You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1176 lines
42KB

  1. /*
  2. * Copyright (c) 2003 The Libav Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" // FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. #include "svq3.h"
  56. /**
  57. * @file
  58. * svq3 decoder.
  59. */
  60. typedef struct {
  61. H264Context h;
  62. int halfpel_flag;
  63. int thirdpel_flag;
  64. int unknown_flag;
  65. int next_slice_index;
  66. uint32_t watermark_key;
  67. } SVQ3Context;
  68. #define FULLPEL_MODE 1
  69. #define HALFPEL_MODE 2
  70. #define THIRDPEL_MODE 3
  71. #define PREDICT_MODE 4
  72. /* dual scan (from some older h264 draft)
  73. * o-->o-->o o
  74. * | /|
  75. * o o o / o
  76. * | / | |/ |
  77. * o o o o
  78. * /
  79. * o-->o-->o-->o
  80. */
  81. static const uint8_t svq3_scan[16] = {
  82. 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
  83. 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
  84. 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
  85. 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
  86. };
  87. static const uint8_t svq3_pred_0[25][2] = {
  88. { 0, 0 },
  89. { 1, 0 }, { 0, 1 },
  90. { 0, 2 }, { 1, 1 }, { 2, 0 },
  91. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  92. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  93. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  94. { 2, 4 }, { 3, 3 }, { 4, 2 },
  95. { 4, 3 }, { 3, 4 },
  96. { 4, 4 }
  97. };
  98. static const int8_t svq3_pred_1[6][6][5] = {
  99. { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
  100. { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
  101. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  102. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  103. { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  104. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  105. { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  106. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  107. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  108. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  109. { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  110. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  111. };
  112. static const struct {
  113. uint8_t run;
  114. uint8_t level;
  115. } svq3_dct_tables[2][16] = {
  116. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  117. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  118. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  119. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  120. };
  121. static const uint32_t svq3_dequant_coeff[32] = {
  122. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  123. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  124. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  125. 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
  126. };
  127. void ff_svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
  128. {
  129. const int qmul = svq3_dequant_coeff[qp];
  130. #define stride 16
  131. int i;
  132. int temp[16];
  133. static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
  134. for (i = 0; i < 4; i++) {
  135. const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
  136. const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
  137. const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
  138. const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
  139. temp[4 * i + 0] = z0 + z3;
  140. temp[4 * i + 1] = z1 + z2;
  141. temp[4 * i + 2] = z1 - z2;
  142. temp[4 * i + 3] = z0 - z3;
  143. }
  144. for (i = 0; i < 4; i++) {
  145. const int offset = x_offset[i];
  146. const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
  147. const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
  148. const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
  149. const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
  150. output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
  151. output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
  152. output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
  153. output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
  154. }
  155. }
  156. #undef stride
  157. void ff_svq3_add_idct_c(uint8_t *dst, int16_t *block,
  158. int stride, int qp, int dc)
  159. {
  160. const int qmul = svq3_dequant_coeff[qp];
  161. int i;
  162. if (dc) {
  163. dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
  164. : qmul * (block[0] >> 3) / 2);
  165. block[0] = 0;
  166. }
  167. for (i = 0; i < 4; i++) {
  168. const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
  169. const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
  170. const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
  171. const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
  172. block[0 + 4 * i] = z0 + z3;
  173. block[1 + 4 * i] = z1 + z2;
  174. block[2 + 4 * i] = z1 - z2;
  175. block[3 + 4 * i] = z0 - z3;
  176. }
  177. for (i = 0; i < 4; i++) {
  178. const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
  179. const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
  180. const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
  181. const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
  182. const int rr = (dc + 0x80000);
  183. dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
  184. dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
  185. dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
  186. dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
  187. }
  188. }
  189. static inline int svq3_decode_block(GetBitContext *gb, int16_t *block,
  190. int index, const int type)
  191. {
  192. static const uint8_t *const scan_patterns[4] =
  193. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  194. int run, level, limit;
  195. unsigned vlc;
  196. const int intra = 3 * type >> 2;
  197. const uint8_t *const scan = scan_patterns[type];
  198. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  199. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  200. int sign = (vlc & 1) ? 0 : -1;
  201. vlc = vlc + 1 >> 1;
  202. if (type == 3) {
  203. if (vlc < 3) {
  204. run = 0;
  205. level = vlc;
  206. } else if (vlc < 4) {
  207. run = 1;
  208. level = 1;
  209. } else {
  210. run = vlc & 0x3;
  211. level = (vlc + 9 >> 2) - run;
  212. }
  213. } else {
  214. if (vlc < 16) {
  215. run = svq3_dct_tables[intra][vlc].run;
  216. level = svq3_dct_tables[intra][vlc].level;
  217. } else if (intra) {
  218. run = vlc & 0x7;
  219. level = (vlc >> 3) +
  220. ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  221. } else {
  222. run = vlc & 0xF;
  223. level = (vlc >> 4) +
  224. ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  225. }
  226. }
  227. if ((index += run) >= limit)
  228. return -1;
  229. block[scan[index]] = (level ^ sign) - sign;
  230. }
  231. if (type != 2) {
  232. break;
  233. }
  234. }
  235. return 0;
  236. }
  237. static inline void svq3_mc_dir_part(MpegEncContext *s,
  238. int x, int y, int width, int height,
  239. int mx, int my, int dxy,
  240. int thirdpel, int dir, int avg)
  241. {
  242. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  243. uint8_t *src, *dest;
  244. int i, emu = 0;
  245. int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
  246. mx += x;
  247. my += y;
  248. if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
  249. my < 0 || my >= s->v_edge_pos - height - 1) {
  250. if ((s->flags & CODEC_FLAG_EMU_EDGE))
  251. emu = 1;
  252. mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
  253. my = av_clip(my, -16, s->v_edge_pos - height + 15);
  254. }
  255. /* form component predictions */
  256. dest = s->current_picture.f.data[0] + x + y * s->linesize;
  257. src = pic->f.data[0] + mx + my * s->linesize;
  258. if (emu) {
  259. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize,
  260. width + 1, height + 1,
  261. mx, my, s->h_edge_pos, s->v_edge_pos);
  262. src = s->edge_emu_buffer;
  263. }
  264. if (thirdpel)
  265. (avg ? s->dsp.avg_tpel_pixels_tab
  266. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize,
  267. width, height);
  268. else
  269. (avg ? s->dsp.avg_pixels_tab
  270. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize,
  271. height);
  272. if (!(s->flags & CODEC_FLAG_GRAY)) {
  273. mx = mx + (mx < (int) x) >> 1;
  274. my = my + (my < (int) y) >> 1;
  275. width = width >> 1;
  276. height = height >> 1;
  277. blocksize++;
  278. for (i = 1; i < 3; i++) {
  279. dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize;
  280. src = pic->f.data[i] + mx + my * s->uvlinesize;
  281. if (emu) {
  282. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize,
  283. width + 1, height + 1,
  284. mx, my, (s->h_edge_pos >> 1),
  285. s->v_edge_pos >> 1);
  286. src = s->edge_emu_buffer;
  287. }
  288. if (thirdpel)
  289. (avg ? s->dsp.avg_tpel_pixels_tab
  290. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src,
  291. s->uvlinesize,
  292. width, height);
  293. else
  294. (avg ? s->dsp.avg_pixels_tab
  295. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src,
  296. s->uvlinesize,
  297. height);
  298. }
  299. }
  300. }
  301. static inline int svq3_mc_dir(H264Context *h, int size, int mode,
  302. int dir, int avg)
  303. {
  304. int i, j, k, mx, my, dx, dy, x, y;
  305. MpegEncContext *const s = (MpegEncContext *)h;
  306. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  307. const int part_height = 16 >> ((unsigned)(size + 1) / 3);
  308. const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
  309. const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
  310. const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
  311. for (i = 0; i < 16; i += part_height)
  312. for (j = 0; j < 16; j += part_width) {
  313. const int b_xy = (4 * s->mb_x + (j >> 2)) +
  314. (4 * s->mb_y + (i >> 2)) * h->b_stride;
  315. int dxy;
  316. x = 16 * s->mb_x + j;
  317. y = 16 * s->mb_y + i;
  318. k = (j >> 2 & 1) + (i >> 1 & 2) +
  319. (j >> 1 & 4) + (i & 8);
  320. if (mode != PREDICT_MODE) {
  321. pred_motion(h, k, part_width >> 2, dir, 1, &mx, &my);
  322. } else {
  323. mx = s->next_picture.f.motion_val[0][b_xy][0] << 1;
  324. my = s->next_picture.f.motion_val[0][b_xy][1] << 1;
  325. if (dir == 0) {
  326. mx = mx * h->frame_num_offset /
  327. h->prev_frame_num_offset + 1 >> 1;
  328. my = my * h->frame_num_offset /
  329. h->prev_frame_num_offset + 1 >> 1;
  330. } else {
  331. mx = mx * (h->frame_num_offset - h->prev_frame_num_offset) /
  332. h->prev_frame_num_offset + 1 >> 1;
  333. my = my * (h->frame_num_offset - h->prev_frame_num_offset) /
  334. h->prev_frame_num_offset + 1 >> 1;
  335. }
  336. }
  337. /* clip motion vector prediction to frame border */
  338. mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
  339. my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
  340. /* get (optional) motion vector differential */
  341. if (mode == PREDICT_MODE) {
  342. dx = dy = 0;
  343. } else {
  344. dy = svq3_get_se_golomb(&s->gb);
  345. dx = svq3_get_se_golomb(&s->gb);
  346. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  347. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  348. return -1;
  349. }
  350. }
  351. /* compute motion vector */
  352. if (mode == THIRDPEL_MODE) {
  353. int fx, fy;
  354. mx = (mx + 1 >> 1) + dx;
  355. my = (my + 1 >> 1) + dy;
  356. fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
  357. fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
  358. dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
  359. svq3_mc_dir_part(s, x, y, part_width, part_height,
  360. fx, fy, dxy, 1, dir, avg);
  361. mx += mx;
  362. my += my;
  363. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  364. mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
  365. my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
  366. dxy = (mx & 1) + 2 * (my & 1);
  367. svq3_mc_dir_part(s, x, y, part_width, part_height,
  368. mx >> 1, my >> 1, dxy, 0, dir, avg);
  369. mx *= 3;
  370. my *= 3;
  371. } else {
  372. mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
  373. my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
  374. svq3_mc_dir_part(s, x, y, part_width, part_height,
  375. mx, my, 0, 0, dir, avg);
  376. mx *= 6;
  377. my *= 6;
  378. }
  379. /* update mv_cache */
  380. if (mode != PREDICT_MODE) {
  381. int32_t mv = pack16to32(mx, my);
  382. if (part_height == 8 && i < 8) {
  383. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 * 8], mv);
  384. if (part_width == 8 && j < 8)
  385. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
  386. }
  387. if (part_width == 8 && j < 8)
  388. AV_WN32A(h->mv_cache[dir][scan8[k] + 1], mv);
  389. if (part_width == 4 || part_height == 4)
  390. AV_WN32A(h->mv_cache[dir][scan8[k]], mv);
  391. }
  392. /* write back motion vectors */
  393. fill_rectangle(s->current_picture.f.motion_val[dir][b_xy],
  394. part_width >> 2, part_height >> 2, h->b_stride,
  395. pack16to32(mx, my), 4);
  396. }
  397. return 0;
  398. }
  399. static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type)
  400. {
  401. H264Context *h = &svq3->h;
  402. int i, j, k, m, dir, mode;
  403. int cbp = 0;
  404. uint32_t vlc;
  405. int8_t *top, *left;
  406. MpegEncContext *const s = (MpegEncContext *)h;
  407. const int mb_xy = h->mb_xy;
  408. const int b_xy = 4 * s->mb_x + 4 * s->mb_y * h->b_stride;
  409. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  410. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  411. h->topright_samples_available = 0xFFFF;
  412. if (mb_type == 0) { /* SKIP */
  413. if (s->pict_type == AV_PICTURE_TYPE_P ||
  414. s->next_picture.f.mb_type[mb_xy] == -1) {
  415. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  416. 0, 0, 0, 0, 0, 0);
  417. if (s->pict_type == AV_PICTURE_TYPE_B)
  418. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  419. 0, 0, 0, 0, 1, 1);
  420. mb_type = MB_TYPE_SKIP;
  421. } else {
  422. mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6);
  423. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  424. return -1;
  425. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  426. return -1;
  427. mb_type = MB_TYPE_16x16;
  428. }
  429. } else if (mb_type < 8) { /* INTER */
  430. if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1(&s->gb))
  431. mode = THIRDPEL_MODE;
  432. else if (svq3->halfpel_flag &&
  433. svq3->thirdpel_flag == !get_bits1(&s->gb))
  434. mode = HALFPEL_MODE;
  435. else
  436. mode = FULLPEL_MODE;
  437. /* fill caches */
  438. /* note ref_cache should contain here:
  439. * ????????
  440. * ???11111
  441. * N??11111
  442. * N??11111
  443. * N??11111
  444. */
  445. for (m = 0; m < 2; m++) {
  446. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6] != -1) {
  447. for (i = 0; i < 4; i++)
  448. AV_COPY32(h->mv_cache[m][scan8[0] - 1 + i * 8],
  449. s->current_picture.f.motion_val[m][b_xy - 1 + i * h->b_stride]);
  450. } else {
  451. for (i = 0; i < 4; i++)
  452. AV_ZERO32(h->mv_cache[m][scan8[0] - 1 + i * 8]);
  453. }
  454. if (s->mb_y > 0) {
  455. memcpy(h->mv_cache[m][scan8[0] - 1 * 8],
  456. s->current_picture.f.motion_val[m][b_xy - h->b_stride],
  457. 4 * 2 * sizeof(int16_t));
  458. memset(&h->ref_cache[m][scan8[0] - 1 * 8],
  459. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  460. if (s->mb_x < s->mb_width - 1) {
  461. AV_COPY32(h->mv_cache[m][scan8[0] + 4 - 1 * 8],
  462. s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4]);
  463. h->ref_cache[m][scan8[0] + 4 - 1 * 8] =
  464. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
  465. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
  466. } else
  467. h->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
  468. if (s->mb_x > 0) {
  469. AV_COPY32(h->mv_cache[m][scan8[0] - 1 - 1 * 8],
  470. s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1]);
  471. h->ref_cache[m][scan8[0] - 1 - 1 * 8] =
  472. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
  473. } else
  474. h->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
  475. } else
  476. memset(&h->ref_cache[m][scan8[0] - 1 * 8 - 1],
  477. PART_NOT_AVAILABLE, 8);
  478. if (s->pict_type != AV_PICTURE_TYPE_B)
  479. break;
  480. }
  481. /* decode motion vector(s) and form prediction(s) */
  482. if (s->pict_type == AV_PICTURE_TYPE_P) {
  483. if (svq3_mc_dir(h, mb_type - 1, mode, 0, 0) < 0)
  484. return -1;
  485. } else { /* AV_PICTURE_TYPE_B */
  486. if (mb_type != 2)
  487. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  488. return -1;
  489. else
  490. for (i = 0; i < 4; i++)
  491. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  492. 0, 4 * 2 * sizeof(int16_t));
  493. if (mb_type != 1)
  494. if (svq3_mc_dir(h, 0, mode, 1, mb_type == 3) < 0)
  495. return -1;
  496. else
  497. for (i = 0; i < 4; i++)
  498. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  499. 0, 4 * 2 * sizeof(int16_t));
  500. }
  501. mb_type = MB_TYPE_16x16;
  502. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  503. memset(h->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
  504. if (mb_type == 8) {
  505. if (s->mb_x > 0) {
  506. for (i = 0; i < 4; i++)
  507. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6 - i];
  508. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
  509. h->left_samples_available = 0x5F5F;
  510. }
  511. if (s->mb_y > 0) {
  512. h->intra4x4_pred_mode_cache[4 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 0];
  513. h->intra4x4_pred_mode_cache[5 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 1];
  514. h->intra4x4_pred_mode_cache[6 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 2];
  515. h->intra4x4_pred_mode_cache[7 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 3];
  516. if (h->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
  517. h->top_samples_available = 0x33FF;
  518. }
  519. /* decode prediction codes for luma blocks */
  520. for (i = 0; i < 16; i += 2) {
  521. vlc = svq3_get_ue_golomb(&s->gb);
  522. if (vlc >= 25) {
  523. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  524. return -1;
  525. }
  526. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  527. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  528. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  529. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  530. if (left[1] == -1 || left[2] == -1) {
  531. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  532. return -1;
  533. }
  534. }
  535. } else { /* mb_type == 33, DC_128_PRED block type */
  536. for (i = 0; i < 4; i++)
  537. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
  538. }
  539. write_back_intra_pred_mode(h);
  540. if (mb_type == 8) {
  541. ff_h264_check_intra4x4_pred_mode(h);
  542. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  543. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  544. } else {
  545. for (i = 0; i < 4; i++)
  546. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
  547. h->top_samples_available = 0x33FF;
  548. h->left_samples_available = 0x5F5F;
  549. }
  550. mb_type = MB_TYPE_INTRA4x4;
  551. } else { /* INTRA16x16 */
  552. dir = i_mb_type_info[mb_type - 8].pred_mode;
  553. dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
  554. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir, 0)) == -1) {
  555. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  556. return -1;
  557. }
  558. cbp = i_mb_type_info[mb_type - 8].cbp;
  559. mb_type = MB_TYPE_INTRA16x16;
  560. }
  561. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  562. for (i = 0; i < 4; i++)
  563. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  564. 0, 4 * 2 * sizeof(int16_t));
  565. if (s->pict_type == AV_PICTURE_TYPE_B) {
  566. for (i = 0; i < 4; i++)
  567. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  568. 0, 4 * 2 * sizeof(int16_t));
  569. }
  570. }
  571. if (!IS_INTRA4x4(mb_type)) {
  572. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy], DC_PRED, 8);
  573. }
  574. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  575. memset(h->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
  576. s->dsp.clear_blocks(h->mb + 0);
  577. s->dsp.clear_blocks(h->mb + 384);
  578. }
  579. if (!IS_INTRA16x16(mb_type) &&
  580. (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  581. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48) {
  582. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  583. return -1;
  584. }
  585. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc]
  586. : golomb_to_inter_cbp[vlc];
  587. }
  588. if (IS_INTRA16x16(mb_type) ||
  589. (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  590. s->qscale += svq3_get_se_golomb(&s->gb);
  591. if (s->qscale > 31u) {
  592. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  593. return -1;
  594. }
  595. }
  596. if (IS_INTRA16x16(mb_type)) {
  597. AV_ZERO128(h->mb_luma_dc[0] + 0);
  598. AV_ZERO128(h->mb_luma_dc[0] + 8);
  599. if (svq3_decode_block(&s->gb, h->mb_luma_dc[0], 0, 1)) {
  600. av_log(h->s.avctx, AV_LOG_ERROR,
  601. "error while decoding intra luma dc\n");
  602. return -1;
  603. }
  604. }
  605. if (cbp) {
  606. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  607. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  608. for (i = 0; i < 4; i++)
  609. if ((cbp & (1 << i))) {
  610. for (j = 0; j < 4; j++) {
  611. k = index ? (1 * (j & 1) + 2 * (i & 1) +
  612. 2 * (j & 2) + 4 * (i & 2))
  613. : (4 * i + j);
  614. h->non_zero_count_cache[scan8[k]] = 1;
  615. if (svq3_decode_block(&s->gb, &h->mb[16 * k], index, type)) {
  616. av_log(h->s.avctx, AV_LOG_ERROR,
  617. "error while decoding block\n");
  618. return -1;
  619. }
  620. }
  621. }
  622. if ((cbp & 0x30)) {
  623. for (i = 1; i < 3; ++i)
  624. if (svq3_decode_block(&s->gb, &h->mb[16 * 16 * i], 0, 3)) {
  625. av_log(h->s.avctx, AV_LOG_ERROR,
  626. "error while decoding chroma dc block\n");
  627. return -1;
  628. }
  629. if ((cbp & 0x20)) {
  630. for (i = 1; i < 3; i++) {
  631. for (j = 0; j < 4; j++) {
  632. k = 16 * i + j;
  633. h->non_zero_count_cache[scan8[k]] = 1;
  634. if (svq3_decode_block(&s->gb, &h->mb[16 * k], 1, 1)) {
  635. av_log(h->s.avctx, AV_LOG_ERROR,
  636. "error while decoding chroma ac block\n");
  637. return -1;
  638. }
  639. }
  640. }
  641. }
  642. }
  643. }
  644. h->cbp = cbp;
  645. s->current_picture.f.mb_type[mb_xy] = mb_type;
  646. if (IS_INTRA(mb_type))
  647. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8, 1);
  648. return 0;
  649. }
  650. static int svq3_decode_slice_header(AVCodecContext *avctx)
  651. {
  652. SVQ3Context *svq3 = avctx->priv_data;
  653. H264Context *h = &svq3->h;
  654. MpegEncContext *s = &h->s;
  655. const int mb_xy = h->mb_xy;
  656. int i, header;
  657. unsigned slice_id;
  658. header = get_bits(&s->gb, 8);
  659. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  660. /* TODO: what? */
  661. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  662. return -1;
  663. } else {
  664. int length = header >> 5 & 3;
  665. svq3->next_slice_index = get_bits_count(&s->gb) +
  666. 8 * show_bits(&s->gb, 8 * length) +
  667. 8 * length;
  668. if (svq3->next_slice_index > s->gb.size_in_bits) {
  669. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  670. return -1;
  671. }
  672. s->gb.size_in_bits = svq3->next_slice_index - 8 * (length - 1);
  673. skip_bits(&s->gb, 8);
  674. if (svq3->watermark_key) {
  675. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1]);
  676. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1],
  677. header ^ svq3->watermark_key);
  678. }
  679. if (length > 0) {
  680. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  681. &s->gb.buffer[s->gb.size_in_bits >> 3], length - 1);
  682. }
  683. skip_bits_long(&s->gb, 0);
  684. }
  685. if ((slice_id = svq3_get_ue_golomb(&s->gb)) >= 3) {
  686. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", slice_id);
  687. return -1;
  688. }
  689. h->slice_type = golomb_to_pict_type[slice_id];
  690. if ((header & 0x9F) == 2) {
  691. i = (s->mb_num < 64) ? 6 : (1 + av_log2(s->mb_num - 1));
  692. s->mb_skip_run = get_bits(&s->gb, i) -
  693. (s->mb_y * s->mb_width + s->mb_x);
  694. } else {
  695. skip_bits1(&s->gb);
  696. s->mb_skip_run = 0;
  697. }
  698. h->slice_num = get_bits(&s->gb, 8);
  699. s->qscale = get_bits(&s->gb, 5);
  700. s->adaptive_quant = get_bits1(&s->gb);
  701. /* unknown fields */
  702. skip_bits1(&s->gb);
  703. if (svq3->unknown_flag)
  704. skip_bits1(&s->gb);
  705. skip_bits1(&s->gb);
  706. skip_bits(&s->gb, 2);
  707. while (get_bits1(&s->gb))
  708. skip_bits(&s->gb, 8);
  709. /* reset intra predictors and invalidate motion vector references */
  710. if (s->mb_x > 0) {
  711. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - 1] + 3,
  712. -1, 4 * sizeof(int8_t));
  713. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_x],
  714. -1, 8 * sizeof(int8_t) * s->mb_x);
  715. }
  716. if (s->mb_y > 0) {
  717. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_stride],
  718. -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
  719. if (s->mb_x > 0)
  720. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
  721. }
  722. return 0;
  723. }
  724. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  725. {
  726. SVQ3Context *svq3 = avctx->priv_data;
  727. H264Context *h = &svq3->h;
  728. MpegEncContext *s = &h->s;
  729. int m;
  730. unsigned char *extradata;
  731. unsigned char *extradata_end;
  732. unsigned int size;
  733. int marker_found = 0;
  734. if (ff_h264_decode_init(avctx) < 0)
  735. return -1;
  736. s->flags = avctx->flags;
  737. s->flags2 = avctx->flags2;
  738. s->unrestricted_mv = 1;
  739. h->is_complex = 1;
  740. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  741. if (!s->context_initialized) {
  742. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  743. svq3->halfpel_flag = 1;
  744. svq3->thirdpel_flag = 1;
  745. svq3->unknown_flag = 0;
  746. /* prowl for the "SEQH" marker in the extradata */
  747. extradata = (unsigned char *)avctx->extradata;
  748. extradata_end = avctx->extradata + avctx->extradata_size;
  749. if (extradata) {
  750. for (m = 0; m + 8 < avctx->extradata_size; m++) {
  751. if (!memcmp(extradata, "SEQH", 4)) {
  752. marker_found = 1;
  753. break;
  754. }
  755. extradata++;
  756. }
  757. }
  758. /* if a match was found, parse the extra data */
  759. if (marker_found) {
  760. GetBitContext gb;
  761. int frame_size_code;
  762. size = AV_RB32(&extradata[4]);
  763. if (size > extradata_end - extradata - 8)
  764. return AVERROR_INVALIDDATA;
  765. init_get_bits(&gb, extradata + 8, size * 8);
  766. /* 'frame size code' and optional 'width, height' */
  767. frame_size_code = get_bits(&gb, 3);
  768. switch (frame_size_code) {
  769. case 0:
  770. avctx->width = 160;
  771. avctx->height = 120;
  772. break;
  773. case 1:
  774. avctx->width = 128;
  775. avctx->height = 96;
  776. break;
  777. case 2:
  778. avctx->width = 176;
  779. avctx->height = 144;
  780. break;
  781. case 3:
  782. avctx->width = 352;
  783. avctx->height = 288;
  784. break;
  785. case 4:
  786. avctx->width = 704;
  787. avctx->height = 576;
  788. break;
  789. case 5:
  790. avctx->width = 240;
  791. avctx->height = 180;
  792. break;
  793. case 6:
  794. avctx->width = 320;
  795. avctx->height = 240;
  796. break;
  797. case 7:
  798. avctx->width = get_bits(&gb, 12);
  799. avctx->height = get_bits(&gb, 12);
  800. break;
  801. }
  802. svq3->halfpel_flag = get_bits1(&gb);
  803. svq3->thirdpel_flag = get_bits1(&gb);
  804. /* unknown fields */
  805. skip_bits1(&gb);
  806. skip_bits1(&gb);
  807. skip_bits1(&gb);
  808. skip_bits1(&gb);
  809. s->low_delay = get_bits1(&gb);
  810. /* unknown field */
  811. skip_bits1(&gb);
  812. while (get_bits1(&gb))
  813. skip_bits(&gb, 8);
  814. svq3->unknown_flag = get_bits1(&gb);
  815. avctx->has_b_frames = !s->low_delay;
  816. if (svq3->unknown_flag) {
  817. #if CONFIG_ZLIB
  818. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  819. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  820. int u1 = svq3_get_ue_golomb(&gb);
  821. int u2 = get_bits(&gb, 8);
  822. int u3 = get_bits(&gb, 2);
  823. int u4 = svq3_get_ue_golomb(&gb);
  824. unsigned long buf_len = watermark_width *
  825. watermark_height * 4;
  826. int offset = get_bits_count(&gb) + 7 >> 3;
  827. uint8_t *buf;
  828. if ((uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
  829. return -1;
  830. buf = av_malloc(buf_len);
  831. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n",
  832. watermark_width, watermark_height);
  833. av_log(avctx, AV_LOG_DEBUG,
  834. "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
  835. u1, u2, u3, u4, offset);
  836. if (uncompress(buf, &buf_len, extradata + 8 + offset,
  837. size - offset) != Z_OK) {
  838. av_log(avctx, AV_LOG_ERROR,
  839. "could not uncompress watermark logo\n");
  840. av_free(buf);
  841. return -1;
  842. }
  843. svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  844. svq3->watermark_key = svq3->watermark_key << 16 |
  845. svq3->watermark_key;
  846. av_log(avctx, AV_LOG_DEBUG,
  847. "watermark key %#x\n", svq3->watermark_key);
  848. av_free(buf);
  849. #else
  850. av_log(avctx, AV_LOG_ERROR,
  851. "this svq3 file contains watermark which need zlib support compiled in\n");
  852. return -1;
  853. #endif
  854. }
  855. }
  856. s->width = avctx->width;
  857. s->height = avctx->height;
  858. if (ff_MPV_common_init(s) < 0)
  859. return -1;
  860. h->b_stride = 4 * s->mb_width;
  861. if (ff_h264_alloc_tables(h) < 0) {
  862. av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
  863. return AVERROR(ENOMEM);
  864. }
  865. }
  866. return 0;
  867. }
  868. static int svq3_decode_frame(AVCodecContext *avctx, void *data,
  869. int *got_frame, AVPacket *avpkt)
  870. {
  871. const uint8_t *buf = avpkt->data;
  872. SVQ3Context *svq3 = avctx->priv_data;
  873. H264Context *h = &svq3->h;
  874. MpegEncContext *s = &h->s;
  875. int buf_size = avpkt->size;
  876. int m;
  877. /* special case for last picture */
  878. if (buf_size == 0) {
  879. if (s->next_picture_ptr && !s->low_delay) {
  880. *(AVFrame *) data = s->next_picture.f;
  881. s->next_picture_ptr = NULL;
  882. *got_frame = 1;
  883. }
  884. return 0;
  885. }
  886. init_get_bits(&s->gb, buf, 8 * buf_size);
  887. s->mb_x = s->mb_y = h->mb_xy = 0;
  888. if (svq3_decode_slice_header(avctx))
  889. return -1;
  890. s->pict_type = h->slice_type;
  891. s->picture_number = h->slice_num;
  892. if (avctx->debug & FF_DEBUG_PICT_INFO)
  893. av_log(h->s.avctx, AV_LOG_DEBUG,
  894. "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  895. av_get_picture_type_char(s->pict_type),
  896. svq3->halfpel_flag, svq3->thirdpel_flag,
  897. s->adaptive_quant, s->qscale, h->slice_num);
  898. /* for skipping the frame */
  899. s->current_picture.f.pict_type = s->pict_type;
  900. s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  901. /* Skip B-frames if we do not have reference frames. */
  902. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  903. return 0;
  904. if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
  905. avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
  906. avctx->skip_frame >= AVDISCARD_ALL)
  907. return 0;
  908. if (s->next_p_frame_damaged) {
  909. if (s->pict_type == AV_PICTURE_TYPE_B)
  910. return 0;
  911. else
  912. s->next_p_frame_damaged = 0;
  913. }
  914. if (ff_h264_frame_start(h) < 0)
  915. return -1;
  916. if (s->pict_type == AV_PICTURE_TYPE_B) {
  917. h->frame_num_offset = h->slice_num - h->prev_frame_num;
  918. if (h->frame_num_offset < 0)
  919. h->frame_num_offset += 256;
  920. if (h->frame_num_offset == 0 ||
  921. h->frame_num_offset >= h->prev_frame_num_offset) {
  922. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  923. return -1;
  924. }
  925. } else {
  926. h->prev_frame_num = h->frame_num;
  927. h->frame_num = h->slice_num;
  928. h->prev_frame_num_offset = h->frame_num - h->prev_frame_num;
  929. if (h->prev_frame_num_offset < 0)
  930. h->prev_frame_num_offset += 256;
  931. }
  932. for (m = 0; m < 2; m++) {
  933. int i;
  934. for (i = 0; i < 4; i++) {
  935. int j;
  936. for (j = -1; j < 4; j++)
  937. h->ref_cache[m][scan8[0] + 8 * i + j] = 1;
  938. if (i < 3)
  939. h->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
  940. }
  941. }
  942. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  943. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  944. unsigned mb_type;
  945. h->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
  946. if ((get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  947. ((get_bits_count(&s->gb) & 7) == 0 ||
  948. show_bits(&s->gb, -get_bits_count(&s->gb) & 7) == 0)) {
  949. skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb));
  950. s->gb.size_in_bits = 8 * buf_size;
  951. if (svq3_decode_slice_header(avctx))
  952. return -1;
  953. /* TODO: support s->mb_skip_run */
  954. }
  955. mb_type = svq3_get_ue_golomb(&s->gb);
  956. if (s->pict_type == AV_PICTURE_TYPE_I)
  957. mb_type += 8;
  958. else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
  959. mb_type += 4;
  960. if (mb_type > 33 || svq3_decode_mb(svq3, mb_type)) {
  961. av_log(h->s.avctx, AV_LOG_ERROR,
  962. "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  963. return -1;
  964. }
  965. if (mb_type != 0)
  966. ff_h264_hl_decode_mb(h);
  967. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
  968. s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  969. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  970. }
  971. ff_draw_horiz_band(s, 16 * s->mb_y, 16);
  972. }
  973. ff_MPV_frame_end(s);
  974. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  975. *(AVFrame *)data = s->current_picture.f;
  976. else
  977. *(AVFrame *)data = s->last_picture.f;
  978. /* Do not output the last pic after seeking. */
  979. if (s->last_picture_ptr || s->low_delay)
  980. *got_frame = 1;
  981. return buf_size;
  982. }
  983. static int svq3_decode_end(AVCodecContext *avctx)
  984. {
  985. SVQ3Context *svq3 = avctx->priv_data;
  986. H264Context *h = &svq3->h;
  987. MpegEncContext *s = &h->s;
  988. ff_h264_free_context(h);
  989. ff_MPV_common_end(s);
  990. return 0;
  991. }
  992. AVCodec ff_svq3_decoder = {
  993. .name = "svq3",
  994. .type = AVMEDIA_TYPE_VIDEO,
  995. .id = AV_CODEC_ID_SVQ3,
  996. .priv_data_size = sizeof(SVQ3Context),
  997. .init = svq3_decode_init,
  998. .close = svq3_decode_end,
  999. .decode = svq3_decode_frame,
  1000. .capabilities = CODEC_CAP_DRAW_HORIZ_BAND |
  1001. CODEC_CAP_DR1 |
  1002. CODEC_CAP_DELAY,
  1003. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  1004. .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
  1005. AV_PIX_FMT_NONE},
  1006. };