HEVC_NAL_CRA_NUT:
  2427. case HEVC_NAL_RADL_N:
  2428. case HEVC_NAL_RADL_R:
  2429. case HEVC_NAL_RASL_N:
  2430. case HEVC_NAL_RASL_R:
  2431. ret = hls_slice_header(s);
  2432. if (ret < 0)
  2433. return ret;
  2434. if (s->sh.first_slice_in_pic_flag) {
  2435. if (s->max_ra == INT_MAX) {
  2436. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2437. s->max_ra = s->poc;
  2438. } else {
  2439. if (IS_IDR(s))
  2440. s->max_ra = INT_MIN;
  2441. }
  2442. }
  2443. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2444. s->poc <= s->max_ra) {
  2445. s->is_decoded = 0;
  2446. break;
  2447. } else {
  2448. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2449. s->max_ra = INT_MIN;
  2450. }
  2451. ret = hevc_frame_start(s);
  2452. if (ret < 0)
  2453. return ret;
  2454. } else if (!s->ref) {
  2455. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2456. goto fail;
  2457. }
  2458. if (s->nal_unit_type != s->first_nal_type) {
  2459. av_log(s->avctx, AV_LOG_ERROR,
  2460. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2461. s->first_nal_type, s->nal_unit_type);
  2462. return AVERROR_INVALIDDATA;
  2463. }
  2464. if (!s->sh.dependent_slice_segment_flag &&
  2465. s->sh.slice_type != HEVC_SLICE_I) {
  2466. ret = ff_hevc_slice_rpl(s);
  2467. if (ret < 0) {
  2468. av_log(s->avctx, AV_LOG_WARNING,
  2469. "Error constructing the reference lists for the current slice.\n");
  2470. goto fail;
  2471. }
  2472. }
  2473. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2474. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2475. if (ret < 0)
  2476. goto fail;
  2477. }
  2478. if (s->avctx->hwaccel) {
  2479. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2480. if (ret < 0)
  2481. goto fail;
  2482. } else {
  2483. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2484. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2485. else
  2486. ctb_addr_ts = hls_slice_data(s);
  2487. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2488. s->is_decoded = 1;
  2489. }
  2490. if (ctb_addr_ts < 0) {
  2491. ret = ctb_addr_ts;
  2492. goto fail;
  2493. }
  2494. }
  2495. break;
  2496. case HEVC_NAL_EOS_NUT:
  2497. case HEVC_NAL_EOB_NUT:
  2498. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2499. s->max_ra = INT_MAX;
  2500. break;
  2501. case HEVC_NAL_AUD:
  2502. case HEVC_NAL_FD_NUT:
  2503. break;
  2504. default:
  2505. av_log(s->avctx, AV_LOG_INFO,
  2506. "Skipping NAL unit %d\n", s->nal_unit_type);
  2507. }
  2508. return 0;
  2509. fail:
  2510. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2511. return ret;
  2512. return 0;
  2513. }
  2514. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2515. {
  2516. int i, ret = 0;
  2517. s->ref = NULL;
  2518. s->last_eos = s->eos;
  2519. s->eos = 0;
  2520. /* split the input packet into NAL units, so we know the upper bound on the
  2521. * number of slices in the frame */
  2522. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2523. s->nal_length_size, s->avctx->codec_id, 1);
  2524. if (ret < 0) {
  2525. av_log(s->avctx, AV_LOG_ERROR,
  2526. "Error splitting the input into NAL units.\n");
  2527. return ret;
  2528. }
  2529. for (i = 0; i < s->pkt.nb_nals; i++) {
  2530. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2531. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT)
  2532. s->eos = 1;
  2533. }
  2534. /* decode the NAL units */
  2535. for (i = 0; i < s->pkt.nb_nals; i++) {
  2536. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2537. if (ret < 0) {
  2538. av_log(s->avctx, AV_LOG_WARNING,
  2539. "Error parsing NAL unit #%d.\n", i);
  2540. goto fail;
  2541. }
  2542. }
  2543. fail:
  2544. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2545. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2546. return ret;
  2547. }
  2548. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2549. {
  2550. int i;
  2551. for (i = 0; i < 16; i++)
  2552. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2553. }
  2554. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2555. {
  2556. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2557. int pixel_shift;
  2558. int i, j;
  2559. if (!desc)
  2560. return AVERROR(EINVAL);
  2561. pixel_shift = desc->comp[0].depth > 8;
  2562. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2563. s->poc);
  2564. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2565. * on BE arches */
  2566. #if HAVE_BIGENDIAN
  2567. if (pixel_shift && !s->checksum_buf) {
  2568. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2569. FFMAX3(frame->linesize[0], frame->linesize[1],
  2570. frame->linesize[2]));
  2571. if (!s->checksum_buf)
  2572. return AVERROR(ENOMEM);
  2573. }
  2574. #endif
  2575. for (i = 0; frame->data[i]; i++) {
  2576. int width = s->avctx->coded_width;
  2577. int height = s->avctx->coded_height;
  2578. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2579. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2580. uint8_t md5[16];
  2581. av_md5_init(s->md5_ctx);
  2582. for (j = 0; j < h; j++) {
  2583. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2584. #if HAVE_BIGENDIAN
  2585. if (pixel_shift) {
  2586. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2587. (const uint16_t *) src, w);
  2588. src = s->checksum_buf;
  2589. }
  2590. #endif
  2591. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2592. }
  2593. av_md5_final(s->md5_ctx, md5);
  2594. if (!memcmp(md5, s->md5[i], 16)) {
  2595. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2596. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2597. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2598. } else {
  2599. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2600. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2601. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2602. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2603. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2604. return AVERROR_INVALIDDATA;
  2605. }
  2606. }
  2607. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2608. return 0;
  2609. }
  2610. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2611. {
  2612. int ret, i;
  2613. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->is_nalff,
  2614. &s->nal_length_size, s->avctx->err_recognition,
  2615. s->apply_defdispwin, s->avctx);
  2616. if (ret < 0)
  2617. return ret;
  2618. /* export stream parameters from the first SPS */
  2619. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2620. if (s->ps.sps_list[i]) {
  2621. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2622. export_stream_params(s->avctx, &s->ps, sps);
  2623. break;
  2624. }
  2625. }
  2626. return 0;
  2627. }
  2628. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2629. AVPacket *avpkt)
  2630. {
  2631. int ret;
  2632. int new_extradata_size;
  2633. uint8_t *new_extradata;
  2634. HEVCContext *s = avctx->priv_data;
  2635. if (!avpkt->size) {
  2636. ret = ff_hevc_output_frame(s, data, 1);
  2637. if (ret < 0)
  2638. return ret;
  2639. *got_output = ret;
  2640. return 0;
  2641. }
  2642. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2643. &new_extradata_size);
  2644. if (new_extradata && new_extradata_size > 0) {
  2645. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2646. if (ret < 0)
  2647. return ret;
  2648. }
  2649. s->ref = NULL;
  2650. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2651. if (ret < 0)
  2652. return ret;
  2653. if (avctx->hwaccel) {
  2654. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2655. av_log(avctx, AV_LOG_ERROR,
  2656. "hardware accelerator failed to decode picture\n");
  2657. ff_hevc_unref_frame(s, s->ref, ~0);
  2658. return ret;
  2659. }
  2660. } else {
  2661. /* verify the SEI checksum */
  2662. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2663. s->is_md5) {
  2664. ret = verify_md5(s, s->ref->frame);
  2665. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2666. ff_hevc_unref_frame(s, s->ref, ~0);
  2667. return ret;
  2668. }
  2669. }
  2670. }
  2671. s->is_md5 = 0;
  2672. if (s->is_decoded) {
  2673. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2674. s->is_decoded = 0;
  2675. }
  2676. if (s->output_frame->buf[0]) {
  2677. av_frame_move_ref(data, s->output_frame);
  2678. *got_output = 1;
  2679. }
  2680. return avpkt->size;
  2681. }
  2682. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2683. {
  2684. int ret;
  2685. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2686. if (ret < 0)
  2687. return ret;
  2688. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2689. if (!dst->tab_mvf_buf)
  2690. goto fail;
  2691. dst->tab_mvf = src->tab_mvf;
  2692. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2693. if (!dst->rpl_tab_buf)
  2694. goto fail;
  2695. dst->rpl_tab = src->rpl_tab;
  2696. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2697. if (!dst->rpl_buf)
  2698. goto fail;
  2699. dst->poc = src->poc;
  2700. dst->ctb_count = src->ctb_count;
  2701. dst->window = src->window;
  2702. dst->flags = src->flags;
  2703. dst->sequence = src->sequence;
  2704. if (src->hwaccel_picture_private) {
  2705. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2706. if (!dst->hwaccel_priv_buf)
  2707. goto fail;
  2708. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2709. }
  2710. return 0;
  2711. fail:
  2712. ff_hevc_unref_frame(s, dst, ~0);
  2713. return AVERROR(ENOMEM);
  2714. }
  2715. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2716. {
  2717. HEVCContext *s = avctx->priv_data;
  2718. int i;
  2719. pic_arrays_free(s);
  2720. av_freep(&s->md5_ctx);
  2721. av_freep(&s->cabac_state);
  2722. for (i = 0; i < 3; i++) {
  2723. av_freep(&s->sao_pixel_buffer_h[i]);
  2724. av_freep(&s->sao_pixel_buffer_v[i]);
  2725. }
  2726. av_frame_free(&s->output_frame);
  2727. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2728. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2729. av_frame_free(&s->DPB[i].frame);
  2730. }
  2731. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2732. av_buffer_unref(&s->ps.vps_list[i]);
  2733. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2734. av_buffer_unref(&s->ps.sps_list[i]);
  2735. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2736. av_buffer_unref(&s->ps.pps_list[i]);
  2737. s->ps.sps = NULL;
  2738. s->ps.pps = NULL;
  2739. s->ps.vps = NULL;
  2740. av_freep(&s->sh.entry_point_offset);
  2741. av_freep(&s->sh.offset);
  2742. av_freep(&s->sh.size);
  2743. for (i = 1; i < s->threads_number; i++) {
  2744. HEVCLocalContext *lc = s->HEVClcList[i];
  2745. if (lc) {
  2746. av_freep(&s->HEVClcList[i]);
  2747. av_freep(&s->sList[i]);
  2748. }
  2749. }
  2750. if (s->HEVClc == s->HEVClcList[0])
  2751. s->HEVClc = NULL;
  2752. av_freep(&s->HEVClcList[0]);
  2753. ff_h2645_packet_uninit(&s->pkt);
  2754. return 0;
  2755. }
  2756. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2757. {
  2758. HEVCContext *s = avctx->priv_data;
  2759. int i;
  2760. s->avctx = avctx;
  2761. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2762. if (!s->HEVClc)
  2763. goto fail;
  2764. s->HEVClcList[0] = s->HEVClc;
  2765. s->sList[0] = s;
  2766. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2767. if (!s->cabac_state)
  2768. goto fail;
  2769. s->output_frame = av_frame_alloc();
  2770. if (!s->output_frame)
  2771. goto fail;
  2772. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2773. s->DPB[i].frame = av_frame_alloc();
  2774. if (!s->DPB[i].frame)
  2775. goto fail;
  2776. s->DPB[i].tf.f = s->DPB[i].frame;
  2777. }
  2778. s->max_ra = INT_MAX;
  2779. s->md5_ctx = av_md5_alloc();
  2780. if (!s->md5_ctx)
  2781. goto fail;
  2782. ff_bswapdsp_init(&s->bdsp);
  2783. s->context_initialized = 1;
  2784. s->eos = 0;
  2785. ff_hevc_reset_sei(s);
  2786. return 0;
  2787. fail:
  2788. hevc_decode_free(avctx);
  2789. return AVERROR(ENOMEM);
  2790. }
  2791. static int hevc_update_thread_context(AVCodecContext *dst,
  2792. const AVCodecContext *src)
  2793. {
  2794. HEVCContext *s = dst->priv_data;
  2795. HEVCContext *s0 = src->priv_data;
  2796. int i, ret;
  2797. if (!s->context_initialized) {
  2798. ret = hevc_init_context(dst);
  2799. if (ret < 0)
  2800. return ret;
  2801. }
  2802. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2803. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2804. if (s0->DPB[i].frame->buf[0]) {
  2805. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2806. if (ret < 0)
  2807. return ret;
  2808. }
  2809. }
  2810. if (s->ps.sps != s0->ps.sps)
  2811. s->ps.sps = NULL;
  2812. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2813. av_buffer_unref(&s->ps.vps_list[i]);
  2814. if (s0->ps.vps_list[i]) {
  2815. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2816. if (!s->ps.vps_list[i])
  2817. return AVERROR(ENOMEM);
  2818. }
  2819. }
  2820. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2821. av_buffer_unref(&s->ps.sps_list[i]);
  2822. if (s0->ps.sps_list[i]) {
  2823. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2824. if (!s->ps.sps_list[i])
  2825. return AVERROR(ENOMEM);
  2826. }
  2827. }
  2828. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2829. av_buffer_unref(&s->ps.pps_list[i]);
  2830. if (s0->ps.pps_list[i]) {
  2831. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2832. if (!s->ps.pps_list[i])
  2833. return AVERROR(ENOMEM);
  2834. }
  2835. }
  2836. if (s->ps.sps != s0->ps.sps)
  2837. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2838. return ret;
  2839. s->seq_decode = s0->seq_decode;
  2840. s->seq_output = s0->seq_output;
  2841. s->pocTid0 = s0->pocTid0;
  2842. s->max_ra = s0->max_ra;
  2843. s->eos = s0->eos;
  2844. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2845. s->is_nalff = s0->is_nalff;
  2846. s->nal_length_size = s0->nal_length_size;
  2847. s->threads_number = s0->threads_number;
  2848. s->threads_type = s0->threads_type;
  2849. if (s0->eos) {
  2850. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2851. s->max_ra = INT_MAX;
  2852. }
  2853. return 0;
  2854. }
  2855. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2856. {
  2857. HEVCContext *s = avctx->priv_data;
  2858. int ret;
  2859. avctx->internal->allocate_progress = 1;
  2860. ret = hevc_init_context(avctx);
  2861. if (ret < 0)
  2862. return ret;
  2863. s->enable_parallel_tiles = 0;
  2864. s->picture_struct = 0;
  2865. s->eos = 1;
  2866. atomic_init(&s->wpp_err, 0);
  2867. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2868. s->threads_number = avctx->thread_count;
  2869. else
  2870. s->threads_number = 1;
  2871. if (avctx->extradata_size > 0 && avctx->extradata) {
  2872. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2873. if (ret < 0) {
  2874. hevc_decode_free(avctx);
  2875. return ret;
  2876. }
  2877. }
  2878. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2879. s->threads_type = FF_THREAD_FRAME;
  2880. else
  2881. s->threads_type = FF_THREAD_SLICE;
  2882. return 0;
  2883. }
  2884. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2885. {
  2886. HEVCContext *s = avctx->priv_data;
  2887. int ret;
  2888. memset(s, 0, sizeof(*s));
  2889. ret = hevc_init_context(avctx);
  2890. if (ret < 0)
  2891. return ret;
  2892. return 0;
  2893. }
  2894. static void hevc_decode_flush(AVCodecContext *avctx)
  2895. {
  2896. HEVCContext *s = avctx->priv_data;
  2897. ff_hevc_flush_dpb(s);
  2898. s->max_ra = INT_MAX;
  2899. s->eos = 1;
  2900. }
  2901. #define OFFSET(x) offsetof(HEVCContext, x)
  2902. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2903. static const AVOption options[] = {
  2904. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2905. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2906. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2907. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2908. { NULL },
  2909. };
  2910. static const AVClass hevc_decoder_class = {
  2911. .class_name = "HEVC decoder",
  2912. .item_name = av_default_item_name,
  2913. .option = options,
  2914. .version = LIBAVUTIL_VERSION_INT,
  2915. };
  2916. AVCodec ff_hevc_decoder = {
  2917. .name = "hevc",
  2918. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2919. .type = AVMEDIA_TYPE_VIDEO,
  2920. .id = AV_CODEC_ID_HEVC,
  2921. .priv_data_size = sizeof(HEVCContext),
  2922. .priv_class = &hevc_decoder_class,
  2923. .init = hevc_decode_init,
  2924. .close = hevc_decode_free,
  2925. .decode = hevc_decode_frame,
  2926. .flush = hevc_decode_flush,
  2927. .update_thread_context = hevc_update_thread_context,
  2928. .init_thread_copy = hevc_init_thread_copy,
  2929. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2930. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2931. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  2932. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2933. };