You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2404 lines
86KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/ppc/cpu.h"
  50. #include "libavutil/x86/asm.h"
  51. #include "libavutil/x86/cpu.h"
  52. #include "rgb2rgb.h"
  53. #include "swscale.h"
  54. #include "swscale_internal.h"
  55. static void handle_formats(SwsContext *c);
  56. unsigned swscale_version(void)
  57. {
  58. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  59. return LIBSWSCALE_VERSION_INT;
  60. }
  61. const char *swscale_configuration(void)
  62. {
  63. return FFMPEG_CONFIGURATION;
  64. }
  65. const char *swscale_license(void)
  66. {
  67. #define LICENSE_PREFIX "libswscale license: "
  68. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  69. }
  70. typedef struct FormatEntry {
  71. uint8_t is_supported_in :1;
  72. uint8_t is_supported_out :1;
  73. uint8_t is_supported_endianness :1;
  74. } FormatEntry;
  75. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  76. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  77. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  78. [AV_PIX_FMT_RGB24] = { 1, 1 },
  79. [AV_PIX_FMT_BGR24] = { 1, 1 },
  80. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  82. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  83. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  84. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  85. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  86. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  87. [AV_PIX_FMT_PAL8] = { 1, 0 },
  88. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  90. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  91. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  92. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  93. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  94. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  95. [AV_PIX_FMT_BGR8] = { 1, 1 },
  96. [AV_PIX_FMT_BGR4] = { 0, 1 },
  97. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  98. [AV_PIX_FMT_RGB8] = { 1, 1 },
  99. [AV_PIX_FMT_RGB4] = { 0, 1 },
  100. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  101. [AV_PIX_FMT_NV12] = { 1, 1 },
  102. [AV_PIX_FMT_NV21] = { 1, 1 },
  103. [AV_PIX_FMT_ARGB] = { 1, 1 },
  104. [AV_PIX_FMT_RGBA] = { 1, 1 },
  105. [AV_PIX_FMT_ABGR] = { 1, 1 },
  106. [AV_PIX_FMT_BGRA] = { 1, 1 },
  107. [AV_PIX_FMT_0RGB] = { 1, 1 },
  108. [AV_PIX_FMT_RGB0] = { 1, 1 },
  109. [AV_PIX_FMT_0BGR] = { 1, 1 },
  110. [AV_PIX_FMT_BGR0] = { 1, 1 },
  111. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  112. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  113. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  115. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  118. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  134. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  135. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  136. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  137. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  138. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  139. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  140. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  141. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  142. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  143. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  144. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  150. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  151. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  158. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  159. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  160. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  161. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  162. [AV_PIX_FMT_YA8] = { 1, 1 },
  163. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  164. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  165. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  166. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  168. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  169. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  197. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  198. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  199. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  200. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  201. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  202. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  203. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  204. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  205. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  206. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  213. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  214. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  215. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  216. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  217. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  218. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  219. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  220. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  221. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  222. };
  223. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  224. {
  225. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  226. format_entries[pix_fmt].is_supported_in : 0;
  227. }
  228. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  229. {
  230. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  231. format_entries[pix_fmt].is_supported_out : 0;
  232. }
  233. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  234. {
  235. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  236. format_entries[pix_fmt].is_supported_endianness : 0;
  237. }
  238. static double getSplineCoeff(double a, double b, double c, double d,
  239. double dist)
  240. {
  241. if (dist <= 1.0)
  242. return ((d * dist + c) * dist + b) * dist + a;
  243. else
  244. return getSplineCoeff(0.0,
  245. b + 2.0 * c + 3.0 * d,
  246. c + 3.0 * d,
  247. -b - 3.0 * c - 6.0 * d,
  248. dist - 1.0);
  249. }
  250. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  251. {
  252. if (pos == -1 || pos <= -513) {
  253. pos = (128 << chr_subsample) - 128;
  254. }
  255. pos += 128; // relative to ideal left edge
  256. return pos >> chr_subsample;
  257. }
  258. typedef struct {
  259. int flag; ///< flag associated to the algorithm
  260. const char *description; ///< human-readable description
  261. int size_factor; ///< size factor used when initing the filters
  262. } ScaleAlgorithm;
  263. static const ScaleAlgorithm scale_algorithms[] = {
  264. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  265. { SWS_BICUBIC, "bicubic", 4 },
  266. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  267. { SWS_BILINEAR, "bilinear", 2 },
  268. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  269. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  270. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  271. { SWS_POINT, "nearest neighbor / point", -1 },
  272. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  273. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  274. { SWS_X, "experimental", 8 },
  275. };
  276. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  277. int *outFilterSize, int xInc, int srcW,
  278. int dstW, int filterAlign, int one,
  279. int flags, int cpu_flags,
  280. SwsVector *srcFilter, SwsVector *dstFilter,
  281. double param[2], int srcPos, int dstPos)
  282. {
  283. int i;
  284. int filterSize;
  285. int filter2Size;
  286. int minFilterSize;
  287. int64_t *filter = NULL;
  288. int64_t *filter2 = NULL;
  289. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  290. int ret = -1;
  291. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  292. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  293. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  294. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  295. int i;
  296. filterSize = 1;
  297. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  298. dstW, sizeof(*filter) * filterSize, fail);
  299. for (i = 0; i < dstW; i++) {
  300. filter[i * filterSize] = fone;
  301. (*filterPos)[i] = i;
  302. }
  303. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  304. int i;
  305. int64_t xDstInSrc;
  306. filterSize = 1;
  307. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  308. dstW, sizeof(*filter) * filterSize, fail);
  309. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  310. for (i = 0; i < dstW; i++) {
  311. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  312. (*filterPos)[i] = xx;
  313. filter[i] = fone;
  314. xDstInSrc += xInc;
  315. }
  316. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  317. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  318. int i;
  319. int64_t xDstInSrc;
  320. filterSize = 2;
  321. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  322. dstW, sizeof(*filter) * filterSize, fail);
  323. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  324. for (i = 0; i < dstW; i++) {
  325. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  326. int j;
  327. (*filterPos)[i] = xx;
  328. // bilinear upscale / linear interpolate / area averaging
  329. for (j = 0; j < filterSize; j++) {
  330. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  331. if (coeff < 0)
  332. coeff = 0;
  333. filter[i * filterSize + j] = coeff;
  334. xx++;
  335. }
  336. xDstInSrc += xInc;
  337. }
  338. } else {
  339. int64_t xDstInSrc;
  340. int sizeFactor = -1;
  341. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  342. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  343. sizeFactor = scale_algorithms[i].size_factor;
  344. break;
  345. }
  346. }
  347. if (flags & SWS_LANCZOS)
  348. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  349. av_assert0(sizeFactor > 0);
  350. if (xInc <= 1 << 16)
  351. filterSize = 1 + sizeFactor; // upscale
  352. else
  353. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  354. filterSize = FFMIN(filterSize, srcW - 2);
  355. filterSize = FFMAX(filterSize, 1);
  356. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  357. dstW, sizeof(*filter) * filterSize, fail);
  358. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  359. for (i = 0; i < dstW; i++) {
  360. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  361. int j;
  362. (*filterPos)[i] = xx;
  363. for (j = 0; j < filterSize; j++) {
  364. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  365. double floatd;
  366. int64_t coeff;
  367. if (xInc > 1 << 16)
  368. d = d * dstW / srcW;
  369. floatd = d * (1.0 / (1 << 30));
  370. if (flags & SWS_BICUBIC) {
  371. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  372. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  373. if (d >= 1LL << 31) {
  374. coeff = 0.0;
  375. } else {
  376. int64_t dd = (d * d) >> 30;
  377. int64_t ddd = (dd * d) >> 30;
  378. if (d < 1LL << 30)
  379. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  380. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  381. (6 * (1 << 24) - 2 * B) * (1 << 30);
  382. else
  383. coeff = (-B - 6 * C) * ddd +
  384. (6 * B + 30 * C) * dd +
  385. (-12 * B - 48 * C) * d +
  386. (8 * B + 24 * C) * (1 << 30);
  387. }
  388. coeff /= (1LL<<54)/fone;
  389. }
  390. #if 0
  391. else if (flags & SWS_X) {
  392. double p = param ? param * 0.01 : 0.3;
  393. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  394. coeff *= pow(2.0, -p * d * d);
  395. }
  396. #endif
  397. else if (flags & SWS_X) {
  398. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  399. double c;
  400. if (floatd < 1.0)
  401. c = cos(floatd * M_PI);
  402. else
  403. c = -1.0;
  404. if (c < 0.0)
  405. c = -pow(-c, A);
  406. else
  407. c = pow(c, A);
  408. coeff = (c * 0.5 + 0.5) * fone;
  409. } else if (flags & SWS_AREA) {
  410. int64_t d2 = d - (1 << 29);
  411. if (d2 * xInc < -(1LL << (29 + 16)))
  412. coeff = 1.0 * (1LL << (30 + 16));
  413. else if (d2 * xInc < (1LL << (29 + 16)))
  414. coeff = -d2 * xInc + (1LL << (29 + 16));
  415. else
  416. coeff = 0.0;
  417. coeff *= fone >> (30 + 16);
  418. } else if (flags & SWS_GAUSS) {
  419. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  420. coeff = exp2(-p * floatd * floatd) * fone;
  421. } else if (flags & SWS_SINC) {
  422. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  423. } else if (flags & SWS_LANCZOS) {
  424. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  425. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  426. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  427. if (floatd > p)
  428. coeff = 0;
  429. } else if (flags & SWS_BILINEAR) {
  430. coeff = (1 << 30) - d;
  431. if (coeff < 0)
  432. coeff = 0;
  433. coeff *= fone >> 30;
  434. } else if (flags & SWS_SPLINE) {
  435. double p = -2.196152422706632;
  436. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  437. } else {
  438. av_assert0(0);
  439. }
  440. filter[i * filterSize + j] = coeff;
  441. xx++;
  442. }
  443. xDstInSrc += 2 * xInc;
  444. }
  445. }
  446. /* apply src & dst Filter to filter -> filter2
  447. * av_free(filter);
  448. */
  449. av_assert0(filterSize > 0);
  450. filter2Size = filterSize;
  451. if (srcFilter)
  452. filter2Size += srcFilter->length - 1;
  453. if (dstFilter)
  454. filter2Size += dstFilter->length - 1;
  455. av_assert0(filter2Size > 0);
  456. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  457. for (i = 0; i < dstW; i++) {
  458. int j, k;
  459. if (srcFilter) {
  460. for (k = 0; k < srcFilter->length; k++) {
  461. for (j = 0; j < filterSize; j++)
  462. filter2[i * filter2Size + k + j] +=
  463. srcFilter->coeff[k] * filter[i * filterSize + j];
  464. }
  465. } else {
  466. for (j = 0; j < filterSize; j++)
  467. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  468. }
  469. // FIXME dstFilter
  470. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  471. }
  472. av_freep(&filter);
  473. /* try to reduce the filter-size (step1 find size and shift left) */
  474. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  475. minFilterSize = 0;
  476. for (i = dstW - 1; i >= 0; i--) {
  477. int min = filter2Size;
  478. int j;
  479. int64_t cutOff = 0.0;
  480. /* get rid of near zero elements on the left by shifting left */
  481. for (j = 0; j < filter2Size; j++) {
  482. int k;
  483. cutOff += FFABS(filter2[i * filter2Size]);
  484. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  485. break;
  486. /* preserve monotonicity because the core can't handle the
  487. * filter otherwise */
  488. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  489. break;
  490. // move filter coefficients left
  491. for (k = 1; k < filter2Size; k++)
  492. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  493. filter2[i * filter2Size + k - 1] = 0;
  494. (*filterPos)[i]++;
  495. }
  496. cutOff = 0;
  497. /* count near zeros on the right */
  498. for (j = filter2Size - 1; j > 0; j--) {
  499. cutOff += FFABS(filter2[i * filter2Size + j]);
  500. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  501. break;
  502. min--;
  503. }
  504. if (min > minFilterSize)
  505. minFilterSize = min;
  506. }
  507. if (PPC_ALTIVEC(cpu_flags)) {
  508. // we can handle the special case 4, so we don't want to go the full 8
  509. if (minFilterSize < 5)
  510. filterAlign = 4;
  511. /* We really don't want to waste our time doing useless computation, so
  512. * fall back on the scalar C code for very small filters.
  513. * Vectorizing is worth it only if you have a decent-sized vector. */
  514. if (minFilterSize < 3)
  515. filterAlign = 1;
  516. }
  517. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  518. // special case for unscaled vertical filtering
  519. if (minFilterSize == 1 && filterAlign == 2)
  520. filterAlign = 1;
  521. }
  522. av_assert0(minFilterSize > 0);
  523. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  524. av_assert0(filterSize > 0);
  525. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  526. if (!filter)
  527. goto fail;
  528. if (filterSize >= MAX_FILTER_SIZE * 16 /
  529. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  530. ret = RETCODE_USE_CASCADE;
  531. goto fail;
  532. }
  533. *outFilterSize = filterSize;
  534. if (flags & SWS_PRINT_INFO)
  535. av_log(NULL, AV_LOG_VERBOSE,
  536. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  537. filter2Size, filterSize);
  538. /* try to reduce the filter-size (step2 reduce it) */
  539. for (i = 0; i < dstW; i++) {
  540. int j;
  541. for (j = 0; j < filterSize; j++) {
  542. if (j >= filter2Size)
  543. filter[i * filterSize + j] = 0;
  544. else
  545. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  546. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  547. filter[i * filterSize + j] = 0;
  548. }
  549. }
  550. // FIXME try to align filterPos if possible
  551. // fix borders
  552. for (i = 0; i < dstW; i++) {
  553. int j;
  554. if ((*filterPos)[i] < 0) {
  555. // move filter coefficients left to compensate for filterPos
  556. for (j = 1; j < filterSize; j++) {
  557. int left = FFMAX(j + (*filterPos)[i], 0);
  558. filter[i * filterSize + left] += filter[i * filterSize + j];
  559. filter[i * filterSize + j] = 0;
  560. }
  561. (*filterPos)[i]= 0;
  562. }
  563. if ((*filterPos)[i] + filterSize > srcW) {
  564. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  565. int64_t acc = 0;
  566. for (j = filterSize - 1; j >= 0; j--) {
  567. if ((*filterPos)[i] + j >= srcW) {
  568. acc += filter[i * filterSize + j];
  569. filter[i * filterSize + j] = 0;
  570. }
  571. }
  572. for (j = filterSize - 1; j >= 0; j--) {
  573. if (j < shift) {
  574. filter[i * filterSize + j] = 0;
  575. } else {
  576. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  577. }
  578. }
  579. (*filterPos)[i]-= shift;
  580. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  581. }
  582. av_assert0((*filterPos)[i] >= 0);
  583. av_assert0((*filterPos)[i] < srcW);
  584. if ((*filterPos)[i] + filterSize > srcW) {
  585. for (j = 0; j < filterSize; j++) {
  586. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  587. }
  588. }
  589. }
  590. // Note the +1 is for the MMX scaler which reads over the end
  591. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  592. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  593. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  594. /* normalize & store in outFilter */
  595. for (i = 0; i < dstW; i++) {
  596. int j;
  597. int64_t error = 0;
  598. int64_t sum = 0;
  599. for (j = 0; j < filterSize; j++) {
  600. sum += filter[i * filterSize + j];
  601. }
  602. sum = (sum + one / 2) / one;
  603. if (!sum) {
  604. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  605. sum = 1;
  606. }
  607. for (j = 0; j < *outFilterSize; j++) {
  608. int64_t v = filter[i * filterSize + j] + error;
  609. int intV = ROUNDED_DIV(v, sum);
  610. (*outFilter)[i * (*outFilterSize) + j] = intV;
  611. error = v - intV * sum;
  612. }
  613. }
  614. (*filterPos)[dstW + 0] =
  615. (*filterPos)[dstW + 1] =
  616. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  617. * read over the end */
  618. for (i = 0; i < *outFilterSize; i++) {
  619. int k = (dstW - 1) * (*outFilterSize) + i;
  620. (*outFilter)[k + 1 * (*outFilterSize)] =
  621. (*outFilter)[k + 2 * (*outFilterSize)] =
  622. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  623. }
  624. ret = 0;
  625. fail:
  626. if(ret < 0)
  627. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  628. av_free(filter);
  629. av_free(filter2);
  630. return ret;
  631. }
  632. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  633. {
  634. int64_t W, V, Z, Cy, Cu, Cv;
  635. int64_t vr = table[0];
  636. int64_t ub = table[1];
  637. int64_t ug = -table[2];
  638. int64_t vg = -table[3];
  639. int64_t ONE = 65536;
  640. int64_t cy = ONE;
  641. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  642. int i;
  643. static const int8_t map[] = {
  644. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  645. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  646. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  647. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  648. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  649. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  650. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  651. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  652. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  653. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  654. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  655. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  656. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  657. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  658. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  659. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  660. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  661. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  662. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  663. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  664. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  665. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  666. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  667. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  668. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  669. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  670. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  671. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  672. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  673. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  674. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  675. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  676. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  677. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  678. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  679. };
  680. dstRange = 0; //FIXME range = 1 is handled elsewhere
  681. if (!dstRange) {
  682. cy = cy * 255 / 219;
  683. } else {
  684. vr = vr * 224 / 255;
  685. ub = ub * 224 / 255;
  686. ug = ug * 224 / 255;
  687. vg = vg * 224 / 255;
  688. }
  689. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  690. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  691. Z = ONE*ONE-W-V;
  692. Cy = ROUNDED_DIV(cy*Z, ONE);
  693. Cu = ROUNDED_DIV(ub*Z, ONE);
  694. Cv = ROUNDED_DIV(vr*Z, ONE);
  695. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  696. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  697. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  698. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  699. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  700. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  701. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  702. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  703. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  704. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  705. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  706. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  707. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  708. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  709. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  710. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  711. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  712. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  713. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  714. }
  715. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  716. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  717. }
  718. static void fill_xyztables(struct SwsContext *c)
  719. {
  720. int i;
  721. double xyzgamma = XYZ_GAMMA;
  722. double rgbgamma = 1.0 / RGB_GAMMA;
  723. double xyzgammainv = 1.0 / XYZ_GAMMA;
  724. double rgbgammainv = RGB_GAMMA;
  725. static const int16_t xyz2rgb_matrix[3][4] = {
  726. {13270, -6295, -2041},
  727. {-3969, 7682, 170},
  728. { 228, -835, 4329} };
  729. static const int16_t rgb2xyz_matrix[3][4] = {
  730. {1689, 1464, 739},
  731. { 871, 2929, 296},
  732. { 79, 488, 3891} };
  733. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  734. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  735. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  736. c->xyzgamma = xyzgamma_tab;
  737. c->rgbgamma = rgbgamma_tab;
  738. c->xyzgammainv = xyzgammainv_tab;
  739. c->rgbgammainv = rgbgammainv_tab;
  740. if (rgbgamma_tab[4095])
  741. return;
  742. /* set gamma vectors */
  743. for (i = 0; i < 4096; i++) {
  744. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  745. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  746. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  747. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  748. }
  749. }
  750. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  751. int srcRange, const int table[4], int dstRange,
  752. int brightness, int contrast, int saturation)
  753. {
  754. const AVPixFmtDescriptor *desc_dst;
  755. const AVPixFmtDescriptor *desc_src;
  756. int need_reinit = 0;
  757. handle_formats(c);
  758. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  759. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  760. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  761. dstRange = 0;
  762. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  763. srcRange = 0;
  764. if (c->srcRange != srcRange ||
  765. c->dstRange != dstRange ||
  766. c->brightness != brightness ||
  767. c->contrast != contrast ||
  768. c->saturation != saturation ||
  769. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  770. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  771. )
  772. need_reinit = 1;
  773. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  774. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  775. c->brightness = brightness;
  776. c->contrast = contrast;
  777. c->saturation = saturation;
  778. c->srcRange = srcRange;
  779. c->dstRange = dstRange;
  780. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  781. //and what we have in ticket 2939 looks better with this check
  782. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  783. ff_sws_init_range_convert(c);
  784. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  785. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  786. if (c->cascaded_context[c->cascaded_mainindex])
  787. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  788. if (!need_reinit)
  789. return 0;
  790. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  791. if (!c->cascaded_context[0] &&
  792. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  793. c->srcW && c->srcH && c->dstW && c->dstH) {
  794. enum AVPixelFormat tmp_format;
  795. int tmp_width, tmp_height;
  796. int srcW = c->srcW;
  797. int srcH = c->srcH;
  798. int dstW = c->dstW;
  799. int dstH = c->dstH;
  800. int ret;
  801. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  802. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  803. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  804. tmp_format = AV_PIX_FMT_BGRA64;
  805. } else {
  806. tmp_format = AV_PIX_FMT_BGR48;
  807. }
  808. } else {
  809. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  810. tmp_format = AV_PIX_FMT_BGRA;
  811. } else {
  812. tmp_format = AV_PIX_FMT_BGR24;
  813. }
  814. }
  815. if (srcW*srcH > dstW*dstH) {
  816. tmp_width = dstW;
  817. tmp_height = dstH;
  818. } else {
  819. tmp_width = srcW;
  820. tmp_height = srcH;
  821. }
  822. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  823. tmp_width, tmp_height, tmp_format, 64);
  824. if (ret < 0)
  825. return ret;
  826. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  827. tmp_width, tmp_height, tmp_format,
  828. c->flags, c->param);
  829. if (!c->cascaded_context[0])
  830. return -1;
  831. c->cascaded_context[0]->alphablend = c->alphablend;
  832. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  833. if (ret < 0)
  834. return ret;
  835. //we set both src and dst depending on that the RGB side will be ignored
  836. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  837. srcRange, table, dstRange,
  838. brightness, contrast, saturation);
  839. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  840. dstW, dstH, c->dstFormat,
  841. c->flags, NULL, NULL, c->param);
  842. if (!c->cascaded_context[1])
  843. return -1;
  844. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  845. srcRange, table, dstRange,
  846. 0, 1 << 16, 1 << 16);
  847. return 0;
  848. }
  849. return -1;
  850. }
  851. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  852. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  853. contrast, saturation);
  854. // FIXME factorize
  855. if (ARCH_PPC)
  856. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  857. contrast, saturation);
  858. }
  859. fill_rgb2yuv_table(c, table, dstRange);
  860. return 0;
  861. }
  862. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  863. int *srcRange, int **table, int *dstRange,
  864. int *brightness, int *contrast, int *saturation)
  865. {
  866. if (!c )
  867. return -1;
  868. *inv_table = c->srcColorspaceTable;
  869. *table = c->dstColorspaceTable;
  870. *srcRange = c->srcRange;
  871. *dstRange = c->dstRange;
  872. *brightness = c->brightness;
  873. *contrast = c->contrast;
  874. *saturation = c->saturation;
  875. return 0;
  876. }
  877. static int handle_jpeg(enum AVPixelFormat *format)
  878. {
  879. switch (*format) {
  880. case AV_PIX_FMT_YUVJ420P:
  881. *format = AV_PIX_FMT_YUV420P;
  882. return 1;
  883. case AV_PIX_FMT_YUVJ411P:
  884. *format = AV_PIX_FMT_YUV411P;
  885. return 1;
  886. case AV_PIX_FMT_YUVJ422P:
  887. *format = AV_PIX_FMT_YUV422P;
  888. return 1;
  889. case AV_PIX_FMT_YUVJ444P:
  890. *format = AV_PIX_FMT_YUV444P;
  891. return 1;
  892. case AV_PIX_FMT_YUVJ440P:
  893. *format = AV_PIX_FMT_YUV440P;
  894. return 1;
  895. case AV_PIX_FMT_GRAY8:
  896. case AV_PIX_FMT_YA8:
  897. case AV_PIX_FMT_GRAY16LE:
  898. case AV_PIX_FMT_GRAY16BE:
  899. case AV_PIX_FMT_YA16BE:
  900. case AV_PIX_FMT_YA16LE:
  901. return 1;
  902. default:
  903. return 0;
  904. }
  905. }
  906. static int handle_0alpha(enum AVPixelFormat *format)
  907. {
  908. switch (*format) {
  909. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  910. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  911. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  912. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  913. default: return 0;
  914. }
  915. }
  916. static int handle_xyz(enum AVPixelFormat *format)
  917. {
  918. switch (*format) {
  919. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  920. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  921. default: return 0;
  922. }
  923. }
  924. static void handle_formats(SwsContext *c)
  925. {
  926. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  927. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  928. c->srcXYZ |= handle_xyz(&c->srcFormat);
  929. c->dstXYZ |= handle_xyz(&c->dstFormat);
  930. if (c->srcXYZ || c->dstXYZ)
  931. fill_xyztables(c);
  932. }
  933. SwsContext *sws_alloc_context(void)
  934. {
  935. SwsContext *c = av_mallocz(sizeof(SwsContext));
  936. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  937. if (c) {
  938. c->av_class = &ff_sws_context_class;
  939. av_opt_set_defaults(c);
  940. }
  941. return c;
  942. }
  943. static uint16_t * alloc_gamma_tbl(double e)
  944. {
  945. int i = 0;
  946. uint16_t * tbl;
  947. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  948. if (!tbl)
  949. return NULL;
  950. for (i = 0; i < 65536; ++i) {
  951. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  952. }
  953. return tbl;
  954. }
  955. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  956. {
  957. switch(fmt) {
  958. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  959. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  960. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  961. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  962. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  963. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  964. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  965. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  966. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  967. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  968. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  969. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  970. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  971. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  972. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  973. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  974. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  975. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  976. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  977. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  978. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  979. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  980. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  981. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  982. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  983. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  984. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  985. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  986. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  987. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  988. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  989. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  990. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  991. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  992. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  993. // case AV_PIX_FMT_AYUV64LE:
  994. // case AV_PIX_FMT_AYUV64BE:
  995. // case AV_PIX_FMT_PAL8:
  996. default: return AV_PIX_FMT_NONE;
  997. }
  998. }
  999. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1000. SwsFilter *dstFilter)
  1001. {
  1002. int i, j;
  1003. int usesVFilter, usesHFilter;
  1004. int unscaled;
  1005. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1006. int srcW = c->srcW;
  1007. int srcH = c->srcH;
  1008. int dstW = c->dstW;
  1009. int dstH = c->dstH;
  1010. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1011. int flags, cpu_flags;
  1012. enum AVPixelFormat srcFormat = c->srcFormat;
  1013. enum AVPixelFormat dstFormat = c->dstFormat;
  1014. const AVPixFmtDescriptor *desc_src;
  1015. const AVPixFmtDescriptor *desc_dst;
  1016. int ret = 0;
  1017. enum AVPixelFormat tmpFmt;
  1018. cpu_flags = av_get_cpu_flags();
  1019. flags = c->flags;
  1020. emms_c();
  1021. if (!rgb15to16)
  1022. ff_sws_rgb2rgb_init();
  1023. unscaled = (srcW == dstW && srcH == dstH);
  1024. c->srcRange |= handle_jpeg(&c->srcFormat);
  1025. c->dstRange |= handle_jpeg(&c->dstFormat);
  1026. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1027. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1028. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1029. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1030. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1031. c->dstRange, 0, 1 << 16, 1 << 16);
  1032. handle_formats(c);
  1033. srcFormat = c->srcFormat;
  1034. dstFormat = c->dstFormat;
  1035. desc_src = av_pix_fmt_desc_get(srcFormat);
  1036. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1037. // If the source has no alpha then disable alpha blendaway
  1038. if (c->src0Alpha)
  1039. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1040. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1041. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1042. if (!sws_isSupportedInput(srcFormat)) {
  1043. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1044. av_get_pix_fmt_name(srcFormat));
  1045. return AVERROR(EINVAL);
  1046. }
  1047. if (!sws_isSupportedOutput(dstFormat)) {
  1048. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1049. av_get_pix_fmt_name(dstFormat));
  1050. return AVERROR(EINVAL);
  1051. }
  1052. }
  1053. av_assert2(desc_src && desc_dst);
  1054. i = flags & (SWS_POINT |
  1055. SWS_AREA |
  1056. SWS_BILINEAR |
  1057. SWS_FAST_BILINEAR |
  1058. SWS_BICUBIC |
  1059. SWS_X |
  1060. SWS_GAUSS |
  1061. SWS_LANCZOS |
  1062. SWS_SINC |
  1063. SWS_SPLINE |
  1064. SWS_BICUBLIN);
  1065. /* provide a default scaler if not set by caller */
  1066. if (!i) {
  1067. if (dstW < srcW && dstH < srcH)
  1068. flags |= SWS_BICUBIC;
  1069. else if (dstW > srcW && dstH > srcH)
  1070. flags |= SWS_BICUBIC;
  1071. else
  1072. flags |= SWS_BICUBIC;
  1073. c->flags = flags;
  1074. } else if (i & (i - 1)) {
  1075. av_log(c, AV_LOG_ERROR,
  1076. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1077. return AVERROR(EINVAL);
  1078. }
  1079. /* sanity check */
  1080. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1081. /* FIXME check if these are enough and try to lower them after
  1082. * fixing the relevant parts of the code */
  1083. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1084. srcW, srcH, dstW, dstH);
  1085. return AVERROR(EINVAL);
  1086. }
  1087. if (flags & SWS_FAST_BILINEAR) {
  1088. if (srcW < 8 || dstW < 8) {
  1089. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1090. c->flags = flags;
  1091. }
  1092. }
  1093. if (!dstFilter)
  1094. dstFilter = &dummyFilter;
  1095. if (!srcFilter)
  1096. srcFilter = &dummyFilter;
  1097. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1098. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1099. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1100. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1101. c->vRounder = 4 * 0x0001000100010001ULL;
  1102. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1103. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1104. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1105. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1106. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1107. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1108. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1109. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1110. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1111. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1112. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1113. if (dstW&1) {
  1114. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1115. flags |= SWS_FULL_CHR_H_INT;
  1116. c->flags = flags;
  1117. }
  1118. if ( c->chrSrcHSubSample == 0
  1119. && c->chrSrcVSubSample == 0
  1120. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1121. && !(c->flags & SWS_FAST_BILINEAR)
  1122. ) {
  1123. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1124. flags |= SWS_FULL_CHR_H_INT;
  1125. c->flags = flags;
  1126. }
  1127. }
  1128. if (c->dither == SWS_DITHER_AUTO) {
  1129. if (flags & SWS_ERROR_DIFFUSION)
  1130. c->dither = SWS_DITHER_ED;
  1131. }
  1132. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1133. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1134. dstFormat == AV_PIX_FMT_BGR8 ||
  1135. dstFormat == AV_PIX_FMT_RGB8) {
  1136. if (c->dither == SWS_DITHER_AUTO)
  1137. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1138. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1139. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1140. av_log(c, AV_LOG_DEBUG,
  1141. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1142. av_get_pix_fmt_name(dstFormat));
  1143. flags |= SWS_FULL_CHR_H_INT;
  1144. c->flags = flags;
  1145. }
  1146. }
  1147. if (flags & SWS_FULL_CHR_H_INT) {
  1148. if (c->dither == SWS_DITHER_BAYER) {
  1149. av_log(c, AV_LOG_DEBUG,
  1150. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1151. av_get_pix_fmt_name(dstFormat));
  1152. c->dither = SWS_DITHER_ED;
  1153. }
  1154. }
  1155. }
  1156. if (isPlanarRGB(dstFormat)) {
  1157. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1158. av_log(c, AV_LOG_DEBUG,
  1159. "%s output is not supported with half chroma resolution, switching to full\n",
  1160. av_get_pix_fmt_name(dstFormat));
  1161. flags |= SWS_FULL_CHR_H_INT;
  1162. c->flags = flags;
  1163. }
  1164. }
  1165. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1166. * chroma interpolation */
  1167. if (flags & SWS_FULL_CHR_H_INT &&
  1168. isAnyRGB(dstFormat) &&
  1169. !isPlanarRGB(dstFormat) &&
  1170. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1171. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1172. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1173. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1174. dstFormat != AV_PIX_FMT_RGB48LE &&
  1175. dstFormat != AV_PIX_FMT_RGB48BE &&
  1176. dstFormat != AV_PIX_FMT_BGR48LE &&
  1177. dstFormat != AV_PIX_FMT_BGR48BE &&
  1178. dstFormat != AV_PIX_FMT_RGBA &&
  1179. dstFormat != AV_PIX_FMT_ARGB &&
  1180. dstFormat != AV_PIX_FMT_BGRA &&
  1181. dstFormat != AV_PIX_FMT_ABGR &&
  1182. dstFormat != AV_PIX_FMT_RGB24 &&
  1183. dstFormat != AV_PIX_FMT_BGR24 &&
  1184. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1185. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1186. dstFormat != AV_PIX_FMT_BGR8 &&
  1187. dstFormat != AV_PIX_FMT_RGB8
  1188. ) {
  1189. av_log(c, AV_LOG_WARNING,
  1190. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1191. av_get_pix_fmt_name(dstFormat));
  1192. flags &= ~SWS_FULL_CHR_H_INT;
  1193. c->flags = flags;
  1194. }
  1195. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1196. c->chrDstHSubSample = 1;
  1197. // drop some chroma lines if the user wants it
  1198. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1199. SWS_SRC_V_CHR_DROP_SHIFT;
  1200. c->chrSrcVSubSample += c->vChrDrop;
  1201. /* drop every other pixel for chroma calculation unless user
  1202. * wants full chroma */
  1203. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1204. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1205. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1206. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1207. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1208. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1209. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1210. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1211. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1212. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1213. (flags & SWS_FAST_BILINEAR)))
  1214. c->chrSrcHSubSample = 1;
  1215. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1216. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1217. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1218. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1219. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1220. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1221. c->srcBpc = desc_src->comp[0].depth;
  1222. if (c->srcBpc < 8)
  1223. c->srcBpc = 8;
  1224. c->dstBpc = desc_dst->comp[0].depth;
  1225. if (c->dstBpc < 8)
  1226. c->dstBpc = 8;
  1227. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1228. c->srcBpc = 16;
  1229. if (c->dstBpc == 16)
  1230. dst_stride <<= 1;
  1231. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1232. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1233. c->chrDstW >= c->chrSrcW &&
  1234. (srcW & 15) == 0;
  1235. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1236. && (flags & SWS_FAST_BILINEAR)) {
  1237. if (flags & SWS_PRINT_INFO)
  1238. av_log(c, AV_LOG_INFO,
  1239. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1240. }
  1241. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1242. c->canMMXEXTBeUsed = 0;
  1243. } else
  1244. c->canMMXEXTBeUsed = 0;
  1245. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1246. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1247. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1248. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1249. * correct scaling.
  1250. * n-2 is the last chrominance sample available.
  1251. * This is not perfect, but no one should notice the difference, the more
  1252. * correct variant would be like the vertical one, but that would require
  1253. * some special code for the first and last pixel */
  1254. if (flags & SWS_FAST_BILINEAR) {
  1255. if (c->canMMXEXTBeUsed) {
  1256. c->lumXInc += 20;
  1257. c->chrXInc += 20;
  1258. }
  1259. // we don't use the x86 asm scaler if MMX is available
  1260. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1261. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1262. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1263. }
  1264. }
  1265. // hardcoded for now
  1266. c->gamma_value = 2.2;
  1267. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1268. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1269. SwsContext *c2;
  1270. c->cascaded_context[0] = NULL;
  1271. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1272. srcW, srcH, tmpFmt, 64);
  1273. if (ret < 0)
  1274. return ret;
  1275. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1276. srcW, srcH, tmpFmt,
  1277. flags, NULL, NULL, c->param);
  1278. if (!c->cascaded_context[0]) {
  1279. return -1;
  1280. }
  1281. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1282. dstW, dstH, tmpFmt,
  1283. flags, srcFilter, dstFilter, c->param);
  1284. if (!c->cascaded_context[1])
  1285. return -1;
  1286. c2 = c->cascaded_context[1];
  1287. c2->is_internal_gamma = 1;
  1288. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1289. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1290. if (!c2->gamma || !c2->inv_gamma)
  1291. return AVERROR(ENOMEM);
  1292. // is_internal_flag is set after creating the context
  1293. // to properly create the gamma convert FilterDescriptor
  1294. // we have to re-initialize it
  1295. ff_free_filters(c2);
  1296. if (ff_init_filters(c2) < 0) {
  1297. sws_freeContext(c2);
  1298. return -1;
  1299. }
  1300. c->cascaded_context[2] = NULL;
  1301. if (dstFormat != tmpFmt) {
  1302. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1303. dstW, dstH, tmpFmt, 64);
  1304. if (ret < 0)
  1305. return ret;
  1306. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1307. dstW, dstH, dstFormat,
  1308. flags, NULL, NULL, c->param);
  1309. if (!c->cascaded_context[2])
  1310. return -1;
  1311. }
  1312. return 0;
  1313. }
  1314. if (isBayer(srcFormat)) {
  1315. if (!unscaled ||
  1316. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1317. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1318. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1319. srcW, srcH, tmpFormat, 64);
  1320. if (ret < 0)
  1321. return ret;
  1322. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1323. srcW, srcH, tmpFormat,
  1324. flags, srcFilter, NULL, c->param);
  1325. if (!c->cascaded_context[0])
  1326. return -1;
  1327. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1328. dstW, dstH, dstFormat,
  1329. flags, NULL, dstFilter, c->param);
  1330. if (!c->cascaded_context[1])
  1331. return -1;
  1332. return 0;
  1333. }
  1334. }
  1335. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1336. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1337. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1338. if (!unscaled ||
  1339. dstFormat != tmpFormat ||
  1340. usesHFilter || usesVFilter ||
  1341. c->srcRange != c->dstRange
  1342. ) {
  1343. c->cascaded_mainindex = 1;
  1344. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1345. srcW, srcH, tmpFormat, 64);
  1346. if (ret < 0)
  1347. return ret;
  1348. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1349. srcW, srcH, tmpFormat,
  1350. flags, c->param);
  1351. if (!c->cascaded_context[0])
  1352. return -1;
  1353. c->cascaded_context[0]->alphablend = c->alphablend;
  1354. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1355. if (ret < 0)
  1356. return ret;
  1357. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1358. dstW, dstH, dstFormat,
  1359. flags, c->param);
  1360. if (!c->cascaded_context[1])
  1361. return -1;
  1362. c->cascaded_context[1]->srcRange = c->srcRange;
  1363. c->cascaded_context[1]->dstRange = c->dstRange;
  1364. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1365. if (ret < 0)
  1366. return ret;
  1367. return 0;
  1368. }
  1369. }
  1370. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1371. /* precalculate horizontal scaler filter coefficients */
  1372. {
  1373. #if HAVE_MMXEXT_INLINE
  1374. // can't downscale !!!
  1375. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1376. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1377. NULL, NULL, 8);
  1378. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1379. NULL, NULL, NULL, 4);
  1380. #if USE_MMAP
  1381. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1382. PROT_READ | PROT_WRITE,
  1383. MAP_PRIVATE | MAP_ANONYMOUS,
  1384. -1, 0);
  1385. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1386. PROT_READ | PROT_WRITE,
  1387. MAP_PRIVATE | MAP_ANONYMOUS,
  1388. -1, 0);
  1389. #elif HAVE_VIRTUALALLOC
  1390. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1391. c->lumMmxextFilterCodeSize,
  1392. MEM_COMMIT,
  1393. PAGE_EXECUTE_READWRITE);
  1394. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1395. c->chrMmxextFilterCodeSize,
  1396. MEM_COMMIT,
  1397. PAGE_EXECUTE_READWRITE);
  1398. #else
  1399. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1400. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1401. #endif
  1402. #ifdef MAP_ANONYMOUS
  1403. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1404. #else
  1405. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1406. #endif
  1407. {
  1408. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1409. return AVERROR(ENOMEM);
  1410. }
  1411. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1412. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1413. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1414. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1415. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1416. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1417. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1418. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1419. #if USE_MMAP
  1420. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1421. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1422. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1423. goto fail;
  1424. }
  1425. #endif
  1426. } else
  1427. #endif /* HAVE_MMXEXT_INLINE */
  1428. {
  1429. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1430. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1431. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1432. &c->hLumFilterSize, c->lumXInc,
  1433. srcW, dstW, filterAlign, 1 << 14,
  1434. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1435. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1436. c->param,
  1437. get_local_pos(c, 0, 0, 0),
  1438. get_local_pos(c, 0, 0, 0))) < 0)
  1439. goto fail;
  1440. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1441. &c->hChrFilterSize, c->chrXInc,
  1442. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1443. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1444. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1445. c->param,
  1446. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1447. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1448. goto fail;
  1449. }
  1450. } // initialize horizontal stuff
  1451. /* precalculate vertical scaler filter coefficients */
  1452. {
  1453. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1454. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1455. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1456. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1457. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1458. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1459. c->param,
  1460. get_local_pos(c, 0, 0, 1),
  1461. get_local_pos(c, 0, 0, 1))) < 0)
  1462. goto fail;
  1463. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1464. c->chrYInc, c->chrSrcH, c->chrDstH,
  1465. filterAlign, (1 << 12),
  1466. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1467. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1468. c->param,
  1469. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1470. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1471. goto fail;
  1472. #if HAVE_ALTIVEC
  1473. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1474. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1475. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1476. int j;
  1477. short *p = (short *)&c->vYCoeffsBank[i];
  1478. for (j = 0; j < 8; j++)
  1479. p[j] = c->vLumFilter[i];
  1480. }
  1481. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1482. int j;
  1483. short *p = (short *)&c->vCCoeffsBank[i];
  1484. for (j = 0; j < 8; j++)
  1485. p[j] = c->vChrFilter[i];
  1486. }
  1487. #endif
  1488. }
  1489. // calculate buffer sizes so that they won't run out while handling these damn slices
  1490. c->vLumBufSize = c->vLumFilterSize;
  1491. c->vChrBufSize = c->vChrFilterSize;
  1492. for (i = 0; i < dstH; i++) {
  1493. int chrI = (int64_t)i * c->chrDstH / dstH;
  1494. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1495. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1496. << c->chrSrcVSubSample));
  1497. nextSlice >>= c->chrSrcVSubSample;
  1498. nextSlice <<= c->chrSrcVSubSample;
  1499. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1500. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1501. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1502. (nextSlice >> c->chrSrcVSubSample))
  1503. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1504. c->vChrFilterPos[chrI];
  1505. }
  1506. for (i = 0; i < 4; i++)
  1507. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1508. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1509. * need to allocate several megabytes to handle all possible cases) */
  1510. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1511. FF_ALLOCZ_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1512. FF_ALLOCZ_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1513. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1514. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1515. /* Note we need at least one pixel more at the end because of the MMX code
  1516. * (just in case someone wants to replace the 4000/8000). */
  1517. /* align at 16 bytes for AltiVec */
  1518. for (i = 0; i < c->vLumBufSize; i++) {
  1519. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1520. dst_stride + 16, fail);
  1521. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1522. }
  1523. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1524. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1525. c->uv_offx2 = dst_stride + 16;
  1526. for (i = 0; i < c->vChrBufSize; i++) {
  1527. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1528. dst_stride * 2 + 32, fail);
  1529. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1530. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1531. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1532. }
  1533. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1534. for (i = 0; i < c->vLumBufSize; i++) {
  1535. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1536. dst_stride + 16, fail);
  1537. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1538. }
  1539. // try to avoid drawing green stuff between the right end and the stride end
  1540. for (i = 0; i < c->vChrBufSize; i++)
  1541. if(desc_dst->comp[0].depth == 16){
  1542. av_assert0(c->dstBpc > 14);
  1543. for(j=0; j<dst_stride/2+1; j++)
  1544. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1545. } else
  1546. for(j=0; j<dst_stride+1; j++)
  1547. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1548. av_assert0(c->chrDstH <= dstH);
  1549. if (flags & SWS_PRINT_INFO) {
  1550. const char *scaler = NULL, *cpucaps;
  1551. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1552. if (flags & scale_algorithms[i].flag) {
  1553. scaler = scale_algorithms[i].description;
  1554. break;
  1555. }
  1556. }
  1557. if (!scaler)
  1558. scaler = "ehh flags invalid?!";
  1559. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1560. scaler,
  1561. av_get_pix_fmt_name(srcFormat),
  1562. #ifdef DITHER1XBPP
  1563. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1564. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1565. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1566. "dithered " : "",
  1567. #else
  1568. "",
  1569. #endif
  1570. av_get_pix_fmt_name(dstFormat));
  1571. if (INLINE_MMXEXT(cpu_flags))
  1572. cpucaps = "MMXEXT";
  1573. else if (INLINE_AMD3DNOW(cpu_flags))
  1574. cpucaps = "3DNOW";
  1575. else if (INLINE_MMX(cpu_flags))
  1576. cpucaps = "MMX";
  1577. else if (PPC_ALTIVEC(cpu_flags))
  1578. cpucaps = "AltiVec";
  1579. else
  1580. cpucaps = "C";
  1581. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1582. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1583. av_log(c, AV_LOG_DEBUG,
  1584. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1585. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1586. av_log(c, AV_LOG_DEBUG,
  1587. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1588. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1589. c->chrXInc, c->chrYInc);
  1590. }
  1591. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1592. if (unscaled && !usesHFilter && !usesVFilter &&
  1593. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1594. isALPHA(srcFormat) &&
  1595. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1596. alphaless_fmt(srcFormat) == dstFormat
  1597. ) {
  1598. c->swscale = ff_sws_alphablendaway;
  1599. if (flags & SWS_PRINT_INFO)
  1600. av_log(c, AV_LOG_INFO,
  1601. "using alpha blendaway %s -> %s special converter\n",
  1602. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1603. return 0;
  1604. }
  1605. /* unscaled special cases */
  1606. if (unscaled && !usesHFilter && !usesVFilter &&
  1607. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1608. ff_get_unscaled_swscale(c);
  1609. if (c->swscale) {
  1610. if (flags & SWS_PRINT_INFO)
  1611. av_log(c, AV_LOG_INFO,
  1612. "using unscaled %s -> %s special converter\n",
  1613. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1614. return 0;
  1615. }
  1616. }
  1617. c->swscale = ff_getSwsFunc(c);
  1618. return ff_init_filters(c);
  1619. fail: // FIXME replace things by appropriate error codes
  1620. if (ret == RETCODE_USE_CASCADE) {
  1621. int tmpW = sqrt(srcW * (int64_t)dstW);
  1622. int tmpH = sqrt(srcH * (int64_t)dstH);
  1623. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1624. if (isALPHA(srcFormat))
  1625. tmpFormat = AV_PIX_FMT_YUVA420P;
  1626. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1627. return AVERROR(EINVAL);
  1628. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1629. tmpW, tmpH, tmpFormat, 64);
  1630. if (ret < 0)
  1631. return ret;
  1632. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1633. tmpW, tmpH, tmpFormat,
  1634. flags, srcFilter, NULL, c->param);
  1635. if (!c->cascaded_context[0])
  1636. return -1;
  1637. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1638. dstW, dstH, dstFormat,
  1639. flags, NULL, dstFilter, c->param);
  1640. if (!c->cascaded_context[1])
  1641. return -1;
  1642. return 0;
  1643. }
  1644. return -1;
  1645. }
  1646. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1647. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1648. int flags, const double *param)
  1649. {
  1650. SwsContext *c;
  1651. if (!(c = sws_alloc_context()))
  1652. return NULL;
  1653. c->flags = flags;
  1654. c->srcW = srcW;
  1655. c->srcH = srcH;
  1656. c->dstW = dstW;
  1657. c->dstH = dstH;
  1658. c->srcFormat = srcFormat;
  1659. c->dstFormat = dstFormat;
  1660. if (param) {
  1661. c->param[0] = param[0];
  1662. c->param[1] = param[1];
  1663. }
  1664. return c;
  1665. }
  1666. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1667. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1668. int flags, SwsFilter *srcFilter,
  1669. SwsFilter *dstFilter, const double *param)
  1670. {
  1671. SwsContext *c;
  1672. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1673. dstW, dstH, dstFormat,
  1674. flags, param);
  1675. if (!c)
  1676. return NULL;
  1677. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1678. sws_freeContext(c);
  1679. return NULL;
  1680. }
  1681. return c;
  1682. }
  1683. static int isnan_vec(SwsVector *a)
  1684. {
  1685. int i;
  1686. for (i=0; i<a->length; i++)
  1687. if (isnan(a->coeff[i]))
  1688. return 1;
  1689. return 0;
  1690. }
  1691. static void makenan_vec(SwsVector *a)
  1692. {
  1693. int i;
  1694. for (i=0; i<a->length; i++)
  1695. a->coeff[i] = NAN;
  1696. }
  1697. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1698. float lumaSharpen, float chromaSharpen,
  1699. float chromaHShift, float chromaVShift,
  1700. int verbose)
  1701. {
  1702. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1703. if (!filter)
  1704. return NULL;
  1705. if (lumaGBlur != 0.0) {
  1706. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1707. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1708. } else {
  1709. filter->lumH = sws_getIdentityVec();
  1710. filter->lumV = sws_getIdentityVec();
  1711. }
  1712. if (chromaGBlur != 0.0) {
  1713. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1714. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1715. } else {
  1716. filter->chrH = sws_getIdentityVec();
  1717. filter->chrV = sws_getIdentityVec();
  1718. }
  1719. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1720. goto fail;
  1721. if (chromaSharpen != 0.0) {
  1722. SwsVector *id = sws_getIdentityVec();
  1723. if (!id)
  1724. goto fail;
  1725. sws_scaleVec(filter->chrH, -chromaSharpen);
  1726. sws_scaleVec(filter->chrV, -chromaSharpen);
  1727. sws_addVec(filter->chrH, id);
  1728. sws_addVec(filter->chrV, id);
  1729. sws_freeVec(id);
  1730. }
  1731. if (lumaSharpen != 0.0) {
  1732. SwsVector *id = sws_getIdentityVec();
  1733. if (!id)
  1734. goto fail;
  1735. sws_scaleVec(filter->lumH, -lumaSharpen);
  1736. sws_scaleVec(filter->lumV, -lumaSharpen);
  1737. sws_addVec(filter->lumH, id);
  1738. sws_addVec(filter->lumV, id);
  1739. sws_freeVec(id);
  1740. }
  1741. if (chromaHShift != 0.0)
  1742. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1743. if (chromaVShift != 0.0)
  1744. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1745. sws_normalizeVec(filter->chrH, 1.0);
  1746. sws_normalizeVec(filter->chrV, 1.0);
  1747. sws_normalizeVec(filter->lumH, 1.0);
  1748. sws_normalizeVec(filter->lumV, 1.0);
  1749. if (isnan_vec(filter->chrH) ||
  1750. isnan_vec(filter->chrV) ||
  1751. isnan_vec(filter->lumH) ||
  1752. isnan_vec(filter->lumV))
  1753. goto fail;
  1754. if (verbose)
  1755. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1756. if (verbose)
  1757. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1758. return filter;
  1759. fail:
  1760. sws_freeVec(filter->lumH);
  1761. sws_freeVec(filter->lumV);
  1762. sws_freeVec(filter->chrH);
  1763. sws_freeVec(filter->chrV);
  1764. av_freep(&filter);
  1765. return NULL;
  1766. }
  1767. SwsVector *sws_allocVec(int length)
  1768. {
  1769. SwsVector *vec;
  1770. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1771. return NULL;
  1772. vec = av_malloc(sizeof(SwsVector));
  1773. if (!vec)
  1774. return NULL;
  1775. vec->length = length;
  1776. vec->coeff = av_malloc(sizeof(double) * length);
  1777. if (!vec->coeff)
  1778. av_freep(&vec);
  1779. return vec;
  1780. }
  1781. SwsVector *sws_getGaussianVec(double variance, double quality)
  1782. {
  1783. const int length = (int)(variance * quality + 0.5) | 1;
  1784. int i;
  1785. double middle = (length - 1) * 0.5;
  1786. SwsVector *vec;
  1787. if(variance < 0 || quality < 0)
  1788. return NULL;
  1789. vec = sws_allocVec(length);
  1790. if (!vec)
  1791. return NULL;
  1792. for (i = 0; i < length; i++) {
  1793. double dist = i - middle;
  1794. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1795. sqrt(2 * variance * M_PI);
  1796. }
  1797. sws_normalizeVec(vec, 1.0);
  1798. return vec;
  1799. }
  1800. SwsVector *sws_getConstVec(double c, int length)
  1801. {
  1802. int i;
  1803. SwsVector *vec = sws_allocVec(length);
  1804. if (!vec)
  1805. return NULL;
  1806. for (i = 0; i < length; i++)
  1807. vec->coeff[i] = c;
  1808. return vec;
  1809. }
  1810. SwsVector *sws_getIdentityVec(void)
  1811. {
  1812. return sws_getConstVec(1.0, 1);
  1813. }
  1814. static double sws_dcVec(SwsVector *a)
  1815. {
  1816. int i;
  1817. double sum = 0;
  1818. for (i = 0; i < a->length; i++)
  1819. sum += a->coeff[i];
  1820. return sum;
  1821. }
  1822. void sws_scaleVec(SwsVector *a, double scalar)
  1823. {
  1824. int i;
  1825. for (i = 0; i < a->length; i++)
  1826. a->coeff[i] *= scalar;
  1827. }
  1828. void sws_normalizeVec(SwsVector *a, double height)
  1829. {
  1830. sws_scaleVec(a, height / sws_dcVec(a));
  1831. }
  1832. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1833. {
  1834. int length = a->length + b->length - 1;
  1835. int i, j;
  1836. SwsVector *vec = sws_getConstVec(0.0, length);
  1837. if (!vec)
  1838. return NULL;
  1839. for (i = 0; i < a->length; i++) {
  1840. for (j = 0; j < b->length; j++) {
  1841. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1842. }
  1843. }
  1844. return vec;
  1845. }
  1846. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1847. {
  1848. int length = FFMAX(a->length, b->length);
  1849. int i;
  1850. SwsVector *vec = sws_getConstVec(0.0, length);
  1851. if (!vec)
  1852. return NULL;
  1853. for (i = 0; i < a->length; i++)
  1854. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1855. for (i = 0; i < b->length; i++)
  1856. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1857. return vec;
  1858. }
  1859. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1860. {
  1861. int length = FFMAX(a->length, b->length);
  1862. int i;
  1863. SwsVector *vec = sws_getConstVec(0.0, length);
  1864. if (!vec)
  1865. return NULL;
  1866. for (i = 0; i < a->length; i++)
  1867. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1868. for (i = 0; i < b->length; i++)
  1869. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1870. return vec;
  1871. }
  1872. /* shift left / or right if "shift" is negative */
  1873. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1874. {
  1875. int length = a->length + FFABS(shift) * 2;
  1876. int i;
  1877. SwsVector *vec = sws_getConstVec(0.0, length);
  1878. if (!vec)
  1879. return NULL;
  1880. for (i = 0; i < a->length; i++) {
  1881. vec->coeff[i + (length - 1) / 2 -
  1882. (a->length - 1) / 2 - shift] = a->coeff[i];
  1883. }
  1884. return vec;
  1885. }
  1886. void sws_shiftVec(SwsVector *a, int shift)
  1887. {
  1888. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1889. if (!shifted) {
  1890. makenan_vec(a);
  1891. return;
  1892. }
  1893. av_free(a->coeff);
  1894. a->coeff = shifted->coeff;
  1895. a->length = shifted->length;
  1896. av_free(shifted);
  1897. }
  1898. void sws_addVec(SwsVector *a, SwsVector *b)
  1899. {
  1900. SwsVector *sum = sws_sumVec(a, b);
  1901. if (!sum) {
  1902. makenan_vec(a);
  1903. return;
  1904. }
  1905. av_free(a->coeff);
  1906. a->coeff = sum->coeff;
  1907. a->length = sum->length;
  1908. av_free(sum);
  1909. }
  1910. void sws_subVec(SwsVector *a, SwsVector *b)
  1911. {
  1912. SwsVector *diff = sws_diffVec(a, b);
  1913. if (!diff) {
  1914. makenan_vec(a);
  1915. return;
  1916. }
  1917. av_free(a->coeff);
  1918. a->coeff = diff->coeff;
  1919. a->length = diff->length;
  1920. av_free(diff);
  1921. }
  1922. void sws_convVec(SwsVector *a, SwsVector *b)
  1923. {
  1924. SwsVector *conv = sws_getConvVec(a, b);
  1925. if (!conv) {
  1926. makenan_vec(a);
  1927. return;
  1928. }
  1929. av_free(a->coeff);
  1930. a->coeff = conv->coeff;
  1931. a->length = conv->length;
  1932. av_free(conv);
  1933. }
  1934. SwsVector *sws_cloneVec(SwsVector *a)
  1935. {
  1936. SwsVector *vec = sws_allocVec(a->length);
  1937. if (!vec)
  1938. return NULL;
  1939. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1940. return vec;
  1941. }
  1942. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1943. {
  1944. int i;
  1945. double max = 0;
  1946. double min = 0;
  1947. double range;
  1948. for (i = 0; i < a->length; i++)
  1949. if (a->coeff[i] > max)
  1950. max = a->coeff[i];
  1951. for (i = 0; i < a->length; i++)
  1952. if (a->coeff[i] < min)
  1953. min = a->coeff[i];
  1954. range = max - min;
  1955. for (i = 0; i < a->length; i++) {
  1956. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1957. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1958. for (; x > 0; x--)
  1959. av_log(log_ctx, log_level, " ");
  1960. av_log(log_ctx, log_level, "|\n");
  1961. }
  1962. }
  1963. void sws_freeVec(SwsVector *a)
  1964. {
  1965. if (!a)
  1966. return;
  1967. av_freep(&a->coeff);
  1968. a->length = 0;
  1969. av_free(a);
  1970. }
  1971. void sws_freeFilter(SwsFilter *filter)
  1972. {
  1973. if (!filter)
  1974. return;
  1975. sws_freeVec(filter->lumH);
  1976. sws_freeVec(filter->lumV);
  1977. sws_freeVec(filter->chrH);
  1978. sws_freeVec(filter->chrV);
  1979. av_free(filter);
  1980. }
  1981. void sws_freeContext(SwsContext *c)
  1982. {
  1983. int i;
  1984. if (!c)
  1985. return;
  1986. if (c->lumPixBuf) {
  1987. for (i = 0; i < c->vLumBufSize; i++)
  1988. av_freep(&c->lumPixBuf[i]);
  1989. av_freep(&c->lumPixBuf);
  1990. }
  1991. if (c->chrUPixBuf) {
  1992. for (i = 0; i < c->vChrBufSize; i++)
  1993. av_freep(&c->chrUPixBuf[i]);
  1994. av_freep(&c->chrUPixBuf);
  1995. av_freep(&c->chrVPixBuf);
  1996. }
  1997. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1998. for (i = 0; i < c->vLumBufSize; i++)
  1999. av_freep(&c->alpPixBuf[i]);
  2000. av_freep(&c->alpPixBuf);
  2001. }
  2002. for (i = 0; i < 4; i++)
  2003. av_freep(&c->dither_error[i]);
  2004. av_freep(&c->vLumFilter);
  2005. av_freep(&c->vChrFilter);
  2006. av_freep(&c->hLumFilter);
  2007. av_freep(&c->hChrFilter);
  2008. #if HAVE_ALTIVEC
  2009. av_freep(&c->vYCoeffsBank);
  2010. av_freep(&c->vCCoeffsBank);
  2011. #endif
  2012. av_freep(&c->vLumFilterPos);
  2013. av_freep(&c->vChrFilterPos);
  2014. av_freep(&c->hLumFilterPos);
  2015. av_freep(&c->hChrFilterPos);
  2016. #if HAVE_MMX_INLINE
  2017. #if USE_MMAP
  2018. if (c->lumMmxextFilterCode)
  2019. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2020. if (c->chrMmxextFilterCode)
  2021. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2022. #elif HAVE_VIRTUALALLOC
  2023. if (c->lumMmxextFilterCode)
  2024. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2025. if (c->chrMmxextFilterCode)
  2026. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2027. #else
  2028. av_free(c->lumMmxextFilterCode);
  2029. av_free(c->chrMmxextFilterCode);
  2030. #endif
  2031. c->lumMmxextFilterCode = NULL;
  2032. c->chrMmxextFilterCode = NULL;
  2033. #endif /* HAVE_MMX_INLINE */
  2034. av_freep(&c->yuvTable);
  2035. av_freep(&c->formatConvBuffer);
  2036. sws_freeContext(c->cascaded_context[0]);
  2037. sws_freeContext(c->cascaded_context[1]);
  2038. sws_freeContext(c->cascaded_context[2]);
  2039. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2040. av_freep(&c->cascaded_tmp[0]);
  2041. av_freep(&c->cascaded1_tmp[0]);
  2042. av_freep(&c->gamma);
  2043. av_freep(&c->inv_gamma);
  2044. ff_free_filters(c);
  2045. av_free(c);
  2046. }
  2047. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2048. int srcH, enum AVPixelFormat srcFormat,
  2049. int dstW, int dstH,
  2050. enum AVPixelFormat dstFormat, int flags,
  2051. SwsFilter *srcFilter,
  2052. SwsFilter *dstFilter,
  2053. const double *param)
  2054. {
  2055. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2056. SWS_PARAM_DEFAULT };
  2057. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2058. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2059. if (!param)
  2060. param = default_param;
  2061. if (context &&
  2062. (context->srcW != srcW ||
  2063. context->srcH != srcH ||
  2064. context->srcFormat != srcFormat ||
  2065. context->dstW != dstW ||
  2066. context->dstH != dstH ||
  2067. context->dstFormat != dstFormat ||
  2068. context->flags != flags ||
  2069. context->param[0] != param[0] ||
  2070. context->param[1] != param[1])) {
  2071. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2072. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2073. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2074. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2075. sws_freeContext(context);
  2076. context = NULL;
  2077. }
  2078. if (!context) {
  2079. if (!(context = sws_alloc_context()))
  2080. return NULL;
  2081. context->srcW = srcW;
  2082. context->srcH = srcH;
  2083. context->srcFormat = srcFormat;
  2084. context->dstW = dstW;
  2085. context->dstH = dstH;
  2086. context->dstFormat = dstFormat;
  2087. context->flags = flags;
  2088. context->param[0] = param[0];
  2089. context->param[1] = param[1];
  2090. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2091. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2092. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2093. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2094. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2095. sws_freeContext(context);
  2096. return NULL;
  2097. }
  2098. }
  2099. return context;
  2100. }