You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

778 lines
22KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include "avcodec.h"
  20. #include "mpegaudio.h"
  21. /* currently, cannot change these constants (need to modify
  22. quantization stage) */
  23. #define FRAC_BITS 15
  24. #define WFRAC_BITS 14
  25. #define MUL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
  26. #define FIX(a) ((int)((a) * (1 << FRAC_BITS)))
  27. #define SAMPLES_BUF_SIZE 4096
  28. typedef struct MpegAudioContext {
  29. PutBitContext pb;
  30. int nb_channels;
  31. int freq, bit_rate;
  32. int lsf; /* 1 if mpeg2 low bitrate selected */
  33. int bitrate_index; /* bit rate */
  34. int freq_index;
  35. int frame_size; /* frame size, in bits, without padding */
  36. INT64 nb_samples; /* total number of samples encoded */
  37. /* padding computation */
  38. int frame_frac, frame_frac_incr, do_padding;
  39. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  40. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  41. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  42. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  43. /* code to group 3 scale factors */
  44. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  45. int sblimit; /* number of used subbands */
  46. const unsigned char *alloc_table;
  47. } MpegAudioContext;
  48. /* define it to use floats in quantization (I don't like floats !) */
  49. //#define USE_FLOATS
  50. #include "mpegaudiotab.h"
  51. int MPA_encode_init(AVCodecContext *avctx)
  52. {
  53. MpegAudioContext *s = avctx->priv_data;
  54. int freq = avctx->sample_rate;
  55. int bitrate = avctx->bit_rate;
  56. int channels = avctx->channels;
  57. int i, v, table;
  58. float a;
  59. if (channels > 2)
  60. return -1;
  61. bitrate = bitrate / 1000;
  62. s->nb_channels = channels;
  63. s->freq = freq;
  64. s->bit_rate = bitrate * 1000;
  65. avctx->frame_size = MPA_FRAME_SIZE;
  66. avctx->key_frame = 1; /* always key frame */
  67. /* encoding freq */
  68. s->lsf = 0;
  69. for(i=0;i<3;i++) {
  70. if (mpa_freq_tab[i] == freq)
  71. break;
  72. if ((mpa_freq_tab[i] / 2) == freq) {
  73. s->lsf = 1;
  74. break;
  75. }
  76. }
  77. if (i == 3)
  78. return -1;
  79. s->freq_index = i;
  80. /* encoding bitrate & frequency */
  81. for(i=0;i<15;i++) {
  82. if (mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  83. break;
  84. }
  85. if (i == 15)
  86. return -1;
  87. s->bitrate_index = i;
  88. /* compute total header size & pad bit */
  89. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  90. s->frame_size = ((int)a) * 8;
  91. /* frame fractional size to compute padding */
  92. s->frame_frac = 0;
  93. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  94. /* select the right allocation table */
  95. table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  96. /* number of used subbands */
  97. s->sblimit = sblimit_table[table];
  98. s->alloc_table = alloc_tables[table];
  99. #ifdef DEBUG
  100. printf("%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  101. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  102. #endif
  103. for(i=0;i<s->nb_channels;i++)
  104. s->samples_offset[i] = 0;
  105. for(i=0;i<257;i++) {
  106. int v;
  107. v = mpa_enwindow[i];
  108. #if WFRAC_BITS != 16
  109. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  110. #endif
  111. filter_bank[i] = v;
  112. if ((i & 63) != 0)
  113. v = -v;
  114. if (i != 0)
  115. filter_bank[512 - i] = v;
  116. }
  117. for(i=0;i<64;i++) {
  118. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  119. if (v <= 0)
  120. v = 1;
  121. scale_factor_table[i] = v;
  122. #ifdef USE_FLOATS
  123. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  124. #else
  125. #define P 15
  126. scale_factor_shift[i] = 21 - P - (i / 3);
  127. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  128. #endif
  129. }
  130. for(i=0;i<128;i++) {
  131. v = i - 64;
  132. if (v <= -3)
  133. v = 0;
  134. else if (v < 0)
  135. v = 1;
  136. else if (v == 0)
  137. v = 2;
  138. else if (v < 3)
  139. v = 3;
  140. else
  141. v = 4;
  142. scale_diff_table[i] = v;
  143. }
  144. for(i=0;i<17;i++) {
  145. v = quant_bits[i];
  146. if (v < 0)
  147. v = -v;
  148. else
  149. v = v * 3;
  150. total_quant_bits[i] = 12 * v;
  151. }
  152. return 0;
  153. }
  154. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  155. static void idct32(int *out, int *tab)
  156. {
  157. int i, j;
  158. int *t, *t1, xr;
  159. const int *xp = costab32;
  160. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  161. t = tab + 30;
  162. t1 = tab + 2;
  163. do {
  164. t[0] += t[-4];
  165. t[1] += t[1 - 4];
  166. t -= 4;
  167. } while (t != t1);
  168. t = tab + 28;
  169. t1 = tab + 4;
  170. do {
  171. t[0] += t[-8];
  172. t[1] += t[1-8];
  173. t[2] += t[2-8];
  174. t[3] += t[3-8];
  175. t -= 8;
  176. } while (t != t1);
  177. t = tab;
  178. t1 = tab + 32;
  179. do {
  180. t[ 3] = -t[ 3];
  181. t[ 6] = -t[ 6];
  182. t[11] = -t[11];
  183. t[12] = -t[12];
  184. t[13] = -t[13];
  185. t[15] = -t[15];
  186. t += 16;
  187. } while (t != t1);
  188. t = tab;
  189. t1 = tab + 8;
  190. do {
  191. int x1, x2, x3, x4;
  192. x3 = MUL(t[16], FIX(SQRT2*0.5));
  193. x4 = t[0] - x3;
  194. x3 = t[0] + x3;
  195. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  196. x1 = MUL((t[8] - x2), xp[0]);
  197. x2 = MUL((t[8] + x2), xp[1]);
  198. t[ 0] = x3 + x1;
  199. t[ 8] = x4 - x2;
  200. t[16] = x4 + x2;
  201. t[24] = x3 - x1;
  202. t++;
  203. } while (t != t1);
  204. xp += 2;
  205. t = tab;
  206. t1 = tab + 4;
  207. do {
  208. xr = MUL(t[28],xp[0]);
  209. t[28] = (t[0] - xr);
  210. t[0] = (t[0] + xr);
  211. xr = MUL(t[4],xp[1]);
  212. t[ 4] = (t[24] - xr);
  213. t[24] = (t[24] + xr);
  214. xr = MUL(t[20],xp[2]);
  215. t[20] = (t[8] - xr);
  216. t[ 8] = (t[8] + xr);
  217. xr = MUL(t[12],xp[3]);
  218. t[12] = (t[16] - xr);
  219. t[16] = (t[16] + xr);
  220. t++;
  221. } while (t != t1);
  222. xp += 4;
  223. for (i = 0; i < 4; i++) {
  224. xr = MUL(tab[30-i*4],xp[0]);
  225. tab[30-i*4] = (tab[i*4] - xr);
  226. tab[ i*4] = (tab[i*4] + xr);
  227. xr = MUL(tab[ 2+i*4],xp[1]);
  228. tab[ 2+i*4] = (tab[28-i*4] - xr);
  229. tab[28-i*4] = (tab[28-i*4] + xr);
  230. xr = MUL(tab[31-i*4],xp[0]);
  231. tab[31-i*4] = (tab[1+i*4] - xr);
  232. tab[ 1+i*4] = (tab[1+i*4] + xr);
  233. xr = MUL(tab[ 3+i*4],xp[1]);
  234. tab[ 3+i*4] = (tab[29-i*4] - xr);
  235. tab[29-i*4] = (tab[29-i*4] + xr);
  236. xp += 2;
  237. }
  238. t = tab + 30;
  239. t1 = tab + 1;
  240. do {
  241. xr = MUL(t1[0], *xp);
  242. t1[0] = (t[0] - xr);
  243. t[0] = (t[0] + xr);
  244. t -= 2;
  245. t1 += 2;
  246. xp++;
  247. } while (t >= tab);
  248. for(i=0;i<32;i++) {
  249. out[i] = tab[bitinv32[i]];
  250. }
  251. }
  252. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  253. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  254. {
  255. short *p, *q;
  256. int sum, offset, i, j;
  257. int tmp[64];
  258. int tmp1[32];
  259. int *out;
  260. // print_pow1(samples, 1152);
  261. offset = s->samples_offset[ch];
  262. out = &s->sb_samples[ch][0][0][0];
  263. for(j=0;j<36;j++) {
  264. /* 32 samples at once */
  265. for(i=0;i<32;i++) {
  266. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  267. samples += incr;
  268. }
  269. /* filter */
  270. p = s->samples_buf[ch] + offset;
  271. q = filter_bank;
  272. /* maxsum = 23169 */
  273. for(i=0;i<64;i++) {
  274. sum = p[0*64] * q[0*64];
  275. sum += p[1*64] * q[1*64];
  276. sum += p[2*64] * q[2*64];
  277. sum += p[3*64] * q[3*64];
  278. sum += p[4*64] * q[4*64];
  279. sum += p[5*64] * q[5*64];
  280. sum += p[6*64] * q[6*64];
  281. sum += p[7*64] * q[7*64];
  282. tmp[i] = sum;
  283. p++;
  284. q++;
  285. }
  286. tmp1[0] = tmp[16] >> WSHIFT;
  287. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  288. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  289. idct32(out, tmp1);
  290. /* advance of 32 samples */
  291. offset -= 32;
  292. out += 32;
  293. /* handle the wrap around */
  294. if (offset < 0) {
  295. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  296. s->samples_buf[ch], (512 - 32) * 2);
  297. offset = SAMPLES_BUF_SIZE - 512;
  298. }
  299. }
  300. s->samples_offset[ch] = offset;
  301. // print_pow(s->sb_samples, 1152);
  302. }
  303. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  304. unsigned char scale_factors[SBLIMIT][3],
  305. int sb_samples[3][12][SBLIMIT],
  306. int sblimit)
  307. {
  308. int *p, vmax, v, n, i, j, k, code;
  309. int index, d1, d2;
  310. unsigned char *sf = &scale_factors[0][0];
  311. for(j=0;j<sblimit;j++) {
  312. for(i=0;i<3;i++) {
  313. /* find the max absolute value */
  314. p = &sb_samples[i][0][j];
  315. vmax = abs(*p);
  316. for(k=1;k<12;k++) {
  317. p += SBLIMIT;
  318. v = abs(*p);
  319. if (v > vmax)
  320. vmax = v;
  321. }
  322. /* compute the scale factor index using log 2 computations */
  323. if (vmax > 0) {
  324. n = av_log2(vmax);
  325. /* n is the position of the MSB of vmax. now
  326. use at most 2 compares to find the index */
  327. index = (21 - n) * 3 - 3;
  328. if (index >= 0) {
  329. while (vmax <= scale_factor_table[index+1])
  330. index++;
  331. } else {
  332. index = 0; /* very unlikely case of overflow */
  333. }
  334. } else {
  335. index = 62; /* value 63 is not allowed */
  336. }
  337. #if 0
  338. printf("%2d:%d in=%x %x %d\n",
  339. j, i, vmax, scale_factor_table[index], index);
  340. #endif
  341. /* store the scale factor */
  342. assert(index >=0 && index <= 63);
  343. sf[i] = index;
  344. }
  345. /* compute the transmission factor : look if the scale factors
  346. are close enough to each other */
  347. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  348. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  349. /* handle the 25 cases */
  350. switch(d1 * 5 + d2) {
  351. case 0*5+0:
  352. case 0*5+4:
  353. case 3*5+4:
  354. case 4*5+0:
  355. case 4*5+4:
  356. code = 0;
  357. break;
  358. case 0*5+1:
  359. case 0*5+2:
  360. case 4*5+1:
  361. case 4*5+2:
  362. code = 3;
  363. sf[2] = sf[1];
  364. break;
  365. case 0*5+3:
  366. case 4*5+3:
  367. code = 3;
  368. sf[1] = sf[2];
  369. break;
  370. case 1*5+0:
  371. case 1*5+4:
  372. case 2*5+4:
  373. code = 1;
  374. sf[1] = sf[0];
  375. break;
  376. case 1*5+1:
  377. case 1*5+2:
  378. case 2*5+0:
  379. case 2*5+1:
  380. case 2*5+2:
  381. code = 2;
  382. sf[1] = sf[2] = sf[0];
  383. break;
  384. case 2*5+3:
  385. case 3*5+3:
  386. code = 2;
  387. sf[0] = sf[1] = sf[2];
  388. break;
  389. case 3*5+0:
  390. case 3*5+1:
  391. case 3*5+2:
  392. code = 2;
  393. sf[0] = sf[2] = sf[1];
  394. break;
  395. case 1*5+3:
  396. code = 2;
  397. if (sf[0] > sf[2])
  398. sf[0] = sf[2];
  399. sf[1] = sf[2] = sf[0];
  400. break;
  401. default:
  402. abort();
  403. }
  404. #if 0
  405. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  406. sf[0], sf[1], sf[2], d1, d2, code);
  407. #endif
  408. scale_code[j] = code;
  409. sf += 3;
  410. }
  411. }
  412. /* The most important function : psycho acoustic module. In this
  413. encoder there is basically none, so this is the worst you can do,
  414. but also this is the simpler. */
  415. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  416. {
  417. int i;
  418. for(i=0;i<s->sblimit;i++) {
  419. smr[i] = (int)(fixed_smr[i] * 10);
  420. }
  421. }
  422. #define SB_NOTALLOCATED 0
  423. #define SB_ALLOCATED 1
  424. #define SB_NOMORE 2
  425. /* Try to maximize the smr while using a number of bits inferior to
  426. the frame size. I tried to make the code simpler, faster and
  427. smaller than other encoders :-) */
  428. static void compute_bit_allocation(MpegAudioContext *s,
  429. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  430. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  431. int *padding)
  432. {
  433. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  434. int incr;
  435. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  436. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  437. const unsigned char *alloc;
  438. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  439. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  440. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  441. /* compute frame size and padding */
  442. max_frame_size = s->frame_size;
  443. s->frame_frac += s->frame_frac_incr;
  444. if (s->frame_frac >= 65536) {
  445. s->frame_frac -= 65536;
  446. s->do_padding = 1;
  447. max_frame_size += 8;
  448. } else {
  449. s->do_padding = 0;
  450. }
  451. /* compute the header + bit alloc size */
  452. current_frame_size = 32;
  453. alloc = s->alloc_table;
  454. for(i=0;i<s->sblimit;i++) {
  455. incr = alloc[0];
  456. current_frame_size += incr * s->nb_channels;
  457. alloc += 1 << incr;
  458. }
  459. for(;;) {
  460. /* look for the subband with the largest signal to mask ratio */
  461. max_sb = -1;
  462. max_ch = -1;
  463. max_smr = 0x80000000;
  464. for(ch=0;ch<s->nb_channels;ch++) {
  465. for(i=0;i<s->sblimit;i++) {
  466. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  467. max_smr = smr[ch][i];
  468. max_sb = i;
  469. max_ch = ch;
  470. }
  471. }
  472. }
  473. #if 0
  474. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  475. current_frame_size, max_frame_size, max_sb,
  476. bit_alloc[max_sb]);
  477. #endif
  478. if (max_sb < 0)
  479. break;
  480. /* find alloc table entry (XXX: not optimal, should use
  481. pointer table) */
  482. alloc = s->alloc_table;
  483. for(i=0;i<max_sb;i++) {
  484. alloc += 1 << alloc[0];
  485. }
  486. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  487. /* nothing was coded for this band: add the necessary bits */
  488. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  489. incr += total_quant_bits[alloc[1]];
  490. } else {
  491. /* increments bit allocation */
  492. b = bit_alloc[max_ch][max_sb];
  493. incr = total_quant_bits[alloc[b + 1]] -
  494. total_quant_bits[alloc[b]];
  495. }
  496. if (current_frame_size + incr <= max_frame_size) {
  497. /* can increase size */
  498. b = ++bit_alloc[max_ch][max_sb];
  499. current_frame_size += incr;
  500. /* decrease smr by the resolution we added */
  501. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  502. /* max allocation size reached ? */
  503. if (b == ((1 << alloc[0]) - 1))
  504. subband_status[max_ch][max_sb] = SB_NOMORE;
  505. else
  506. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  507. } else {
  508. /* cannot increase the size of this subband */
  509. subband_status[max_ch][max_sb] = SB_NOMORE;
  510. }
  511. }
  512. *padding = max_frame_size - current_frame_size;
  513. assert(*padding >= 0);
  514. #if 0
  515. for(i=0;i<s->sblimit;i++) {
  516. printf("%d ", bit_alloc[i]);
  517. }
  518. printf("\n");
  519. #endif
  520. }
  521. /*
  522. * Output the mpeg audio layer 2 frame. Note how the code is small
  523. * compared to other encoders :-)
  524. */
  525. static void encode_frame(MpegAudioContext *s,
  526. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  527. int padding)
  528. {
  529. int i, j, k, l, bit_alloc_bits, b, ch;
  530. unsigned char *sf;
  531. int q[3];
  532. PutBitContext *p = &s->pb;
  533. /* header */
  534. put_bits(p, 12, 0xfff);
  535. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  536. put_bits(p, 2, 4-2); /* layer 2 */
  537. put_bits(p, 1, 1); /* no error protection */
  538. put_bits(p, 4, s->bitrate_index);
  539. put_bits(p, 2, s->freq_index);
  540. put_bits(p, 1, s->do_padding); /* use padding */
  541. put_bits(p, 1, 0); /* private_bit */
  542. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  543. put_bits(p, 2, 0); /* mode_ext */
  544. put_bits(p, 1, 0); /* no copyright */
  545. put_bits(p, 1, 1); /* original */
  546. put_bits(p, 2, 0); /* no emphasis */
  547. /* bit allocation */
  548. j = 0;
  549. for(i=0;i<s->sblimit;i++) {
  550. bit_alloc_bits = s->alloc_table[j];
  551. for(ch=0;ch<s->nb_channels;ch++) {
  552. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  553. }
  554. j += 1 << bit_alloc_bits;
  555. }
  556. /* scale codes */
  557. for(i=0;i<s->sblimit;i++) {
  558. for(ch=0;ch<s->nb_channels;ch++) {
  559. if (bit_alloc[ch][i])
  560. put_bits(p, 2, s->scale_code[ch][i]);
  561. }
  562. }
  563. /* scale factors */
  564. for(i=0;i<s->sblimit;i++) {
  565. for(ch=0;ch<s->nb_channels;ch++) {
  566. if (bit_alloc[ch][i]) {
  567. sf = &s->scale_factors[ch][i][0];
  568. switch(s->scale_code[ch][i]) {
  569. case 0:
  570. put_bits(p, 6, sf[0]);
  571. put_bits(p, 6, sf[1]);
  572. put_bits(p, 6, sf[2]);
  573. break;
  574. case 3:
  575. case 1:
  576. put_bits(p, 6, sf[0]);
  577. put_bits(p, 6, sf[2]);
  578. break;
  579. case 2:
  580. put_bits(p, 6, sf[0]);
  581. break;
  582. }
  583. }
  584. }
  585. }
  586. /* quantization & write sub band samples */
  587. for(k=0;k<3;k++) {
  588. for(l=0;l<12;l+=3) {
  589. j = 0;
  590. for(i=0;i<s->sblimit;i++) {
  591. bit_alloc_bits = s->alloc_table[j];
  592. for(ch=0;ch<s->nb_channels;ch++) {
  593. b = bit_alloc[ch][i];
  594. if (b) {
  595. int qindex, steps, m, sample, bits;
  596. /* we encode 3 sub band samples of the same sub band at a time */
  597. qindex = s->alloc_table[j+b];
  598. steps = quant_steps[qindex];
  599. for(m=0;m<3;m++) {
  600. sample = s->sb_samples[ch][k][l + m][i];
  601. /* divide by scale factor */
  602. #ifdef USE_FLOATS
  603. {
  604. float a;
  605. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  606. q[m] = (int)((a + 1.0) * steps * 0.5);
  607. }
  608. #else
  609. {
  610. int q1, e, shift, mult;
  611. e = s->scale_factors[ch][i][k];
  612. shift = scale_factor_shift[e];
  613. mult = scale_factor_mult[e];
  614. /* normalize to P bits */
  615. if (shift < 0)
  616. q1 = sample << (-shift);
  617. else
  618. q1 = sample >> shift;
  619. q1 = (q1 * mult) >> P;
  620. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  621. }
  622. #endif
  623. if (q[m] >= steps)
  624. q[m] = steps - 1;
  625. assert(q[m] >= 0 && q[m] < steps);
  626. }
  627. bits = quant_bits[qindex];
  628. if (bits < 0) {
  629. /* group the 3 values to save bits */
  630. put_bits(p, -bits,
  631. q[0] + steps * (q[1] + steps * q[2]));
  632. #if 0
  633. printf("%d: gr1 %d\n",
  634. i, q[0] + steps * (q[1] + steps * q[2]));
  635. #endif
  636. } else {
  637. #if 0
  638. printf("%d: gr3 %d %d %d\n",
  639. i, q[0], q[1], q[2]);
  640. #endif
  641. put_bits(p, bits, q[0]);
  642. put_bits(p, bits, q[1]);
  643. put_bits(p, bits, q[2]);
  644. }
  645. }
  646. }
  647. /* next subband in alloc table */
  648. j += 1 << bit_alloc_bits;
  649. }
  650. }
  651. }
  652. /* padding */
  653. for(i=0;i<padding;i++)
  654. put_bits(p, 1, 0);
  655. /* flush */
  656. flush_put_bits(p);
  657. }
  658. int MPA_encode_frame(AVCodecContext *avctx,
  659. unsigned char *frame, int buf_size, void *data)
  660. {
  661. MpegAudioContext *s = avctx->priv_data;
  662. short *samples = data;
  663. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  664. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  665. int padding, i;
  666. for(i=0;i<s->nb_channels;i++) {
  667. filter(s, i, samples + i, s->nb_channels);
  668. }
  669. for(i=0;i<s->nb_channels;i++) {
  670. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  671. s->sb_samples[i], s->sblimit);
  672. }
  673. for(i=0;i<s->nb_channels;i++) {
  674. psycho_acoustic_model(s, smr[i]);
  675. }
  676. compute_bit_allocation(s, smr, bit_alloc, &padding);
  677. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE, NULL, NULL);
  678. encode_frame(s, bit_alloc, padding);
  679. s->nb_samples += MPA_FRAME_SIZE;
  680. return pbBufPtr(&s->pb) - s->pb.buf;
  681. }
  682. AVCodec mp2_encoder = {
  683. "mp2",
  684. CODEC_TYPE_AUDIO,
  685. CODEC_ID_MP2,
  686. sizeof(MpegAudioContext),
  687. MPA_encode_init,
  688. MPA_encode_frame,
  689. NULL,
  690. };