You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1480 lines
56KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "dsputil.h"
  29. #include "cabac.h"
  30. #include "mpegvideo.h"
  31. #include "h264pred.h"
  32. #include "rectangle.h"
  33. #define interlaced_dct interlaced_dct_is_a_bad_name
  34. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  35. #define LUMA_DC_BLOCK_INDEX 25
  36. #define CHROMA_DC_BLOCK_INDEX 26
  37. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  38. #define COEFF_TOKEN_VLC_BITS 8
  39. #define TOTAL_ZEROS_VLC_BITS 9
  40. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  41. #define RUN_VLC_BITS 3
  42. #define RUN7_VLC_BITS 6
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. /* Compiling in interlaced support reduces the speed
  48. * of progressive decoding by about 2%. */
  49. #define ALLOW_INTERLACE
  50. #define ALLOW_NOCHROMA
  51. /**
  52. * The maximum number of slices supported by the decoder.
  53. * must be a power of 2
  54. */
  55. #define MAX_SLICES 16
  56. #ifdef ALLOW_INTERLACE
  57. #define MB_MBAFF h->mb_mbaff
  58. #define MB_FIELD h->mb_field_decoding_flag
  59. #define FRAME_MBAFF h->mb_aff_frame
  60. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  61. #else
  62. #define MB_MBAFF 0
  63. #define MB_FIELD 0
  64. #define FRAME_MBAFF 0
  65. #define FIELD_PICTURE 0
  66. #undef IS_INTERLACED
  67. #define IS_INTERLACED(mb_type) 0
  68. #endif
  69. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  70. #ifdef ALLOW_NOCHROMA
  71. #define CHROMA h->sps.chroma_format_idc
  72. #else
  73. #define CHROMA 1
  74. #endif
  75. #ifndef CABAC
  76. #define CABAC h->pps.cabac
  77. #endif
  78. #define EXTENDED_SAR 255
  79. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  80. #define MB_TYPE_8x8DCT 0x01000000
  81. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  82. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  83. /**
  84. * Value of Picture.reference when Picture is not a reference picture, but
  85. * is held for delayed output.
  86. */
  87. #define DELAYED_PIC_REF 4
  88. /* NAL unit types */
  89. enum {
  90. NAL_SLICE=1,
  91. NAL_DPA,
  92. NAL_DPB,
  93. NAL_DPC,
  94. NAL_IDR_SLICE,
  95. NAL_SEI,
  96. NAL_SPS,
  97. NAL_PPS,
  98. NAL_AUD,
  99. NAL_END_SEQUENCE,
  100. NAL_END_STREAM,
  101. NAL_FILLER_DATA,
  102. NAL_SPS_EXT,
  103. NAL_AUXILIARY_SLICE=19
  104. };
  105. /**
  106. * SEI message types
  107. */
  108. typedef enum {
  109. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  110. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  111. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  112. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  113. } SEI_Type;
  114. /**
  115. * pic_struct in picture timing SEI message
  116. */
  117. typedef enum {
  118. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  119. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  120. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  121. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  122. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  123. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  124. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  125. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  126. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  127. } SEI_PicStructType;
  128. /**
  129. * Sequence parameter set
  130. */
  131. typedef struct SPS{
  132. int profile_idc;
  133. int level_idc;
  134. int chroma_format_idc;
  135. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  136. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  137. int poc_type; ///< pic_order_cnt_type
  138. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  139. int delta_pic_order_always_zero_flag;
  140. int offset_for_non_ref_pic;
  141. int offset_for_top_to_bottom_field;
  142. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  143. int ref_frame_count; ///< num_ref_frames
  144. int gaps_in_frame_num_allowed_flag;
  145. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  146. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  147. int frame_mbs_only_flag;
  148. int mb_aff; ///<mb_adaptive_frame_field_flag
  149. int direct_8x8_inference_flag;
  150. int crop; ///< frame_cropping_flag
  151. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  152. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  153. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  154. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  155. int vui_parameters_present_flag;
  156. AVRational sar;
  157. int video_signal_type_present_flag;
  158. int full_range;
  159. int colour_description_present_flag;
  160. enum AVColorPrimaries color_primaries;
  161. enum AVColorTransferCharacteristic color_trc;
  162. enum AVColorSpace colorspace;
  163. int timing_info_present_flag;
  164. uint32_t num_units_in_tick;
  165. uint32_t time_scale;
  166. int fixed_frame_rate_flag;
  167. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  168. int bitstream_restriction_flag;
  169. int num_reorder_frames;
  170. int scaling_matrix_present;
  171. uint8_t scaling_matrix4[6][16];
  172. uint8_t scaling_matrix8[2][64];
  173. int nal_hrd_parameters_present_flag;
  174. int vcl_hrd_parameters_present_flag;
  175. int pic_struct_present_flag;
  176. int time_offset_length;
  177. int cpb_cnt; ///< See H.264 E.1.2
  178. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  179. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  180. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  181. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  182. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  183. int residual_color_transform_flag; ///< residual_colour_transform_flag
  184. }SPS;
  185. /**
  186. * Picture parameter set
  187. */
  188. typedef struct PPS{
  189. unsigned int sps_id;
  190. int cabac; ///< entropy_coding_mode_flag
  191. int pic_order_present; ///< pic_order_present_flag
  192. int slice_group_count; ///< num_slice_groups_minus1 + 1
  193. int mb_slice_group_map_type;
  194. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  195. int weighted_pred; ///< weighted_pred_flag
  196. int weighted_bipred_idc;
  197. int init_qp; ///< pic_init_qp_minus26 + 26
  198. int init_qs; ///< pic_init_qs_minus26 + 26
  199. int chroma_qp_index_offset[2];
  200. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  201. int constrained_intra_pred; ///< constrained_intra_pred_flag
  202. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  203. int transform_8x8_mode; ///< transform_8x8_mode_flag
  204. uint8_t scaling_matrix4[6][16];
  205. uint8_t scaling_matrix8[2][64];
  206. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  207. int chroma_qp_diff;
  208. }PPS;
  209. /**
  210. * Memory management control operation opcode.
  211. */
  212. typedef enum MMCOOpcode{
  213. MMCO_END=0,
  214. MMCO_SHORT2UNUSED,
  215. MMCO_LONG2UNUSED,
  216. MMCO_SHORT2LONG,
  217. MMCO_SET_MAX_LONG,
  218. MMCO_RESET,
  219. MMCO_LONG,
  220. } MMCOOpcode;
  221. /**
  222. * Memory management control operation.
  223. */
  224. typedef struct MMCO{
  225. MMCOOpcode opcode;
  226. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  227. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  228. } MMCO;
  229. /**
  230. * H264Context
  231. */
  232. typedef struct H264Context{
  233. MpegEncContext s;
  234. int nal_ref_idc;
  235. int nal_unit_type;
  236. uint8_t *rbsp_buffer[2];
  237. unsigned int rbsp_buffer_size[2];
  238. /**
  239. * Used to parse AVC variant of h264
  240. */
  241. int is_avc; ///< this flag is != 0 if codec is avc1
  242. int got_avcC; ///< flag used to parse avcC data only once
  243. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  244. int chroma_qp[2]; //QPc
  245. int qp_thresh; ///< QP threshold to skip loopfilter
  246. int prev_mb_skipped;
  247. int next_mb_skipped;
  248. //prediction stuff
  249. int chroma_pred_mode;
  250. int intra16x16_pred_mode;
  251. int top_mb_xy;
  252. int left_mb_xy[2];
  253. int top_type;
  254. int left_type[2];
  255. int8_t intra4x4_pred_mode_cache[5*8];
  256. int8_t (*intra4x4_pred_mode)[8];
  257. H264PredContext hpc;
  258. unsigned int topleft_samples_available;
  259. unsigned int top_samples_available;
  260. unsigned int topright_samples_available;
  261. unsigned int left_samples_available;
  262. uint8_t (*top_borders[2])[16+2*8];
  263. uint8_t left_border[2*(17+2*9)];
  264. /**
  265. * non zero coeff count cache.
  266. * is 64 if not available.
  267. */
  268. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
  269. /*
  270. .UU.YYYY
  271. .UU.YYYY
  272. .vv.YYYY
  273. .VV.YYYY
  274. */
  275. uint8_t (*non_zero_count)[32];
  276. /**
  277. * Motion vector cache.
  278. */
  279. DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
  280. DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
  281. #define LIST_NOT_USED -1 //FIXME rename?
  282. #define PART_NOT_AVAILABLE -2
  283. /**
  284. * is 1 if the specific list MV&references are set to 0,0,-2.
  285. */
  286. int mv_cache_clean[2];
  287. /**
  288. * number of neighbors (top and/or left) that used 8x8 dct
  289. */
  290. int neighbor_transform_size;
  291. /**
  292. * block_offset[ 0..23] for frame macroblocks
  293. * block_offset[24..47] for field macroblocks
  294. */
  295. int block_offset[2*(16+8)];
  296. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  297. uint32_t *mb2b8_xy;
  298. int b_stride; //FIXME use s->b4_stride
  299. int b8_stride;
  300. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  301. int mb_uvlinesize;
  302. int emu_edge_width;
  303. int emu_edge_height;
  304. int halfpel_flag;
  305. int thirdpel_flag;
  306. int unknown_svq3_flag;
  307. int next_slice_index;
  308. SPS *sps_buffers[MAX_SPS_COUNT];
  309. SPS sps; ///< current sps
  310. PPS *pps_buffers[MAX_PPS_COUNT];
  311. /**
  312. * current pps
  313. */
  314. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  315. uint32_t dequant4_buffer[6][52][16];
  316. uint32_t dequant8_buffer[2][52][64];
  317. uint32_t (*dequant4_coeff[6])[16];
  318. uint32_t (*dequant8_coeff[2])[64];
  319. int dequant_coeff_pps; ///< reinit tables when pps changes
  320. int slice_num;
  321. uint16_t *slice_table_base;
  322. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  323. int slice_type;
  324. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  325. int slice_type_fixed;
  326. //interlacing specific flags
  327. int mb_aff_frame;
  328. int mb_field_decoding_flag;
  329. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  330. DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
  331. //POC stuff
  332. int poc_lsb;
  333. int poc_msb;
  334. int delta_poc_bottom;
  335. int delta_poc[2];
  336. int frame_num;
  337. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  338. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  339. int frame_num_offset; ///< for POC type 2
  340. int prev_frame_num_offset; ///< for POC type 2
  341. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  342. /**
  343. * frame_num for frames or 2*frame_num+1 for field pics.
  344. */
  345. int curr_pic_num;
  346. /**
  347. * max_frame_num or 2*max_frame_num for field pics.
  348. */
  349. int max_pic_num;
  350. //Weighted pred stuff
  351. int use_weight;
  352. int use_weight_chroma;
  353. int luma_log2_weight_denom;
  354. int chroma_log2_weight_denom;
  355. int luma_weight[2][48];
  356. int luma_offset[2][48];
  357. int chroma_weight[2][48][2];
  358. int chroma_offset[2][48][2];
  359. int implicit_weight[48][48];
  360. //deblock
  361. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  362. int slice_alpha_c0_offset;
  363. int slice_beta_offset;
  364. int redundant_pic_count;
  365. int direct_spatial_mv_pred;
  366. int col_parity;
  367. int col_fieldoff;
  368. int dist_scale_factor[16];
  369. int dist_scale_factor_field[2][32];
  370. int map_col_to_list0[2][16+32];
  371. int map_col_to_list0_field[2][2][16+32];
  372. /**
  373. * num_ref_idx_l0/1_active_minus1 + 1
  374. */
  375. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  376. unsigned int list_count;
  377. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  378. Picture *short_ref[32];
  379. Picture *long_ref[32];
  380. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  381. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  382. Reordered version of default_ref_list
  383. according to picture reordering in slice header */
  384. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  385. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  386. int outputed_poc;
  387. /**
  388. * memory management control operations buffer.
  389. */
  390. MMCO mmco[MAX_MMCO_COUNT];
  391. int mmco_index;
  392. int long_ref_count; ///< number of actual long term references
  393. int short_ref_count; ///< number of actual short term references
  394. //data partitioning
  395. GetBitContext intra_gb;
  396. GetBitContext inter_gb;
  397. GetBitContext *intra_gb_ptr;
  398. GetBitContext *inter_gb_ptr;
  399. DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
  400. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  401. /**
  402. * Cabac
  403. */
  404. CABACContext cabac;
  405. uint8_t cabac_state[460];
  406. int cabac_init_idc;
  407. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  408. uint16_t *cbp_table;
  409. int cbp;
  410. int top_cbp;
  411. int left_cbp;
  412. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  413. uint8_t *chroma_pred_mode_table;
  414. int last_qscale_diff;
  415. int16_t (*mvd_table[2])[2];
  416. DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
  417. uint8_t *direct_table;
  418. uint8_t direct_cache[5*8];
  419. uint8_t zigzag_scan[16];
  420. uint8_t zigzag_scan8x8[64];
  421. uint8_t zigzag_scan8x8_cavlc[64];
  422. uint8_t field_scan[16];
  423. uint8_t field_scan8x8[64];
  424. uint8_t field_scan8x8_cavlc[64];
  425. const uint8_t *zigzag_scan_q0;
  426. const uint8_t *zigzag_scan8x8_q0;
  427. const uint8_t *zigzag_scan8x8_cavlc_q0;
  428. const uint8_t *field_scan_q0;
  429. const uint8_t *field_scan8x8_q0;
  430. const uint8_t *field_scan8x8_cavlc_q0;
  431. int x264_build;
  432. /**
  433. * @defgroup multithreading Members for slice based multithreading
  434. * @{
  435. */
  436. struct H264Context *thread_context[MAX_THREADS];
  437. /**
  438. * current slice number, used to initalize slice_num of each thread/context
  439. */
  440. int current_slice;
  441. /**
  442. * Max number of threads / contexts.
  443. * This is equal to AVCodecContext.thread_count unless
  444. * multithreaded decoding is impossible, in which case it is
  445. * reduced to 1.
  446. */
  447. int max_contexts;
  448. /**
  449. * 1 if the single thread fallback warning has already been
  450. * displayed, 0 otherwise.
  451. */
  452. int single_decode_warning;
  453. int last_slice_type;
  454. /** @} */
  455. int mb_xy;
  456. uint32_t svq3_watermark_key;
  457. /**
  458. * pic_struct in picture timing SEI message
  459. */
  460. SEI_PicStructType sei_pic_struct;
  461. /**
  462. * Complement sei_pic_struct
  463. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  464. * However, soft telecined frames may have these values.
  465. * This is used in an attempt to flag soft telecine progressive.
  466. */
  467. int prev_interlaced_frame;
  468. /**
  469. * Bit set of clock types for fields/frames in picture timing SEI message.
  470. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  471. * interlaced).
  472. */
  473. int sei_ct_type;
  474. /**
  475. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  476. */
  477. int sei_dpb_output_delay;
  478. /**
  479. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  480. */
  481. int sei_cpb_removal_delay;
  482. /**
  483. * recovery_frame_cnt from SEI message
  484. *
  485. * Set to -1 if no recovery point SEI message found or to number of frames
  486. * before playback synchronizes. Frames having recovery point are key
  487. * frames.
  488. */
  489. int sei_recovery_frame_cnt;
  490. int is_complex;
  491. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  492. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  493. // Timestamp stuff
  494. int sei_buffering_period_present; ///< Buffering period SEI flag
  495. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  496. }H264Context;
  497. extern const uint8_t ff_h264_chroma_qp[52];
  498. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  499. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  500. /**
  501. * Decode SEI
  502. */
  503. int ff_h264_decode_sei(H264Context *h);
  504. /**
  505. * Decode SPS
  506. */
  507. int ff_h264_decode_seq_parameter_set(H264Context *h);
  508. /**
  509. * Decode PPS
  510. */
  511. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  512. /**
  513. * Decodes a network abstraction layer unit.
  514. * @param consumed is the number of bytes used as input
  515. * @param length is the length of the array
  516. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  517. * @returns decoded bytes, might be src+1 if no escapes
  518. */
  519. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  520. /**
  521. * identifies the exact end of the bitstream
  522. * @return the length of the trailing, or 0 if damaged
  523. */
  524. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  525. /**
  526. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  527. */
  528. av_cold void ff_h264_free_context(H264Context *h);
  529. /**
  530. * reconstructs bitstream slice_type.
  531. */
  532. int ff_h264_get_slice_type(const H264Context *h);
  533. /**
  534. * allocates tables.
  535. * needs width/height
  536. */
  537. int ff_h264_alloc_tables(H264Context *h);
  538. /**
  539. * fills the default_ref_list.
  540. */
  541. int ff_h264_fill_default_ref_list(H264Context *h);
  542. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  543. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  544. void ff_h264_remove_all_refs(H264Context *h);
  545. /**
  546. * Executes the reference picture marking (memory management control operations).
  547. */
  548. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  549. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  550. /**
  551. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  552. */
  553. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  554. /**
  555. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  556. */
  557. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  558. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  559. void ff_h264_hl_decode_mb(H264Context *h);
  560. int ff_h264_frame_start(H264Context *h);
  561. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  562. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  563. av_cold void ff_h264_decode_init_vlc(void);
  564. /**
  565. * decodes a macroblock
  566. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  567. */
  568. int ff_h264_decode_mb_cavlc(H264Context *h);
  569. /**
  570. * decodes a CABAC coded macroblock
  571. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  572. */
  573. int ff_h264_decode_mb_cabac(H264Context *h);
  574. void ff_h264_init_cabac_states(H264Context *h);
  575. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  576. void ff_h264_direct_ref_list_init(H264Context * const h);
  577. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  578. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  579. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  580. /**
  581. * Reset SEI values at the beginning of the frame.
  582. *
  583. * @param h H.264 context.
  584. */
  585. void ff_h264_reset_sei(H264Context *h);
  586. /*
  587. o-o o-o
  588. / / /
  589. o-o o-o
  590. ,---'
  591. o-o o-o
  592. / / /
  593. o-o o-o
  594. */
  595. //This table must be here because scan8[constant] must be known at compiletime
  596. static const uint8_t scan8[16 + 2*4]={
  597. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  598. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  599. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  600. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  601. 1+1*8, 2+1*8,
  602. 1+2*8, 2+2*8,
  603. 1+4*8, 2+4*8,
  604. 1+5*8, 2+5*8,
  605. };
  606. static av_always_inline uint32_t pack16to32(int a, int b){
  607. #if HAVE_BIGENDIAN
  608. return (b&0xFFFF) + (a<<16);
  609. #else
  610. return (a&0xFFFF) + (b<<16);
  611. #endif
  612. }
  613. /**
  614. * gets the chroma qp.
  615. */
  616. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  617. return h->pps.chroma_qp_table[t][qscale];
  618. }
  619. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  620. static void fill_decode_caches(H264Context *h, int mb_type){
  621. MpegEncContext * const s = &h->s;
  622. const int mb_xy= h->mb_xy;
  623. int topleft_xy, top_xy, topright_xy, left_xy[2];
  624. int topleft_type, top_type, topright_type, left_type[2];
  625. const uint8_t * left_block;
  626. int topleft_partition= -1;
  627. int i;
  628. static const uint8_t left_block_options[4][16]={
  629. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  630. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  631. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  632. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  633. };
  634. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  635. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  636. * stuff, I can't imagine that these complex rules are worth it. */
  637. topleft_xy = top_xy - 1;
  638. topright_xy= top_xy + 1;
  639. left_xy[1] = left_xy[0] = mb_xy-1;
  640. left_block = left_block_options[0];
  641. if(FRAME_MBAFF){
  642. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  643. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  644. if(s->mb_y&1){
  645. if (left_mb_field_flag != curr_mb_field_flag) {
  646. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  647. if (curr_mb_field_flag) {
  648. left_xy[1] += s->mb_stride;
  649. left_block = left_block_options[3];
  650. } else {
  651. topleft_xy += s->mb_stride;
  652. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  653. topleft_partition = 0;
  654. left_block = left_block_options[1];
  655. }
  656. }
  657. }else{
  658. if(curr_mb_field_flag){
  659. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  660. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  661. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  662. }
  663. if (left_mb_field_flag != curr_mb_field_flag) {
  664. left_xy[1] = left_xy[0] = mb_xy - 1;
  665. if (curr_mb_field_flag) {
  666. left_xy[1] += s->mb_stride;
  667. left_block = left_block_options[3];
  668. } else {
  669. left_block = left_block_options[2];
  670. }
  671. }
  672. }
  673. }
  674. h->top_mb_xy = top_xy;
  675. h->left_mb_xy[0] = left_xy[0];
  676. h->left_mb_xy[1] = left_xy[1];
  677. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  678. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  679. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  680. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  681. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  682. if(IS_INTRA(mb_type)){
  683. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  684. h->topleft_samples_available=
  685. h->top_samples_available=
  686. h->left_samples_available= 0xFFFF;
  687. h->topright_samples_available= 0xEEEA;
  688. if(!(top_type & type_mask)){
  689. h->topleft_samples_available= 0xB3FF;
  690. h->top_samples_available= 0x33FF;
  691. h->topright_samples_available= 0x26EA;
  692. }
  693. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  694. if(IS_INTERLACED(mb_type)){
  695. if(!(left_type[0] & type_mask)){
  696. h->topleft_samples_available&= 0xDFFF;
  697. h->left_samples_available&= 0x5FFF;
  698. }
  699. if(!(left_type[1] & type_mask)){
  700. h->topleft_samples_available&= 0xFF5F;
  701. h->left_samples_available&= 0xFF5F;
  702. }
  703. }else{
  704. int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
  705. ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
  706. assert(left_xy[0] == left_xy[1]);
  707. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  708. h->topleft_samples_available&= 0xDF5F;
  709. h->left_samples_available&= 0x5F5F;
  710. }
  711. }
  712. }else{
  713. if(!(left_type[0] & type_mask)){
  714. h->topleft_samples_available&= 0xDF5F;
  715. h->left_samples_available&= 0x5F5F;
  716. }
  717. }
  718. if(!(topleft_type & type_mask))
  719. h->topleft_samples_available&= 0x7FFF;
  720. if(!(topright_type & type_mask))
  721. h->topright_samples_available&= 0xFBFF;
  722. if(IS_INTRA4x4(mb_type)){
  723. if(IS_INTRA4x4(top_type)){
  724. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  725. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  726. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  727. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  728. }else{
  729. int pred;
  730. if(!(top_type & type_mask))
  731. pred= -1;
  732. else{
  733. pred= 2;
  734. }
  735. h->intra4x4_pred_mode_cache[4+8*0]=
  736. h->intra4x4_pred_mode_cache[5+8*0]=
  737. h->intra4x4_pred_mode_cache[6+8*0]=
  738. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  739. }
  740. for(i=0; i<2; i++){
  741. if(IS_INTRA4x4(left_type[i])){
  742. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  743. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  744. }else{
  745. int pred;
  746. if(!(left_type[i] & type_mask))
  747. pred= -1;
  748. else{
  749. pred= 2;
  750. }
  751. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  752. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  753. }
  754. }
  755. }
  756. }
  757. /*
  758. 0 . T T. T T T T
  759. 1 L . .L . . . .
  760. 2 L . .L . . . .
  761. 3 . T TL . . . .
  762. 4 L . .L . . . .
  763. 5 L . .. . . . .
  764. */
  765. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  766. if(top_type){
  767. *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
  768. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  769. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  770. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  771. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  772. }else {
  773. h->non_zero_count_cache[1+8*0]=
  774. h->non_zero_count_cache[2+8*0]=
  775. h->non_zero_count_cache[1+8*3]=
  776. h->non_zero_count_cache[2+8*3]=
  777. *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
  778. }
  779. for (i=0; i<2; i++) {
  780. if(left_type[i]){
  781. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  782. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  783. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  784. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  785. }else{
  786. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  787. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  788. h->non_zero_count_cache[0+8*1 + 8*i]=
  789. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  790. }
  791. }
  792. if( CABAC ) {
  793. // top_cbp
  794. if(top_type) {
  795. h->top_cbp = h->cbp_table[top_xy];
  796. } else if(IS_INTRA(mb_type)) {
  797. h->top_cbp = 0x1C0;
  798. } else {
  799. h->top_cbp = 0;
  800. }
  801. // left_cbp
  802. if (left_type[0]) {
  803. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  804. } else if(IS_INTRA(mb_type)) {
  805. h->left_cbp = 0x1C0;
  806. } else {
  807. h->left_cbp = 0;
  808. }
  809. if (left_type[0]) {
  810. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  811. }
  812. if (left_type[1]) {
  813. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  814. }
  815. }
  816. #if 1
  817. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  818. int list;
  819. for(list=0; list<h->list_count; list++){
  820. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
  821. /*if(!h->mv_cache_clean[list]){
  822. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  823. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  824. h->mv_cache_clean[list]= 1;
  825. }*/
  826. continue;
  827. }
  828. h->mv_cache_clean[list]= 0;
  829. if(USES_LIST(top_type, list)){
  830. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  831. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  832. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  833. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  834. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  835. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  836. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  837. }else{
  838. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  839. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  840. }
  841. for(i=0; i<2; i++){
  842. int cache_idx = scan8[0] - 1 + i*2*8;
  843. if(USES_LIST(left_type[i], list)){
  844. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  845. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  846. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  847. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  848. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  849. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  850. }else{
  851. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  852. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  853. h->ref_cache[list][cache_idx ]=
  854. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  855. }
  856. }
  857. if((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
  858. continue;
  859. if(USES_LIST(topleft_type, list)){
  860. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  861. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  862. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  863. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  864. }else{
  865. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  866. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  867. }
  868. if(USES_LIST(topright_type, list)){
  869. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  870. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  871. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  872. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  873. }else{
  874. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  875. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  876. }
  877. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  878. continue;
  879. h->ref_cache[list][scan8[5 ]+1] =
  880. h->ref_cache[list][scan8[7 ]+1] =
  881. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  882. h->ref_cache[list][scan8[4 ]] =
  883. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  884. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  885. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  886. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  887. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  888. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  889. if( CABAC ) {
  890. /* XXX beurk, Load mvd */
  891. if(USES_LIST(top_type, list)){
  892. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  893. AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  894. }else{
  895. AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  896. }
  897. if(USES_LIST(left_type[0], list)){
  898. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  899. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  900. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  901. }else{
  902. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  903. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  904. }
  905. if(USES_LIST(left_type[1], list)){
  906. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  907. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  908. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  909. }else{
  910. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  911. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  912. }
  913. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  914. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  915. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  916. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  917. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  918. if(h->slice_type_nos == FF_B_TYPE){
  919. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  920. if(IS_DIRECT(top_type)){
  921. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  922. }else if(IS_8X8(top_type)){
  923. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  924. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  925. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  926. }else{
  927. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  928. }
  929. if(IS_DIRECT(left_type[0]))
  930. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  931. else if(IS_8X8(left_type[0]))
  932. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  933. else
  934. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  935. if(IS_DIRECT(left_type[1]))
  936. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  937. else if(IS_8X8(left_type[1]))
  938. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  939. else
  940. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  941. }
  942. }
  943. if(FRAME_MBAFF){
  944. #define MAP_MVS\
  945. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  946. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  947. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  948. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  949. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  950. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  951. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  952. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  953. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  954. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  955. if(MB_FIELD){
  956. #define MAP_F2F(idx, mb_type)\
  957. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  958. h->ref_cache[list][idx] <<= 1;\
  959. h->mv_cache[list][idx][1] /= 2;\
  960. h->mvd_cache[list][idx][1] /= 2;\
  961. }
  962. MAP_MVS
  963. #undef MAP_F2F
  964. }else{
  965. #define MAP_F2F(idx, mb_type)\
  966. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  967. h->ref_cache[list][idx] >>= 1;\
  968. h->mv_cache[list][idx][1] <<= 1;\
  969. h->mvd_cache[list][idx][1] <<= 1;\
  970. }
  971. MAP_MVS
  972. #undef MAP_F2F
  973. }
  974. }
  975. }
  976. }
  977. #endif
  978. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  979. }
  980. /**
  981. *
  982. * @returns non zero if the loop filter can be skiped
  983. */
  984. static int fill_filter_caches(H264Context *h, int mb_type){
  985. MpegEncContext * const s = &h->s;
  986. const int mb_xy= h->mb_xy;
  987. int top_xy, left_xy[2];
  988. int top_type, left_type[2];
  989. int i;
  990. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  991. //FIXME deblocking could skip the intra and nnz parts.
  992. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  993. * stuff, I can't imagine that these complex rules are worth it. */
  994. left_xy[1] = left_xy[0] = mb_xy-1;
  995. if(FRAME_MBAFF){
  996. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  997. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  998. if(s->mb_y&1){
  999. if (left_mb_field_flag != curr_mb_field_flag) {
  1000. left_xy[0] -= s->mb_stride;
  1001. }
  1002. }else{
  1003. if(curr_mb_field_flag){
  1004. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  1005. }
  1006. if (left_mb_field_flag != curr_mb_field_flag) {
  1007. left_xy[1] += s->mb_stride;
  1008. }
  1009. }
  1010. }
  1011. h->top_mb_xy = top_xy;
  1012. h->left_mb_xy[0] = left_xy[0];
  1013. h->left_mb_xy[1] = left_xy[1];
  1014. {
  1015. //for sufficiently low qp, filtering wouldn't do anything
  1016. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  1017. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  1018. int qp = s->current_picture.qscale_table[mb_xy];
  1019. if(qp <= qp_thresh
  1020. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  1021. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  1022. if(!FRAME_MBAFF)
  1023. return 1;
  1024. if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
  1025. && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
  1026. return 1;
  1027. }
  1028. }
  1029. if(h->deblocking_filter == 2){
  1030. h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  1031. h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  1032. h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  1033. }else{
  1034. h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
  1035. h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
  1036. h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
  1037. }
  1038. if(IS_INTRA(mb_type))
  1039. return 0;
  1040. AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
  1041. AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
  1042. *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
  1043. *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
  1044. AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
  1045. h->cbp= h->cbp_table[mb_xy];
  1046. {
  1047. int list;
  1048. for(list=0; list<h->list_count; list++){
  1049. int8_t *ref;
  1050. int y, b_stride;
  1051. int16_t (*mv_dst)[2];
  1052. int16_t (*mv_src)[2];
  1053. if(!USES_LIST(mb_type, list)){
  1054. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  1055. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  1056. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
  1057. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  1058. *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
  1059. continue;
  1060. }
  1061. ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  1062. {
  1063. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1064. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  1065. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
  1066. ref += h->b8_stride;
  1067. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  1068. *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
  1069. }
  1070. b_stride = h->b_stride;
  1071. mv_dst = &h->mv_cache[list][scan8[0]];
  1072. mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  1073. for(y=0; y<4; y++){
  1074. AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
  1075. }
  1076. }
  1077. }
  1078. /*
  1079. 0 . T T. T T T T
  1080. 1 L . .L . . . .
  1081. 2 L . .L . . . .
  1082. 3 . T TL . . . .
  1083. 4 L . .L . . . .
  1084. 5 L . .. . . . .
  1085. */
  1086. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  1087. if(top_type){
  1088. *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
  1089. }
  1090. if(left_type[0]){
  1091. h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
  1092. h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
  1093. h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
  1094. h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
  1095. }
  1096. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  1097. if(!CABAC && h->pps.transform_8x8_mode){
  1098. if(IS_8x8DCT(top_type)){
  1099. h->non_zero_count_cache[4+8*0]=
  1100. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  1101. h->non_zero_count_cache[6+8*0]=
  1102. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  1103. }
  1104. if(IS_8x8DCT(left_type[0])){
  1105. h->non_zero_count_cache[3+8*1]=
  1106. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  1107. }
  1108. if(IS_8x8DCT(left_type[1])){
  1109. h->non_zero_count_cache[3+8*3]=
  1110. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  1111. }
  1112. if(IS_8x8DCT(mb_type)){
  1113. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  1114. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  1115. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  1116. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  1117. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  1118. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  1119. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  1120. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  1121. }
  1122. }
  1123. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  1124. int list;
  1125. for(list=0; list<h->list_count; list++){
  1126. if(USES_LIST(top_type, list)){
  1127. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  1128. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  1129. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1130. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  1131. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  1132. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  1133. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  1134. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  1135. }else{
  1136. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  1137. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101;
  1138. }
  1139. if(!IS_INTERLACED(mb_type^left_type[0])){
  1140. if(USES_LIST(left_type[0], list)){
  1141. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  1142. const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
  1143. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1144. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0];
  1145. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1];
  1146. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2];
  1147. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3];
  1148. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1149. h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
  1150. h->ref_cache[list][scan8[0] - 1 +16 ]=
  1151. h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
  1152. }else{
  1153. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]=
  1154. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]=
  1155. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]=
  1156. *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0;
  1157. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1158. h->ref_cache[list][scan8[0] - 1 + 8 ]=
  1159. h->ref_cache[list][scan8[0] - 1 + 16 ]=
  1160. h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
  1161. }
  1162. }
  1163. }
  1164. }
  1165. return 0;
  1166. }
  1167. /**
  1168. * gets the predicted intra4x4 prediction mode.
  1169. */
  1170. static inline int pred_intra_mode(H264Context *h, int n){
  1171. const int index8= scan8[n];
  1172. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1173. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1174. const int min= FFMIN(left, top);
  1175. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1176. if(min<0) return DC_PRED;
  1177. else return min;
  1178. }
  1179. static inline void write_back_non_zero_count(H264Context *h){
  1180. const int mb_xy= h->mb_xy;
  1181. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1182. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1183. *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
  1184. *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
  1185. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1186. }
  1187. static inline void write_back_motion(H264Context *h, int mb_type){
  1188. MpegEncContext * const s = &h->s;
  1189. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1190. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1191. int list;
  1192. if(!USES_LIST(mb_type, 0))
  1193. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1194. for(list=0; list<h->list_count; list++){
  1195. int y, b_stride;
  1196. int16_t (*mv_dst)[2];
  1197. int16_t (*mv_src)[2];
  1198. if(!USES_LIST(mb_type, list))
  1199. continue;
  1200. b_stride = h->b_stride;
  1201. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1202. mv_src = &h->mv_cache[list][scan8[0]];
  1203. for(y=0; y<4; y++){
  1204. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1205. }
  1206. if( CABAC ) {
  1207. int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
  1208. int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1209. if(IS_SKIP(mb_type))
  1210. fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
  1211. else
  1212. for(y=0; y<4; y++){
  1213. AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
  1214. }
  1215. }
  1216. {
  1217. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1218. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1219. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1220. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1221. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1222. }
  1223. }
  1224. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1225. if(IS_8X8(mb_type)){
  1226. uint8_t *direct_table = &h->direct_table[b8_xy];
  1227. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1228. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1229. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1230. }
  1231. }
  1232. }
  1233. static inline int get_dct8x8_allowed(H264Context *h){
  1234. if(h->sps.direct_8x8_inference_flag)
  1235. return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1236. else
  1237. return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1238. }
  1239. static void predict_field_decoding_flag(H264Context *h){
  1240. MpegEncContext * const s = &h->s;
  1241. const int mb_xy= h->mb_xy;
  1242. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  1243. ? s->current_picture.mb_type[mb_xy-1]
  1244. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  1245. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  1246. : 0;
  1247. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  1248. }
  1249. /**
  1250. * decodes a P_SKIP or B_SKIP macroblock
  1251. */
  1252. static void decode_mb_skip(H264Context *h){
  1253. MpegEncContext * const s = &h->s;
  1254. const int mb_xy= h->mb_xy;
  1255. int mb_type=0;
  1256. memset(h->non_zero_count[mb_xy], 0, 32);
  1257. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1258. if(MB_FIELD)
  1259. mb_type|= MB_TYPE_INTERLACED;
  1260. if( h->slice_type_nos == FF_B_TYPE )
  1261. {
  1262. // just for fill_caches. pred_direct_motion will set the real mb_type
  1263. mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1264. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1265. ff_h264_pred_direct_motion(h, &mb_type);
  1266. mb_type|= MB_TYPE_SKIP;
  1267. }
  1268. else
  1269. {
  1270. int mx, my;
  1271. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1272. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1273. pred_pskip_motion(h, &mx, &my);
  1274. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1275. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1276. }
  1277. write_back_motion(h, mb_type);
  1278. s->current_picture.mb_type[mb_xy]= mb_type;
  1279. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1280. h->slice_table[ mb_xy ]= h->slice_num;
  1281. h->prev_mb_skipped= 1;
  1282. }
  1283. #include "h264_mvpred.h" //For pred_pskip_motion()
  1284. #endif /* AVCODEC_H264_H */