You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

788 lines
28KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "cavs.h"
  31. static const uint8_t alpha_tab[64] = {
  32. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
  33. 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
  34. 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
  35. 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  36. };
  37. static const uint8_t beta_tab[64] = {
  38. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  39. 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  40. 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
  41. 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
  42. };
  43. static const uint8_t tc_tab[64] = {
  44. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
  47. 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
  48. };
  49. /** mark block as unavailable, i.e. out of picture
  50. or not yet decoded */
  51. static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
  52. static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
  53. static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
  54. static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
  55. static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
  56. /*****************************************************************************
  57. *
  58. * in-loop deblocking filter
  59. *
  60. ****************************************************************************/
  61. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
  62. {
  63. if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  64. return 2;
  65. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  66. return 1;
  67. if (b) {
  68. mvP += MV_BWD_OFFS;
  69. mvQ += MV_BWD_OFFS;
  70. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  71. return 1;
  72. } else {
  73. if (mvP->ref != mvQ->ref)
  74. return 1;
  75. }
  76. return 0;
  77. }
  78. #define SET_PARAMS \
  79. alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
  80. beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
  81. tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
  82. /**
  83. * in-loop deblocking filter for a single macroblock
  84. *
  85. * boundary strength (bs) mapping:
  86. *
  87. * --4---5--
  88. * 0 2 |
  89. * | 6 | 7 |
  90. * 1 3 |
  91. * ---------
  92. *
  93. */
  94. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
  95. {
  96. uint8_t bs[8];
  97. int qp_avg, alpha, beta, tc;
  98. int i;
  99. /* save un-deblocked lines */
  100. h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
  101. h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
  102. h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
  103. memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
  104. memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
  105. memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
  106. for (i = 0; i < 8; i++) {
  107. h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
  108. h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
  109. h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
  110. h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
  111. }
  112. if (!h->loop_filter_disable) {
  113. /* determine bs */
  114. if (mb_type == I_8X8)
  115. memset(bs, 2, 8);
  116. else{
  117. memset(bs, 0, 8);
  118. if (ff_cavs_partition_flags[mb_type] & SPLITV) {
  119. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  120. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  121. }
  122. if (ff_cavs_partition_flags[mb_type] & SPLITH) {
  123. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  124. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  125. }
  126. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  127. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  128. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  129. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  130. }
  131. if (AV_RN64(bs)) {
  132. if (h->flags & A_AVAIL) {
  133. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  134. SET_PARAMS;
  135. h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
  136. h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  137. h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  138. }
  139. qp_avg = h->qp;
  140. SET_PARAMS;
  141. h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
  142. h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
  143. if (h->flags & B_AVAIL) {
  144. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  145. SET_PARAMS;
  146. h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
  147. h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  148. h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  149. }
  150. }
  151. }
  152. h->left_qp = h->qp;
  153. h->top_qp[h->mbx] = h->qp;
  154. }
  155. #undef SET_PARAMS
  156. /*****************************************************************************
  157. *
  158. * spatial intra prediction
  159. *
  160. ****************************************************************************/
  161. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  162. uint8_t **left, int block)
  163. {
  164. int i;
  165. switch (block) {
  166. case 0:
  167. *left = h->left_border_y;
  168. h->left_border_y[0] = h->left_border_y[1];
  169. memset(&h->left_border_y[17], h->left_border_y[16], 9);
  170. memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
  171. top[17] = top[16];
  172. top[0] = top[1];
  173. if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  174. h->left_border_y[0] = top[0] = h->topleft_border_y;
  175. break;
  176. case 1:
  177. *left = h->intern_border_y;
  178. for (i = 0; i < 8; i++)
  179. h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
  180. memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
  181. h->intern_border_y[0] = h->intern_border_y[1];
  182. memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
  183. if (h->flags & C_AVAIL)
  184. memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
  185. else
  186. memset(&top[9], top[8], 9);
  187. top[17] = top[16];
  188. top[0] = top[1];
  189. if (h->flags & B_AVAIL)
  190. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
  191. break;
  192. case 2:
  193. *left = &h->left_border_y[8];
  194. memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
  195. top[17] = top[16];
  196. top[0] = top[1];
  197. if (h->flags & A_AVAIL)
  198. top[0] = h->left_border_y[8];
  199. break;
  200. case 3:
  201. *left = &h->intern_border_y[8];
  202. for (i = 0; i < 8; i++)
  203. h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
  204. memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
  205. memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
  206. memset(&top[9], top[8], 9);
  207. break;
  208. }
  209. }
  210. void ff_cavs_load_intra_pred_chroma(AVSContext *h)
  211. {
  212. /* extend borders by one pixel */
  213. h->left_border_u[9] = h->left_border_u[8];
  214. h->left_border_v[9] = h->left_border_v[8];
  215. h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
  216. h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
  217. if (h->mbx && h->mby) {
  218. h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
  219. h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
  220. } else {
  221. h->left_border_u[0] = h->left_border_u[1];
  222. h->left_border_v[0] = h->left_border_v[1];
  223. h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
  224. h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
  225. }
  226. }
  227. static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  228. {
  229. int y;
  230. uint64_t a = AV_RN64(&top[1]);
  231. for (y = 0; y < 8; y++) {
  232. *((uint64_t *)(d + y * stride)) = a;
  233. }
  234. }
  235. static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  236. {
  237. int y;
  238. uint64_t a;
  239. for (y = 0; y < 8; y++) {
  240. a = left[y + 1] * 0x0101010101010101ULL;
  241. *((uint64_t *)(d + y * stride)) = a;
  242. }
  243. }
  244. static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  245. {
  246. int y;
  247. uint64_t a = 0x8080808080808080ULL;
  248. for (y = 0; y < 8; y++)
  249. *((uint64_t *)(d + y * stride)) = a;
  250. }
  251. static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  252. {
  253. int x, y, ia;
  254. int ih = 0;
  255. int iv = 0;
  256. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  257. for (x = 0; x < 4; x++) {
  258. ih += (x + 1) * (top [5 + x] - top [3 - x]);
  259. iv += (x + 1) * (left[5 + x] - left[3 - x]);
  260. }
  261. ia = (top[8] + left[8]) << 4;
  262. ih = (17 * ih + 16) >> 5;
  263. iv = (17 * iv + 16) >> 5;
  264. for (y = 0; y < 8; y++)
  265. for (x = 0; x < 8; x++)
  266. d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
  267. }
  268. #define LOWPASS(ARRAY,INDEX) \
  269. ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
  270. static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  271. {
  272. int x, y;
  273. for (y = 0; y < 8; y++)
  274. for (x = 0; x < 8; x++)
  275. d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
  276. }
  277. static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  278. {
  279. int x, y;
  280. for (y = 0; y < 8; y++)
  281. for (x = 0; x < 8; x++)
  282. d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
  283. }
  284. static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  285. {
  286. int x, y;
  287. for (y = 0; y < 8; y++)
  288. for (x = 0; x < 8; x++)
  289. if (x == y)
  290. d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
  291. else if (x > y)
  292. d[y * stride + x] = LOWPASS(top, x - y);
  293. else
  294. d[y * stride + x] = LOWPASS(left, y - x);
  295. }
  296. static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  297. {
  298. int x, y;
  299. for (y = 0; y < 8; y++)
  300. for (x = 0; x < 8; x++)
  301. d[y * stride + x] = LOWPASS(left, y + 1);
  302. }
  303. static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride)
  304. {
  305. int x, y;
  306. for (y = 0; y < 8; y++)
  307. for (x = 0; x < 8; x++)
  308. d[y * stride + x] = LOWPASS(top, x + 1);
  309. }
  310. #undef LOWPASS
  311. static inline void modify_pred(const int8_t *mod_table, int *mode)
  312. {
  313. *mode = mod_table[*mode];
  314. if (*mode < 0) {
  315. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  316. *mode = 0;
  317. }
  318. }
  319. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
  320. {
  321. /* save pred modes before they get modified */
  322. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  323. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  324. h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
  325. h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
  326. /* modify pred modes according to availability of neighbour samples */
  327. if (!(h->flags & A_AVAIL)) {
  328. modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
  329. modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
  330. modify_pred(left_modifier_c, pred_mode_uv);
  331. }
  332. if (!(h->flags & B_AVAIL)) {
  333. modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
  334. modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
  335. modify_pred(top_modifier_c, pred_mode_uv);
  336. }
  337. }
  338. /*****************************************************************************
  339. *
  340. * motion compensation
  341. *
  342. ****************************************************************************/
  343. static inline void mc_dir_part(AVSContext *h, AVFrame *pic,
  344. int chroma_height,int delta,int list,uint8_t *dest_y,
  345. uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
  346. int src_y_offset,qpel_mc_func *qpix_op,
  347. h264_chroma_mc_func chroma_op,cavs_vector *mv)
  348. {
  349. const int mx= mv->x + src_x_offset*8;
  350. const int my= mv->y + src_y_offset*8;
  351. const int luma_xy= (mx&3) + ((my&3)<<2);
  352. uint8_t * src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
  353. uint8_t * src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
  354. uint8_t * src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
  355. int extra_width = 0;
  356. int extra_height= extra_width;
  357. int emu=0;
  358. const int full_mx= mx>>2;
  359. const int full_my= my>>2;
  360. const int pic_width = 16*h->mb_width;
  361. const int pic_height = 16*h->mb_height;
  362. if (!pic->data[0])
  363. return;
  364. if(mx&7) extra_width -= 3;
  365. if(my&7) extra_height -= 3;
  366. if( full_mx < 0-extra_width
  367. || full_my < 0-extra_height
  368. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  369. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  370. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
  371. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  372. src_y= h->edge_emu_buffer + 2 + 2*h->l_stride;
  373. emu=1;
  374. }
  375. qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
  376. if(emu){
  377. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->c_stride,
  378. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  379. src_cb= h->edge_emu_buffer;
  380. }
  381. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
  382. if(emu){
  383. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->c_stride,
  384. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  385. src_cr= h->edge_emu_buffer;
  386. }
  387. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
  388. }
  389. static inline void mc_part_std(AVSContext *h,int chroma_height,int delta,
  390. uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
  391. int x_offset, int y_offset,qpel_mc_func *qpix_put,
  392. h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
  393. h264_chroma_mc_func chroma_avg, cavs_vector *mv)
  394. {
  395. qpel_mc_func *qpix_op= qpix_put;
  396. h264_chroma_mc_func chroma_op= chroma_put;
  397. dest_y += 2*x_offset + 2*y_offset*h->l_stride;
  398. dest_cb += x_offset + y_offset*h->c_stride;
  399. dest_cr += x_offset + y_offset*h->c_stride;
  400. x_offset += 8*h->mbx;
  401. y_offset += 8*h->mby;
  402. if(mv->ref >= 0){
  403. AVFrame *ref = h->DPB[mv->ref].f;
  404. mc_dir_part(h, ref, chroma_height, delta, 0,
  405. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  406. qpix_op, chroma_op, mv);
  407. qpix_op= qpix_avg;
  408. chroma_op= chroma_avg;
  409. }
  410. if((mv+MV_BWD_OFFS)->ref >= 0){
  411. AVFrame *ref = h->DPB[0].f;
  412. mc_dir_part(h, ref, chroma_height, delta, 1,
  413. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  414. qpix_op, chroma_op, mv+MV_BWD_OFFS);
  415. }
  416. }
  417. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
  418. if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
  419. mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  420. h->cdsp.put_cavs_qpel_pixels_tab[0],
  421. h->dsp.put_h264_chroma_pixels_tab[0],
  422. h->cdsp.avg_cavs_qpel_pixels_tab[0],
  423. h->dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
  424. }else{
  425. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  426. h->cdsp.put_cavs_qpel_pixels_tab[1],
  427. h->dsp.put_h264_chroma_pixels_tab[1],
  428. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  429. h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
  430. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  431. h->cdsp.put_cavs_qpel_pixels_tab[1],
  432. h->dsp.put_h264_chroma_pixels_tab[1],
  433. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  434. h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
  435. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  436. h->cdsp.put_cavs_qpel_pixels_tab[1],
  437. h->dsp.put_h264_chroma_pixels_tab[1],
  438. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  439. h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
  440. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  441. h->cdsp.put_cavs_qpel_pixels_tab[1],
  442. h->dsp.put_h264_chroma_pixels_tab[1],
  443. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  444. h->dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
  445. }
  446. }
  447. /*****************************************************************************
  448. *
  449. * motion vector prediction
  450. *
  451. ****************************************************************************/
  452. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
  453. int den = h->scale_den[src->ref];
  454. *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
  455. *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
  456. }
  457. static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
  458. cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
  459. int ax, ay, bx, by, cx, cy;
  460. int len_ab, len_bc, len_ca, len_mid;
  461. /* scale candidates according to their temporal span */
  462. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  463. scale_mv(h, &bx, &by, mvB, mvP->dist);
  464. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  465. /* find the geometrical median of the three candidates */
  466. len_ab = abs(ax - bx) + abs(ay - by);
  467. len_bc = abs(bx - cx) + abs(by - cy);
  468. len_ca = abs(cx - ax) + abs(cy - ay);
  469. len_mid = mid_pred(len_ab, len_bc, len_ca);
  470. if(len_mid == len_ab) {
  471. mvP->x = cx;
  472. mvP->y = cy;
  473. } else if(len_mid == len_bc) {
  474. mvP->x = ax;
  475. mvP->y = ay;
  476. } else {
  477. mvP->x = bx;
  478. mvP->y = by;
  479. }
  480. }
  481. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  482. enum cavs_mv_pred mode, enum cavs_block size, int ref) {
  483. cavs_vector *mvP = &h->mv[nP];
  484. cavs_vector *mvA = &h->mv[nP-1];
  485. cavs_vector *mvB = &h->mv[nP-4];
  486. cavs_vector *mvC = &h->mv[nC];
  487. const cavs_vector *mvP2 = NULL;
  488. mvP->ref = ref;
  489. mvP->dist = h->dist[mvP->ref];
  490. if(mvC->ref == NOT_AVAIL)
  491. mvC = &h->mv[nP-5]; // set to top-left (mvD)
  492. if((mode == MV_PRED_PSKIP) &&
  493. ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
  494. ((mvA->x | mvA->y | mvA->ref) == 0) ||
  495. ((mvB->x | mvB->y | mvB->ref) == 0) )) {
  496. mvP2 = &un_mv;
  497. /* if there is only one suitable candidate, take it */
  498. } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
  499. mvP2= mvA;
  500. } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
  501. mvP2= mvB;
  502. } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
  503. mvP2= mvC;
  504. } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
  505. mvP2= mvA;
  506. } else if(mode == MV_PRED_TOP && mvB->ref == ref){
  507. mvP2= mvB;
  508. } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
  509. mvP2= mvC;
  510. }
  511. if(mvP2){
  512. mvP->x = mvP2->x;
  513. mvP->y = mvP2->y;
  514. }else
  515. mv_pred_median(h, mvP, mvA, mvB, mvC);
  516. if(mode < MV_PRED_PSKIP) {
  517. mvP->x += get_se_golomb(&h->gb);
  518. mvP->y += get_se_golomb(&h->gb);
  519. }
  520. set_mvs(mvP,size);
  521. }
  522. /*****************************************************************************
  523. *
  524. * macroblock level
  525. *
  526. ****************************************************************************/
  527. /**
  528. * initialise predictors for motion vectors and intra prediction
  529. */
  530. void ff_cavs_init_mb(AVSContext *h) {
  531. int i;
  532. /* copy predictors from top line (MB B and C) into cache */
  533. for(i=0;i<3;i++) {
  534. h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
  535. h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
  536. }
  537. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
  538. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
  539. /* clear top predictors if MB B is not available */
  540. if(!(h->flags & B_AVAIL)) {
  541. h->mv[MV_FWD_B2] = un_mv;
  542. h->mv[MV_FWD_B3] = un_mv;
  543. h->mv[MV_BWD_B2] = un_mv;
  544. h->mv[MV_BWD_B3] = un_mv;
  545. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  546. h->flags &= ~(C_AVAIL|D_AVAIL);
  547. } else if(h->mbx) {
  548. h->flags |= D_AVAIL;
  549. }
  550. if(h->mbx == h->mb_width-1) //MB C not available
  551. h->flags &= ~C_AVAIL;
  552. /* clear top-right predictors if MB C is not available */
  553. if(!(h->flags & C_AVAIL)) {
  554. h->mv[MV_FWD_C2] = un_mv;
  555. h->mv[MV_BWD_C2] = un_mv;
  556. }
  557. /* clear top-left predictors if MB D is not available */
  558. if(!(h->flags & D_AVAIL)) {
  559. h->mv[MV_FWD_D3] = un_mv;
  560. h->mv[MV_BWD_D3] = un_mv;
  561. }
  562. }
  563. /**
  564. * save predictors for later macroblocks and increase
  565. * macroblock address
  566. * @return 0 if end of frame is reached, 1 otherwise
  567. */
  568. int ff_cavs_next_mb(AVSContext *h) {
  569. int i;
  570. h->flags |= A_AVAIL;
  571. h->cy += 16;
  572. h->cu += 8;
  573. h->cv += 8;
  574. /* copy mvs as predictors to the left */
  575. for(i=0;i<=20;i+=4)
  576. h->mv[i] = h->mv[i+2];
  577. /* copy bottom mvs from cache to top line */
  578. h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
  579. h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
  580. h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
  581. h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
  582. /* next MB address */
  583. h->mbidx++;
  584. h->mbx++;
  585. if(h->mbx == h->mb_width) { //new mb line
  586. h->flags = B_AVAIL|C_AVAIL;
  587. /* clear left pred_modes */
  588. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  589. /* clear left mv predictors */
  590. for(i=0;i<=20;i+=4)
  591. h->mv[i] = un_mv;
  592. h->mbx = 0;
  593. h->mby++;
  594. /* re-calculate sample pointers */
  595. h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
  596. h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
  597. h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
  598. if(h->mby == h->mb_height) { //frame end
  599. return 0;
  600. }
  601. }
  602. return 1;
  603. }
  604. /*****************************************************************************
  605. *
  606. * frame level
  607. *
  608. ****************************************************************************/
  609. void ff_cavs_init_pic(AVSContext *h) {
  610. int i;
  611. /* clear some predictors */
  612. for(i=0;i<=20;i+=4)
  613. h->mv[i] = un_mv;
  614. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  615. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  616. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  617. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  618. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  619. h->cy = h->cur.f->data[0];
  620. h->cu = h->cur.f->data[1];
  621. h->cv = h->cur.f->data[2];
  622. h->l_stride = h->cur.f->linesize[0];
  623. h->c_stride = h->cur.f->linesize[1];
  624. h->luma_scan[2] = 8*h->l_stride;
  625. h->luma_scan[3] = 8*h->l_stride+8;
  626. h->mbx = h->mby = h->mbidx = 0;
  627. h->flags = 0;
  628. }
  629. /*****************************************************************************
  630. *
  631. * headers and interface
  632. *
  633. ****************************************************************************/
  634. /**
  635. * some predictions require data from the top-neighbouring macroblock.
  636. * this data has to be stored for one complete row of macroblocks
  637. * and this storage space is allocated here
  638. */
  639. void ff_cavs_init_top_lines(AVSContext *h) {
  640. /* alloc top line of predictors */
  641. h->top_qp = av_malloc( h->mb_width);
  642. h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
  643. h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
  644. h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
  645. h->top_border_y = av_malloc((h->mb_width+1)*16);
  646. h->top_border_u = av_malloc( h->mb_width * 10);
  647. h->top_border_v = av_malloc( h->mb_width * 10);
  648. /* alloc space for co-located MVs and types */
  649. h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
  650. h->col_type_base = av_malloc(h->mb_width*h->mb_height);
  651. h->block = av_mallocz(64*sizeof(int16_t));
  652. }
  653. av_cold int ff_cavs_init(AVCodecContext *avctx) {
  654. AVSContext *h = avctx->priv_data;
  655. ff_dsputil_init(&h->dsp, avctx);
  656. ff_videodsp_init(&h->vdsp, 8);
  657. ff_cavsdsp_init(&h->cdsp, avctx);
  658. ff_init_scantable_permutation(h->dsp.idct_permutation,
  659. h->cdsp.idct_perm);
  660. ff_init_scantable(h->dsp.idct_permutation, &h->scantable, ff_zigzag_direct);
  661. h->avctx = avctx;
  662. avctx->pix_fmt= AV_PIX_FMT_YUV420P;
  663. h->cur.f = avcodec_alloc_frame();
  664. h->DPB[0].f = avcodec_alloc_frame();
  665. h->DPB[1].f = avcodec_alloc_frame();
  666. if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
  667. ff_cavs_end(avctx);
  668. return AVERROR(ENOMEM);
  669. }
  670. h->luma_scan[0] = 0;
  671. h->luma_scan[1] = 8;
  672. h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
  673. h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
  674. h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
  675. h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  676. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  677. h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
  678. h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
  679. h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
  680. h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
  681. h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
  682. h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
  683. h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
  684. h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
  685. h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
  686. h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
  687. h->mv[ 7] = un_mv;
  688. h->mv[19] = un_mv;
  689. return 0;
  690. }
  691. av_cold int ff_cavs_end(AVCodecContext *avctx) {
  692. AVSContext *h = avctx->priv_data;
  693. if (h->cur.f->data[0])
  694. avctx->release_buffer(avctx, h->cur.f);
  695. if (h->DPB[0].f->data[0])
  696. avctx->release_buffer(avctx, h->DPB[0].f);
  697. if (h->DPB[1].f->data[0])
  698. avctx->release_buffer(avctx, h->DPB[1].f);
  699. avcodec_free_frame(&h->cur.f);
  700. avcodec_free_frame(&h->DPB[0].f);
  701. avcodec_free_frame(&h->DPB[1].f);
  702. av_free(h->top_qp);
  703. av_free(h->top_mv[0]);
  704. av_free(h->top_mv[1]);
  705. av_free(h->top_pred_Y);
  706. av_free(h->top_border_y);
  707. av_free(h->top_border_u);
  708. av_free(h->top_border_v);
  709. av_free(h->col_mv);
  710. av_free(h->col_type_base);
  711. av_free(h->block);
  712. av_freep(&h->edge_emu_buffer);
  713. return 0;
  714. }