You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

11607 lines
316KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. In libavfilter, a filter can have multiple inputs and multiple
  5. outputs.
  6. To illustrate the sorts of things that are possible, we consider the
  7. following filtergraph.
  8. @example
  9. [main]
  10. input --> split ---------------------> overlay --> output
  11. | ^
  12. |[tmp] [flip]|
  13. +-----> crop --> vflip -------+
  14. @end example
  15. This filtergraph splits the input stream in two streams, then sends one
  16. stream through the crop filter and the vflip filter, before merging it
  17. back with the other stream by overlaying it on top. You can use the
  18. following command to achieve this:
  19. @example
  20. ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT
  21. @end example
  22. The result will be that the top half of the video is mirrored
  23. onto the bottom half of the output video.
  24. Filters in the same linear chain are separated by commas, and distinct
  25. linear chains of filters are separated by semicolons. In our example,
  26. @var{crop,vflip} are in one linear chain, @var{split} and
  27. @var{overlay} are separately in another. The points where the linear
  28. chains join are labelled by names enclosed in square brackets. In the
  29. example, the split filter generates two outputs that are associated to
  30. the labels @var{[main]} and @var{[tmp]}.
  31. The stream sent to the second output of @var{split}, labelled as
  32. @var{[tmp]}, is processed through the @var{crop} filter, which crops
  33. away the lower half part of the video, and then vertically flipped. The
  34. @var{overlay} filter takes in input the first unchanged output of the
  35. split filter (which was labelled as @var{[main]}), and overlay on its
  36. lower half the output generated by the @var{crop,vflip} filterchain.
  37. Some filters take in input a list of parameters: they are specified
  38. after the filter name and an equal sign, and are separated from each other
  39. by a colon.
  40. There exist so-called @var{source filters} that do not have an
  41. audio/video input, and @var{sink filters} that will not have audio/video
  42. output.
  43. @c man end FILTERING INTRODUCTION
  44. @chapter graph2dot
  45. @c man begin GRAPH2DOT
  46. The @file{graph2dot} program included in the FFmpeg @file{tools}
  47. directory can be used to parse a filtergraph description and issue a
  48. corresponding textual representation in the dot language.
  49. Invoke the command:
  50. @example
  51. graph2dot -h
  52. @end example
  53. to see how to use @file{graph2dot}.
  54. You can then pass the dot description to the @file{dot} program (from
  55. the graphviz suite of programs) and obtain a graphical representation
  56. of the filtergraph.
  57. For example the sequence of commands:
  58. @example
  59. echo @var{GRAPH_DESCRIPTION} | \
  60. tools/graph2dot -o graph.tmp && \
  61. dot -Tpng graph.tmp -o graph.png && \
  62. display graph.png
  63. @end example
  64. can be used to create and display an image representing the graph
  65. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  66. a complete self-contained graph, with its inputs and outputs explicitly defined.
  67. For example if your command line is of the form:
  68. @example
  69. ffmpeg -i infile -vf scale=640:360 outfile
  70. @end example
  71. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  72. @example
  73. nullsrc,scale=640:360,nullsink
  74. @end example
  75. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  76. filter in order to simulate a specific input file.
  77. @c man end GRAPH2DOT
  78. @chapter Filtergraph description
  79. @c man begin FILTERGRAPH DESCRIPTION
  80. A filtergraph is a directed graph of connected filters. It can contain
  81. cycles, and there can be multiple links between a pair of
  82. filters. Each link has one input pad on one side connecting it to one
  83. filter from which it takes its input, and one output pad on the other
  84. side connecting it to one filter accepting its output.
  85. Each filter in a filtergraph is an instance of a filter class
  86. registered in the application, which defines the features and the
  87. number of input and output pads of the filter.
  88. A filter with no input pads is called a "source", and a filter with no
  89. output pads is called a "sink".
  90. @anchor{Filtergraph syntax}
  91. @section Filtergraph syntax
  92. A filtergraph has a textual representation, which is
  93. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  94. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  95. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} functions defined in
  96. @file{libavfilter/avfilter.h}.
  97. A filterchain consists of a sequence of connected filters, each one
  98. connected to the previous one in the sequence. A filterchain is
  99. represented by a list of ","-separated filter descriptions.
  100. A filtergraph consists of a sequence of filterchains. A sequence of
  101. filterchains is represented by a list of ";"-separated filterchain
  102. descriptions.
  103. A filter is represented by a string of the form:
  104. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  105. @var{filter_name} is the name of the filter class of which the
  106. described filter is an instance of, and has to be the name of one of
  107. the filter classes registered in the program.
  108. The name of the filter class is optionally followed by a string
  109. "=@var{arguments}".
  110. @var{arguments} is a string which contains the parameters used to
  111. initialize the filter instance. It may have one of two forms:
  112. @itemize
  113. @item
  114. A ':'-separated list of @var{key=value} pairs.
  115. @item
  116. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  117. the option names in the order they are declared. E.g. the @code{fade} filter
  118. declares three options in this order -- @option{type}, @option{start_frame} and
  119. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  120. @var{in} is assigned to the option @option{type}, @var{0} to
  121. @option{start_frame} and @var{30} to @option{nb_frames}.
  122. @item
  123. A ':'-separated list of mixed direct @var{value} and long @var{key=value}
  124. pairs. The direct @var{value} must precede the @var{key=value} pairs, and
  125. follow the same constraints order of the previous point. The following
  126. @var{key=value} pairs can be set in any preferred order.
  127. @end itemize
  128. If the option value itself is a list of items (e.g. the @code{format} filter
  129. takes a list of pixel formats), the items in the list are usually separated by
  130. '|'.
  131. The list of arguments can be quoted using the character "'" as initial
  132. and ending mark, and the character '\' for escaping the characters
  133. within the quoted text; otherwise the argument string is considered
  134. terminated when the next special character (belonging to the set
  135. "[]=;,") is encountered.
  136. The name and arguments of the filter are optionally preceded and
  137. followed by a list of link labels.
  138. A link label allows one to name a link and associate it to a filter output
  139. or input pad. The preceding labels @var{in_link_1}
  140. ... @var{in_link_N}, are associated to the filter input pads,
  141. the following labels @var{out_link_1} ... @var{out_link_M}, are
  142. associated to the output pads.
  143. When two link labels with the same name are found in the
  144. filtergraph, a link between the corresponding input and output pad is
  145. created.
  146. If an output pad is not labelled, it is linked by default to the first
  147. unlabelled input pad of the next filter in the filterchain.
  148. For example in the filterchain
  149. @example
  150. nullsrc, split[L1], [L2]overlay, nullsink
  151. @end example
  152. the split filter instance has two output pads, and the overlay filter
  153. instance two input pads. The first output pad of split is labelled
  154. "L1", the first input pad of overlay is labelled "L2", and the second
  155. output pad of split is linked to the second input pad of overlay,
  156. which are both unlabelled.
  157. In a complete filterchain all the unlabelled filter input and output
  158. pads must be connected. A filtergraph is considered valid if all the
  159. filter input and output pads of all the filterchains are connected.
  160. Libavfilter will automatically insert @ref{scale} filters where format
  161. conversion is required. It is possible to specify swscale flags
  162. for those automatically inserted scalers by prepending
  163. @code{sws_flags=@var{flags};}
  164. to the filtergraph description.
  165. Here is a BNF description of the filtergraph syntax:
  166. @example
  167. @var{NAME} ::= sequence of alphanumeric characters and '_'
  168. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  169. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  170. @var{FILTER_ARGUMENTS} ::= sequence of chars (possibly quoted)
  171. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  172. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  173. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  174. @end example
  175. @section Notes on filtergraph escaping
  176. Filtergraph description composition entails several levels of
  177. escaping. See @ref{quoting_and_escaping,,the "Quoting and escaping"
  178. section in the ffmpeg-utils(1) manual,ffmpeg-utils} for more
  179. information about the employed escaping procedure.
  180. A first level escaping affects the content of each filter option
  181. value, which may contain the special character @code{:} used to
  182. separate values, or one of the escaping characters @code{\'}.
  183. A second level escaping affects the whole filter description, which
  184. may contain the escaping characters @code{\'} or the special
  185. characters @code{[],;} used by the filtergraph description.
  186. Finally, when you specify a filtergraph on a shell commandline, you
  187. need to perform a third level escaping for the shell special
  188. characters contained within it.
  189. For example, consider the following string to be embedded in
  190. the @ref{drawtext} filter description @option{text} value:
  191. @example
  192. this is a 'string': may contain one, or more, special characters
  193. @end example
  194. This string contains the @code{'} special escaping character, and the
  195. @code{:} special character, so it needs to be escaped in this way:
  196. @example
  197. text=this is a \'string\'\: may contain one, or more, special characters
  198. @end example
  199. A second level of escaping is required when embedding the filter
  200. description in a filtergraph description, in order to escape all the
  201. filtergraph special characters. Thus the example above becomes:
  202. @example
  203. drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters
  204. @end example
  205. (note that in addition to the @code{\'} escaping special characters,
  206. also @code{,} needs to be escaped).
  207. Finally an additional level of escaping is needed when writing the
  208. filtergraph description in a shell command, which depends on the
  209. escaping rules of the adopted shell. For example, assuming that
  210. @code{\} is special and needs to be escaped with another @code{\}, the
  211. previous string will finally result in:
  212. @example
  213. -vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"
  214. @end example
  215. @chapter Timeline editing
  216. Some filters support a generic @option{enable} option. For the filters
  217. supporting timeline editing, this option can be set to an expression which is
  218. evaluated before sending a frame to the filter. If the evaluation is non-zero,
  219. the filter will be enabled, otherwise the frame will be sent unchanged to the
  220. next filter in the filtergraph.
  221. The expression accepts the following values:
  222. @table @samp
  223. @item t
  224. timestamp expressed in seconds, NAN if the input timestamp is unknown
  225. @item n
  226. sequential number of the input frame, starting from 0
  227. @item pos
  228. the position in the file of the input frame, NAN if unknown
  229. @item w
  230. @item h
  231. width and height of the input frame if video
  232. @end table
  233. Additionally, these filters support an @option{enable} command that can be used
  234. to re-define the expression.
  235. Like any other filtering option, the @option{enable} option follows the same
  236. rules.
  237. For example, to enable a blur filter (@ref{smartblur}) from 10 seconds to 3
  238. minutes, and a @ref{curves} filter starting at 3 seconds:
  239. @example
  240. smartblur = enable='between(t,10,3*60)',
  241. curves = enable='gte(t,3)' : preset=cross_process
  242. @end example
  243. @c man end FILTERGRAPH DESCRIPTION
  244. @chapter Audio Filters
  245. @c man begin AUDIO FILTERS
  246. When you configure your FFmpeg build, you can disable any of the
  247. existing filters using @code{--disable-filters}.
  248. The configure output will show the audio filters included in your
  249. build.
  250. Below is a description of the currently available audio filters.
  251. @section adelay
  252. Delay one or more audio channels.
  253. Samples in delayed channel are filled with silence.
  254. The filter accepts the following option:
  255. @table @option
  256. @item delays
  257. Set list of delays in milliseconds for each channel separated by '|'.
  258. At least one delay greater than 0 should be provided.
  259. Unused delays will be silently ignored. If number of given delays is
  260. smaller than number of channels all remaining channels will not be delayed.
  261. @end table
  262. @subsection Examples
  263. @itemize
  264. @item
  265. Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and leave
  266. the second channel (and any other channels that may be present) unchanged.
  267. @example
  268. adelay=1500|0|500
  269. @end example
  270. @end itemize
  271. @section aecho
  272. Apply echoing to the input audio.
  273. Echoes are reflected sound and can occur naturally amongst mountains
  274. (and sometimes large buildings) when talking or shouting; digital echo
  275. effects emulate this behaviour and are often used to help fill out the
  276. sound of a single instrument or vocal. The time difference between the
  277. original signal and the reflection is the @code{delay}, and the
  278. loudness of the reflected signal is the @code{decay}.
  279. Multiple echoes can have different delays and decays.
  280. A description of the accepted parameters follows.
  281. @table @option
  282. @item in_gain
  283. Set input gain of reflected signal. Default is @code{0.6}.
  284. @item out_gain
  285. Set output gain of reflected signal. Default is @code{0.3}.
  286. @item delays
  287. Set list of time intervals in milliseconds between original signal and reflections
  288. separated by '|'. Allowed range for each @code{delay} is @code{(0 - 90000.0]}.
  289. Default is @code{1000}.
  290. @item decays
  291. Set list of loudnesses of reflected signals separated by '|'.
  292. Allowed range for each @code{decay} is @code{(0 - 1.0]}.
  293. Default is @code{0.5}.
  294. @end table
  295. @subsection Examples
  296. @itemize
  297. @item
  298. Make it sound as if there are twice as many instruments as are actually playing:
  299. @example
  300. aecho=0.8:0.88:60:0.4
  301. @end example
  302. @item
  303. If delay is very short, then it sound like a (metallic) robot playing music:
  304. @example
  305. aecho=0.8:0.88:6:0.4
  306. @end example
  307. @item
  308. A longer delay will sound like an open air concert in the mountains:
  309. @example
  310. aecho=0.8:0.9:1000:0.3
  311. @end example
  312. @item
  313. Same as above but with one more mountain:
  314. @example
  315. aecho=0.8:0.9:1000|1800:0.3|0.25
  316. @end example
  317. @end itemize
  318. @section aeval
  319. Modify an audio signal according to the specified expressions.
  320. This filter accepts one or more expressions (one for each channel),
  321. which are evaluated and used to modify a corresponding audio signal.
  322. It accepts the following parameters:
  323. @table @option
  324. @item exprs
  325. Set the '|'-separated expressions list for each separate channel. If
  326. the number of input channels is greater than the number of
  327. expressions, the last specified expression is used for the remaining
  328. output channels.
  329. @item channel_layout, c
  330. Set output channel layout. If not specified, the channel layout is
  331. specified by the number of expressions. If set to @samp{same}, it will
  332. use by default the same input channel layout.
  333. @end table
  334. Each expression in @var{exprs} can contain the following constants and functions:
  335. @table @option
  336. @item ch
  337. channel number of the current expression
  338. @item n
  339. number of the evaluated sample, starting from 0
  340. @item s
  341. sample rate
  342. @item t
  343. time of the evaluated sample expressed in seconds
  344. @item nb_in_channels
  345. @item nb_out_channels
  346. input and output number of channels
  347. @item val(CH)
  348. the value of input channel with number @var{CH}
  349. @end table
  350. Note: this filter is slow. For faster processing you should use a
  351. dedicated filter.
  352. @subsection Examples
  353. @itemize
  354. @item
  355. Half volume:
  356. @example
  357. aeval=val(ch)/2:c=same
  358. @end example
  359. @item
  360. Invert phase of the second channel:
  361. @example
  362. aeval=val(0)|-val(1)
  363. @end example
  364. @end itemize
  365. @section afade
  366. Apply fade-in/out effect to input audio.
  367. A description of the accepted parameters follows.
  368. @table @option
  369. @item type, t
  370. Specify the effect type, can be either @code{in} for fade-in, or
  371. @code{out} for a fade-out effect. Default is @code{in}.
  372. @item start_sample, ss
  373. Specify the number of the start sample for starting to apply the fade
  374. effect. Default is 0.
  375. @item nb_samples, ns
  376. Specify the number of samples for which the fade effect has to last. At
  377. the end of the fade-in effect the output audio will have the same
  378. volume as the input audio, at the end of the fade-out transition
  379. the output audio will be silence. Default is 44100.
  380. @item start_time, st
  381. Specify the start time of the fade effect. Default is 0.
  382. The value must be specified as a time duration; see
  383. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  384. for the accepted syntax.
  385. If set this option is used instead of @var{start_sample}.
  386. @item duration, d
  387. Specify the duration of the fade effect. See
  388. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  389. for the accepted syntax.
  390. At the end of the fade-in effect the output audio will have the same
  391. volume as the input audio, at the end of the fade-out transition
  392. the output audio will be silence.
  393. By default the duration is determined by @var{nb_samples}.
  394. If set this option is used instead of @var{nb_samples}.
  395. @item curve
  396. Set curve for fade transition.
  397. It accepts the following values:
  398. @table @option
  399. @item tri
  400. select triangular, linear slope (default)
  401. @item qsin
  402. select quarter of sine wave
  403. @item hsin
  404. select half of sine wave
  405. @item esin
  406. select exponential sine wave
  407. @item log
  408. select logarithmic
  409. @item par
  410. select inverted parabola
  411. @item qua
  412. select quadratic
  413. @item cub
  414. select cubic
  415. @item squ
  416. select square root
  417. @item cbr
  418. select cubic root
  419. @end table
  420. @end table
  421. @subsection Examples
  422. @itemize
  423. @item
  424. Fade in first 15 seconds of audio:
  425. @example
  426. afade=t=in:ss=0:d=15
  427. @end example
  428. @item
  429. Fade out last 25 seconds of a 900 seconds audio:
  430. @example
  431. afade=t=out:st=875:d=25
  432. @end example
  433. @end itemize
  434. @anchor{aformat}
  435. @section aformat
  436. Set output format constraints for the input audio. The framework will
  437. negotiate the most appropriate format to minimize conversions.
  438. It accepts the following parameters:
  439. @table @option
  440. @item sample_fmts
  441. A '|'-separated list of requested sample formats.
  442. @item sample_rates
  443. A '|'-separated list of requested sample rates.
  444. @item channel_layouts
  445. A '|'-separated list of requested channel layouts.
  446. See @ref{channel layout syntax,,the Channel Layout section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  447. for the required syntax.
  448. @end table
  449. If a parameter is omitted, all values are allowed.
  450. Force the output to either unsigned 8-bit or signed 16-bit stereo
  451. @example
  452. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  453. @end example
  454. @section allpass
  455. Apply a two-pole all-pass filter with central frequency (in Hz)
  456. @var{frequency}, and filter-width @var{width}.
  457. An all-pass filter changes the audio's frequency to phase relationship
  458. without changing its frequency to amplitude relationship.
  459. The filter accepts the following options:
  460. @table @option
  461. @item frequency, f
  462. Set frequency in Hz.
  463. @item width_type
  464. Set method to specify band-width of filter.
  465. @table @option
  466. @item h
  467. Hz
  468. @item q
  469. Q-Factor
  470. @item o
  471. octave
  472. @item s
  473. slope
  474. @end table
  475. @item width, w
  476. Specify the band-width of a filter in width_type units.
  477. @end table
  478. @section amerge
  479. Merge two or more audio streams into a single multi-channel stream.
  480. The filter accepts the following options:
  481. @table @option
  482. @item inputs
  483. Set the number of inputs. Default is 2.
  484. @end table
  485. If the channel layouts of the inputs are disjoint, and therefore compatible,
  486. the channel layout of the output will be set accordingly and the channels
  487. will be reordered as necessary. If the channel layouts of the inputs are not
  488. disjoint, the output will have all the channels of the first input then all
  489. the channels of the second input, in that order, and the channel layout of
  490. the output will be the default value corresponding to the total number of
  491. channels.
  492. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  493. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  494. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  495. first input, b1 is the first channel of the second input).
  496. On the other hand, if both input are in stereo, the output channels will be
  497. in the default order: a1, a2, b1, b2, and the channel layout will be
  498. arbitrarily set to 4.0, which may or may not be the expected value.
  499. All inputs must have the same sample rate, and format.
  500. If inputs do not have the same duration, the output will stop with the
  501. shortest.
  502. @subsection Examples
  503. @itemize
  504. @item
  505. Merge two mono files into a stereo stream:
  506. @example
  507. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  508. @end example
  509. @item
  510. Multiple merges assuming 1 video stream and 6 audio streams in @file{input.mkv}:
  511. @example
  512. ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_s16le output.mkv
  513. @end example
  514. @end itemize
  515. @section amix
  516. Mixes multiple audio inputs into a single output.
  517. Note that this filter only supports float samples (the @var{amerge}
  518. and @var{pan} audio filters support many formats). If the @var{amix}
  519. input has integer samples then @ref{aresample} will be automatically
  520. inserted to perform the conversion to float samples.
  521. For example
  522. @example
  523. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  524. @end example
  525. will mix 3 input audio streams to a single output with the same duration as the
  526. first input and a dropout transition time of 3 seconds.
  527. It accepts the following parameters:
  528. @table @option
  529. @item inputs
  530. The number of inputs. If unspecified, it defaults to 2.
  531. @item duration
  532. How to determine the end-of-stream.
  533. @table @option
  534. @item longest
  535. The duration of the longest input. (default)
  536. @item shortest
  537. The duration of the shortest input.
  538. @item first
  539. The duration of the first input.
  540. @end table
  541. @item dropout_transition
  542. The transition time, in seconds, for volume renormalization when an input
  543. stream ends. The default value is 2 seconds.
  544. @end table
  545. @section anull
  546. Pass the audio source unchanged to the output.
  547. @section apad
  548. Pad the end of an audio stream with silence.
  549. This can be used together with @command{ffmpeg} @option{-shortest} to
  550. extend audio streams to the same length as the video stream.
  551. A description of the accepted options follows.
  552. @table @option
  553. @item packet_size
  554. Set silence packet size. Default value is 4096.
  555. @item pad_len
  556. Set the number of samples of silence to add to the end. After the
  557. value is reached, the stream is terminated. This option is mutually
  558. exclusive with @option{whole_len}.
  559. @item whole_len
  560. Set the minimum total number of samples in the output audio stream. If
  561. the value is longer than the input audio length, silence is added to
  562. the end, until the value is reached. This option is mutually exclusive
  563. with @option{pad_len}.
  564. @end table
  565. If neither the @option{pad_len} nor the @option{whole_len} option is
  566. set, the filter will add silence to the end of the input stream
  567. indefinitely.
  568. @subsection Examples
  569. @itemize
  570. @item
  571. Add 1024 samples of silence to the end of the input:
  572. @example
  573. apad=pad_len=1024
  574. @end example
  575. @item
  576. Make sure the audio output will contain at least 10000 samples, pad
  577. the input with silence if required:
  578. @example
  579. apad=whole_len=10000
  580. @end example
  581. @item
  582. Use @command{ffmpeg} to pad the audio input with silence, so that the
  583. video stream will always result the shortest and will be converted
  584. until the end in the output file when using the @option{shortest}
  585. option:
  586. @example
  587. ffmpeg -i VIDEO -i AUDIO -filter_complex "[1:0]apad" -shortest OUTPUT
  588. @end example
  589. @end itemize
  590. @section aphaser
  591. Add a phasing effect to the input audio.
  592. A phaser filter creates series of peaks and troughs in the frequency spectrum.
  593. The position of the peaks and troughs are modulated so that they vary over time, creating a sweeping effect.
  594. A description of the accepted parameters follows.
  595. @table @option
  596. @item in_gain
  597. Set input gain. Default is 0.4.
  598. @item out_gain
  599. Set output gain. Default is 0.74
  600. @item delay
  601. Set delay in milliseconds. Default is 3.0.
  602. @item decay
  603. Set decay. Default is 0.4.
  604. @item speed
  605. Set modulation speed in Hz. Default is 0.5.
  606. @item type
  607. Set modulation type. Default is triangular.
  608. It accepts the following values:
  609. @table @samp
  610. @item triangular, t
  611. @item sinusoidal, s
  612. @end table
  613. @end table
  614. @anchor{aresample}
  615. @section aresample
  616. Resample the input audio to the specified parameters, using the
  617. libswresample library. If none are specified then the filter will
  618. automatically convert between its input and output.
  619. This filter is also able to stretch/squeeze the audio data to make it match
  620. the timestamps or to inject silence / cut out audio to make it match the
  621. timestamps, do a combination of both or do neither.
  622. The filter accepts the syntax
  623. [@var{sample_rate}:]@var{resampler_options}, where @var{sample_rate}
  624. expresses a sample rate and @var{resampler_options} is a list of
  625. @var{key}=@var{value} pairs, separated by ":". See the
  626. ffmpeg-resampler manual for the complete list of supported options.
  627. @subsection Examples
  628. @itemize
  629. @item
  630. Resample the input audio to 44100Hz:
  631. @example
  632. aresample=44100
  633. @end example
  634. @item
  635. Stretch/squeeze samples to the given timestamps, with a maximum of 1000
  636. samples per second compensation:
  637. @example
  638. aresample=async=1000
  639. @end example
  640. @end itemize
  641. @section asetnsamples
  642. Set the number of samples per each output audio frame.
  643. The last output packet may contain a different number of samples, as
  644. the filter will flush all the remaining samples when the input audio
  645. signal its end.
  646. The filter accepts the following options:
  647. @table @option
  648. @item nb_out_samples, n
  649. Set the number of frames per each output audio frame. The number is
  650. intended as the number of samples @emph{per each channel}.
  651. Default value is 1024.
  652. @item pad, p
  653. If set to 1, the filter will pad the last audio frame with zeroes, so
  654. that the last frame will contain the same number of samples as the
  655. previous ones. Default value is 1.
  656. @end table
  657. For example, to set the number of per-frame samples to 1234 and
  658. disable padding for the last frame, use:
  659. @example
  660. asetnsamples=n=1234:p=0
  661. @end example
  662. @section asetrate
  663. Set the sample rate without altering the PCM data.
  664. This will result in a change of speed and pitch.
  665. The filter accepts the following options:
  666. @table @option
  667. @item sample_rate, r
  668. Set the output sample rate. Default is 44100 Hz.
  669. @end table
  670. @section ashowinfo
  671. Show a line containing various information for each input audio frame.
  672. The input audio is not modified.
  673. The shown line contains a sequence of key/value pairs of the form
  674. @var{key}:@var{value}.
  675. The following values are shown in the output:
  676. @table @option
  677. @item n
  678. The (sequential) number of the input frame, starting from 0.
  679. @item pts
  680. The presentation timestamp of the input frame, in time base units; the time base
  681. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  682. @item pts_time
  683. The presentation timestamp of the input frame in seconds.
  684. @item pos
  685. position of the frame in the input stream, -1 if this information in
  686. unavailable and/or meaningless (for example in case of synthetic audio)
  687. @item fmt
  688. The sample format.
  689. @item chlayout
  690. The channel layout.
  691. @item rate
  692. The sample rate for the audio frame.
  693. @item nb_samples
  694. The number of samples (per channel) in the frame.
  695. @item checksum
  696. The Adler-32 checksum (printed in hexadecimal) of the audio data. For planar
  697. audio, the data is treated as if all the planes were concatenated.
  698. @item plane_checksums
  699. A list of Adler-32 checksums for each data plane.
  700. @end table
  701. @section astats
  702. Display time domain statistical information about the audio channels.
  703. Statistics are calculated and displayed for each audio channel and,
  704. where applicable, an overall figure is also given.
  705. It accepts the following option:
  706. @table @option
  707. @item length
  708. Short window length in seconds, used for peak and trough RMS measurement.
  709. Default is @code{0.05} (50 milliseconds). Allowed range is @code{[0.1 - 10]}.
  710. @end table
  711. A description of each shown parameter follows:
  712. @table @option
  713. @item DC offset
  714. Mean amplitude displacement from zero.
  715. @item Min level
  716. Minimal sample level.
  717. @item Max level
  718. Maximal sample level.
  719. @item Peak level dB
  720. @item RMS level dB
  721. Standard peak and RMS level measured in dBFS.
  722. @item RMS peak dB
  723. @item RMS trough dB
  724. Peak and trough values for RMS level measured over a short window.
  725. @item Crest factor
  726. Standard ratio of peak to RMS level (note: not in dB).
  727. @item Flat factor
  728. Flatness (i.e. consecutive samples with the same value) of the signal at its peak levels
  729. (i.e. either @var{Min level} or @var{Max level}).
  730. @item Peak count
  731. Number of occasions (not the number of samples) that the signal attained either
  732. @var{Min level} or @var{Max level}.
  733. @end table
  734. @section astreamsync
  735. Forward two audio streams and control the order the buffers are forwarded.
  736. The filter accepts the following options:
  737. @table @option
  738. @item expr, e
  739. Set the expression deciding which stream should be
  740. forwarded next: if the result is negative, the first stream is forwarded; if
  741. the result is positive or zero, the second stream is forwarded. It can use
  742. the following variables:
  743. @table @var
  744. @item b1 b2
  745. number of buffers forwarded so far on each stream
  746. @item s1 s2
  747. number of samples forwarded so far on each stream
  748. @item t1 t2
  749. current timestamp of each stream
  750. @end table
  751. The default value is @code{t1-t2}, which means to always forward the stream
  752. that has a smaller timestamp.
  753. @end table
  754. @subsection Examples
  755. Stress-test @code{amerge} by randomly sending buffers on the wrong
  756. input, while avoiding too much of a desynchronization:
  757. @example
  758. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  759. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  760. [a2] [b2] amerge
  761. @end example
  762. @section asyncts
  763. Synchronize audio data with timestamps by squeezing/stretching it and/or
  764. dropping samples/adding silence when needed.
  765. This filter is not built by default, please use @ref{aresample} to do squeezing/stretching.
  766. It accepts the following parameters:
  767. @table @option
  768. @item compensate
  769. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  770. by default. When disabled, time gaps are covered with silence.
  771. @item min_delta
  772. The minimum difference between timestamps and audio data (in seconds) to trigger
  773. adding/dropping samples. The default value is 0.1. If you get an imperfect
  774. sync with this filter, try setting this parameter to 0.
  775. @item max_comp
  776. The maximum compensation in samples per second. Only relevant with compensate=1.
  777. The default value is 500.
  778. @item first_pts
  779. Assume that the first PTS should be this value. The time base is 1 / sample
  780. rate. This allows for padding/trimming at the start of the stream. By default,
  781. no assumption is made about the first frame's expected PTS, so no padding or
  782. trimming is done. For example, this could be set to 0 to pad the beginning with
  783. silence if an audio stream starts after the video stream or to trim any samples
  784. with a negative PTS due to encoder delay.
  785. @end table
  786. @section atempo
  787. Adjust audio tempo.
  788. The filter accepts exactly one parameter, the audio tempo. If not
  789. specified then the filter will assume nominal 1.0 tempo. Tempo must
  790. be in the [0.5, 2.0] range.
  791. @subsection Examples
  792. @itemize
  793. @item
  794. Slow down audio to 80% tempo:
  795. @example
  796. atempo=0.8
  797. @end example
  798. @item
  799. To speed up audio to 125% tempo:
  800. @example
  801. atempo=1.25
  802. @end example
  803. @end itemize
  804. @section atrim
  805. Trim the input so that the output contains one continuous subpart of the input.
  806. It accepts the following parameters:
  807. @table @option
  808. @item start
  809. Timestamp (in seconds) of the start of the section to keep. I.e. the audio
  810. sample with the timestamp @var{start} will be the first sample in the output.
  811. @item end
  812. Specify time of the first audio sample that will be dropped, i.e. the
  813. audio sample immediately preceding the one with the timestamp @var{end} will be
  814. the last sample in the output.
  815. @item start_pts
  816. Same as @var{start}, except this option sets the start timestamp in samples
  817. instead of seconds.
  818. @item end_pts
  819. Same as @var{end}, except this option sets the end timestamp in samples instead
  820. of seconds.
  821. @item duration
  822. The maximum duration of the output in seconds.
  823. @item start_sample
  824. The number of the first sample that should be output.
  825. @item end_sample
  826. The number of the first sample that should be dropped.
  827. @end table
  828. @option{start}, @option{end}, and @option{duration} are expressed as time
  829. duration specifications; see
  830. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}.
  831. Note that the first two sets of the start/end options and the @option{duration}
  832. option look at the frame timestamp, while the _sample options simply count the
  833. samples that pass through the filter. So start/end_pts and start/end_sample will
  834. give different results when the timestamps are wrong, inexact or do not start at
  835. zero. Also note that this filter does not modify the timestamps. If you wish
  836. to have the output timestamps start at zero, insert the asetpts filter after the
  837. atrim filter.
  838. If multiple start or end options are set, this filter tries to be greedy and
  839. keep all samples that match at least one of the specified constraints. To keep
  840. only the part that matches all the constraints at once, chain multiple atrim
  841. filters.
  842. The defaults are such that all the input is kept. So it is possible to set e.g.
  843. just the end values to keep everything before the specified time.
  844. Examples:
  845. @itemize
  846. @item
  847. Drop everything except the second minute of input:
  848. @example
  849. ffmpeg -i INPUT -af atrim=60:120
  850. @end example
  851. @item
  852. Keep only the first 1000 samples:
  853. @example
  854. ffmpeg -i INPUT -af atrim=end_sample=1000
  855. @end example
  856. @end itemize
  857. @section bandpass
  858. Apply a two-pole Butterworth band-pass filter with central
  859. frequency @var{frequency}, and (3dB-point) band-width width.
  860. The @var{csg} option selects a constant skirt gain (peak gain = Q)
  861. instead of the default: constant 0dB peak gain.
  862. The filter roll off at 6dB per octave (20dB per decade).
  863. The filter accepts the following options:
  864. @table @option
  865. @item frequency, f
  866. Set the filter's central frequency. Default is @code{3000}.
  867. @item csg
  868. Constant skirt gain if set to 1. Defaults to 0.
  869. @item width_type
  870. Set method to specify band-width of filter.
  871. @table @option
  872. @item h
  873. Hz
  874. @item q
  875. Q-Factor
  876. @item o
  877. octave
  878. @item s
  879. slope
  880. @end table
  881. @item width, w
  882. Specify the band-width of a filter in width_type units.
  883. @end table
  884. @section bandreject
  885. Apply a two-pole Butterworth band-reject filter with central
  886. frequency @var{frequency}, and (3dB-point) band-width @var{width}.
  887. The filter roll off at 6dB per octave (20dB per decade).
  888. The filter accepts the following options:
  889. @table @option
  890. @item frequency, f
  891. Set the filter's central frequency. Default is @code{3000}.
  892. @item width_type
  893. Set method to specify band-width of filter.
  894. @table @option
  895. @item h
  896. Hz
  897. @item q
  898. Q-Factor
  899. @item o
  900. octave
  901. @item s
  902. slope
  903. @end table
  904. @item width, w
  905. Specify the band-width of a filter in width_type units.
  906. @end table
  907. @section bass
  908. Boost or cut the bass (lower) frequencies of the audio using a two-pole
  909. shelving filter with a response similar to that of a standard
  910. hi-fi's tone-controls. This is also known as shelving equalisation (EQ).
  911. The filter accepts the following options:
  912. @table @option
  913. @item gain, g
  914. Give the gain at 0 Hz. Its useful range is about -20
  915. (for a large cut) to +20 (for a large boost).
  916. Beware of clipping when using a positive gain.
  917. @item frequency, f
  918. Set the filter's central frequency and so can be used
  919. to extend or reduce the frequency range to be boosted or cut.
  920. The default value is @code{100} Hz.
  921. @item width_type
  922. Set method to specify band-width of filter.
  923. @table @option
  924. @item h
  925. Hz
  926. @item q
  927. Q-Factor
  928. @item o
  929. octave
  930. @item s
  931. slope
  932. @end table
  933. @item width, w
  934. Determine how steep is the filter's shelf transition.
  935. @end table
  936. @section biquad
  937. Apply a biquad IIR filter with the given coefficients.
  938. Where @var{b0}, @var{b1}, @var{b2} and @var{a0}, @var{a1}, @var{a2}
  939. are the numerator and denominator coefficients respectively.
  940. @section bs2b
  941. Bauer stereo to binaural transformation, which improves headphone listening of
  942. stereo audio records.
  943. It accepts the following parameters:
  944. @table @option
  945. @item profile
  946. Pre-defined crossfeed level.
  947. @table @option
  948. @item default
  949. Default level (fcut=700, feed=50).
  950. @item cmoy
  951. Chu Moy circuit (fcut=700, feed=60).
  952. @item jmeier
  953. Jan Meier circuit (fcut=650, feed=95).
  954. @end table
  955. @item fcut
  956. Cut frequency (in Hz).
  957. @item feed
  958. Feed level (in Hz).
  959. @end table
  960. @section channelmap
  961. Remap input channels to new locations.
  962. It accepts the following parameters:
  963. @table @option
  964. @item channel_layout
  965. The channel layout of the output stream.
  966. @item map
  967. Map channels from input to output. The argument is a '|'-separated list of
  968. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  969. @var{in_channel} form. @var{in_channel} can be either the name of the input
  970. channel (e.g. FL for front left) or its index in the input channel layout.
  971. @var{out_channel} is the name of the output channel or its index in the output
  972. channel layout. If @var{out_channel} is not given then it is implicitly an
  973. index, starting with zero and increasing by one for each mapping.
  974. @end table
  975. If no mapping is present, the filter will implicitly map input channels to
  976. output channels, preserving indices.
  977. For example, assuming a 5.1+downmix input MOV file,
  978. @example
  979. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  980. @end example
  981. will create an output WAV file tagged as stereo from the downmix channels of
  982. the input.
  983. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  984. @example
  985. ffmpeg -i in.wav -filter 'channelmap=1|2|0|5|3|4:channel_layout=5.1' out.wav
  986. @end example
  987. @section channelsplit
  988. Split each channel from an input audio stream into a separate output stream.
  989. It accepts the following parameters:
  990. @table @option
  991. @item channel_layout
  992. The channel layout of the input stream. The default is "stereo".
  993. @end table
  994. For example, assuming a stereo input MP3 file,
  995. @example
  996. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  997. @end example
  998. will create an output Matroska file with two audio streams, one containing only
  999. the left channel and the other the right channel.
  1000. Split a 5.1 WAV file into per-channel files:
  1001. @example
  1002. ffmpeg -i in.wav -filter_complex
  1003. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  1004. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  1005. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  1006. side_right.wav
  1007. @end example
  1008. @section compand
  1009. Compress or expand the audio's dynamic range.
  1010. It accepts the following parameters:
  1011. @table @option
  1012. @item attacks
  1013. @item decays
  1014. A list of times in seconds for each channel over which the instantaneous level
  1015. of the input signal is averaged to determine its volume. @var{attacks} refers to
  1016. increase of volume and @var{decays} refers to decrease of volume. For most
  1017. situations, the attack time (response to the audio getting louder) should be
  1018. shorter than the decay time, because the human ear is more sensitive to sudden
  1019. loud audio than sudden soft audio. A typical value for attack is 0.3 seconds and
  1020. a typical value for decay is 0.8 seconds.
  1021. @item points
  1022. A list of points for the transfer function, specified in dB relative to the
  1023. maximum possible signal amplitude. Each key points list must be defined using
  1024. the following syntax: @code{x0/y0|x1/y1|x2/y2|....} or
  1025. @code{x0/y0 x1/y1 x2/y2 ....}
  1026. The input values must be in strictly increasing order but the transfer function
  1027. does not have to be monotonically rising. The point @code{0/0} is assumed but
  1028. may be overridden (by @code{0/out-dBn}). Typical values for the transfer
  1029. function are @code{-70/-70|-60/-20}.
  1030. @item soft-knee
  1031. Set the curve radius in dB for all joints. It defaults to 0.01.
  1032. @item gain
  1033. Set the additional gain in dB to be applied at all points on the transfer
  1034. function. This allows for easy adjustment of the overall gain.
  1035. It defaults to 0.
  1036. @item volume
  1037. Set an initial volume, in dB, to be assumed for each channel when filtering
  1038. starts. This permits the user to supply a nominal level initially, so that, for
  1039. example, a very large gain is not applied to initial signal levels before the
  1040. companding has begun to operate. A typical value for audio which is initially
  1041. quiet is -90 dB. It defaults to 0.
  1042. @item delay
  1043. Set a delay, in seconds. The input audio is analyzed immediately, but audio is
  1044. delayed before being fed to the volume adjuster. Specifying a delay
  1045. approximately equal to the attack/decay times allows the filter to effectively
  1046. operate in predictive rather than reactive mode. It defaults to 0.
  1047. @end table
  1048. @subsection Examples
  1049. @itemize
  1050. @item
  1051. Make music with both quiet and loud passages suitable for listening to in a
  1052. noisy environment:
  1053. @example
  1054. compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2
  1055. @end example
  1056. @item
  1057. A noise gate for when the noise is at a lower level than the signal:
  1058. @example
  1059. compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1
  1060. @end example
  1061. @item
  1062. Here is another noise gate, this time for when the noise is at a higher level
  1063. than the signal (making it, in some ways, similar to squelch):
  1064. @example
  1065. compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1
  1066. @end example
  1067. @end itemize
  1068. @section earwax
  1069. Make audio easier to listen to on headphones.
  1070. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  1071. so that when listened to on headphones the stereo image is moved from
  1072. inside your head (standard for headphones) to outside and in front of
  1073. the listener (standard for speakers).
  1074. Ported from SoX.
  1075. @section equalizer
  1076. Apply a two-pole peaking equalisation (EQ) filter. With this
  1077. filter, the signal-level at and around a selected frequency can
  1078. be increased or decreased, whilst (unlike bandpass and bandreject
  1079. filters) that at all other frequencies is unchanged.
  1080. In order to produce complex equalisation curves, this filter can
  1081. be given several times, each with a different central frequency.
  1082. The filter accepts the following options:
  1083. @table @option
  1084. @item frequency, f
  1085. Set the filter's central frequency in Hz.
  1086. @item width_type
  1087. Set method to specify band-width of filter.
  1088. @table @option
  1089. @item h
  1090. Hz
  1091. @item q
  1092. Q-Factor
  1093. @item o
  1094. octave
  1095. @item s
  1096. slope
  1097. @end table
  1098. @item width, w
  1099. Specify the band-width of a filter in width_type units.
  1100. @item gain, g
  1101. Set the required gain or attenuation in dB.
  1102. Beware of clipping when using a positive gain.
  1103. @end table
  1104. @subsection Examples
  1105. @itemize
  1106. @item
  1107. Attenuate 10 dB at 1000 Hz, with a bandwidth of 200 Hz:
  1108. @example
  1109. equalizer=f=1000:width_type=h:width=200:g=-10
  1110. @end example
  1111. @item
  1112. Apply 2 dB gain at 1000 Hz with Q 1 and attenuate 5 dB at 100 Hz with Q 2:
  1113. @example
  1114. equalizer=f=1000:width_type=q:width=1:g=2,equalizer=f=100:width_type=q:width=2:g=-5
  1115. @end example
  1116. @end itemize
  1117. @section flanger
  1118. Apply a flanging effect to the audio.
  1119. The filter accepts the following options:
  1120. @table @option
  1121. @item delay
  1122. Set base delay in milliseconds. Range from 0 to 30. Default value is 0.
  1123. @item depth
  1124. Set added swep delay in milliseconds. Range from 0 to 10. Default value is 2.
  1125. @item regen
  1126. Set percentage regeneration (delayed signal feedback). Range from -95 to 95.
  1127. Default value is 0.
  1128. @item width
  1129. Set percentage of delayed signal mixed with original. Range from 0 to 100.
  1130. Default value is 71.
  1131. @item speed
  1132. Set sweeps per second (Hz). Range from 0.1 to 10. Default value is 0.5.
  1133. @item shape
  1134. Set swept wave shape, can be @var{triangular} or @var{sinusoidal}.
  1135. Default value is @var{sinusoidal}.
  1136. @item phase
  1137. Set swept wave percentage-shift for multi channel. Range from 0 to 100.
  1138. Default value is 25.
  1139. @item interp
  1140. Set delay-line interpolation, @var{linear} or @var{quadratic}.
  1141. Default is @var{linear}.
  1142. @end table
  1143. @section highpass
  1144. Apply a high-pass filter with 3dB point frequency.
  1145. The filter can be either single-pole, or double-pole (the default).
  1146. The filter roll off at 6dB per pole per octave (20dB per pole per decade).
  1147. The filter accepts the following options:
  1148. @table @option
  1149. @item frequency, f
  1150. Set frequency in Hz. Default is 3000.
  1151. @item poles, p
  1152. Set number of poles. Default is 2.
  1153. @item width_type
  1154. Set method to specify band-width of filter.
  1155. @table @option
  1156. @item h
  1157. Hz
  1158. @item q
  1159. Q-Factor
  1160. @item o
  1161. octave
  1162. @item s
  1163. slope
  1164. @end table
  1165. @item width, w
  1166. Specify the band-width of a filter in width_type units.
  1167. Applies only to double-pole filter.
  1168. The default is 0.707q and gives a Butterworth response.
  1169. @end table
  1170. @section join
  1171. Join multiple input streams into one multi-channel stream.
  1172. It accepts the following parameters:
  1173. @table @option
  1174. @item inputs
  1175. The number of input streams. It defaults to 2.
  1176. @item channel_layout
  1177. The desired output channel layout. It defaults to stereo.
  1178. @item map
  1179. Map channels from inputs to output. The argument is a '|'-separated list of
  1180. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  1181. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  1182. can be either the name of the input channel (e.g. FL for front left) or its
  1183. index in the specified input stream. @var{out_channel} is the name of the output
  1184. channel.
  1185. @end table
  1186. The filter will attempt to guess the mappings when they are not specified
  1187. explicitly. It does so by first trying to find an unused matching input channel
  1188. and if that fails it picks the first unused input channel.
  1189. Join 3 inputs (with properly set channel layouts):
  1190. @example
  1191. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  1192. @end example
  1193. Build a 5.1 output from 6 single-channel streams:
  1194. @example
  1195. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  1196. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  1197. out
  1198. @end example
  1199. @section ladspa
  1200. Load a LADSPA (Linux Audio Developer's Simple Plugin API) plugin.
  1201. To enable compilation of this filter you need to configure FFmpeg with
  1202. @code{--enable-ladspa}.
  1203. @table @option
  1204. @item file, f
  1205. Specifies the name of LADSPA plugin library to load. If the environment
  1206. variable @env{LADSPA_PATH} is defined, the LADSPA plugin is searched in
  1207. each one of the directories specified by the colon separated list in
  1208. @env{LADSPA_PATH}, otherwise in the standard LADSPA paths, which are in
  1209. this order: @file{HOME/.ladspa/lib/}, @file{/usr/local/lib/ladspa/},
  1210. @file{/usr/lib/ladspa/}.
  1211. @item plugin, p
  1212. Specifies the plugin within the library. Some libraries contain only
  1213. one plugin, but others contain many of them. If this is not set filter
  1214. will list all available plugins within the specified library.
  1215. @item controls, c
  1216. Set the '|' separated list of controls which are zero or more floating point
  1217. values that determine the behavior of the loaded plugin (for example delay,
  1218. threshold or gain).
  1219. Controls need to be defined using the following syntax:
  1220. c0=@var{value0}|c1=@var{value1}|c2=@var{value2}|..., where
  1221. @var{valuei} is the value set on the @var{i}-th control.
  1222. If @option{controls} is set to @code{help}, all available controls and
  1223. their valid ranges are printed.
  1224. @item sample_rate, s
  1225. Specify the sample rate, default to 44100. Only used if plugin have
  1226. zero inputs.
  1227. @item nb_samples, n
  1228. Set the number of samples per channel per each output frame, default
  1229. is 1024. Only used if plugin have zero inputs.
  1230. @item duration, d
  1231. Set the minimum duration of the sourced audio. See
  1232. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  1233. for the accepted syntax.
  1234. Note that the resulting duration may be greater than the specified duration,
  1235. as the generated audio is always cut at the end of a complete frame.
  1236. If not specified, or the expressed duration is negative, the audio is
  1237. supposed to be generated forever.
  1238. Only used if plugin have zero inputs.
  1239. @end table
  1240. @subsection Examples
  1241. @itemize
  1242. @item
  1243. List all available plugins within amp (LADSPA example plugin) library:
  1244. @example
  1245. ladspa=file=amp
  1246. @end example
  1247. @item
  1248. List all available controls and their valid ranges for @code{vcf_notch}
  1249. plugin from @code{VCF} library:
  1250. @example
  1251. ladspa=f=vcf:p=vcf_notch:c=help
  1252. @end example
  1253. @item
  1254. Simulate low quality audio equipment using @code{Computer Music Toolkit} (CMT)
  1255. plugin library:
  1256. @example
  1257. ladspa=file=cmt:plugin=lofi:controls=c0=22|c1=12|c2=12
  1258. @end example
  1259. @item
  1260. Add reverberation to the audio using TAP-plugins
  1261. (Tom's Audio Processing plugins):
  1262. @example
  1263. ladspa=file=tap_reverb:tap_reverb
  1264. @end example
  1265. @item
  1266. Generate white noise, with 0.2 amplitude:
  1267. @example
  1268. ladspa=file=cmt:noise_source_white:c=c0=.2
  1269. @end example
  1270. @item
  1271. Generate 20 bpm clicks using plugin @code{C* Click - Metronome} from the
  1272. @code{C* Audio Plugin Suite} (CAPS) library:
  1273. @example
  1274. ladspa=file=caps:Click:c=c1=20'
  1275. @end example
  1276. @item
  1277. Apply @code{C* Eq10X2 - Stereo 10-band equaliser} effect:
  1278. @example
  1279. ladspa=caps:Eq10X2:c=c0=-48|c9=-24|c3=12|c4=2
  1280. @end example
  1281. @end itemize
  1282. @subsection Commands
  1283. This filter supports the following commands:
  1284. @table @option
  1285. @item cN
  1286. Modify the @var{N}-th control value.
  1287. If the specified value is not valid, it is ignored and prior one is kept.
  1288. @end table
  1289. @section lowpass
  1290. Apply a low-pass filter with 3dB point frequency.
  1291. The filter can be either single-pole or double-pole (the default).
  1292. The filter roll off at 6dB per pole per octave (20dB per pole per decade).
  1293. The filter accepts the following options:
  1294. @table @option
  1295. @item frequency, f
  1296. Set frequency in Hz. Default is 500.
  1297. @item poles, p
  1298. Set number of poles. Default is 2.
  1299. @item width_type
  1300. Set method to specify band-width of filter.
  1301. @table @option
  1302. @item h
  1303. Hz
  1304. @item q
  1305. Q-Factor
  1306. @item o
  1307. octave
  1308. @item s
  1309. slope
  1310. @end table
  1311. @item width, w
  1312. Specify the band-width of a filter in width_type units.
  1313. Applies only to double-pole filter.
  1314. The default is 0.707q and gives a Butterworth response.
  1315. @end table
  1316. @section pan
  1317. Mix channels with specific gain levels. The filter accepts the output
  1318. channel layout followed by a set of channels definitions.
  1319. This filter is also designed to efficiently remap the channels of an audio
  1320. stream.
  1321. The filter accepts parameters of the form:
  1322. "@var{l}|@var{outdef}|@var{outdef}|..."
  1323. @table @option
  1324. @item l
  1325. output channel layout or number of channels
  1326. @item outdef
  1327. output channel specification, of the form:
  1328. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  1329. @item out_name
  1330. output channel to define, either a channel name (FL, FR, etc.) or a channel
  1331. number (c0, c1, etc.)
  1332. @item gain
  1333. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  1334. @item in_name
  1335. input channel to use, see out_name for details; it is not possible to mix
  1336. named and numbered input channels
  1337. @end table
  1338. If the `=' in a channel specification is replaced by `<', then the gains for
  1339. that specification will be renormalized so that the total is 1, thus
  1340. avoiding clipping noise.
  1341. @subsection Mixing examples
  1342. For example, if you want to down-mix from stereo to mono, but with a bigger
  1343. factor for the left channel:
  1344. @example
  1345. pan=1c|c0=0.9*c0+0.1*c1
  1346. @end example
  1347. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  1348. 7-channels surround:
  1349. @example
  1350. pan=stereo| FL < FL + 0.5*FC + 0.6*BL + 0.6*SL | FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  1351. @end example
  1352. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  1353. that should be preferred (see "-ac" option) unless you have very specific
  1354. needs.
  1355. @subsection Remapping examples
  1356. The channel remapping will be effective if, and only if:
  1357. @itemize
  1358. @item gain coefficients are zeroes or ones,
  1359. @item only one input per channel output,
  1360. @end itemize
  1361. If all these conditions are satisfied, the filter will notify the user ("Pure
  1362. channel mapping detected"), and use an optimized and lossless method to do the
  1363. remapping.
  1364. For example, if you have a 5.1 source and want a stereo audio stream by
  1365. dropping the extra channels:
  1366. @example
  1367. pan="stereo| c0=FL | c1=FR"
  1368. @end example
  1369. Given the same source, you can also switch front left and front right channels
  1370. and keep the input channel layout:
  1371. @example
  1372. pan="5.1| c0=c1 | c1=c0 | c2=c2 | c3=c3 | c4=c4 | c5=c5"
  1373. @end example
  1374. If the input is a stereo audio stream, you can mute the front left channel (and
  1375. still keep the stereo channel layout) with:
  1376. @example
  1377. pan="stereo|c1=c1"
  1378. @end example
  1379. Still with a stereo audio stream input, you can copy the right channel in both
  1380. front left and right:
  1381. @example
  1382. pan="stereo| c0=FR | c1=FR"
  1383. @end example
  1384. @section replaygain
  1385. ReplayGain scanner filter. This filter takes an audio stream as an input and
  1386. outputs it unchanged.
  1387. At end of filtering it displays @code{track_gain} and @code{track_peak}.
  1388. @section resample
  1389. Convert the audio sample format, sample rate and channel layout. It is
  1390. not meant to be used directly.
  1391. @section silencedetect
  1392. Detect silence in an audio stream.
  1393. This filter logs a message when it detects that the input audio volume is less
  1394. or equal to a noise tolerance value for a duration greater or equal to the
  1395. minimum detected noise duration.
  1396. The printed times and duration are expressed in seconds.
  1397. The filter accepts the following options:
  1398. @table @option
  1399. @item duration, d
  1400. Set silence duration until notification (default is 2 seconds).
  1401. @item noise, n
  1402. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  1403. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  1404. @end table
  1405. @subsection Examples
  1406. @itemize
  1407. @item
  1408. Detect 5 seconds of silence with -50dB noise tolerance:
  1409. @example
  1410. silencedetect=n=-50dB:d=5
  1411. @end example
  1412. @item
  1413. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  1414. tolerance in @file{silence.mp3}:
  1415. @example
  1416. ffmpeg -i silence.mp3 -af silencedetect=noise=0.0001 -f null -
  1417. @end example
  1418. @end itemize
  1419. @section silenceremove
  1420. Remove silence from the beginning, middle or end of the audio.
  1421. The filter accepts the following options:
  1422. @table @option
  1423. @item start_periods
  1424. This value is used to indicate if audio should be trimmed at beginning of
  1425. the audio. A value of zero indicates no silence should be trimmed from the
  1426. beginning. When specifying a non-zero value, it trims audio up until it
  1427. finds non-silence. Normally, when trimming silence from beginning of audio
  1428. the @var{start_periods} will be @code{1} but it can be increased to higher
  1429. values to trim all audio up to specific count of non-silence periods.
  1430. Default value is @code{0}.
  1431. @item start_duration
  1432. Specify the amount of time that non-silence must be detected before it stops
  1433. trimming audio. By increasing the duration, bursts of noises can be treated
  1434. as silence and trimmed off. Default value is @code{0}.
  1435. @item start_threshold
  1436. This indicates what sample value should be treated as silence. For digital
  1437. audio, a value of @code{0} may be fine but for audio recorded from analog,
  1438. you may wish to increase the value to account for background noise.
  1439. Can be specified in dB (in case "dB" is appended to the specified value)
  1440. or amplitude ratio. Default value is @code{0}.
  1441. @item stop_periods
  1442. Set the count for trimming silence from the end of audio.
  1443. To remove silence from the middle of a file, specify a @var{stop_periods}
  1444. that is negative. This value is then treated as a positive value and is
  1445. used to indicate the effect should restart processing as specified by
  1446. @var{start_periods}, making it suitable for removing periods of silence
  1447. in the middle of the audio.
  1448. Default value is @code{0}.
  1449. @item stop_duration
  1450. Specify a duration of silence that must exist before audio is not copied any
  1451. more. By specifying a higher duration, silence that is wanted can be left in
  1452. the audio.
  1453. Default value is @code{0}.
  1454. @item stop_threshold
  1455. This is the same as @option{start_threshold} but for trimming silence from
  1456. the end of audio.
  1457. Can be specified in dB (in case "dB" is appended to the specified value)
  1458. or amplitude ratio. Default value is @code{0}.
  1459. @item leave_silence
  1460. This indicate that @var{stop_duration} length of audio should be left intact
  1461. at the beginning of each period of silence.
  1462. For example, if you want to remove long pauses between words but do not want
  1463. to remove the pauses completely. Default value is @code{0}.
  1464. @end table
  1465. @subsection Examples
  1466. @itemize
  1467. @item
  1468. The following example shows how this filter can be used to start a recording
  1469. that does not contain the delay at the start which usually occurs between
  1470. pressing the record button and the start of the performance:
  1471. @example
  1472. silenceremove=1:5:0.02
  1473. @end example
  1474. @end itemize
  1475. @section treble
  1476. Boost or cut treble (upper) frequencies of the audio using a two-pole
  1477. shelving filter with a response similar to that of a standard
  1478. hi-fi's tone-controls. This is also known as shelving equalisation (EQ).
  1479. The filter accepts the following options:
  1480. @table @option
  1481. @item gain, g
  1482. Give the gain at whichever is the lower of ~22 kHz and the
  1483. Nyquist frequency. Its useful range is about -20 (for a large cut)
  1484. to +20 (for a large boost). Beware of clipping when using a positive gain.
  1485. @item frequency, f
  1486. Set the filter's central frequency and so can be used
  1487. to extend or reduce the frequency range to be boosted or cut.
  1488. The default value is @code{3000} Hz.
  1489. @item width_type
  1490. Set method to specify band-width of filter.
  1491. @table @option
  1492. @item h
  1493. Hz
  1494. @item q
  1495. Q-Factor
  1496. @item o
  1497. octave
  1498. @item s
  1499. slope
  1500. @end table
  1501. @item width, w
  1502. Determine how steep is the filter's shelf transition.
  1503. @end table
  1504. @section volume
  1505. Adjust the input audio volume.
  1506. It accepts the following parameters:
  1507. @table @option
  1508. @item volume
  1509. Set audio volume expression.
  1510. Output values are clipped to the maximum value.
  1511. The output audio volume is given by the relation:
  1512. @example
  1513. @var{output_volume} = @var{volume} * @var{input_volume}
  1514. @end example
  1515. The default value for @var{volume} is "1.0".
  1516. @item precision
  1517. This parameter represents the mathematical precision.
  1518. It determines which input sample formats will be allowed, which affects the
  1519. precision of the volume scaling.
  1520. @table @option
  1521. @item fixed
  1522. 8-bit fixed-point; this limits input sample format to U8, S16, and S32.
  1523. @item float
  1524. 32-bit floating-point; this limits input sample format to FLT. (default)
  1525. @item double
  1526. 64-bit floating-point; this limits input sample format to DBL.
  1527. @end table
  1528. @item replaygain
  1529. Choose the behaviour on encountering ReplayGain side data in input frames.
  1530. @table @option
  1531. @item drop
  1532. Remove ReplayGain side data, ignoring its contents (the default).
  1533. @item ignore
  1534. Ignore ReplayGain side data, but leave it in the frame.
  1535. @item track
  1536. Prefer the track gain, if present.
  1537. @item album
  1538. Prefer the album gain, if present.
  1539. @end table
  1540. @item replaygain_preamp
  1541. Pre-amplification gain in dB to apply to the selected replaygain gain.
  1542. Default value for @var{replaygain_preamp} is 0.0.
  1543. @item eval
  1544. Set when the volume expression is evaluated.
  1545. It accepts the following values:
  1546. @table @samp
  1547. @item once
  1548. only evaluate expression once during the filter initialization, or
  1549. when the @samp{volume} command is sent
  1550. @item frame
  1551. evaluate expression for each incoming frame
  1552. @end table
  1553. Default value is @samp{once}.
  1554. @end table
  1555. The volume expression can contain the following parameters.
  1556. @table @option
  1557. @item n
  1558. frame number (starting at zero)
  1559. @item nb_channels
  1560. number of channels
  1561. @item nb_consumed_samples
  1562. number of samples consumed by the filter
  1563. @item nb_samples
  1564. number of samples in the current frame
  1565. @item pos
  1566. original frame position in the file
  1567. @item pts
  1568. frame PTS
  1569. @item sample_rate
  1570. sample rate
  1571. @item startpts
  1572. PTS at start of stream
  1573. @item startt
  1574. time at start of stream
  1575. @item t
  1576. frame time
  1577. @item tb
  1578. timestamp timebase
  1579. @item volume
  1580. last set volume value
  1581. @end table
  1582. Note that when @option{eval} is set to @samp{once} only the
  1583. @var{sample_rate} and @var{tb} variables are available, all other
  1584. variables will evaluate to NAN.
  1585. @subsection Commands
  1586. This filter supports the following commands:
  1587. @table @option
  1588. @item volume
  1589. Modify the volume expression.
  1590. The command accepts the same syntax of the corresponding option.
  1591. If the specified expression is not valid, it is kept at its current
  1592. value.
  1593. @item replaygain_noclip
  1594. Prevent clipping by limiting the gain applied.
  1595. Default value for @var{replaygain_noclip} is 1.
  1596. @end table
  1597. @subsection Examples
  1598. @itemize
  1599. @item
  1600. Halve the input audio volume:
  1601. @example
  1602. volume=volume=0.5
  1603. volume=volume=1/2
  1604. volume=volume=-6.0206dB
  1605. @end example
  1606. In all the above example the named key for @option{volume} can be
  1607. omitted, for example like in:
  1608. @example
  1609. volume=0.5
  1610. @end example
  1611. @item
  1612. Increase input audio power by 6 decibels using fixed-point precision:
  1613. @example
  1614. volume=volume=6dB:precision=fixed
  1615. @end example
  1616. @item
  1617. Fade volume after time 10 with an annihilation period of 5 seconds:
  1618. @example
  1619. volume='if(lt(t,10),1,max(1-(t-10)/5,0))':eval=frame
  1620. @end example
  1621. @end itemize
  1622. @section volumedetect
  1623. Detect the volume of the input video.
  1624. The filter has no parameters. The input is not modified. Statistics about
  1625. the volume will be printed in the log when the input stream end is reached.
  1626. In particular it will show the mean volume (root mean square), maximum
  1627. volume (on a per-sample basis), and the beginning of a histogram of the
  1628. registered volume values (from the maximum value to a cumulated 1/1000 of
  1629. the samples).
  1630. All volumes are in decibels relative to the maximum PCM value.
  1631. @subsection Examples
  1632. Here is an excerpt of the output:
  1633. @example
  1634. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  1635. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  1636. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  1637. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  1638. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  1639. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  1640. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  1641. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  1642. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  1643. @end example
  1644. It means that:
  1645. @itemize
  1646. @item
  1647. The mean square energy is approximately -27 dB, or 10^-2.7.
  1648. @item
  1649. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  1650. @item
  1651. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  1652. @end itemize
  1653. In other words, raising the volume by +4 dB does not cause any clipping,
  1654. raising it by +5 dB causes clipping for 6 samples, etc.
  1655. @c man end AUDIO FILTERS
  1656. @chapter Audio Sources
  1657. @c man begin AUDIO SOURCES
  1658. Below is a description of the currently available audio sources.
  1659. @section abuffer
  1660. Buffer audio frames, and make them available to the filter chain.
  1661. This source is mainly intended for a programmatic use, in particular
  1662. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  1663. It accepts the following parameters:
  1664. @table @option
  1665. @item time_base
  1666. The timebase which will be used for timestamps of submitted frames. It must be
  1667. either a floating-point number or in @var{numerator}/@var{denominator} form.
  1668. @item sample_rate
  1669. The sample rate of the incoming audio buffers.
  1670. @item sample_fmt
  1671. The sample format of the incoming audio buffers.
  1672. Either a sample format name or its corresponding integer representation from
  1673. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  1674. @item channel_layout
  1675. The channel layout of the incoming audio buffers.
  1676. Either a channel layout name from channel_layout_map in
  1677. @file{libavutil/channel_layout.c} or its corresponding integer representation
  1678. from the AV_CH_LAYOUT_* macros in @file{libavutil/channel_layout.h}
  1679. @item channels
  1680. The number of channels of the incoming audio buffers.
  1681. If both @var{channels} and @var{channel_layout} are specified, then they
  1682. must be consistent.
  1683. @end table
  1684. @subsection Examples
  1685. @example
  1686. abuffer=sample_rate=44100:sample_fmt=s16p:channel_layout=stereo
  1687. @end example
  1688. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  1689. Since the sample format with name "s16p" corresponds to the number
  1690. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  1691. equivalent to:
  1692. @example
  1693. abuffer=sample_rate=44100:sample_fmt=6:channel_layout=0x3
  1694. @end example
  1695. @section aevalsrc
  1696. Generate an audio signal specified by an expression.
  1697. This source accepts in input one or more expressions (one for each
  1698. channel), which are evaluated and used to generate a corresponding
  1699. audio signal.
  1700. This source accepts the following options:
  1701. @table @option
  1702. @item exprs
  1703. Set the '|'-separated expressions list for each separate channel. In case the
  1704. @option{channel_layout} option is not specified, the selected channel layout
  1705. depends on the number of provided expressions. Otherwise the last
  1706. specified expression is applied to the remaining output channels.
  1707. @item channel_layout, c
  1708. Set the channel layout. The number of channels in the specified layout
  1709. must be equal to the number of specified expressions.
  1710. @item duration, d
  1711. Set the minimum duration of the sourced audio. See
  1712. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  1713. for the accepted syntax.
  1714. Note that the resulting duration may be greater than the specified
  1715. duration, as the generated audio is always cut at the end of a
  1716. complete frame.
  1717. If not specified, or the expressed duration is negative, the audio is
  1718. supposed to be generated forever.
  1719. @item nb_samples, n
  1720. Set the number of samples per channel per each output frame,
  1721. default to 1024.
  1722. @item sample_rate, s
  1723. Specify the sample rate, default to 44100.
  1724. @end table
  1725. Each expression in @var{exprs} can contain the following constants:
  1726. @table @option
  1727. @item n
  1728. number of the evaluated sample, starting from 0
  1729. @item t
  1730. time of the evaluated sample expressed in seconds, starting from 0
  1731. @item s
  1732. sample rate
  1733. @end table
  1734. @subsection Examples
  1735. @itemize
  1736. @item
  1737. Generate silence:
  1738. @example
  1739. aevalsrc=0
  1740. @end example
  1741. @item
  1742. Generate a sin signal with frequency of 440 Hz, set sample rate to
  1743. 8000 Hz:
  1744. @example
  1745. aevalsrc="sin(440*2*PI*t):s=8000"
  1746. @end example
  1747. @item
  1748. Generate a two channels signal, specify the channel layout (Front
  1749. Center + Back Center) explicitly:
  1750. @example
  1751. aevalsrc="sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC"
  1752. @end example
  1753. @item
  1754. Generate white noise:
  1755. @example
  1756. aevalsrc="-2+random(0)"
  1757. @end example
  1758. @item
  1759. Generate an amplitude modulated signal:
  1760. @example
  1761. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  1762. @end example
  1763. @item
  1764. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  1765. @example
  1766. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) | 0.1*sin(2*PI*(360+2.5/2)*t)"
  1767. @end example
  1768. @end itemize
  1769. @section anullsrc
  1770. The null audio source, return unprocessed audio frames. It is mainly useful
  1771. as a template and to be employed in analysis / debugging tools, or as
  1772. the source for filters which ignore the input data (for example the sox
  1773. synth filter).
  1774. This source accepts the following options:
  1775. @table @option
  1776. @item channel_layout, cl
  1777. Specifies the channel layout, and can be either an integer or a string
  1778. representing a channel layout. The default value of @var{channel_layout}
  1779. is "stereo".
  1780. Check the channel_layout_map definition in
  1781. @file{libavutil/channel_layout.c} for the mapping between strings and
  1782. channel layout values.
  1783. @item sample_rate, r
  1784. Specifies the sample rate, and defaults to 44100.
  1785. @item nb_samples, n
  1786. Set the number of samples per requested frames.
  1787. @end table
  1788. @subsection Examples
  1789. @itemize
  1790. @item
  1791. Set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  1792. @example
  1793. anullsrc=r=48000:cl=4
  1794. @end example
  1795. @item
  1796. Do the same operation with a more obvious syntax:
  1797. @example
  1798. anullsrc=r=48000:cl=mono
  1799. @end example
  1800. @end itemize
  1801. All the parameters need to be explicitly defined.
  1802. @section flite
  1803. Synthesize a voice utterance using the libflite library.
  1804. To enable compilation of this filter you need to configure FFmpeg with
  1805. @code{--enable-libflite}.
  1806. Note that the flite library is not thread-safe.
  1807. The filter accepts the following options:
  1808. @table @option
  1809. @item list_voices
  1810. If set to 1, list the names of the available voices and exit
  1811. immediately. Default value is 0.
  1812. @item nb_samples, n
  1813. Set the maximum number of samples per frame. Default value is 512.
  1814. @item textfile
  1815. Set the filename containing the text to speak.
  1816. @item text
  1817. Set the text to speak.
  1818. @item voice, v
  1819. Set the voice to use for the speech synthesis. Default value is
  1820. @code{kal}. See also the @var{list_voices} option.
  1821. @end table
  1822. @subsection Examples
  1823. @itemize
  1824. @item
  1825. Read from file @file{speech.txt}, and synthesize the text using the
  1826. standard flite voice:
  1827. @example
  1828. flite=textfile=speech.txt
  1829. @end example
  1830. @item
  1831. Read the specified text selecting the @code{slt} voice:
  1832. @example
  1833. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  1834. @end example
  1835. @item
  1836. Input text to ffmpeg:
  1837. @example
  1838. ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  1839. @end example
  1840. @item
  1841. Make @file{ffplay} speak the specified text, using @code{flite} and
  1842. the @code{lavfi} device:
  1843. @example
  1844. ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'
  1845. @end example
  1846. @end itemize
  1847. For more information about libflite, check:
  1848. @url{http://www.speech.cs.cmu.edu/flite/}
  1849. @section sine
  1850. Generate an audio signal made of a sine wave with amplitude 1/8.
  1851. The audio signal is bit-exact.
  1852. The filter accepts the following options:
  1853. @table @option
  1854. @item frequency, f
  1855. Set the carrier frequency. Default is 440 Hz.
  1856. @item beep_factor, b
  1857. Enable a periodic beep every second with frequency @var{beep_factor} times
  1858. the carrier frequency. Default is 0, meaning the beep is disabled.
  1859. @item sample_rate, r
  1860. Specify the sample rate, default is 44100.
  1861. @item duration, d
  1862. Specify the duration of the generated audio stream.
  1863. @item samples_per_frame
  1864. Set the number of samples per output frame, default is 1024.
  1865. @end table
  1866. @subsection Examples
  1867. @itemize
  1868. @item
  1869. Generate a simple 440 Hz sine wave:
  1870. @example
  1871. sine
  1872. @end example
  1873. @item
  1874. Generate a 220 Hz sine wave with a 880 Hz beep each second, for 5 seconds:
  1875. @example
  1876. sine=220:4:d=5
  1877. sine=f=220:b=4:d=5
  1878. sine=frequency=220:beep_factor=4:duration=5
  1879. @end example
  1880. @end itemize
  1881. @c man end AUDIO SOURCES
  1882. @chapter Audio Sinks
  1883. @c man begin AUDIO SINKS
  1884. Below is a description of the currently available audio sinks.
  1885. @section abuffersink
  1886. Buffer audio frames, and make them available to the end of filter chain.
  1887. This sink is mainly intended for programmatic use, in particular
  1888. through the interface defined in @file{libavfilter/buffersink.h}
  1889. or the options system.
  1890. It accepts a pointer to an AVABufferSinkContext structure, which
  1891. defines the incoming buffers' formats, to be passed as the opaque
  1892. parameter to @code{avfilter_init_filter} for initialization.
  1893. @section anullsink
  1894. Null audio sink; do absolutely nothing with the input audio. It is
  1895. mainly useful as a template and for use in analysis / debugging
  1896. tools.
  1897. @c man end AUDIO SINKS
  1898. @chapter Video Filters
  1899. @c man begin VIDEO FILTERS
  1900. When you configure your FFmpeg build, you can disable any of the
  1901. existing filters using @code{--disable-filters}.
  1902. The configure output will show the video filters included in your
  1903. build.
  1904. Below is a description of the currently available video filters.
  1905. @section alphaextract
  1906. Extract the alpha component from the input as a grayscale video. This
  1907. is especially useful with the @var{alphamerge} filter.
  1908. @section alphamerge
  1909. Add or replace the alpha component of the primary input with the
  1910. grayscale value of a second input. This is intended for use with
  1911. @var{alphaextract} to allow the transmission or storage of frame
  1912. sequences that have alpha in a format that doesn't support an alpha
  1913. channel.
  1914. For example, to reconstruct full frames from a normal YUV-encoded video
  1915. and a separate video created with @var{alphaextract}, you might use:
  1916. @example
  1917. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  1918. @end example
  1919. Since this filter is designed for reconstruction, it operates on frame
  1920. sequences without considering timestamps, and terminates when either
  1921. input reaches end of stream. This will cause problems if your encoding
  1922. pipeline drops frames. If you're trying to apply an image as an
  1923. overlay to a video stream, consider the @var{overlay} filter instead.
  1924. @section ass
  1925. Same as the @ref{subtitles} filter, except that it doesn't require libavcodec
  1926. and libavformat to work. On the other hand, it is limited to ASS (Advanced
  1927. Substation Alpha) subtitles files.
  1928. This filter accepts the following option in addition to the common options from
  1929. the @ref{subtitles} filter:
  1930. @table @option
  1931. @item shaping
  1932. Set the shaping engine
  1933. Available values are:
  1934. @table @samp
  1935. @item auto
  1936. The default libass shaping engine, which is the best available.
  1937. @item simple
  1938. Fast, font-agnostic shaper that can do only substitutions
  1939. @item complex
  1940. Slower shaper using OpenType for substitutions and positioning
  1941. @end table
  1942. The default is @code{auto}.
  1943. @end table
  1944. @section bbox
  1945. Compute the bounding box for the non-black pixels in the input frame
  1946. luminance plane.
  1947. This filter computes the bounding box containing all the pixels with a
  1948. luminance value greater than the minimum allowed value.
  1949. The parameters describing the bounding box are printed on the filter
  1950. log.
  1951. The filter accepts the following option:
  1952. @table @option
  1953. @item min_val
  1954. Set the minimal luminance value. Default is @code{16}.
  1955. @end table
  1956. @section blackdetect
  1957. Detect video intervals that are (almost) completely black. Can be
  1958. useful to detect chapter transitions, commercials, or invalid
  1959. recordings. Output lines contains the time for the start, end and
  1960. duration of the detected black interval expressed in seconds.
  1961. In order to display the output lines, you need to set the loglevel at
  1962. least to the AV_LOG_INFO value.
  1963. The filter accepts the following options:
  1964. @table @option
  1965. @item black_min_duration, d
  1966. Set the minimum detected black duration expressed in seconds. It must
  1967. be a non-negative floating point number.
  1968. Default value is 2.0.
  1969. @item picture_black_ratio_th, pic_th
  1970. Set the threshold for considering a picture "black".
  1971. Express the minimum value for the ratio:
  1972. @example
  1973. @var{nb_black_pixels} / @var{nb_pixels}
  1974. @end example
  1975. for which a picture is considered black.
  1976. Default value is 0.98.
  1977. @item pixel_black_th, pix_th
  1978. Set the threshold for considering a pixel "black".
  1979. The threshold expresses the maximum pixel luminance value for which a
  1980. pixel is considered "black". The provided value is scaled according to
  1981. the following equation:
  1982. @example
  1983. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  1984. @end example
  1985. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  1986. the input video format, the range is [0-255] for YUV full-range
  1987. formats and [16-235] for YUV non full-range formats.
  1988. Default value is 0.10.
  1989. @end table
  1990. The following example sets the maximum pixel threshold to the minimum
  1991. value, and detects only black intervals of 2 or more seconds:
  1992. @example
  1993. blackdetect=d=2:pix_th=0.00
  1994. @end example
  1995. @section blackframe
  1996. Detect frames that are (almost) completely black. Can be useful to
  1997. detect chapter transitions or commercials. Output lines consist of
  1998. the frame number of the detected frame, the percentage of blackness,
  1999. the position in the file if known or -1 and the timestamp in seconds.
  2000. In order to display the output lines, you need to set the loglevel at
  2001. least to the AV_LOG_INFO value.
  2002. It accepts the following parameters:
  2003. @table @option
  2004. @item amount
  2005. The percentage of the pixels that have to be below the threshold; it defaults to
  2006. @code{98}.
  2007. @item threshold, thresh
  2008. The threshold below which a pixel value is considered black; it defaults to
  2009. @code{32}.
  2010. @end table
  2011. @section blend, tblend
  2012. Blend two video frames into each other.
  2013. The @code{blend} filter takes two input streams and outputs one
  2014. stream, the first input is the "top" layer and second input is
  2015. "bottom" layer. Output terminates when shortest input terminates.
  2016. The @code{tblend} (time blend) filter takes two consecutive frames
  2017. from one single stream, and outputs the result obtained by blending
  2018. the new frame on top of the old frame.
  2019. A description of the accepted options follows.
  2020. @table @option
  2021. @item c0_mode
  2022. @item c1_mode
  2023. @item c2_mode
  2024. @item c3_mode
  2025. @item all_mode
  2026. Set blend mode for specific pixel component or all pixel components in case
  2027. of @var{all_mode}. Default value is @code{normal}.
  2028. Available values for component modes are:
  2029. @table @samp
  2030. @item addition
  2031. @item and
  2032. @item average
  2033. @item burn
  2034. @item darken
  2035. @item difference
  2036. @item difference128
  2037. @item divide
  2038. @item dodge
  2039. @item exclusion
  2040. @item hardlight
  2041. @item lighten
  2042. @item multiply
  2043. @item negation
  2044. @item normal
  2045. @item or
  2046. @item overlay
  2047. @item phoenix
  2048. @item pinlight
  2049. @item reflect
  2050. @item screen
  2051. @item softlight
  2052. @item subtract
  2053. @item vividlight
  2054. @item xor
  2055. @end table
  2056. @item c0_opacity
  2057. @item c1_opacity
  2058. @item c2_opacity
  2059. @item c3_opacity
  2060. @item all_opacity
  2061. Set blend opacity for specific pixel component or all pixel components in case
  2062. of @var{all_opacity}. Only used in combination with pixel component blend modes.
  2063. @item c0_expr
  2064. @item c1_expr
  2065. @item c2_expr
  2066. @item c3_expr
  2067. @item all_expr
  2068. Set blend expression for specific pixel component or all pixel components in case
  2069. of @var{all_expr}. Note that related mode options will be ignored if those are set.
  2070. The expressions can use the following variables:
  2071. @table @option
  2072. @item N
  2073. The sequential number of the filtered frame, starting from @code{0}.
  2074. @item X
  2075. @item Y
  2076. the coordinates of the current sample
  2077. @item W
  2078. @item H
  2079. the width and height of currently filtered plane
  2080. @item SW
  2081. @item SH
  2082. Width and height scale depending on the currently filtered plane. It is the
  2083. ratio between the corresponding luma plane number of pixels and the current
  2084. plane ones. E.g. for YUV4:2:0 the values are @code{1,1} for the luma plane, and
  2085. @code{0.5,0.5} for chroma planes.
  2086. @item T
  2087. Time of the current frame, expressed in seconds.
  2088. @item TOP, A
  2089. Value of pixel component at current location for first video frame (top layer).
  2090. @item BOTTOM, B
  2091. Value of pixel component at current location for second video frame (bottom layer).
  2092. @end table
  2093. @item shortest
  2094. Force termination when the shortest input terminates. Default is
  2095. @code{0}. This option is only defined for the @code{blend} filter.
  2096. @item repeatlast
  2097. Continue applying the last bottom frame after the end of the stream. A value of
  2098. @code{0} disable the filter after the last frame of the bottom layer is reached.
  2099. Default is @code{1}. This option is only defined for the @code{blend} filter.
  2100. @end table
  2101. @subsection Examples
  2102. @itemize
  2103. @item
  2104. Apply transition from bottom layer to top layer in first 10 seconds:
  2105. @example
  2106. blend=all_expr='A*(if(gte(T,10),1,T/10))+B*(1-(if(gte(T,10),1,T/10)))'
  2107. @end example
  2108. @item
  2109. Apply 1x1 checkerboard effect:
  2110. @example
  2111. blend=all_expr='if(eq(mod(X,2),mod(Y,2)),A,B)'
  2112. @end example
  2113. @item
  2114. Apply uncover left effect:
  2115. @example
  2116. blend=all_expr='if(gte(N*SW+X,W),A,B)'
  2117. @end example
  2118. @item
  2119. Apply uncover down effect:
  2120. @example
  2121. blend=all_expr='if(gte(Y-N*SH,0),A,B)'
  2122. @end example
  2123. @item
  2124. Apply uncover up-left effect:
  2125. @example
  2126. blend=all_expr='if(gte(T*SH*40+Y,H)*gte((T*40*SW+X)*W/H,W),A,B)'
  2127. @end example
  2128. @item
  2129. Display differences between the current and the previous frame:
  2130. @example
  2131. tblend=all_mode=difference128
  2132. @end example
  2133. @end itemize
  2134. @section boxblur
  2135. Apply a boxblur algorithm to the input video.
  2136. It accepts the following parameters:
  2137. @table @option
  2138. @item luma_radius, lr
  2139. @item luma_power, lp
  2140. @item chroma_radius, cr
  2141. @item chroma_power, cp
  2142. @item alpha_radius, ar
  2143. @item alpha_power, ap
  2144. @end table
  2145. A description of the accepted options follows.
  2146. @table @option
  2147. @item luma_radius, lr
  2148. @item chroma_radius, cr
  2149. @item alpha_radius, ar
  2150. Set an expression for the box radius in pixels used for blurring the
  2151. corresponding input plane.
  2152. The radius value must be a non-negative number, and must not be
  2153. greater than the value of the expression @code{min(w,h)/2} for the
  2154. luma and alpha planes, and of @code{min(cw,ch)/2} for the chroma
  2155. planes.
  2156. Default value for @option{luma_radius} is "2". If not specified,
  2157. @option{chroma_radius} and @option{alpha_radius} default to the
  2158. corresponding value set for @option{luma_radius}.
  2159. The expressions can contain the following constants:
  2160. @table @option
  2161. @item w
  2162. @item h
  2163. The input width and height in pixels.
  2164. @item cw
  2165. @item ch
  2166. The input chroma image width and height in pixels.
  2167. @item hsub
  2168. @item vsub
  2169. The horizontal and vertical chroma subsample values. For example, for the
  2170. pixel format "yuv422p", @var{hsub} is 2 and @var{vsub} is 1.
  2171. @end table
  2172. @item luma_power, lp
  2173. @item chroma_power, cp
  2174. @item alpha_power, ap
  2175. Specify how many times the boxblur filter is applied to the
  2176. corresponding plane.
  2177. Default value for @option{luma_power} is 2. If not specified,
  2178. @option{chroma_power} and @option{alpha_power} default to the
  2179. corresponding value set for @option{luma_power}.
  2180. A value of 0 will disable the effect.
  2181. @end table
  2182. @subsection Examples
  2183. @itemize
  2184. @item
  2185. Apply a boxblur filter with the luma, chroma, and alpha radii
  2186. set to 2:
  2187. @example
  2188. boxblur=luma_radius=2:luma_power=1
  2189. boxblur=2:1
  2190. @end example
  2191. @item
  2192. Set the luma radius to 2, and alpha and chroma radius to 0:
  2193. @example
  2194. boxblur=2:1:cr=0:ar=0
  2195. @end example
  2196. @item
  2197. Set the luma and chroma radii to a fraction of the video dimension:
  2198. @example
  2199. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  2200. @end example
  2201. @end itemize
  2202. @section codecview
  2203. Visualize information exported by some codecs.
  2204. Some codecs can export information through frames using side-data or other
  2205. means. For example, some MPEG based codecs export motion vectors through the
  2206. @var{export_mvs} flag in the codec @option{flags2} option.
  2207. The filter accepts the following option:
  2208. @table @option
  2209. @item mv
  2210. Set motion vectors to visualize.
  2211. Available flags for @var{mv} are:
  2212. @table @samp
  2213. @item pf
  2214. forward predicted MVs of P-frames
  2215. @item bf
  2216. forward predicted MVs of B-frames
  2217. @item bb
  2218. backward predicted MVs of B-frames
  2219. @end table
  2220. @end table
  2221. @subsection Examples
  2222. @itemize
  2223. @item
  2224. Visualizes multi-directionals MVs from P and B-Frames using @command{ffplay}:
  2225. @example
  2226. ffplay -flags2 +export_mvs input.mpg -vf codecview=mv=pf+bf+bb
  2227. @end example
  2228. @end itemize
  2229. @section colorbalance
  2230. Modify intensity of primary colors (red, green and blue) of input frames.
  2231. The filter allows an input frame to be adjusted in the shadows, midtones or highlights
  2232. regions for the red-cyan, green-magenta or blue-yellow balance.
  2233. A positive adjustment value shifts the balance towards the primary color, a negative
  2234. value towards the complementary color.
  2235. The filter accepts the following options:
  2236. @table @option
  2237. @item rs
  2238. @item gs
  2239. @item bs
  2240. Adjust red, green and blue shadows (darkest pixels).
  2241. @item rm
  2242. @item gm
  2243. @item bm
  2244. Adjust red, green and blue midtones (medium pixels).
  2245. @item rh
  2246. @item gh
  2247. @item bh
  2248. Adjust red, green and blue highlights (brightest pixels).
  2249. Allowed ranges for options are @code{[-1.0, 1.0]}. Defaults are @code{0}.
  2250. @end table
  2251. @subsection Examples
  2252. @itemize
  2253. @item
  2254. Add red color cast to shadows:
  2255. @example
  2256. colorbalance=rs=.3
  2257. @end example
  2258. @end itemize
  2259. @section colorlevels
  2260. Adjust video input frames using levels.
  2261. The filter accepts the following options:
  2262. @table @option
  2263. @item rimin
  2264. @item gimin
  2265. @item bimin
  2266. @item aimin
  2267. Adjust red, green, blue and alpha input black point.
  2268. Allowed ranges for options are @code{[-1.0, 1.0]}. Defaults are @code{0}.
  2269. @item rimax
  2270. @item gimax
  2271. @item bimax
  2272. @item aimax
  2273. Adjust red, green, blue and alpha input white point.
  2274. Allowed ranges for options are @code{[-1.0, 1.0]}. Defaults are @code{1}.
  2275. Input levels are used to lighten highlights (bright tones), darken shadows
  2276. (dark tones), change the balance of bright and dark tones.
  2277. @item romin
  2278. @item gomin
  2279. @item bomin
  2280. @item aomin
  2281. Adjust red, green, blue and alpha output black point.
  2282. Allowed ranges for options are @code{[0, 1.0]}. Defaults are @code{0}.
  2283. @item romax
  2284. @item gomax
  2285. @item bomax
  2286. @item aomax
  2287. Adjust red, green, blue and alpha output white point.
  2288. Allowed ranges for options are @code{[0, 1.0]}. Defaults are @code{1}.
  2289. Output levels allows manual selection of a constrained output level range.
  2290. @end table
  2291. @subsection Examples
  2292. @itemize
  2293. @item
  2294. Make video output darker:
  2295. @example
  2296. colorlevels=rimin=0.058:gimin=0.058:bimin=0.058
  2297. @end example
  2298. @item
  2299. Increase contrast:
  2300. @example
  2301. colorlevels=rimin=0.039:gimin=0.039:bimin=0.039:rimax=0.96:gimax=0.96:bimax=0.96
  2302. @end example
  2303. @item
  2304. Make video output lighter:
  2305. @example
  2306. colorlevels=rimax=0.902:gimax=0.902:bimax=0.902
  2307. @end example
  2308. @item
  2309. Increase brightness:
  2310. @example
  2311. colorlevels=romin=0.5:gomin=0.5:bomin=0.5
  2312. @end example
  2313. @end itemize
  2314. @section colorchannelmixer
  2315. Adjust video input frames by re-mixing color channels.
  2316. This filter modifies a color channel by adding the values associated to
  2317. the other channels of the same pixels. For example if the value to
  2318. modify is red, the output value will be:
  2319. @example
  2320. @var{red}=@var{red}*@var{rr} + @var{blue}*@var{rb} + @var{green}*@var{rg} + @var{alpha}*@var{ra}
  2321. @end example
  2322. The filter accepts the following options:
  2323. @table @option
  2324. @item rr
  2325. @item rg
  2326. @item rb
  2327. @item ra
  2328. Adjust contribution of input red, green, blue and alpha channels for output red channel.
  2329. Default is @code{1} for @var{rr}, and @code{0} for @var{rg}, @var{rb} and @var{ra}.
  2330. @item gr
  2331. @item gg
  2332. @item gb
  2333. @item ga
  2334. Adjust contribution of input red, green, blue and alpha channels for output green channel.
  2335. Default is @code{1} for @var{gg}, and @code{0} for @var{gr}, @var{gb} and @var{ga}.
  2336. @item br
  2337. @item bg
  2338. @item bb
  2339. @item ba
  2340. Adjust contribution of input red, green, blue and alpha channels for output blue channel.
  2341. Default is @code{1} for @var{bb}, and @code{0} for @var{br}, @var{bg} and @var{ba}.
  2342. @item ar
  2343. @item ag
  2344. @item ab
  2345. @item aa
  2346. Adjust contribution of input red, green, blue and alpha channels for output alpha channel.
  2347. Default is @code{1} for @var{aa}, and @code{0} for @var{ar}, @var{ag} and @var{ab}.
  2348. Allowed ranges for options are @code{[-2.0, 2.0]}.
  2349. @end table
  2350. @subsection Examples
  2351. @itemize
  2352. @item
  2353. Convert source to grayscale:
  2354. @example
  2355. colorchannelmixer=.3:.4:.3:0:.3:.4:.3:0:.3:.4:.3
  2356. @end example
  2357. @item
  2358. Simulate sepia tones:
  2359. @example
  2360. colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131
  2361. @end example
  2362. @end itemize
  2363. @section colormatrix
  2364. Convert color matrix.
  2365. The filter accepts the following options:
  2366. @table @option
  2367. @item src
  2368. @item dst
  2369. Specify the source and destination color matrix. Both values must be
  2370. specified.
  2371. The accepted values are:
  2372. @table @samp
  2373. @item bt709
  2374. BT.709
  2375. @item bt601
  2376. BT.601
  2377. @item smpte240m
  2378. SMPTE-240M
  2379. @item fcc
  2380. FCC
  2381. @end table
  2382. @end table
  2383. For example to convert from BT.601 to SMPTE-240M, use the command:
  2384. @example
  2385. colormatrix=bt601:smpte240m
  2386. @end example
  2387. @section copy
  2388. Copy the input source unchanged to the output. This is mainly useful for
  2389. testing purposes.
  2390. @section crop
  2391. Crop the input video to given dimensions.
  2392. It accepts the following parameters:
  2393. @table @option
  2394. @item w, out_w
  2395. The width of the output video. It defaults to @code{iw}.
  2396. This expression is evaluated only once during the filter
  2397. configuration.
  2398. @item h, out_h
  2399. The height of the output video. It defaults to @code{ih}.
  2400. This expression is evaluated only once during the filter
  2401. configuration.
  2402. @item x
  2403. The horizontal position, in the input video, of the left edge of the output
  2404. video. It defaults to @code{(in_w-out_w)/2}.
  2405. This expression is evaluated per-frame.
  2406. @item y
  2407. The vertical position, in the input video, of the top edge of the output video.
  2408. It defaults to @code{(in_h-out_h)/2}.
  2409. This expression is evaluated per-frame.
  2410. @item keep_aspect
  2411. If set to 1 will force the output display aspect ratio
  2412. to be the same of the input, by changing the output sample aspect
  2413. ratio. It defaults to 0.
  2414. @end table
  2415. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  2416. expressions containing the following constants:
  2417. @table @option
  2418. @item x
  2419. @item y
  2420. The computed values for @var{x} and @var{y}. They are evaluated for
  2421. each new frame.
  2422. @item in_w
  2423. @item in_h
  2424. The input width and height.
  2425. @item iw
  2426. @item ih
  2427. These are the same as @var{in_w} and @var{in_h}.
  2428. @item out_w
  2429. @item out_h
  2430. The output (cropped) width and height.
  2431. @item ow
  2432. @item oh
  2433. These are the same as @var{out_w} and @var{out_h}.
  2434. @item a
  2435. same as @var{iw} / @var{ih}
  2436. @item sar
  2437. input sample aspect ratio
  2438. @item dar
  2439. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2440. @item hsub
  2441. @item vsub
  2442. horizontal and vertical chroma subsample values. For example for the
  2443. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2444. @item n
  2445. The number of the input frame, starting from 0.
  2446. @item pos
  2447. the position in the file of the input frame, NAN if unknown
  2448. @item t
  2449. The timestamp expressed in seconds. It's NAN if the input timestamp is unknown.
  2450. @end table
  2451. The expression for @var{out_w} may depend on the value of @var{out_h},
  2452. and the expression for @var{out_h} may depend on @var{out_w}, but they
  2453. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  2454. evaluated after @var{out_w} and @var{out_h}.
  2455. The @var{x} and @var{y} parameters specify the expressions for the
  2456. position of the top-left corner of the output (non-cropped) area. They
  2457. are evaluated for each frame. If the evaluated value is not valid, it
  2458. is approximated to the nearest valid value.
  2459. The expression for @var{x} may depend on @var{y}, and the expression
  2460. for @var{y} may depend on @var{x}.
  2461. @subsection Examples
  2462. @itemize
  2463. @item
  2464. Crop area with size 100x100 at position (12,34).
  2465. @example
  2466. crop=100:100:12:34
  2467. @end example
  2468. Using named options, the example above becomes:
  2469. @example
  2470. crop=w=100:h=100:x=12:y=34
  2471. @end example
  2472. @item
  2473. Crop the central input area with size 100x100:
  2474. @example
  2475. crop=100:100
  2476. @end example
  2477. @item
  2478. Crop the central input area with size 2/3 of the input video:
  2479. @example
  2480. crop=2/3*in_w:2/3*in_h
  2481. @end example
  2482. @item
  2483. Crop the input video central square:
  2484. @example
  2485. crop=out_w=in_h
  2486. crop=in_h
  2487. @end example
  2488. @item
  2489. Delimit the rectangle with the top-left corner placed at position
  2490. 100:100 and the right-bottom corner corresponding to the right-bottom
  2491. corner of the input image.
  2492. @example
  2493. crop=in_w-100:in_h-100:100:100
  2494. @end example
  2495. @item
  2496. Crop 10 pixels from the left and right borders, and 20 pixels from
  2497. the top and bottom borders
  2498. @example
  2499. crop=in_w-2*10:in_h-2*20
  2500. @end example
  2501. @item
  2502. Keep only the bottom right quarter of the input image:
  2503. @example
  2504. crop=in_w/2:in_h/2:in_w/2:in_h/2
  2505. @end example
  2506. @item
  2507. Crop height for getting Greek harmony:
  2508. @example
  2509. crop=in_w:1/PHI*in_w
  2510. @end example
  2511. @item
  2512. Apply trembling effect:
  2513. @example
  2514. crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)
  2515. @end example
  2516. @item
  2517. Apply erratic camera effect depending on timestamp:
  2518. @example
  2519. crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  2520. @end example
  2521. @item
  2522. Set x depending on the value of y:
  2523. @example
  2524. crop=in_w/2:in_h/2:y:10+10*sin(n/10)
  2525. @end example
  2526. @end itemize
  2527. @section cropdetect
  2528. Auto-detect the crop size.
  2529. It calculates the necessary cropping parameters and prints the
  2530. recommended parameters via the logging system. The detected dimensions
  2531. correspond to the non-black area of the input video.
  2532. It accepts the following parameters:
  2533. @table @option
  2534. @item limit
  2535. Set higher black value threshold, which can be optionally specified
  2536. from nothing (0) to everything (255). An intensity value greater
  2537. to the set value is considered non-black. It defaults to 24.
  2538. @item round
  2539. The value which the width/height should be divisible by. It defaults to
  2540. 16. The offset is automatically adjusted to center the video. Use 2 to
  2541. get only even dimensions (needed for 4:2:2 video). 16 is best when
  2542. encoding to most video codecs.
  2543. @item reset_count, reset
  2544. Set the counter that determines after how many frames cropdetect will
  2545. reset the previously detected largest video area and start over to
  2546. detect the current optimal crop area. Default value is 0.
  2547. This can be useful when channel logos distort the video area. 0
  2548. indicates 'never reset', and returns the largest area encountered during
  2549. playback.
  2550. @end table
  2551. @anchor{curves}
  2552. @section curves
  2553. Apply color adjustments using curves.
  2554. This filter is similar to the Adobe Photoshop and GIMP curves tools. Each
  2555. component (red, green and blue) has its values defined by @var{N} key points
  2556. tied from each other using a smooth curve. The x-axis represents the pixel
  2557. values from the input frame, and the y-axis the new pixel values to be set for
  2558. the output frame.
  2559. By default, a component curve is defined by the two points @var{(0;0)} and
  2560. @var{(1;1)}. This creates a straight line where each original pixel value is
  2561. "adjusted" to its own value, which means no change to the image.
  2562. The filter allows you to redefine these two points and add some more. A new
  2563. curve (using a natural cubic spline interpolation) will be define to pass
  2564. smoothly through all these new coordinates. The new defined points needs to be
  2565. strictly increasing over the x-axis, and their @var{x} and @var{y} values must
  2566. be in the @var{[0;1]} interval. If the computed curves happened to go outside
  2567. the vector spaces, the values will be clipped accordingly.
  2568. If there is no key point defined in @code{x=0}, the filter will automatically
  2569. insert a @var{(0;0)} point. In the same way, if there is no key point defined
  2570. in @code{x=1}, the filter will automatically insert a @var{(1;1)} point.
  2571. The filter accepts the following options:
  2572. @table @option
  2573. @item preset
  2574. Select one of the available color presets. This option can be used in addition
  2575. to the @option{r}, @option{g}, @option{b} parameters; in this case, the later
  2576. options takes priority on the preset values.
  2577. Available presets are:
  2578. @table @samp
  2579. @item none
  2580. @item color_negative
  2581. @item cross_process
  2582. @item darker
  2583. @item increase_contrast
  2584. @item lighter
  2585. @item linear_contrast
  2586. @item medium_contrast
  2587. @item negative
  2588. @item strong_contrast
  2589. @item vintage
  2590. @end table
  2591. Default is @code{none}.
  2592. @item master, m
  2593. Set the master key points. These points will define a second pass mapping. It
  2594. is sometimes called a "luminance" or "value" mapping. It can be used with
  2595. @option{r}, @option{g}, @option{b} or @option{all} since it acts like a
  2596. post-processing LUT.
  2597. @item red, r
  2598. Set the key points for the red component.
  2599. @item green, g
  2600. Set the key points for the green component.
  2601. @item blue, b
  2602. Set the key points for the blue component.
  2603. @item all
  2604. Set the key points for all components (not including master).
  2605. Can be used in addition to the other key points component
  2606. options. In this case, the unset component(s) will fallback on this
  2607. @option{all} setting.
  2608. @item psfile
  2609. Specify a Photoshop curves file (@code{.asv}) to import the settings from.
  2610. @end table
  2611. To avoid some filtergraph syntax conflicts, each key points list need to be
  2612. defined using the following syntax: @code{x0/y0 x1/y1 x2/y2 ...}.
  2613. @subsection Examples
  2614. @itemize
  2615. @item
  2616. Increase slightly the middle level of blue:
  2617. @example
  2618. curves=blue='0.5/0.58'
  2619. @end example
  2620. @item
  2621. Vintage effect:
  2622. @example
  2623. curves=r='0/0.11 .42/.51 1/0.95':g='0.50/0.48':b='0/0.22 .49/.44 1/0.8'
  2624. @end example
  2625. Here we obtain the following coordinates for each components:
  2626. @table @var
  2627. @item red
  2628. @code{(0;0.11) (0.42;0.51) (1;0.95)}
  2629. @item green
  2630. @code{(0;0) (0.50;0.48) (1;1)}
  2631. @item blue
  2632. @code{(0;0.22) (0.49;0.44) (1;0.80)}
  2633. @end table
  2634. @item
  2635. The previous example can also be achieved with the associated built-in preset:
  2636. @example
  2637. curves=preset=vintage
  2638. @end example
  2639. @item
  2640. Or simply:
  2641. @example
  2642. curves=vintage
  2643. @end example
  2644. @item
  2645. Use a Photoshop preset and redefine the points of the green component:
  2646. @example
  2647. curves=psfile='MyCurvesPresets/purple.asv':green='0.45/0.53'
  2648. @end example
  2649. @end itemize
  2650. @section dctdnoiz
  2651. Denoise frames using 2D DCT (frequency domain filtering).
  2652. This filter is not designed for real time.
  2653. The filter accepts the following options:
  2654. @table @option
  2655. @item sigma, s
  2656. Set the noise sigma constant.
  2657. This @var{sigma} defines a hard threshold of @code{3 * sigma}; every DCT
  2658. coefficient (absolute value) below this threshold with be dropped.
  2659. If you need a more advanced filtering, see @option{expr}.
  2660. Default is @code{0}.
  2661. @item overlap
  2662. Set number overlapping pixels for each block. Since the filter can be slow, you
  2663. may want to reduce this value, at the cost of a less effective filter and the
  2664. risk of various artefacts.
  2665. If the overlapping value doesn't allow to process the whole input width or
  2666. height, a warning will be displayed and according borders won't be denoised.
  2667. Default value is @var{blocksize}-1, which is the best possible setting.
  2668. @item expr, e
  2669. Set the coefficient factor expression.
  2670. For each coefficient of a DCT block, this expression will be evaluated as a
  2671. multiplier value for the coefficient.
  2672. If this is option is set, the @option{sigma} option will be ignored.
  2673. The absolute value of the coefficient can be accessed through the @var{c}
  2674. variable.
  2675. @item n
  2676. Set the @var{blocksize} using the number of bits. @code{1<<@var{n}} defines the
  2677. @var{blocksize}, which is the width and height of the processed blocks.
  2678. The default value is @var{3} (8x8) and can be raised to @var{4} for a
  2679. @var{blocksize} of 16x16. Note that changing this setting has huge consequences
  2680. on the speed processing. Also, a larger block size does not necessarily means a
  2681. better de-noising.
  2682. @end table
  2683. @subsection Examples
  2684. Apply a denoise with a @option{sigma} of @code{4.5}:
  2685. @example
  2686. dctdnoiz=4.5
  2687. @end example
  2688. The same operation can be achieved using the expression system:
  2689. @example
  2690. dctdnoiz=e='gte(c, 4.5*3)'
  2691. @end example
  2692. Violent denoise using a block size of @code{16x16}:
  2693. @example
  2694. dctdnoiz=15:n=4
  2695. @end example
  2696. @anchor{decimate}
  2697. @section decimate
  2698. Drop duplicated frames at regular intervals.
  2699. The filter accepts the following options:
  2700. @table @option
  2701. @item cycle
  2702. Set the number of frames from which one will be dropped. Setting this to
  2703. @var{N} means one frame in every batch of @var{N} frames will be dropped.
  2704. Default is @code{5}.
  2705. @item dupthresh
  2706. Set the threshold for duplicate detection. If the difference metric for a frame
  2707. is less than or equal to this value, then it is declared as duplicate. Default
  2708. is @code{1.1}
  2709. @item scthresh
  2710. Set scene change threshold. Default is @code{15}.
  2711. @item blockx
  2712. @item blocky
  2713. Set the size of the x and y-axis blocks used during metric calculations.
  2714. Larger blocks give better noise suppression, but also give worse detection of
  2715. small movements. Must be a power of two. Default is @code{32}.
  2716. @item ppsrc
  2717. Mark main input as a pre-processed input and activate clean source input
  2718. stream. This allows the input to be pre-processed with various filters to help
  2719. the metrics calculation while keeping the frame selection lossless. When set to
  2720. @code{1}, the first stream is for the pre-processed input, and the second
  2721. stream is the clean source from where the kept frames are chosen. Default is
  2722. @code{0}.
  2723. @item chroma
  2724. Set whether or not chroma is considered in the metric calculations. Default is
  2725. @code{1}.
  2726. @end table
  2727. @section dejudder
  2728. Remove judder produced by partially interlaced telecined content.
  2729. Judder can be introduced, for instance, by @ref{pullup} filter. If the original
  2730. source was partially telecined content then the output of @code{pullup,dejudder}
  2731. will have a variable frame rate. May change the recorded frame rate of the
  2732. container. Aside from that change, this filter will not affect constant frame
  2733. rate video.
  2734. The option available in this filter is:
  2735. @table @option
  2736. @item cycle
  2737. Specify the length of the window over which the judder repeats.
  2738. Accepts any integer greater than 1. Useful values are:
  2739. @table @samp
  2740. @item 4
  2741. If the original was telecined from 24 to 30 fps (Film to NTSC).
  2742. @item 5
  2743. If the original was telecined from 25 to 30 fps (PAL to NTSC).
  2744. @item 20
  2745. If a mixture of the two.
  2746. @end table
  2747. The default is @samp{4}.
  2748. @end table
  2749. @section delogo
  2750. Suppress a TV station logo by a simple interpolation of the surrounding
  2751. pixels. Just set a rectangle covering the logo and watch it disappear
  2752. (and sometimes something even uglier appear - your mileage may vary).
  2753. It accepts the following parameters:
  2754. @table @option
  2755. @item x
  2756. @item y
  2757. Specify the top left corner coordinates of the logo. They must be
  2758. specified.
  2759. @item w
  2760. @item h
  2761. Specify the width and height of the logo to clear. They must be
  2762. specified.
  2763. @item band, t
  2764. Specify the thickness of the fuzzy edge of the rectangle (added to
  2765. @var{w} and @var{h}). The default value is 4.
  2766. @item show
  2767. When set to 1, a green rectangle is drawn on the screen to simplify
  2768. finding the right @var{x}, @var{y}, @var{w}, and @var{h} parameters.
  2769. The default value is 0.
  2770. The rectangle is drawn on the outermost pixels which will be (partly)
  2771. replaced with interpolated values. The values of the next pixels
  2772. immediately outside this rectangle in each direction will be used to
  2773. compute the interpolated pixel values inside the rectangle.
  2774. @end table
  2775. @subsection Examples
  2776. @itemize
  2777. @item
  2778. Set a rectangle covering the area with top left corner coordinates 0,0
  2779. and size 100x77, and a band of size 10:
  2780. @example
  2781. delogo=x=0:y=0:w=100:h=77:band=10
  2782. @end example
  2783. @end itemize
  2784. @section deshake
  2785. Attempt to fix small changes in horizontal and/or vertical shift. This
  2786. filter helps remove camera shake from hand-holding a camera, bumping a
  2787. tripod, moving on a vehicle, etc.
  2788. The filter accepts the following options:
  2789. @table @option
  2790. @item x
  2791. @item y
  2792. @item w
  2793. @item h
  2794. Specify a rectangular area where to limit the search for motion
  2795. vectors.
  2796. If desired the search for motion vectors can be limited to a
  2797. rectangular area of the frame defined by its top left corner, width
  2798. and height. These parameters have the same meaning as the drawbox
  2799. filter which can be used to visualise the position of the bounding
  2800. box.
  2801. This is useful when simultaneous movement of subjects within the frame
  2802. might be confused for camera motion by the motion vector search.
  2803. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  2804. then the full frame is used. This allows later options to be set
  2805. without specifying the bounding box for the motion vector search.
  2806. Default - search the whole frame.
  2807. @item rx
  2808. @item ry
  2809. Specify the maximum extent of movement in x and y directions in the
  2810. range 0-64 pixels. Default 16.
  2811. @item edge
  2812. Specify how to generate pixels to fill blanks at the edge of the
  2813. frame. Available values are:
  2814. @table @samp
  2815. @item blank, 0
  2816. Fill zeroes at blank locations
  2817. @item original, 1
  2818. Original image at blank locations
  2819. @item clamp, 2
  2820. Extruded edge value at blank locations
  2821. @item mirror, 3
  2822. Mirrored edge at blank locations
  2823. @end table
  2824. Default value is @samp{mirror}.
  2825. @item blocksize
  2826. Specify the blocksize to use for motion search. Range 4-128 pixels,
  2827. default 8.
  2828. @item contrast
  2829. Specify the contrast threshold for blocks. Only blocks with more than
  2830. the specified contrast (difference between darkest and lightest
  2831. pixels) will be considered. Range 1-255, default 125.
  2832. @item search
  2833. Specify the search strategy. Available values are:
  2834. @table @samp
  2835. @item exhaustive, 0
  2836. Set exhaustive search
  2837. @item less, 1
  2838. Set less exhaustive search.
  2839. @end table
  2840. Default value is @samp{exhaustive}.
  2841. @item filename
  2842. If set then a detailed log of the motion search is written to the
  2843. specified file.
  2844. @item opencl
  2845. If set to 1, specify using OpenCL capabilities, only available if
  2846. FFmpeg was configured with @code{--enable-opencl}. Default value is 0.
  2847. @end table
  2848. @section drawbox
  2849. Draw a colored box on the input image.
  2850. It accepts the following parameters:
  2851. @table @option
  2852. @item x
  2853. @item y
  2854. The expressions which specify the top left corner coordinates of the box. It defaults to 0.
  2855. @item width, w
  2856. @item height, h
  2857. The expressions which specify the width and height of the box; if 0 they are interpreted as
  2858. the input width and height. It defaults to 0.
  2859. @item color, c
  2860. Specify the color of the box to write. For the general syntax of this option,
  2861. check the "Color" section in the ffmpeg-utils manual. If the special
  2862. value @code{invert} is used, the box edge color is the same as the
  2863. video with inverted luma.
  2864. @item thickness, t
  2865. The expression which sets the thickness of the box edge. Default value is @code{3}.
  2866. See below for the list of accepted constants.
  2867. @end table
  2868. The parameters for @var{x}, @var{y}, @var{w} and @var{h} and @var{t} are expressions containing the
  2869. following constants:
  2870. @table @option
  2871. @item dar
  2872. The input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}.
  2873. @item hsub
  2874. @item vsub
  2875. horizontal and vertical chroma subsample values. For example for the
  2876. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2877. @item in_h, ih
  2878. @item in_w, iw
  2879. The input width and height.
  2880. @item sar
  2881. The input sample aspect ratio.
  2882. @item x
  2883. @item y
  2884. The x and y offset coordinates where the box is drawn.
  2885. @item w
  2886. @item h
  2887. The width and height of the drawn box.
  2888. @item t
  2889. The thickness of the drawn box.
  2890. These constants allow the @var{x}, @var{y}, @var{w}, @var{h} and @var{t} expressions to refer to
  2891. each other, so you may for example specify @code{y=x/dar} or @code{h=w/dar}.
  2892. @end table
  2893. @subsection Examples
  2894. @itemize
  2895. @item
  2896. Draw a black box around the edge of the input image:
  2897. @example
  2898. drawbox
  2899. @end example
  2900. @item
  2901. Draw a box with color red and an opacity of 50%:
  2902. @example
  2903. drawbox=10:20:200:60:red@@0.5
  2904. @end example
  2905. The previous example can be specified as:
  2906. @example
  2907. drawbox=x=10:y=20:w=200:h=60:color=red@@0.5
  2908. @end example
  2909. @item
  2910. Fill the box with pink color:
  2911. @example
  2912. drawbox=x=10:y=10:w=100:h=100:color=pink@@0.5:t=max
  2913. @end example
  2914. @item
  2915. Draw a 2-pixel red 2.40:1 mask:
  2916. @example
  2917. drawbox=x=-t:y=0.5*(ih-iw/2.4)-t:w=iw+t*2:h=iw/2.4+t*2:t=2:c=red
  2918. @end example
  2919. @end itemize
  2920. @section drawgrid
  2921. Draw a grid on the input image.
  2922. It accepts the following parameters:
  2923. @table @option
  2924. @item x
  2925. @item y
  2926. The expressions which specify the coordinates of some point of grid intersection (meant to configure offset). Both default to 0.
  2927. @item width, w
  2928. @item height, h
  2929. The expressions which specify the width and height of the grid cell, if 0 they are interpreted as the
  2930. input width and height, respectively, minus @code{thickness}, so image gets
  2931. framed. Default to 0.
  2932. @item color, c
  2933. Specify the color of the grid. For the general syntax of this option,
  2934. check the "Color" section in the ffmpeg-utils manual. If the special
  2935. value @code{invert} is used, the grid color is the same as the
  2936. video with inverted luma.
  2937. @item thickness, t
  2938. The expression which sets the thickness of the grid line. Default value is @code{1}.
  2939. See below for the list of accepted constants.
  2940. @end table
  2941. The parameters for @var{x}, @var{y}, @var{w} and @var{h} and @var{t} are expressions containing the
  2942. following constants:
  2943. @table @option
  2944. @item dar
  2945. The input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}.
  2946. @item hsub
  2947. @item vsub
  2948. horizontal and vertical chroma subsample values. For example for the
  2949. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2950. @item in_h, ih
  2951. @item in_w, iw
  2952. The input grid cell width and height.
  2953. @item sar
  2954. The input sample aspect ratio.
  2955. @item x
  2956. @item y
  2957. The x and y coordinates of some point of grid intersection (meant to configure offset).
  2958. @item w
  2959. @item h
  2960. The width and height of the drawn cell.
  2961. @item t
  2962. The thickness of the drawn cell.
  2963. These constants allow the @var{x}, @var{y}, @var{w}, @var{h} and @var{t} expressions to refer to
  2964. each other, so you may for example specify @code{y=x/dar} or @code{h=w/dar}.
  2965. @end table
  2966. @subsection Examples
  2967. @itemize
  2968. @item
  2969. Draw a grid with cell 100x100 pixels, thickness 2 pixels, with color red and an opacity of 50%:
  2970. @example
  2971. drawgrid=width=100:height=100:thickness=2:color=red@@0.5
  2972. @end example
  2973. @item
  2974. Draw a white 3x3 grid with an opacity of 50%:
  2975. @example
  2976. drawgrid=w=iw/3:h=ih/3:t=2:c=white@@0.5
  2977. @end example
  2978. @end itemize
  2979. @anchor{drawtext}
  2980. @section drawtext
  2981. Draw a text string or text from a specified file on top of a video, using the
  2982. libfreetype library.
  2983. To enable compilation of this filter, you need to configure FFmpeg with
  2984. @code{--enable-libfreetype}.
  2985. To enable default font fallback and the @var{font} option you need to
  2986. configure FFmpeg with @code{--enable-libfontconfig}.
  2987. To enable the @var{text_shaping} option, you need to configure FFmpeg with
  2988. @code{--enable-libfribidi}.
  2989. @subsection Syntax
  2990. It accepts the following parameters:
  2991. @table @option
  2992. @item box
  2993. Used to draw a box around text using the background color.
  2994. The value must be either 1 (enable) or 0 (disable).
  2995. The default value of @var{box} is 0.
  2996. @item boxcolor
  2997. The color to be used for drawing box around text. For the syntax of this
  2998. option, check the "Color" section in the ffmpeg-utils manual.
  2999. The default value of @var{boxcolor} is "white".
  3000. @item borderw
  3001. Set the width of the border to be drawn around the text using @var{bordercolor}.
  3002. The default value of @var{borderw} is 0.
  3003. @item bordercolor
  3004. Set the color to be used for drawing border around text. For the syntax of this
  3005. option, check the "Color" section in the ffmpeg-utils manual.
  3006. The default value of @var{bordercolor} is "black".
  3007. @item expansion
  3008. Select how the @var{text} is expanded. Can be either @code{none},
  3009. @code{strftime} (deprecated) or
  3010. @code{normal} (default). See the @ref{drawtext_expansion, Text expansion} section
  3011. below for details.
  3012. @item fix_bounds
  3013. If true, check and fix text coords to avoid clipping.
  3014. @item fontcolor
  3015. The color to be used for drawing fonts. For the syntax of this option, check
  3016. the "Color" section in the ffmpeg-utils manual.
  3017. The default value of @var{fontcolor} is "black".
  3018. @item fontcolor_expr
  3019. String which is expanded the same way as @var{text} to obtain dynamic
  3020. @var{fontcolor} value. By default this option has empty value and is not
  3021. processed. When this option is set, it overrides @var{fontcolor} option.
  3022. @item font
  3023. The font family to be used for drawing text. By default Sans.
  3024. @item fontfile
  3025. The font file to be used for drawing text. The path must be included.
  3026. This parameter is mandatory if the fontconfig support is disabled.
  3027. @item fontsize
  3028. The font size to be used for drawing text.
  3029. The default value of @var{fontsize} is 16.
  3030. @item text_shaping
  3031. If set to 1, attempt to shape the text (for example, reverse the order of
  3032. right-to-left text and join Arabic characters) before drawing it.
  3033. Otherwise, just draw the text exactly as given.
  3034. By default 1 (if supported).
  3035. @item ft_load_flags
  3036. The flags to be used for loading the fonts.
  3037. The flags map the corresponding flags supported by libfreetype, and are
  3038. a combination of the following values:
  3039. @table @var
  3040. @item default
  3041. @item no_scale
  3042. @item no_hinting
  3043. @item render
  3044. @item no_bitmap
  3045. @item vertical_layout
  3046. @item force_autohint
  3047. @item crop_bitmap
  3048. @item pedantic
  3049. @item ignore_global_advance_width
  3050. @item no_recurse
  3051. @item ignore_transform
  3052. @item monochrome
  3053. @item linear_design
  3054. @item no_autohint
  3055. @end table
  3056. Default value is "default".
  3057. For more information consult the documentation for the FT_LOAD_*
  3058. libfreetype flags.
  3059. @item shadowcolor
  3060. The color to be used for drawing a shadow behind the drawn text. For the
  3061. syntax of this option, check the "Color" section in the ffmpeg-utils manual.
  3062. The default value of @var{shadowcolor} is "black".
  3063. @item shadowx
  3064. @item shadowy
  3065. The x and y offsets for the text shadow position with respect to the
  3066. position of the text. They can be either positive or negative
  3067. values. The default value for both is "0".
  3068. @item start_number
  3069. The starting frame number for the n/frame_num variable. The default value
  3070. is "0".
  3071. @item tabsize
  3072. The size in number of spaces to use for rendering the tab.
  3073. Default value is 4.
  3074. @item timecode
  3075. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  3076. format. It can be used with or without text parameter. @var{timecode_rate}
  3077. option must be specified.
  3078. @item timecode_rate, rate, r
  3079. Set the timecode frame rate (timecode only).
  3080. @item text
  3081. The text string to be drawn. The text must be a sequence of UTF-8
  3082. encoded characters.
  3083. This parameter is mandatory if no file is specified with the parameter
  3084. @var{textfile}.
  3085. @item textfile
  3086. A text file containing text to be drawn. The text must be a sequence
  3087. of UTF-8 encoded characters.
  3088. This parameter is mandatory if no text string is specified with the
  3089. parameter @var{text}.
  3090. If both @var{text} and @var{textfile} are specified, an error is thrown.
  3091. @item reload
  3092. If set to 1, the @var{textfile} will be reloaded before each frame.
  3093. Be sure to update it atomically, or it may be read partially, or even fail.
  3094. @item x
  3095. @item y
  3096. The expressions which specify the offsets where text will be drawn
  3097. within the video frame. They are relative to the top/left border of the
  3098. output image.
  3099. The default value of @var{x} and @var{y} is "0".
  3100. See below for the list of accepted constants and functions.
  3101. @end table
  3102. The parameters for @var{x} and @var{y} are expressions containing the
  3103. following constants and functions:
  3104. @table @option
  3105. @item dar
  3106. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  3107. @item hsub
  3108. @item vsub
  3109. horizontal and vertical chroma subsample values. For example for the
  3110. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  3111. @item line_h, lh
  3112. the height of each text line
  3113. @item main_h, h, H
  3114. the input height
  3115. @item main_w, w, W
  3116. the input width
  3117. @item max_glyph_a, ascent
  3118. the maximum distance from the baseline to the highest/upper grid
  3119. coordinate used to place a glyph outline point, for all the rendered
  3120. glyphs.
  3121. It is a positive value, due to the grid's orientation with the Y axis
  3122. upwards.
  3123. @item max_glyph_d, descent
  3124. the maximum distance from the baseline to the lowest grid coordinate
  3125. used to place a glyph outline point, for all the rendered glyphs.
  3126. This is a negative value, due to the grid's orientation, with the Y axis
  3127. upwards.
  3128. @item max_glyph_h
  3129. maximum glyph height, that is the maximum height for all the glyphs
  3130. contained in the rendered text, it is equivalent to @var{ascent} -
  3131. @var{descent}.
  3132. @item max_glyph_w
  3133. maximum glyph width, that is the maximum width for all the glyphs
  3134. contained in the rendered text
  3135. @item n
  3136. the number of input frame, starting from 0
  3137. @item rand(min, max)
  3138. return a random number included between @var{min} and @var{max}
  3139. @item sar
  3140. The input sample aspect ratio.
  3141. @item t
  3142. timestamp expressed in seconds, NAN if the input timestamp is unknown
  3143. @item text_h, th
  3144. the height of the rendered text
  3145. @item text_w, tw
  3146. the width of the rendered text
  3147. @item x
  3148. @item y
  3149. the x and y offset coordinates where the text is drawn.
  3150. These parameters allow the @var{x} and @var{y} expressions to refer
  3151. each other, so you can for example specify @code{y=x/dar}.
  3152. @end table
  3153. @anchor{drawtext_expansion}
  3154. @subsection Text expansion
  3155. If @option{expansion} is set to @code{strftime},
  3156. the filter recognizes strftime() sequences in the provided text and
  3157. expands them accordingly. Check the documentation of strftime(). This
  3158. feature is deprecated.
  3159. If @option{expansion} is set to @code{none}, the text is printed verbatim.
  3160. If @option{expansion} is set to @code{normal} (which is the default),
  3161. the following expansion mechanism is used.
  3162. The backslash character '\', followed by any character, always expands to
  3163. the second character.
  3164. Sequence of the form @code{%@{...@}} are expanded. The text between the
  3165. braces is a function name, possibly followed by arguments separated by ':'.
  3166. If the arguments contain special characters or delimiters (':' or '@}'),
  3167. they should be escaped.
  3168. Note that they probably must also be escaped as the value for the
  3169. @option{text} option in the filter argument string and as the filter
  3170. argument in the filtergraph description, and possibly also for the shell,
  3171. that makes up to four levels of escaping; using a text file avoids these
  3172. problems.
  3173. The following functions are available:
  3174. @table @command
  3175. @item expr, e
  3176. The expression evaluation result.
  3177. It must take one argument specifying the expression to be evaluated,
  3178. which accepts the same constants and functions as the @var{x} and
  3179. @var{y} values. Note that not all constants should be used, for
  3180. example the text size is not known when evaluating the expression, so
  3181. the constants @var{text_w} and @var{text_h} will have an undefined
  3182. value.
  3183. @item expr_int_format, eif
  3184. Evaluate the expression's value and output as formatted integer.
  3185. The first argument is the expression to be evaluated, just as for the @var{expr} function.
  3186. The second argument specifies the output format. Allowed values are 'x', 'X', 'd' and
  3187. 'u'. They are treated exactly as in the printf function.
  3188. The third parameter is optional and sets the number of positions taken by the output.
  3189. It can be used to add padding with zeros from the left.
  3190. @item gmtime
  3191. The time at which the filter is running, expressed in UTC.
  3192. It can accept an argument: a strftime() format string.
  3193. @item localtime
  3194. The time at which the filter is running, expressed in the local time zone.
  3195. It can accept an argument: a strftime() format string.
  3196. @item metadata
  3197. Frame metadata. It must take one argument specifying metadata key.
  3198. @item n, frame_num
  3199. The frame number, starting from 0.
  3200. @item pict_type
  3201. A 1 character description of the current picture type.
  3202. @item pts
  3203. The timestamp of the current frame.
  3204. It can take up to two arguments.
  3205. The first argument is the format of the timestamp; it defaults to @code{flt}
  3206. for seconds as a decimal number with microsecond accuracy; @code{hms} stands
  3207. for a formatted @var{[-]HH:MM:SS.mmm} timestamp with millisecond accuracy.
  3208. The second argument is an offset added to the timestamp.
  3209. @end table
  3210. @subsection Examples
  3211. @itemize
  3212. @item
  3213. Draw "Test Text" with font FreeSerif, using the default values for the
  3214. optional parameters.
  3215. @example
  3216. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  3217. @end example
  3218. @item
  3219. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  3220. and y=50 (counting from the top-left corner of the screen), text is
  3221. yellow with a red box around it. Both the text and the box have an
  3222. opacity of 20%.
  3223. @example
  3224. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  3225. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  3226. @end example
  3227. Note that the double quotes are not necessary if spaces are not used
  3228. within the parameter list.
  3229. @item
  3230. Show the text at the center of the video frame:
  3231. @example
  3232. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  3233. @end example
  3234. @item
  3235. Show a text line sliding from right to left in the last row of the video
  3236. frame. The file @file{LONG_LINE} is assumed to contain a single line
  3237. with no newlines.
  3238. @example
  3239. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  3240. @end example
  3241. @item
  3242. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  3243. @example
  3244. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  3245. @end example
  3246. @item
  3247. Draw a single green letter "g", at the center of the input video.
  3248. The glyph baseline is placed at half screen height.
  3249. @example
  3250. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  3251. @end example
  3252. @item
  3253. Show text for 1 second every 3 seconds:
  3254. @example
  3255. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:enable=lt(mod(t\,3)\,1):text='blink'"
  3256. @end example
  3257. @item
  3258. Use fontconfig to set the font. Note that the colons need to be escaped.
  3259. @example
  3260. drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'
  3261. @end example
  3262. @item
  3263. Print the date of a real-time encoding (see strftime(3)):
  3264. @example
  3265. drawtext='fontfile=FreeSans.ttf:text=%@{localtime\:%a %b %d %Y@}'
  3266. @end example
  3267. @item
  3268. Show text fading in and out (appearing/disappearing):
  3269. @example
  3270. #!/bin/sh
  3271. DS=1.0 # display start
  3272. DE=10.0 # display end
  3273. FID=1.5 # fade in duration
  3274. FOD=5 # fade out duration
  3275. ffplay -f lavfi "color,drawtext=text=TEST:fontsize=50:fontfile=FreeSerif.ttf:fontcolor_expr=ff0000%@{eif\\\\: clip(255*(1*between(t\\, $DS + $FID\\, $DE - $FOD) + ((t - $DS)/$FID)*between(t\\, $DS\\, $DS + $FID) + (-(t - $DE)/$FOD)*between(t\\, $DE - $FOD\\, $DE) )\\, 0\\, 255) \\\\: x\\\\: 2 @}"
  3276. @end example
  3277. @end itemize
  3278. For more information about libfreetype, check:
  3279. @url{http://www.freetype.org/}.
  3280. For more information about fontconfig, check:
  3281. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  3282. For more information about libfribidi, check:
  3283. @url{http://fribidi.org/}.
  3284. @section edgedetect
  3285. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  3286. The filter accepts the following options:
  3287. @table @option
  3288. @item low
  3289. @item high
  3290. Set low and high threshold values used by the Canny thresholding
  3291. algorithm.
  3292. The high threshold selects the "strong" edge pixels, which are then
  3293. connected through 8-connectivity with the "weak" edge pixels selected
  3294. by the low threshold.
  3295. @var{low} and @var{high} threshold values must be chosen in the range
  3296. [0,1], and @var{low} should be lesser or equal to @var{high}.
  3297. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  3298. is @code{50/255}.
  3299. @item mode
  3300. Define the drawing mode.
  3301. @table @samp
  3302. @item wires
  3303. Draw white/gray wires on black background.
  3304. @item colormix
  3305. Mix the colors to create a paint/cartoon effect.
  3306. @end table
  3307. Default value is @var{wires}.
  3308. @end table
  3309. @subsection Examples
  3310. @itemize
  3311. @item
  3312. Standard edge detection with custom values for the hysteresis thresholding:
  3313. @example
  3314. edgedetect=low=0.1:high=0.4
  3315. @end example
  3316. @item
  3317. Painting effect without thresholding:
  3318. @example
  3319. edgedetect=mode=colormix:high=0
  3320. @end example
  3321. @end itemize
  3322. @section extractplanes
  3323. Extract color channel components from input video stream into
  3324. separate grayscale video streams.
  3325. The filter accepts the following option:
  3326. @table @option
  3327. @item planes
  3328. Set plane(s) to extract.
  3329. Available values for planes are:
  3330. @table @samp
  3331. @item y
  3332. @item u
  3333. @item v
  3334. @item a
  3335. @item r
  3336. @item g
  3337. @item b
  3338. @end table
  3339. Choosing planes not available in the input will result in an error.
  3340. That means you cannot select @code{r}, @code{g}, @code{b} planes
  3341. with @code{y}, @code{u}, @code{v} planes at same time.
  3342. @end table
  3343. @subsection Examples
  3344. @itemize
  3345. @item
  3346. Extract luma, u and v color channel component from input video frame
  3347. into 3 grayscale outputs:
  3348. @example
  3349. ffmpeg -i video.avi -filter_complex 'extractplanes=y+u+v[y][u][v]' -map '[y]' y.avi -map '[u]' u.avi -map '[v]' v.avi
  3350. @end example
  3351. @end itemize
  3352. @section elbg
  3353. Apply a posterize effect using the ELBG (Enhanced LBG) algorithm.
  3354. For each input image, the filter will compute the optimal mapping from
  3355. the input to the output given the codebook length, that is the number
  3356. of distinct output colors.
  3357. This filter accepts the following options.
  3358. @table @option
  3359. @item codebook_length, l
  3360. Set codebook length. The value must be a positive integer, and
  3361. represents the number of distinct output colors. Default value is 256.
  3362. @item nb_steps, n
  3363. Set the maximum number of iterations to apply for computing the optimal
  3364. mapping. The higher the value the better the result and the higher the
  3365. computation time. Default value is 1.
  3366. @item seed, s
  3367. Set a random seed, must be an integer included between 0 and
  3368. UINT32_MAX. If not specified, or if explicitly set to -1, the filter
  3369. will try to use a good random seed on a best effort basis.
  3370. @end table
  3371. @section fade
  3372. Apply a fade-in/out effect to the input video.
  3373. It accepts the following parameters:
  3374. @table @option
  3375. @item type, t
  3376. The effect type can be either "in" for a fade-in, or "out" for a fade-out
  3377. effect.
  3378. Default is @code{in}.
  3379. @item start_frame, s
  3380. Specify the number of the frame to start applying the fade
  3381. effect at. Default is 0.
  3382. @item nb_frames, n
  3383. The number of frames that the fade effect lasts. At the end of the
  3384. fade-in effect, the output video will have the same intensity as the input video.
  3385. At the end of the fade-out transition, the output video will be filled with the
  3386. selected @option{color}.
  3387. Default is 25.
  3388. @item alpha
  3389. If set to 1, fade only alpha channel, if one exists on the input.
  3390. Default value is 0.
  3391. @item start_time, st
  3392. Specify the timestamp (in seconds) of the frame to start to apply the fade
  3393. effect. If both start_frame and start_time are specified, the fade will start at
  3394. whichever comes last. Default is 0.
  3395. @item duration, d
  3396. The number of seconds for which the fade effect has to last. At the end of the
  3397. fade-in effect the output video will have the same intensity as the input video,
  3398. at the end of the fade-out transition the output video will be filled with the
  3399. selected @option{color}.
  3400. If both duration and nb_frames are specified, duration is used. Default is 0.
  3401. @item color, c
  3402. Specify the color of the fade. Default is "black".
  3403. @end table
  3404. @subsection Examples
  3405. @itemize
  3406. @item
  3407. Fade in the first 30 frames of video:
  3408. @example
  3409. fade=in:0:30
  3410. @end example
  3411. The command above is equivalent to:
  3412. @example
  3413. fade=t=in:s=0:n=30
  3414. @end example
  3415. @item
  3416. Fade out the last 45 frames of a 200-frame video:
  3417. @example
  3418. fade=out:155:45
  3419. fade=type=out:start_frame=155:nb_frames=45
  3420. @end example
  3421. @item
  3422. Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video:
  3423. @example
  3424. fade=in:0:25, fade=out:975:25
  3425. @end example
  3426. @item
  3427. Make the first 5 frames yellow, then fade in from frame 5-24:
  3428. @example
  3429. fade=in:5:20:color=yellow
  3430. @end example
  3431. @item
  3432. Fade in alpha over first 25 frames of video:
  3433. @example
  3434. fade=in:0:25:alpha=1
  3435. @end example
  3436. @item
  3437. Make the first 5.5 seconds black, then fade in for 0.5 seconds:
  3438. @example
  3439. fade=t=in:st=5.5:d=0.5
  3440. @end example
  3441. @end itemize
  3442. @section field
  3443. Extract a single field from an interlaced image using stride
  3444. arithmetic to avoid wasting CPU time. The output frames are marked as
  3445. non-interlaced.
  3446. The filter accepts the following options:
  3447. @table @option
  3448. @item type
  3449. Specify whether to extract the top (if the value is @code{0} or
  3450. @code{top}) or the bottom field (if the value is @code{1} or
  3451. @code{bottom}).
  3452. @end table
  3453. @section fieldmatch
  3454. Field matching filter for inverse telecine. It is meant to reconstruct the
  3455. progressive frames from a telecined stream. The filter does not drop duplicated
  3456. frames, so to achieve a complete inverse telecine @code{fieldmatch} needs to be
  3457. followed by a decimation filter such as @ref{decimate} in the filtergraph.
  3458. The separation of the field matching and the decimation is notably motivated by
  3459. the possibility of inserting a de-interlacing filter fallback between the two.
  3460. If the source has mixed telecined and real interlaced content,
  3461. @code{fieldmatch} will not be able to match fields for the interlaced parts.
  3462. But these remaining combed frames will be marked as interlaced, and thus can be
  3463. de-interlaced by a later filter such as @ref{yadif} before decimation.
  3464. In addition to the various configuration options, @code{fieldmatch} can take an
  3465. optional second stream, activated through the @option{ppsrc} option. If
  3466. enabled, the frames reconstruction will be based on the fields and frames from
  3467. this second stream. This allows the first input to be pre-processed in order to
  3468. help the various algorithms of the filter, while keeping the output lossless
  3469. (assuming the fields are matched properly). Typically, a field-aware denoiser,
  3470. or brightness/contrast adjustments can help.
  3471. Note that this filter uses the same algorithms as TIVTC/TFM (AviSynth project)
  3472. and VIVTC/VFM (VapourSynth project). The later is a light clone of TFM from
  3473. which @code{fieldmatch} is based on. While the semantic and usage are very
  3474. close, some behaviour and options names can differ.
  3475. The @ref{decimate} filter currently only works for constant frame rate input.
  3476. Do not use @code{fieldmatch} and @ref{decimate} if your input has mixed
  3477. telecined and progressive content with changing framerate.
  3478. The filter accepts the following options:
  3479. @table @option
  3480. @item order
  3481. Specify the assumed field order of the input stream. Available values are:
  3482. @table @samp
  3483. @item auto
  3484. Auto detect parity (use FFmpeg's internal parity value).
  3485. @item bff
  3486. Assume bottom field first.
  3487. @item tff
  3488. Assume top field first.
  3489. @end table
  3490. Note that it is sometimes recommended not to trust the parity announced by the
  3491. stream.
  3492. Default value is @var{auto}.
  3493. @item mode
  3494. Set the matching mode or strategy to use. @option{pc} mode is the safest in the
  3495. sense that it won't risk creating jerkiness due to duplicate frames when
  3496. possible, but if there are bad edits or blended fields it will end up
  3497. outputting combed frames when a good match might actually exist. On the other
  3498. hand, @option{pcn_ub} mode is the most risky in terms of creating jerkiness,
  3499. but will almost always find a good frame if there is one. The other values are
  3500. all somewhere in between @option{pc} and @option{pcn_ub} in terms of risking
  3501. jerkiness and creating duplicate frames versus finding good matches in sections
  3502. with bad edits, orphaned fields, blended fields, etc.
  3503. More details about p/c/n/u/b are available in @ref{p/c/n/u/b meaning} section.
  3504. Available values are:
  3505. @table @samp
  3506. @item pc
  3507. 2-way matching (p/c)
  3508. @item pc_n
  3509. 2-way matching, and trying 3rd match if still combed (p/c + n)
  3510. @item pc_u
  3511. 2-way matching, and trying 3rd match (same order) if still combed (p/c + u)
  3512. @item pc_n_ub
  3513. 2-way matching, trying 3rd match if still combed, and trying 4th/5th matches if
  3514. still combed (p/c + n + u/b)
  3515. @item pcn
  3516. 3-way matching (p/c/n)
  3517. @item pcn_ub
  3518. 3-way matching, and trying 4th/5th matches if all 3 of the original matches are
  3519. detected as combed (p/c/n + u/b)
  3520. @end table
  3521. The parenthesis at the end indicate the matches that would be used for that
  3522. mode assuming @option{order}=@var{tff} (and @option{field} on @var{auto} or
  3523. @var{top}).
  3524. In terms of speed @option{pc} mode is by far the fastest and @option{pcn_ub} is
  3525. the slowest.
  3526. Default value is @var{pc_n}.
  3527. @item ppsrc
  3528. Mark the main input stream as a pre-processed input, and enable the secondary
  3529. input stream as the clean source to pick the fields from. See the filter
  3530. introduction for more details. It is similar to the @option{clip2} feature from
  3531. VFM/TFM.
  3532. Default value is @code{0} (disabled).
  3533. @item field
  3534. Set the field to match from. It is recommended to set this to the same value as
  3535. @option{order} unless you experience matching failures with that setting. In
  3536. certain circumstances changing the field that is used to match from can have a
  3537. large impact on matching performance. Available values are:
  3538. @table @samp
  3539. @item auto
  3540. Automatic (same value as @option{order}).
  3541. @item bottom
  3542. Match from the bottom field.
  3543. @item top
  3544. Match from the top field.
  3545. @end table
  3546. Default value is @var{auto}.
  3547. @item mchroma
  3548. Set whether or not chroma is included during the match comparisons. In most
  3549. cases it is recommended to leave this enabled. You should set this to @code{0}
  3550. only if your clip has bad chroma problems such as heavy rainbowing or other
  3551. artifacts. Setting this to @code{0} could also be used to speed things up at
  3552. the cost of some accuracy.
  3553. Default value is @code{1}.
  3554. @item y0
  3555. @item y1
  3556. These define an exclusion band which excludes the lines between @option{y0} and
  3557. @option{y1} from being included in the field matching decision. An exclusion
  3558. band can be used to ignore subtitles, a logo, or other things that may
  3559. interfere with the matching. @option{y0} sets the starting scan line and
  3560. @option{y1} sets the ending line; all lines in between @option{y0} and
  3561. @option{y1} (including @option{y0} and @option{y1}) will be ignored. Setting
  3562. @option{y0} and @option{y1} to the same value will disable the feature.
  3563. @option{y0} and @option{y1} defaults to @code{0}.
  3564. @item scthresh
  3565. Set the scene change detection threshold as a percentage of maximum change on
  3566. the luma plane. Good values are in the @code{[8.0, 14.0]} range. Scene change
  3567. detection is only relevant in case @option{combmatch}=@var{sc}. The range for
  3568. @option{scthresh} is @code{[0.0, 100.0]}.
  3569. Default value is @code{12.0}.
  3570. @item combmatch
  3571. When @option{combatch} is not @var{none}, @code{fieldmatch} will take into
  3572. account the combed scores of matches when deciding what match to use as the
  3573. final match. Available values are:
  3574. @table @samp
  3575. @item none
  3576. No final matching based on combed scores.
  3577. @item sc
  3578. Combed scores are only used when a scene change is detected.
  3579. @item full
  3580. Use combed scores all the time.
  3581. @end table
  3582. Default is @var{sc}.
  3583. @item combdbg
  3584. Force @code{fieldmatch} to calculate the combed metrics for certain matches and
  3585. print them. This setting is known as @option{micout} in TFM/VFM vocabulary.
  3586. Available values are:
  3587. @table @samp
  3588. @item none
  3589. No forced calculation.
  3590. @item pcn
  3591. Force p/c/n calculations.
  3592. @item pcnub
  3593. Force p/c/n/u/b calculations.
  3594. @end table
  3595. Default value is @var{none}.
  3596. @item cthresh
  3597. This is the area combing threshold used for combed frame detection. This
  3598. essentially controls how "strong" or "visible" combing must be to be detected.
  3599. Larger values mean combing must be more visible and smaller values mean combing
  3600. can be less visible or strong and still be detected. Valid settings are from
  3601. @code{-1} (every pixel will be detected as combed) to @code{255} (no pixel will
  3602. be detected as combed). This is basically a pixel difference value. A good
  3603. range is @code{[8, 12]}.
  3604. Default value is @code{9}.
  3605. @item chroma
  3606. Sets whether or not chroma is considered in the combed frame decision. Only
  3607. disable this if your source has chroma problems (rainbowing, etc.) that are
  3608. causing problems for the combed frame detection with chroma enabled. Actually,
  3609. using @option{chroma}=@var{0} is usually more reliable, except for the case
  3610. where there is chroma only combing in the source.
  3611. Default value is @code{0}.
  3612. @item blockx
  3613. @item blocky
  3614. Respectively set the x-axis and y-axis size of the window used during combed
  3615. frame detection. This has to do with the size of the area in which
  3616. @option{combpel} pixels are required to be detected as combed for a frame to be
  3617. declared combed. See the @option{combpel} parameter description for more info.
  3618. Possible values are any number that is a power of 2 starting at 4 and going up
  3619. to 512.
  3620. Default value is @code{16}.
  3621. @item combpel
  3622. The number of combed pixels inside any of the @option{blocky} by
  3623. @option{blockx} size blocks on the frame for the frame to be detected as
  3624. combed. While @option{cthresh} controls how "visible" the combing must be, this
  3625. setting controls "how much" combing there must be in any localized area (a
  3626. window defined by the @option{blockx} and @option{blocky} settings) on the
  3627. frame. Minimum value is @code{0} and maximum is @code{blocky x blockx} (at
  3628. which point no frames will ever be detected as combed). This setting is known
  3629. as @option{MI} in TFM/VFM vocabulary.
  3630. Default value is @code{80}.
  3631. @end table
  3632. @anchor{p/c/n/u/b meaning}
  3633. @subsection p/c/n/u/b meaning
  3634. @subsubsection p/c/n
  3635. We assume the following telecined stream:
  3636. @example
  3637. Top fields: 1 2 2 3 4
  3638. Bottom fields: 1 2 3 4 4
  3639. @end example
  3640. The numbers correspond to the progressive frame the fields relate to. Here, the
  3641. first two frames are progressive, the 3rd and 4th are combed, and so on.
  3642. When @code{fieldmatch} is configured to run a matching from bottom
  3643. (@option{field}=@var{bottom}) this is how this input stream get transformed:
  3644. @example
  3645. Input stream:
  3646. T 1 2 2 3 4
  3647. B 1 2 3 4 4 <-- matching reference
  3648. Matches: c c n n c
  3649. Output stream:
  3650. T 1 2 3 4 4
  3651. B 1 2 3 4 4
  3652. @end example
  3653. As a result of the field matching, we can see that some frames get duplicated.
  3654. To perform a complete inverse telecine, you need to rely on a decimation filter
  3655. after this operation. See for instance the @ref{decimate} filter.
  3656. The same operation now matching from top fields (@option{field}=@var{top})
  3657. looks like this:
  3658. @example
  3659. Input stream:
  3660. T 1 2 2 3 4 <-- matching reference
  3661. B 1 2 3 4 4
  3662. Matches: c c p p c
  3663. Output stream:
  3664. T 1 2 2 3 4
  3665. B 1 2 2 3 4
  3666. @end example
  3667. In these examples, we can see what @var{p}, @var{c} and @var{n} mean;
  3668. basically, they refer to the frame and field of the opposite parity:
  3669. @itemize
  3670. @item @var{p} matches the field of the opposite parity in the previous frame
  3671. @item @var{c} matches the field of the opposite parity in the current frame
  3672. @item @var{n} matches the field of the opposite parity in the next frame
  3673. @end itemize
  3674. @subsubsection u/b
  3675. The @var{u} and @var{b} matching are a bit special in the sense that they match
  3676. from the opposite parity flag. In the following examples, we assume that we are
  3677. currently matching the 2nd frame (Top:2, bottom:2). According to the match, a
  3678. 'x' is placed above and below each matched fields.
  3679. With bottom matching (@option{field}=@var{bottom}):
  3680. @example
  3681. Match: c p n b u
  3682. x x x x x
  3683. Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
  3684. Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
  3685. x x x x x
  3686. Output frames:
  3687. 2 1 2 2 2
  3688. 2 2 2 1 3
  3689. @end example
  3690. With top matching (@option{field}=@var{top}):
  3691. @example
  3692. Match: c p n b u
  3693. x x x x x
  3694. Top 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2
  3695. Bottom 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
  3696. x x x x x
  3697. Output frames:
  3698. 2 2 2 1 2
  3699. 2 1 3 2 2
  3700. @end example
  3701. @subsection Examples
  3702. Simple IVTC of a top field first telecined stream:
  3703. @example
  3704. fieldmatch=order=tff:combmatch=none, decimate
  3705. @end example
  3706. Advanced IVTC, with fallback on @ref{yadif} for still combed frames:
  3707. @example
  3708. fieldmatch=order=tff:combmatch=full, yadif=deint=interlaced, decimate
  3709. @end example
  3710. @section fieldorder
  3711. Transform the field order of the input video.
  3712. It accepts the following parameters:
  3713. @table @option
  3714. @item order
  3715. The output field order. Valid values are @var{tff} for top field first or @var{bff}
  3716. for bottom field first.
  3717. @end table
  3718. The default value is @samp{tff}.
  3719. The transformation is done by shifting the picture content up or down
  3720. by one line, and filling the remaining line with appropriate picture content.
  3721. This method is consistent with most broadcast field order converters.
  3722. If the input video is not flagged as being interlaced, or it is already
  3723. flagged as being of the required output field order, then this filter does
  3724. not alter the incoming video.
  3725. It is very useful when converting to or from PAL DV material,
  3726. which is bottom field first.
  3727. For example:
  3728. @example
  3729. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  3730. @end example
  3731. @section fifo
  3732. Buffer input images and send them when they are requested.
  3733. It is mainly useful when auto-inserted by the libavfilter
  3734. framework.
  3735. It does not take parameters.
  3736. @anchor{format}
  3737. @section format
  3738. Convert the input video to one of the specified pixel formats.
  3739. Libavfilter will try to pick one that is suitable as input to
  3740. the next filter.
  3741. It accepts the following parameters:
  3742. @table @option
  3743. @item pix_fmts
  3744. A '|'-separated list of pixel format names, such as
  3745. "pix_fmts=yuv420p|monow|rgb24".
  3746. @end table
  3747. @subsection Examples
  3748. @itemize
  3749. @item
  3750. Convert the input video to the @var{yuv420p} format
  3751. @example
  3752. format=pix_fmts=yuv420p
  3753. @end example
  3754. Convert the input video to any of the formats in the list
  3755. @example
  3756. format=pix_fmts=yuv420p|yuv444p|yuv410p
  3757. @end example
  3758. @end itemize
  3759. @anchor{fps}
  3760. @section fps
  3761. Convert the video to specified constant frame rate by duplicating or dropping
  3762. frames as necessary.
  3763. It accepts the following parameters:
  3764. @table @option
  3765. @item fps
  3766. The desired output frame rate. The default is @code{25}.
  3767. @item round
  3768. Rounding method.
  3769. Possible values are:
  3770. @table @option
  3771. @item zero
  3772. zero round towards 0
  3773. @item inf
  3774. round away from 0
  3775. @item down
  3776. round towards -infinity
  3777. @item up
  3778. round towards +infinity
  3779. @item near
  3780. round to nearest
  3781. @end table
  3782. The default is @code{near}.
  3783. @item start_time
  3784. Assume the first PTS should be the given value, in seconds. This allows for
  3785. padding/trimming at the start of stream. By default, no assumption is made
  3786. about the first frame's expected PTS, so no padding or trimming is done.
  3787. For example, this could be set to 0 to pad the beginning with duplicates of
  3788. the first frame if a video stream starts after the audio stream or to trim any
  3789. frames with a negative PTS.
  3790. @end table
  3791. Alternatively, the options can be specified as a flat string:
  3792. @var{fps}[:@var{round}].
  3793. See also the @ref{setpts} filter.
  3794. @subsection Examples
  3795. @itemize
  3796. @item
  3797. A typical usage in order to set the fps to 25:
  3798. @example
  3799. fps=fps=25
  3800. @end example
  3801. @item
  3802. Sets the fps to 24, using abbreviation and rounding method to round to nearest:
  3803. @example
  3804. fps=fps=film:round=near
  3805. @end example
  3806. @end itemize
  3807. @section framepack
  3808. Pack two different video streams into a stereoscopic video, setting proper
  3809. metadata on supported codecs. The two views should have the same size and
  3810. framerate and processing will stop when the shorter video ends. Please note
  3811. that you may conveniently adjust view properties with the @ref{scale} and
  3812. @ref{fps} filters.
  3813. It accepts the following parameters:
  3814. @table @option
  3815. @item format
  3816. The desired packing format. Supported values are:
  3817. @table @option
  3818. @item sbs
  3819. The views are next to each other (default).
  3820. @item tab
  3821. The views are on top of each other.
  3822. @item lines
  3823. The views are packed by line.
  3824. @item columns
  3825. The views are packed by column.
  3826. @item frameseq
  3827. The views are temporally interleaved.
  3828. @end table
  3829. @end table
  3830. Some examples:
  3831. @example
  3832. # Convert left and right views into a frame-sequential video
  3833. ffmpeg -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT
  3834. # Convert views into a side-by-side video with the same output resolution as the input
  3835. ffmpeg -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT
  3836. @end example
  3837. @section framestep
  3838. Select one frame every N-th frame.
  3839. This filter accepts the following option:
  3840. @table @option
  3841. @item step
  3842. Select frame after every @code{step} frames.
  3843. Allowed values are positive integers higher than 0. Default value is @code{1}.
  3844. @end table
  3845. @anchor{frei0r}
  3846. @section frei0r
  3847. Apply a frei0r effect to the input video.
  3848. To enable the compilation of this filter, you need to install the frei0r
  3849. header and configure FFmpeg with @code{--enable-frei0r}.
  3850. It accepts the following parameters:
  3851. @table @option
  3852. @item filter_name
  3853. The name of the frei0r effect to load. If the environment variable
  3854. @env{FREI0R_PATH} is defined, the frei0r effect is searched for in each of the
  3855. directories specified by the colon-separated list in @env{FREIOR_PATH}.
  3856. Otherwise, the standard frei0r paths are searched, in this order:
  3857. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  3858. @file{/usr/lib/frei0r-1/}.
  3859. @item filter_params
  3860. A '|'-separated list of parameters to pass to the frei0r effect.
  3861. @end table
  3862. A frei0r effect parameter can be a boolean (its value is either
  3863. "y" or "n"), a double, a color (specified as
  3864. @var{R}/@var{G}/@var{B}, where @var{R}, @var{G}, and @var{B} are floating point
  3865. numbers between 0.0 and 1.0, inclusive) or by a color description specified in the "Color"
  3866. section in the ffmpeg-utils manual), a position (specified as @var{X}/@var{Y}, where
  3867. @var{X} and @var{Y} are floating point numbers) and/or a string.
  3868. The number and types of parameters depend on the loaded effect. If an
  3869. effect parameter is not specified, the default value is set.
  3870. @subsection Examples
  3871. @itemize
  3872. @item
  3873. Apply the distort0r effect, setting the first two double parameters:
  3874. @example
  3875. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  3876. @end example
  3877. @item
  3878. Apply the colordistance effect, taking a color as the first parameter:
  3879. @example
  3880. frei0r=colordistance:0.2/0.3/0.4
  3881. frei0r=colordistance:violet
  3882. frei0r=colordistance:0x112233
  3883. @end example
  3884. @item
  3885. Apply the perspective effect, specifying the top left and top right image
  3886. positions:
  3887. @example
  3888. frei0r=perspective:0.2/0.2|0.8/0.2
  3889. @end example
  3890. @end itemize
  3891. For more information, see
  3892. @url{http://frei0r.dyne.org}
  3893. @section fspp
  3894. Apply fast and simple postprocessing. It is a faster version of @ref{spp}.
  3895. It splits (I)DCT into horizontal/vertical passes. Unlike the simple post-
  3896. processing filter, one of them is performed once per block, not per pixel.
  3897. This allows for much higher speed.
  3898. The filter accepts the following options:
  3899. @table @option
  3900. @item quality
  3901. Set quality. This option defines the number of levels for averaging. It accepts
  3902. an integer in the range 4-5. Default value is @code{4}.
  3903. @item qp
  3904. Force a constant quantization parameter. It accepts an integer in range 0-63.
  3905. If not set, the filter will use the QP from the video stream (if available).
  3906. @item strength
  3907. Set filter strength. It accepts an integer in range -15 to 32. Lower values mean
  3908. more details but also more artifacts, while higher values make the image smoother
  3909. but also blurrier. Default value is @code{0} − PSNR optimal.
  3910. @item use_bframe_qp
  3911. Enable the use of the QP from the B-Frames if set to @code{1}. Using this
  3912. option may cause flicker since the B-Frames have often larger QP. Default is
  3913. @code{0} (not enabled).
  3914. @end table
  3915. @section geq
  3916. The filter accepts the following options:
  3917. @table @option
  3918. @item lum_expr, lum
  3919. Set the luminance expression.
  3920. @item cb_expr, cb
  3921. Set the chrominance blue expression.
  3922. @item cr_expr, cr
  3923. Set the chrominance red expression.
  3924. @item alpha_expr, a
  3925. Set the alpha expression.
  3926. @item red_expr, r
  3927. Set the red expression.
  3928. @item green_expr, g
  3929. Set the green expression.
  3930. @item blue_expr, b
  3931. Set the blue expression.
  3932. @end table
  3933. The colorspace is selected according to the specified options. If one
  3934. of the @option{lum_expr}, @option{cb_expr}, or @option{cr_expr}
  3935. options is specified, the filter will automatically select a YCbCr
  3936. colorspace. If one of the @option{red_expr}, @option{green_expr}, or
  3937. @option{blue_expr} options is specified, it will select an RGB
  3938. colorspace.
  3939. If one of the chrominance expression is not defined, it falls back on the other
  3940. one. If no alpha expression is specified it will evaluate to opaque value.
  3941. If none of chrominance expressions are specified, they will evaluate
  3942. to the luminance expression.
  3943. The expressions can use the following variables and functions:
  3944. @table @option
  3945. @item N
  3946. The sequential number of the filtered frame, starting from @code{0}.
  3947. @item X
  3948. @item Y
  3949. The coordinates of the current sample.
  3950. @item W
  3951. @item H
  3952. The width and height of the image.
  3953. @item SW
  3954. @item SH
  3955. Width and height scale depending on the currently filtered plane. It is the
  3956. ratio between the corresponding luma plane number of pixels and the current
  3957. plane ones. E.g. for YUV4:2:0 the values are @code{1,1} for the luma plane, and
  3958. @code{0.5,0.5} for chroma planes.
  3959. @item T
  3960. Time of the current frame, expressed in seconds.
  3961. @item p(x, y)
  3962. Return the value of the pixel at location (@var{x},@var{y}) of the current
  3963. plane.
  3964. @item lum(x, y)
  3965. Return the value of the pixel at location (@var{x},@var{y}) of the luminance
  3966. plane.
  3967. @item cb(x, y)
  3968. Return the value of the pixel at location (@var{x},@var{y}) of the
  3969. blue-difference chroma plane. Return 0 if there is no such plane.
  3970. @item cr(x, y)
  3971. Return the value of the pixel at location (@var{x},@var{y}) of the
  3972. red-difference chroma plane. Return 0 if there is no such plane.
  3973. @item r(x, y)
  3974. @item g(x, y)
  3975. @item b(x, y)
  3976. Return the value of the pixel at location (@var{x},@var{y}) of the
  3977. red/green/blue component. Return 0 if there is no such component.
  3978. @item alpha(x, y)
  3979. Return the value of the pixel at location (@var{x},@var{y}) of the alpha
  3980. plane. Return 0 if there is no such plane.
  3981. @end table
  3982. For functions, if @var{x} and @var{y} are outside the area, the value will be
  3983. automatically clipped to the closer edge.
  3984. @subsection Examples
  3985. @itemize
  3986. @item
  3987. Flip the image horizontally:
  3988. @example
  3989. geq=p(W-X\,Y)
  3990. @end example
  3991. @item
  3992. Generate a bidimensional sine wave, with angle @code{PI/3} and a
  3993. wavelength of 100 pixels:
  3994. @example
  3995. geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128
  3996. @end example
  3997. @item
  3998. Generate a fancy enigmatic moving light:
  3999. @example
  4000. nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128
  4001. @end example
  4002. @item
  4003. Generate a quick emboss effect:
  4004. @example
  4005. format=gray,geq=lum_expr='(p(X,Y)+(256-p(X-4,Y-4)))/2'
  4006. @end example
  4007. @item
  4008. Modify RGB components depending on pixel position:
  4009. @example
  4010. geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'
  4011. @end example
  4012. @item
  4013. Create a radial gradient that is the same size as the input (also see
  4014. the @ref{vignette} filter):
  4015. @example
  4016. geq=lum=255*gauss((X/W-0.5)*3)*gauss((Y/H-0.5)*3)/gauss(0)/gauss(0),format=gray
  4017. @end example
  4018. @item
  4019. Create a linear gradient to use as a mask for another filter, then
  4020. compose with @ref{overlay}. In this example the video will gradually
  4021. become more blurry from the top to the bottom of the y-axis as defined
  4022. by the linear gradient:
  4023. @example
  4024. ffmpeg -i input.mp4 -filter_complex "geq=lum=255*(Y/H),format=gray[grad];[0:v]boxblur=4[blur];[blur][grad]alphamerge[alpha];[0:v][alpha]overlay" output.mp4
  4025. @end example
  4026. @end itemize
  4027. @section gradfun
  4028. Fix the banding artifacts that are sometimes introduced into nearly flat
  4029. regions by truncation to 8bit color depth.
  4030. Interpolate the gradients that should go where the bands are, and
  4031. dither them.
  4032. It is designed for playback only. Do not use it prior to
  4033. lossy compression, because compression tends to lose the dither and
  4034. bring back the bands.
  4035. It accepts the following parameters:
  4036. @table @option
  4037. @item strength
  4038. The maximum amount by which the filter will change any one pixel. This is also
  4039. the threshold for detecting nearly flat regions. Acceptable values range from
  4040. .51 to 64; the default value is 1.2. Out-of-range values will be clipped to the
  4041. valid range.
  4042. @item radius
  4043. The neighborhood to fit the gradient to. A larger radius makes for smoother
  4044. gradients, but also prevents the filter from modifying the pixels near detailed
  4045. regions. Acceptable values are 8-32; the default value is 16. Out-of-range
  4046. values will be clipped to the valid range.
  4047. @end table
  4048. Alternatively, the options can be specified as a flat string:
  4049. @var{strength}[:@var{radius}]
  4050. @subsection Examples
  4051. @itemize
  4052. @item
  4053. Apply the filter with a @code{3.5} strength and radius of @code{8}:
  4054. @example
  4055. gradfun=3.5:8
  4056. @end example
  4057. @item
  4058. Specify radius, omitting the strength (which will fall-back to the default
  4059. value):
  4060. @example
  4061. gradfun=radius=8
  4062. @end example
  4063. @end itemize
  4064. @anchor{haldclut}
  4065. @section haldclut
  4066. Apply a Hald CLUT to a video stream.
  4067. First input is the video stream to process, and second one is the Hald CLUT.
  4068. The Hald CLUT input can be a simple picture or a complete video stream.
  4069. The filter accepts the following options:
  4070. @table @option
  4071. @item shortest
  4072. Force termination when the shortest input terminates. Default is @code{0}.
  4073. @item repeatlast
  4074. Continue applying the last CLUT after the end of the stream. A value of
  4075. @code{0} disable the filter after the last frame of the CLUT is reached.
  4076. Default is @code{1}.
  4077. @end table
  4078. @code{haldclut} also has the same interpolation options as @ref{lut3d} (both
  4079. filters share the same internals).
  4080. More information about the Hald CLUT can be found on Eskil Steenberg's website
  4081. (Hald CLUT author) at @url{http://www.quelsolaar.com/technology/clut.html}.
  4082. @subsection Workflow examples
  4083. @subsubsection Hald CLUT video stream
  4084. Generate an identity Hald CLUT stream altered with various effects:
  4085. @example
  4086. ffmpeg -f lavfi -i @ref{haldclutsrc}=8 -vf "hue=H=2*PI*t:s=sin(2*PI*t)+1, curves=cross_process" -t 10 -c:v ffv1 clut.nut
  4087. @end example
  4088. Note: make sure you use a lossless codec.
  4089. Then use it with @code{haldclut} to apply it on some random stream:
  4090. @example
  4091. ffmpeg -f lavfi -i mandelbrot -i clut.nut -filter_complex '[0][1] haldclut' -t 20 mandelclut.mkv
  4092. @end example
  4093. The Hald CLUT will be applied to the 10 first seconds (duration of
  4094. @file{clut.nut}), then the latest picture of that CLUT stream will be applied
  4095. to the remaining frames of the @code{mandelbrot} stream.
  4096. @subsubsection Hald CLUT with preview
  4097. A Hald CLUT is supposed to be a squared image of @code{Level*Level*Level} by
  4098. @code{Level*Level*Level} pixels. For a given Hald CLUT, FFmpeg will select the
  4099. biggest possible square starting at the top left of the picture. The remaining
  4100. padding pixels (bottom or right) will be ignored. This area can be used to add
  4101. a preview of the Hald CLUT.
  4102. Typically, the following generated Hald CLUT will be supported by the
  4103. @code{haldclut} filter:
  4104. @example
  4105. ffmpeg -f lavfi -i @ref{haldclutsrc}=8 -vf "
  4106. pad=iw+320 [padded_clut];
  4107. smptebars=s=320x256, split [a][b];
  4108. [padded_clut][a] overlay=W-320:h, curves=color_negative [main];
  4109. [main][b] overlay=W-320" -frames:v 1 clut.png
  4110. @end example
  4111. It contains the original and a preview of the effect of the CLUT: SMPTE color
  4112. bars are displayed on the right-top, and below the same color bars processed by
  4113. the color changes.
  4114. Then, the effect of this Hald CLUT can be visualized with:
  4115. @example
  4116. ffplay input.mkv -vf "movie=clut.png, [in] haldclut"
  4117. @end example
  4118. @section hflip
  4119. Flip the input video horizontally.
  4120. For example, to horizontally flip the input video with @command{ffmpeg}:
  4121. @example
  4122. ffmpeg -i in.avi -vf "hflip" out.avi
  4123. @end example
  4124. @section histeq
  4125. This filter applies a global color histogram equalization on a
  4126. per-frame basis.
  4127. It can be used to correct video that has a compressed range of pixel
  4128. intensities. The filter redistributes the pixel intensities to
  4129. equalize their distribution across the intensity range. It may be
  4130. viewed as an "automatically adjusting contrast filter". This filter is
  4131. useful only for correcting degraded or poorly captured source
  4132. video.
  4133. The filter accepts the following options:
  4134. @table @option
  4135. @item strength
  4136. Determine the amount of equalization to be applied. As the strength
  4137. is reduced, the distribution of pixel intensities more-and-more
  4138. approaches that of the input frame. The value must be a float number
  4139. in the range [0,1] and defaults to 0.200.
  4140. @item intensity
  4141. Set the maximum intensity that can generated and scale the output
  4142. values appropriately. The strength should be set as desired and then
  4143. the intensity can be limited if needed to avoid washing-out. The value
  4144. must be a float number in the range [0,1] and defaults to 0.210.
  4145. @item antibanding
  4146. Set the antibanding level. If enabled the filter will randomly vary
  4147. the luminance of output pixels by a small amount to avoid banding of
  4148. the histogram. Possible values are @code{none}, @code{weak} or
  4149. @code{strong}. It defaults to @code{none}.
  4150. @end table
  4151. @section histogram
  4152. Compute and draw a color distribution histogram for the input video.
  4153. The computed histogram is a representation of the color component
  4154. distribution in an image.
  4155. The filter accepts the following options:
  4156. @table @option
  4157. @item mode
  4158. Set histogram mode.
  4159. It accepts the following values:
  4160. @table @samp
  4161. @item levels
  4162. Standard histogram that displays the color components distribution in an
  4163. image. Displays color graph for each color component. Shows distribution of
  4164. the Y, U, V, A or R, G, B components, depending on input format, in the
  4165. current frame. Below each graph a color component scale meter is shown.
  4166. @item color
  4167. Displays chroma values (U/V color placement) in a two dimensional
  4168. graph (which is called a vectorscope). The brighter a pixel in the
  4169. vectorscope, the more pixels of the input frame correspond to that pixel
  4170. (i.e., more pixels have this chroma value). The V component is displayed on
  4171. the horizontal (X) axis, with the leftmost side being V = 0 and the rightmost
  4172. side being V = 255. The U component is displayed on the vertical (Y) axis,
  4173. with the top representing U = 0 and the bottom representing U = 255.
  4174. The position of a white pixel in the graph corresponds to the chroma value of
  4175. a pixel of the input clip. The graph can therefore be used to read the hue
  4176. (color flavor) and the saturation (the dominance of the hue in the color). As
  4177. the hue of a color changes, it moves around the square. At the center of the
  4178. square the saturation is zero, which means that the corresponding pixel has no
  4179. color. If the amount of a specific color is increased (while leaving the other
  4180. colors unchanged) the saturation increases, and the indicator moves towards
  4181. the edge of the square.
  4182. @item color2
  4183. Chroma values in vectorscope, similar as @code{color} but actual chroma values
  4184. are displayed.
  4185. @item waveform
  4186. Per row/column color component graph. In row mode, the graph on the left side
  4187. represents color component value 0 and the right side represents value = 255.
  4188. In column mode, the top side represents color component value = 0 and bottom
  4189. side represents value = 255.
  4190. @end table
  4191. Default value is @code{levels}.
  4192. @item level_height
  4193. Set height of level in @code{levels}. Default value is @code{200}.
  4194. Allowed range is [50, 2048].
  4195. @item scale_height
  4196. Set height of color scale in @code{levels}. Default value is @code{12}.
  4197. Allowed range is [0, 40].
  4198. @item step
  4199. Set step for @code{waveform} mode. Smaller values are useful to find out how
  4200. many values of the same luminance are distributed across input rows/columns.
  4201. Default value is @code{10}. Allowed range is [1, 255].
  4202. @item waveform_mode
  4203. Set mode for @code{waveform}. Can be either @code{row}, or @code{column}.
  4204. Default is @code{row}.
  4205. @item waveform_mirror
  4206. Set mirroring mode for @code{waveform}. @code{0} means unmirrored, @code{1}
  4207. means mirrored. In mirrored mode, higher values will be represented on the left
  4208. side for @code{row} mode and at the top for @code{column} mode. Default is
  4209. @code{0} (unmirrored).
  4210. @item display_mode
  4211. Set display mode for @code{waveform} and @code{levels}.
  4212. It accepts the following values:
  4213. @table @samp
  4214. @item parade
  4215. Display separate graph for the color components side by side in
  4216. @code{row} waveform mode or one below the other in @code{column} waveform mode
  4217. for @code{waveform} histogram mode. For @code{levels} histogram mode,
  4218. per color component graphs are placed below each other.
  4219. Using this display mode in @code{waveform} histogram mode makes it easy to
  4220. spot color casts in the highlights and shadows of an image, by comparing the
  4221. contours of the top and the bottom graphs of each waveform. Since whites,
  4222. grays, and blacks are characterized by exactly equal amounts of red, green,
  4223. and blue, neutral areas of the picture should display three waveforms of
  4224. roughly equal width/height. If not, the correction is easy to perform by
  4225. making level adjustments the three waveforms.
  4226. @item overlay
  4227. Presents information identical to that in the @code{parade}, except
  4228. that the graphs representing color components are superimposed directly
  4229. over one another.
  4230. This display mode in @code{waveform} histogram mode makes it easier to spot
  4231. relative differences or similarities in overlapping areas of the color
  4232. components that are supposed to be identical, such as neutral whites, grays,
  4233. or blacks.
  4234. @end table
  4235. Default is @code{parade}.
  4236. @item levels_mode
  4237. Set mode for @code{levels}. Can be either @code{linear}, or @code{logarithmic}.
  4238. Default is @code{linear}.
  4239. @end table
  4240. @subsection Examples
  4241. @itemize
  4242. @item
  4243. Calculate and draw histogram:
  4244. @example
  4245. ffplay -i input -vf histogram
  4246. @end example
  4247. @end itemize
  4248. @anchor{hqdn3d}
  4249. @section hqdn3d
  4250. This is a high precision/quality 3d denoise filter. It aims to reduce
  4251. image noise, producing smooth images and making still images really
  4252. still. It should enhance compressibility.
  4253. It accepts the following optional parameters:
  4254. @table @option
  4255. @item luma_spatial
  4256. A non-negative floating point number which specifies spatial luma strength.
  4257. It defaults to 4.0.
  4258. @item chroma_spatial
  4259. A non-negative floating point number which specifies spatial chroma strength.
  4260. It defaults to 3.0*@var{luma_spatial}/4.0.
  4261. @item luma_tmp
  4262. A floating point number which specifies luma temporal strength. It defaults to
  4263. 6.0*@var{luma_spatial}/4.0.
  4264. @item chroma_tmp
  4265. A floating point number which specifies chroma temporal strength. It defaults to
  4266. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}.
  4267. @end table
  4268. @section hqx
  4269. Apply a high-quality magnification filter designed for pixel art. This filter
  4270. was originally created by Maxim Stepin.
  4271. It accepts the following option:
  4272. @table @option
  4273. @item n
  4274. Set the scaling dimension: @code{2} for @code{hq2x}, @code{3} for
  4275. @code{hq3x} and @code{4} for @code{hq4x}.
  4276. Default is @code{3}.
  4277. @end table
  4278. @section hue
  4279. Modify the hue and/or the saturation of the input.
  4280. It accepts the following parameters:
  4281. @table @option
  4282. @item h
  4283. Specify the hue angle as a number of degrees. It accepts an expression,
  4284. and defaults to "0".
  4285. @item s
  4286. Specify the saturation in the [-10,10] range. It accepts an expression and
  4287. defaults to "1".
  4288. @item H
  4289. Specify the hue angle as a number of radians. It accepts an
  4290. expression, and defaults to "0".
  4291. @item b
  4292. Specify the brightness in the [-10,10] range. It accepts an expression and
  4293. defaults to "0".
  4294. @end table
  4295. @option{h} and @option{H} are mutually exclusive, and can't be
  4296. specified at the same time.
  4297. The @option{b}, @option{h}, @option{H} and @option{s} option values are
  4298. expressions containing the following constants:
  4299. @table @option
  4300. @item n
  4301. frame count of the input frame starting from 0
  4302. @item pts
  4303. presentation timestamp of the input frame expressed in time base units
  4304. @item r
  4305. frame rate of the input video, NAN if the input frame rate is unknown
  4306. @item t
  4307. timestamp expressed in seconds, NAN if the input timestamp is unknown
  4308. @item tb
  4309. time base of the input video
  4310. @end table
  4311. @subsection Examples
  4312. @itemize
  4313. @item
  4314. Set the hue to 90 degrees and the saturation to 1.0:
  4315. @example
  4316. hue=h=90:s=1
  4317. @end example
  4318. @item
  4319. Same command but expressing the hue in radians:
  4320. @example
  4321. hue=H=PI/2:s=1
  4322. @end example
  4323. @item
  4324. Rotate hue and make the saturation swing between 0
  4325. and 2 over a period of 1 second:
  4326. @example
  4327. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  4328. @end example
  4329. @item
  4330. Apply a 3 seconds saturation fade-in effect starting at 0:
  4331. @example
  4332. hue="s=min(t/3\,1)"
  4333. @end example
  4334. The general fade-in expression can be written as:
  4335. @example
  4336. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  4337. @end example
  4338. @item
  4339. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  4340. @example
  4341. hue="s=max(0\, min(1\, (8-t)/3))"
  4342. @end example
  4343. The general fade-out expression can be written as:
  4344. @example
  4345. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  4346. @end example
  4347. @end itemize
  4348. @subsection Commands
  4349. This filter supports the following commands:
  4350. @table @option
  4351. @item b
  4352. @item s
  4353. @item h
  4354. @item H
  4355. Modify the hue and/or the saturation and/or brightness of the input video.
  4356. The command accepts the same syntax of the corresponding option.
  4357. If the specified expression is not valid, it is kept at its current
  4358. value.
  4359. @end table
  4360. @section idet
  4361. Detect video interlacing type.
  4362. This filter tries to detect if the input frames as interlaced, progressive,
  4363. top or bottom field first. It will also try and detect fields that are
  4364. repeated between adjacent frames (a sign of telecine).
  4365. Single frame detection considers only immediately adjacent frames when classifying each frame.
  4366. Multiple frame detection incorporates the classification history of previous frames.
  4367. The filter will log these metadata values:
  4368. @table @option
  4369. @item single.current_frame
  4370. Detected type of current frame using single-frame detection. One of:
  4371. ``tff'' (top field first), ``bff'' (bottom field first),
  4372. ``progressive'', or ``undetermined''
  4373. @item single.tff
  4374. Cumulative number of frames detected as top field first using single-frame detection.
  4375. @item multiple.tff
  4376. Cumulative number of frames detected as top field first using multiple-frame detection.
  4377. @item single.bff
  4378. Cumulative number of frames detected as bottom field first using single-frame detection.
  4379. @item multiple.current_frame
  4380. Detected type of current frame using multiple-frame detection. One of:
  4381. ``tff'' (top field first), ``bff'' (bottom field first),
  4382. ``progressive'', or ``undetermined''
  4383. @item multiple.bff
  4384. Cumulative number of frames detected as bottom field first using multiple-frame detection.
  4385. @item single.progressive
  4386. Cumulative number of frames detected as progressive using single-frame detection.
  4387. @item multiple.progressive
  4388. Cumulative number of frames detected as progressive using multiple-frame detection.
  4389. @item single.undetermined
  4390. Cumulative number of frames that could not be classified using single-frame detection.
  4391. @item multiple.undetermined
  4392. Cumulative number of frames that could not be classified using multiple-frame detection.
  4393. @item repeated.current_frame
  4394. Which field in the current frame is repeated from the last. One of ``neither'', ``top'', or ``bottom''.
  4395. @item repeated.neither
  4396. Cumulative number of frames with no repeated field.
  4397. @item repeated.top
  4398. Cumulative number of frames with the top field repeated from the previous frame's top field.
  4399. @item repeated.bottom
  4400. Cumulative number of frames with the bottom field repeated from the previous frame's bottom field.
  4401. @end table
  4402. The filter accepts the following options:
  4403. @table @option
  4404. @item intl_thres
  4405. Set interlacing threshold.
  4406. @item prog_thres
  4407. Set progressive threshold.
  4408. @item repeat_thres
  4409. Threshold for repeated field detection.
  4410. @item half_life
  4411. Number of frames after which a given frame's contribution to the
  4412. statistics is halved (i.e., it contributes only 0.5 to it's
  4413. classification). The default of 0 means that all frames seen are given
  4414. full weight of 1.0 forever.
  4415. @end table
  4416. @section il
  4417. Deinterleave or interleave fields.
  4418. This filter allows one to process interlaced images fields without
  4419. deinterlacing them. Deinterleaving splits the input frame into 2
  4420. fields (so called half pictures). Odd lines are moved to the top
  4421. half of the output image, even lines to the bottom half.
  4422. You can process (filter) them independently and then re-interleave them.
  4423. The filter accepts the following options:
  4424. @table @option
  4425. @item luma_mode, l
  4426. @item chroma_mode, c
  4427. @item alpha_mode, a
  4428. Available values for @var{luma_mode}, @var{chroma_mode} and
  4429. @var{alpha_mode} are:
  4430. @table @samp
  4431. @item none
  4432. Do nothing.
  4433. @item deinterleave, d
  4434. Deinterleave fields, placing one above the other.
  4435. @item interleave, i
  4436. Interleave fields. Reverse the effect of deinterleaving.
  4437. @end table
  4438. Default value is @code{none}.
  4439. @item luma_swap, ls
  4440. @item chroma_swap, cs
  4441. @item alpha_swap, as
  4442. Swap luma/chroma/alpha fields. Exchange even & odd lines. Default value is @code{0}.
  4443. @end table
  4444. @section interlace
  4445. Simple interlacing filter from progressive contents. This interleaves upper (or
  4446. lower) lines from odd frames with lower (or upper) lines from even frames,
  4447. halving the frame rate and preserving image height.
  4448. @example
  4449. Original Original New Frame
  4450. Frame 'j' Frame 'j+1' (tff)
  4451. ========== =========== ==================
  4452. Line 0 --------------------> Frame 'j' Line 0
  4453. Line 1 Line 1 ----> Frame 'j+1' Line 1
  4454. Line 2 ---------------------> Frame 'j' Line 2
  4455. Line 3 Line 3 ----> Frame 'j+1' Line 3
  4456. ... ... ...
  4457. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  4458. @end example
  4459. It accepts the following optional parameters:
  4460. @table @option
  4461. @item scan
  4462. This determines whether the interlaced frame is taken from the even
  4463. (tff - default) or odd (bff) lines of the progressive frame.
  4464. @item lowpass
  4465. Enable (default) or disable the vertical lowpass filter to avoid twitter
  4466. interlacing and reduce moire patterns.
  4467. @end table
  4468. @section kerndeint
  4469. Deinterlace input video by applying Donald Graft's adaptive kernel
  4470. deinterling. Work on interlaced parts of a video to produce
  4471. progressive frames.
  4472. The description of the accepted parameters follows.
  4473. @table @option
  4474. @item thresh
  4475. Set the threshold which affects the filter's tolerance when
  4476. determining if a pixel line must be processed. It must be an integer
  4477. in the range [0,255] and defaults to 10. A value of 0 will result in
  4478. applying the process on every pixels.
  4479. @item map
  4480. Paint pixels exceeding the threshold value to white if set to 1.
  4481. Default is 0.
  4482. @item order
  4483. Set the fields order. Swap fields if set to 1, leave fields alone if
  4484. 0. Default is 0.
  4485. @item sharp
  4486. Enable additional sharpening if set to 1. Default is 0.
  4487. @item twoway
  4488. Enable twoway sharpening if set to 1. Default is 0.
  4489. @end table
  4490. @subsection Examples
  4491. @itemize
  4492. @item
  4493. Apply default values:
  4494. @example
  4495. kerndeint=thresh=10:map=0:order=0:sharp=0:twoway=0
  4496. @end example
  4497. @item
  4498. Enable additional sharpening:
  4499. @example
  4500. kerndeint=sharp=1
  4501. @end example
  4502. @item
  4503. Paint processed pixels in white:
  4504. @example
  4505. kerndeint=map=1
  4506. @end example
  4507. @end itemize
  4508. @section lenscorrection
  4509. Correct radial lens distortion
  4510. This filter can be used to correct for radial distortion as can result from the use
  4511. of wide angle lenses, and thereby re-rectify the image. To find the right parameters
  4512. one can use tools available for example as part of opencv or simply trial-and-error.
  4513. To use opencv use the calibration sample (under samples/cpp) from the opencv sources
  4514. and extract the k1 and k2 coefficients from the resulting matrix.
  4515. Note that effectively the same filter is available in the open-source tools Krita and
  4516. Digikam from the KDE project.
  4517. In contrast to the @ref{vignette} filter, which can also be used to compensate lens errors,
  4518. this filter corrects the distortion of the image, whereas @ref{vignette} corrects the
  4519. brightness distribution, so you may want to use both filters together in certain
  4520. cases, though you will have to take care of ordering, i.e. whether vignetting should
  4521. be applied before or after lens correction.
  4522. @subsection Options
  4523. The filter accepts the following options:
  4524. @table @option
  4525. @item cx
  4526. Relative x-coordinate of the focal point of the image, and thereby the center of the
  4527. distortion. This value has a range [0,1] and is expressed as fractions of the image
  4528. width.
  4529. @item cy
  4530. Relative y-coordinate of the focal point of the image, and thereby the center of the
  4531. distortion. This value has a range [0,1] and is expressed as fractions of the image
  4532. height.
  4533. @item k1
  4534. Coefficient of the quadratic correction term. 0.5 means no correction.
  4535. @item k2
  4536. Coefficient of the double quadratic correction term. 0.5 means no correction.
  4537. @end table
  4538. The formula that generates the correction is:
  4539. @var{r_src} = @var{r_tgt} * (1 + @var{k1} * (@var{r_tgt} / @var{r_0})^2 + @var{k2} * (@var{r_tgt} / @var{r_0})^4)
  4540. where @var{r_0} is halve of the image diagonal and @var{r_src} and @var{r_tgt} are the
  4541. distances from the focal point in the source and target images, respectively.
  4542. @anchor{lut3d}
  4543. @section lut3d
  4544. Apply a 3D LUT to an input video.
  4545. The filter accepts the following options:
  4546. @table @option
  4547. @item file
  4548. Set the 3D LUT file name.
  4549. Currently supported formats:
  4550. @table @samp
  4551. @item 3dl
  4552. AfterEffects
  4553. @item cube
  4554. Iridas
  4555. @item dat
  4556. DaVinci
  4557. @item m3d
  4558. Pandora
  4559. @end table
  4560. @item interp
  4561. Select interpolation mode.
  4562. Available values are:
  4563. @table @samp
  4564. @item nearest
  4565. Use values from the nearest defined point.
  4566. @item trilinear
  4567. Interpolate values using the 8 points defining a cube.
  4568. @item tetrahedral
  4569. Interpolate values using a tetrahedron.
  4570. @end table
  4571. @end table
  4572. @section lut, lutrgb, lutyuv
  4573. Compute a look-up table for binding each pixel component input value
  4574. to an output value, and apply it to the input video.
  4575. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  4576. to an RGB input video.
  4577. These filters accept the following parameters:
  4578. @table @option
  4579. @item c0
  4580. set first pixel component expression
  4581. @item c1
  4582. set second pixel component expression
  4583. @item c2
  4584. set third pixel component expression
  4585. @item c3
  4586. set fourth pixel component expression, corresponds to the alpha component
  4587. @item r
  4588. set red component expression
  4589. @item g
  4590. set green component expression
  4591. @item b
  4592. set blue component expression
  4593. @item a
  4594. alpha component expression
  4595. @item y
  4596. set Y/luminance component expression
  4597. @item u
  4598. set U/Cb component expression
  4599. @item v
  4600. set V/Cr component expression
  4601. @end table
  4602. Each of them specifies the expression to use for computing the lookup table for
  4603. the corresponding pixel component values.
  4604. The exact component associated to each of the @var{c*} options depends on the
  4605. format in input.
  4606. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  4607. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  4608. The expressions can contain the following constants and functions:
  4609. @table @option
  4610. @item w
  4611. @item h
  4612. The input width and height.
  4613. @item val
  4614. The input value for the pixel component.
  4615. @item clipval
  4616. The input value, clipped to the @var{minval}-@var{maxval} range.
  4617. @item maxval
  4618. The maximum value for the pixel component.
  4619. @item minval
  4620. The minimum value for the pixel component.
  4621. @item negval
  4622. The negated value for the pixel component value, clipped to the
  4623. @var{minval}-@var{maxval} range; it corresponds to the expression
  4624. "maxval-clipval+minval".
  4625. @item clip(val)
  4626. The computed value in @var{val}, clipped to the
  4627. @var{minval}-@var{maxval} range.
  4628. @item gammaval(gamma)
  4629. The computed gamma correction value of the pixel component value,
  4630. clipped to the @var{minval}-@var{maxval} range. It corresponds to the
  4631. expression
  4632. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  4633. @end table
  4634. All expressions default to "val".
  4635. @subsection Examples
  4636. @itemize
  4637. @item
  4638. Negate input video:
  4639. @example
  4640. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  4641. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  4642. @end example
  4643. The above is the same as:
  4644. @example
  4645. lutrgb="r=negval:g=negval:b=negval"
  4646. lutyuv="y=negval:u=negval:v=negval"
  4647. @end example
  4648. @item
  4649. Negate luminance:
  4650. @example
  4651. lutyuv=y=negval
  4652. @end example
  4653. @item
  4654. Remove chroma components, turning the video into a graytone image:
  4655. @example
  4656. lutyuv="u=128:v=128"
  4657. @end example
  4658. @item
  4659. Apply a luma burning effect:
  4660. @example
  4661. lutyuv="y=2*val"
  4662. @end example
  4663. @item
  4664. Remove green and blue components:
  4665. @example
  4666. lutrgb="g=0:b=0"
  4667. @end example
  4668. @item
  4669. Set a constant alpha channel value on input:
  4670. @example
  4671. format=rgba,lutrgb=a="maxval-minval/2"
  4672. @end example
  4673. @item
  4674. Correct luminance gamma by a factor of 0.5:
  4675. @example
  4676. lutyuv=y=gammaval(0.5)
  4677. @end example
  4678. @item
  4679. Discard least significant bits of luma:
  4680. @example
  4681. lutyuv=y='bitand(val, 128+64+32)'
  4682. @end example
  4683. @end itemize
  4684. @section mergeplanes
  4685. Merge color channel components from several video streams.
  4686. The filter accepts up to 4 input streams, and merge selected input
  4687. planes to the output video.
  4688. This filter accepts the following options:
  4689. @table @option
  4690. @item mapping
  4691. Set input to output plane mapping. Default is @code{0}.
  4692. The mappings is specified as a bitmap. It should be specified as a
  4693. hexadecimal number in the form 0xAa[Bb[Cc[Dd]]]. 'Aa' describes the
  4694. mapping for the first plane of the output stream. 'A' sets the number of
  4695. the input stream to use (from 0 to 3), and 'a' the plane number of the
  4696. corresponding input to use (from 0 to 3). The rest of the mappings is
  4697. similar, 'Bb' describes the mapping for the output stream second
  4698. plane, 'Cc' describes the mapping for the output stream third plane and
  4699. 'Dd' describes the mapping for the output stream fourth plane.
  4700. @item format
  4701. Set output pixel format. Default is @code{yuva444p}.
  4702. @end table
  4703. @subsection Examples
  4704. @itemize
  4705. @item
  4706. Merge three gray video streams of same width and height into single video stream:
  4707. @example
  4708. [a0][a1][a2]mergeplanes=0x001020:yuv444p
  4709. @end example
  4710. @item
  4711. Merge 1st yuv444p stream and 2nd gray video stream into yuva444p video stream:
  4712. @example
  4713. [a0][a1]mergeplanes=0x00010210:yuva444p
  4714. @end example
  4715. @item
  4716. Swap Y and A plane in yuva444p stream:
  4717. @example
  4718. format=yuva444p,mergeplanes=0x03010200:yuva444p
  4719. @end example
  4720. @item
  4721. Swap U and V plane in yuv420p stream:
  4722. @example
  4723. format=yuv420p,mergeplanes=0x000201:yuv420p
  4724. @end example
  4725. @item
  4726. Cast a rgb24 clip to yuv444p:
  4727. @example
  4728. format=rgb24,mergeplanes=0x000102:yuv444p
  4729. @end example
  4730. @end itemize
  4731. @section mcdeint
  4732. Apply motion-compensation deinterlacing.
  4733. It needs one field per frame as input and must thus be used together
  4734. with yadif=1/3 or equivalent.
  4735. This filter accepts the following options:
  4736. @table @option
  4737. @item mode
  4738. Set the deinterlacing mode.
  4739. It accepts one of the following values:
  4740. @table @samp
  4741. @item fast
  4742. @item medium
  4743. @item slow
  4744. use iterative motion estimation
  4745. @item extra_slow
  4746. like @samp{slow}, but use multiple reference frames.
  4747. @end table
  4748. Default value is @samp{fast}.
  4749. @item parity
  4750. Set the picture field parity assumed for the input video. It must be
  4751. one of the following values:
  4752. @table @samp
  4753. @item 0, tff
  4754. assume top field first
  4755. @item 1, bff
  4756. assume bottom field first
  4757. @end table
  4758. Default value is @samp{bff}.
  4759. @item qp
  4760. Set per-block quantization parameter (QP) used by the internal
  4761. encoder.
  4762. Higher values should result in a smoother motion vector field but less
  4763. optimal individual vectors. Default value is 1.
  4764. @end table
  4765. @section mp
  4766. Apply an MPlayer filter to the input video.
  4767. This filter provides a wrapper around some of the filters of
  4768. MPlayer/MEncoder.
  4769. This wrapper is considered experimental. Some of the wrapped filters
  4770. may not work properly and we may drop support for them, as they will
  4771. be implemented natively into FFmpeg. Thus you should avoid
  4772. depending on them when writing portable scripts.
  4773. The filter accepts the parameters:
  4774. @var{filter_name}[:=]@var{filter_params}
  4775. @var{filter_name} is the name of a supported MPlayer filter,
  4776. @var{filter_params} is a string containing the parameters accepted by
  4777. the named filter.
  4778. The list of the currently supported filters follows:
  4779. @table @var
  4780. @item eq2
  4781. @item eq
  4782. @item ilpack
  4783. @item pp7
  4784. @item softpulldown
  4785. @end table
  4786. The parameter syntax and behavior for the listed filters are the same
  4787. of the corresponding MPlayer filters. For detailed instructions check
  4788. the "VIDEO FILTERS" section in the MPlayer manual.
  4789. @subsection Examples
  4790. @itemize
  4791. @item
  4792. Adjust gamma, brightness, contrast:
  4793. @example
  4794. mp=eq2=1.0:2:0.5
  4795. @end example
  4796. @end itemize
  4797. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  4798. @section mpdecimate
  4799. Drop frames that do not differ greatly from the previous frame in
  4800. order to reduce frame rate.
  4801. The main use of this filter is for very-low-bitrate encoding
  4802. (e.g. streaming over dialup modem), but it could in theory be used for
  4803. fixing movies that were inverse-telecined incorrectly.
  4804. A description of the accepted options follows.
  4805. @table @option
  4806. @item max
  4807. Set the maximum number of consecutive frames which can be dropped (if
  4808. positive), or the minimum interval between dropped frames (if
  4809. negative). If the value is 0, the frame is dropped unregarding the
  4810. number of previous sequentially dropped frames.
  4811. Default value is 0.
  4812. @item hi
  4813. @item lo
  4814. @item frac
  4815. Set the dropping threshold values.
  4816. Values for @option{hi} and @option{lo} are for 8x8 pixel blocks and
  4817. represent actual pixel value differences, so a threshold of 64
  4818. corresponds to 1 unit of difference for each pixel, or the same spread
  4819. out differently over the block.
  4820. A frame is a candidate for dropping if no 8x8 blocks differ by more
  4821. than a threshold of @option{hi}, and if no more than @option{frac} blocks (1
  4822. meaning the whole image) differ by more than a threshold of @option{lo}.
  4823. Default value for @option{hi} is 64*12, default value for @option{lo} is
  4824. 64*5, and default value for @option{frac} is 0.33.
  4825. @end table
  4826. @section negate
  4827. Negate input video.
  4828. It accepts an integer in input; if non-zero it negates the
  4829. alpha component (if available). The default value in input is 0.
  4830. @section noformat
  4831. Force libavfilter not to use any of the specified pixel formats for the
  4832. input to the next filter.
  4833. It accepts the following parameters:
  4834. @table @option
  4835. @item pix_fmts
  4836. A '|'-separated list of pixel format names, such as
  4837. apix_fmts=yuv420p|monow|rgb24".
  4838. @end table
  4839. @subsection Examples
  4840. @itemize
  4841. @item
  4842. Force libavfilter to use a format different from @var{yuv420p} for the
  4843. input to the vflip filter:
  4844. @example
  4845. noformat=pix_fmts=yuv420p,vflip
  4846. @end example
  4847. @item
  4848. Convert the input video to any of the formats not contained in the list:
  4849. @example
  4850. noformat=yuv420p|yuv444p|yuv410p
  4851. @end example
  4852. @end itemize
  4853. @section noise
  4854. Add noise on video input frame.
  4855. The filter accepts the following options:
  4856. @table @option
  4857. @item all_seed
  4858. @item c0_seed
  4859. @item c1_seed
  4860. @item c2_seed
  4861. @item c3_seed
  4862. Set noise seed for specific pixel component or all pixel components in case
  4863. of @var{all_seed}. Default value is @code{123457}.
  4864. @item all_strength, alls
  4865. @item c0_strength, c0s
  4866. @item c1_strength, c1s
  4867. @item c2_strength, c2s
  4868. @item c3_strength, c3s
  4869. Set noise strength for specific pixel component or all pixel components in case
  4870. @var{all_strength}. Default value is @code{0}. Allowed range is [0, 100].
  4871. @item all_flags, allf
  4872. @item c0_flags, c0f
  4873. @item c1_flags, c1f
  4874. @item c2_flags, c2f
  4875. @item c3_flags, c3f
  4876. Set pixel component flags or set flags for all components if @var{all_flags}.
  4877. Available values for component flags are:
  4878. @table @samp
  4879. @item a
  4880. averaged temporal noise (smoother)
  4881. @item p
  4882. mix random noise with a (semi)regular pattern
  4883. @item t
  4884. temporal noise (noise pattern changes between frames)
  4885. @item u
  4886. uniform noise (gaussian otherwise)
  4887. @end table
  4888. @end table
  4889. @subsection Examples
  4890. Add temporal and uniform noise to input video:
  4891. @example
  4892. noise=alls=20:allf=t+u
  4893. @end example
  4894. @section null
  4895. Pass the video source unchanged to the output.
  4896. @section ocv
  4897. Apply a video transform using libopencv.
  4898. To enable this filter, install the libopencv library and headers and
  4899. configure FFmpeg with @code{--enable-libopencv}.
  4900. It accepts the following parameters:
  4901. @table @option
  4902. @item filter_name
  4903. The name of the libopencv filter to apply.
  4904. @item filter_params
  4905. The parameters to pass to the libopencv filter. If not specified, the default
  4906. values are assumed.
  4907. @end table
  4908. Refer to the official libopencv documentation for more precise
  4909. information:
  4910. @url{http://docs.opencv.org/master/modules/imgproc/doc/filtering.html}
  4911. Several libopencv filters are supported; see the following subsections.
  4912. @anchor{dilate}
  4913. @subsection dilate
  4914. Dilate an image by using a specific structuring element.
  4915. It corresponds to the libopencv function @code{cvDilate}.
  4916. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  4917. @var{struct_el} represents a structuring element, and has the syntax:
  4918. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  4919. @var{cols} and @var{rows} represent the number of columns and rows of
  4920. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  4921. point, and @var{shape} the shape for the structuring element. @var{shape}
  4922. must be "rect", "cross", "ellipse", or "custom".
  4923. If the value for @var{shape} is "custom", it must be followed by a
  4924. string of the form "=@var{filename}". The file with name
  4925. @var{filename} is assumed to represent a binary image, with each
  4926. printable character corresponding to a bright pixel. When a custom
  4927. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  4928. or columns and rows of the read file are assumed instead.
  4929. The default value for @var{struct_el} is "3x3+0x0/rect".
  4930. @var{nb_iterations} specifies the number of times the transform is
  4931. applied to the image, and defaults to 1.
  4932. Some examples:
  4933. @example
  4934. # Use the default values
  4935. ocv=dilate
  4936. # Dilate using a structuring element with a 5x5 cross, iterating two times
  4937. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  4938. # Read the shape from the file diamond.shape, iterating two times.
  4939. # The file diamond.shape may contain a pattern of characters like this
  4940. # *
  4941. # ***
  4942. # *****
  4943. # ***
  4944. # *
  4945. # The specified columns and rows are ignored
  4946. # but the anchor point coordinates are not
  4947. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  4948. @end example
  4949. @subsection erode
  4950. Erode an image by using a specific structuring element.
  4951. It corresponds to the libopencv function @code{cvErode}.
  4952. It accepts the parameters: @var{struct_el}:@var{nb_iterations},
  4953. with the same syntax and semantics as the @ref{dilate} filter.
  4954. @subsection smooth
  4955. Smooth the input video.
  4956. The filter takes the following parameters:
  4957. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  4958. @var{type} is the type of smooth filter to apply, and must be one of
  4959. the following values: "blur", "blur_no_scale", "median", "gaussian",
  4960. or "bilateral". The default value is "gaussian".
  4961. The meaning of @var{param1}, @var{param2}, @var{param3}, and @var{param4}
  4962. depend on the smooth type. @var{param1} and
  4963. @var{param2} accept integer positive values or 0. @var{param3} and
  4964. @var{param4} accept floating point values.
  4965. The default value for @var{param1} is 3. The default value for the
  4966. other parameters is 0.
  4967. These parameters correspond to the parameters assigned to the
  4968. libopencv function @code{cvSmooth}.
  4969. @anchor{overlay}
  4970. @section overlay
  4971. Overlay one video on top of another.
  4972. It takes two inputs and has one output. The first input is the "main"
  4973. video on which the second input is overlaid.
  4974. It accepts the following parameters:
  4975. A description of the accepted options follows.
  4976. @table @option
  4977. @item x
  4978. @item y
  4979. Set the expression for the x and y coordinates of the overlaid video
  4980. on the main video. Default value is "0" for both expressions. In case
  4981. the expression is invalid, it is set to a huge value (meaning that the
  4982. overlay will not be displayed within the output visible area).
  4983. @item eof_action
  4984. The action to take when EOF is encountered on the secondary input; it accepts
  4985. one of the following values:
  4986. @table @option
  4987. @item repeat
  4988. Repeat the last frame (the default).
  4989. @item endall
  4990. End both streams.
  4991. @item pass
  4992. Pass the main input through.
  4993. @end table
  4994. @item eval
  4995. Set when the expressions for @option{x}, and @option{y} are evaluated.
  4996. It accepts the following values:
  4997. @table @samp
  4998. @item init
  4999. only evaluate expressions once during the filter initialization or
  5000. when a command is processed
  5001. @item frame
  5002. evaluate expressions for each incoming frame
  5003. @end table
  5004. Default value is @samp{frame}.
  5005. @item shortest
  5006. If set to 1, force the output to terminate when the shortest input
  5007. terminates. Default value is 0.
  5008. @item format
  5009. Set the format for the output video.
  5010. It accepts the following values:
  5011. @table @samp
  5012. @item yuv420
  5013. force YUV420 output
  5014. @item yuv422
  5015. force YUV422 output
  5016. @item yuv444
  5017. force YUV444 output
  5018. @item rgb
  5019. force RGB output
  5020. @end table
  5021. Default value is @samp{yuv420}.
  5022. @item rgb @emph{(deprecated)}
  5023. If set to 1, force the filter to accept inputs in the RGB
  5024. color space. Default value is 0. This option is deprecated, use
  5025. @option{format} instead.
  5026. @item repeatlast
  5027. If set to 1, force the filter to draw the last overlay frame over the
  5028. main input until the end of the stream. A value of 0 disables this
  5029. behavior. Default value is 1.
  5030. @end table
  5031. The @option{x}, and @option{y} expressions can contain the following
  5032. parameters.
  5033. @table @option
  5034. @item main_w, W
  5035. @item main_h, H
  5036. The main input width and height.
  5037. @item overlay_w, w
  5038. @item overlay_h, h
  5039. The overlay input width and height.
  5040. @item x
  5041. @item y
  5042. The computed values for @var{x} and @var{y}. They are evaluated for
  5043. each new frame.
  5044. @item hsub
  5045. @item vsub
  5046. horizontal and vertical chroma subsample values of the output
  5047. format. For example for the pixel format "yuv422p" @var{hsub} is 2 and
  5048. @var{vsub} is 1.
  5049. @item n
  5050. the number of input frame, starting from 0
  5051. @item pos
  5052. the position in the file of the input frame, NAN if unknown
  5053. @item t
  5054. The timestamp, expressed in seconds. It's NAN if the input timestamp is unknown.
  5055. @end table
  5056. Note that the @var{n}, @var{pos}, @var{t} variables are available only
  5057. when evaluation is done @emph{per frame}, and will evaluate to NAN
  5058. when @option{eval} is set to @samp{init}.
  5059. Be aware that frames are taken from each input video in timestamp
  5060. order, hence, if their initial timestamps differ, it is a good idea
  5061. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  5062. have them begin in the same zero timestamp, as the example for
  5063. the @var{movie} filter does.
  5064. You can chain together more overlays but you should test the
  5065. efficiency of such approach.
  5066. @subsection Commands
  5067. This filter supports the following commands:
  5068. @table @option
  5069. @item x
  5070. @item y
  5071. Modify the x and y of the overlay input.
  5072. The command accepts the same syntax of the corresponding option.
  5073. If the specified expression is not valid, it is kept at its current
  5074. value.
  5075. @end table
  5076. @subsection Examples
  5077. @itemize
  5078. @item
  5079. Draw the overlay at 10 pixels from the bottom right corner of the main
  5080. video:
  5081. @example
  5082. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  5083. @end example
  5084. Using named options the example above becomes:
  5085. @example
  5086. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  5087. @end example
  5088. @item
  5089. Insert a transparent PNG logo in the bottom left corner of the input,
  5090. using the @command{ffmpeg} tool with the @code{-filter_complex} option:
  5091. @example
  5092. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  5093. @end example
  5094. @item
  5095. Insert 2 different transparent PNG logos (second logo on bottom
  5096. right corner) using the @command{ffmpeg} tool:
  5097. @example
  5098. ffmpeg -i input -i logo1 -i logo2 -filter_complex 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  5099. @end example
  5100. @item
  5101. Add a transparent color layer on top of the main video; @code{WxH}
  5102. must specify the size of the main input to the overlay filter:
  5103. @example
  5104. color=color=red@@.3:size=WxH [over]; [in][over] overlay [out]
  5105. @end example
  5106. @item
  5107. Play an original video and a filtered version (here with the deshake
  5108. filter) side by side using the @command{ffplay} tool:
  5109. @example
  5110. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  5111. @end example
  5112. The above command is the same as:
  5113. @example
  5114. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  5115. @end example
  5116. @item
  5117. Make a sliding overlay appearing from the left to the right top part of the
  5118. screen starting since time 2:
  5119. @example
  5120. overlay=x='if(gte(t,2), -w+(t-2)*20, NAN)':y=0
  5121. @end example
  5122. @item
  5123. Compose output by putting two input videos side to side:
  5124. @example
  5125. ffmpeg -i left.avi -i right.avi -filter_complex "
  5126. nullsrc=size=200x100 [background];
  5127. [0:v] setpts=PTS-STARTPTS, scale=100x100 [left];
  5128. [1:v] setpts=PTS-STARTPTS, scale=100x100 [right];
  5129. [background][left] overlay=shortest=1 [background+left];
  5130. [background+left][right] overlay=shortest=1:x=100 [left+right]
  5131. "
  5132. @end example
  5133. @item
  5134. Mask 10-20 seconds of a video by applying the delogo filter to a section
  5135. @example
  5136. ffmpeg -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
  5137. -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
  5138. masked.avi
  5139. @end example
  5140. @item
  5141. Chain several overlays in cascade:
  5142. @example
  5143. nullsrc=s=200x200 [bg];
  5144. testsrc=s=100x100, split=4 [in0][in1][in2][in3];
  5145. [in0] lutrgb=r=0, [bg] overlay=0:0 [mid0];
  5146. [in1] lutrgb=g=0, [mid0] overlay=100:0 [mid1];
  5147. [in2] lutrgb=b=0, [mid1] overlay=0:100 [mid2];
  5148. [in3] null, [mid2] overlay=100:100 [out0]
  5149. @end example
  5150. @end itemize
  5151. @section owdenoise
  5152. Apply Overcomplete Wavelet denoiser.
  5153. The filter accepts the following options:
  5154. @table @option
  5155. @item depth
  5156. Set depth.
  5157. Larger depth values will denoise lower frequency components more, but
  5158. slow down filtering.
  5159. Must be an int in the range 8-16, default is @code{8}.
  5160. @item luma_strength, ls
  5161. Set luma strength.
  5162. Must be a double value in the range 0-1000, default is @code{1.0}.
  5163. @item chroma_strength, cs
  5164. Set chroma strength.
  5165. Must be a double value in the range 0-1000, default is @code{1.0}.
  5166. @end table
  5167. @section pad
  5168. Add paddings to the input image, and place the original input at the
  5169. provided @var{x}, @var{y} coordinates.
  5170. It accepts the following parameters:
  5171. @table @option
  5172. @item width, w
  5173. @item height, h
  5174. Specify an expression for the size of the output image with the
  5175. paddings added. If the value for @var{width} or @var{height} is 0, the
  5176. corresponding input size is used for the output.
  5177. The @var{width} expression can reference the value set by the
  5178. @var{height} expression, and vice versa.
  5179. The default value of @var{width} and @var{height} is 0.
  5180. @item x
  5181. @item y
  5182. Specify the offsets to place the input image at within the padded area,
  5183. with respect to the top/left border of the output image.
  5184. The @var{x} expression can reference the value set by the @var{y}
  5185. expression, and vice versa.
  5186. The default value of @var{x} and @var{y} is 0.
  5187. @item color
  5188. Specify the color of the padded area. For the syntax of this option,
  5189. check the "Color" section in the ffmpeg-utils manual.
  5190. The default value of @var{color} is "black".
  5191. @end table
  5192. The value for the @var{width}, @var{height}, @var{x}, and @var{y}
  5193. options are expressions containing the following constants:
  5194. @table @option
  5195. @item in_w
  5196. @item in_h
  5197. The input video width and height.
  5198. @item iw
  5199. @item ih
  5200. These are the same as @var{in_w} and @var{in_h}.
  5201. @item out_w
  5202. @item out_h
  5203. The output width and height (the size of the padded area), as
  5204. specified by the @var{width} and @var{height} expressions.
  5205. @item ow
  5206. @item oh
  5207. These are the same as @var{out_w} and @var{out_h}.
  5208. @item x
  5209. @item y
  5210. The x and y offsets as specified by the @var{x} and @var{y}
  5211. expressions, or NAN if not yet specified.
  5212. @item a
  5213. same as @var{iw} / @var{ih}
  5214. @item sar
  5215. input sample aspect ratio
  5216. @item dar
  5217. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  5218. @item hsub
  5219. @item vsub
  5220. The horizontal and vertical chroma subsample values. For example for the
  5221. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  5222. @end table
  5223. @subsection Examples
  5224. @itemize
  5225. @item
  5226. Add paddings with the color "violet" to the input video. The output video
  5227. size is 640x480, and the top-left corner of the input video is placed at
  5228. column 0, row 40
  5229. @example
  5230. pad=640:480:0:40:violet
  5231. @end example
  5232. The example above is equivalent to the following command:
  5233. @example
  5234. pad=width=640:height=480:x=0:y=40:color=violet
  5235. @end example
  5236. @item
  5237. Pad the input to get an output with dimensions increased by 3/2,
  5238. and put the input video at the center of the padded area:
  5239. @example
  5240. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  5241. @end example
  5242. @item
  5243. Pad the input to get a squared output with size equal to the maximum
  5244. value between the input width and height, and put the input video at
  5245. the center of the padded area:
  5246. @example
  5247. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  5248. @end example
  5249. @item
  5250. Pad the input to get a final w/h ratio of 16:9:
  5251. @example
  5252. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  5253. @end example
  5254. @item
  5255. In case of anamorphic video, in order to set the output display aspect
  5256. correctly, it is necessary to use @var{sar} in the expression,
  5257. according to the relation:
  5258. @example
  5259. (ih * X / ih) * sar = output_dar
  5260. X = output_dar / sar
  5261. @end example
  5262. Thus the previous example needs to be modified to:
  5263. @example
  5264. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  5265. @end example
  5266. @item
  5267. Double the output size and put the input video in the bottom-right
  5268. corner of the output padded area:
  5269. @example
  5270. pad="2*iw:2*ih:ow-iw:oh-ih"
  5271. @end example
  5272. @end itemize
  5273. @section perspective
  5274. Correct perspective of video not recorded perpendicular to the screen.
  5275. A description of the accepted parameters follows.
  5276. @table @option
  5277. @item x0
  5278. @item y0
  5279. @item x1
  5280. @item y1
  5281. @item x2
  5282. @item y2
  5283. @item x3
  5284. @item y3
  5285. Set coordinates expression for top left, top right, bottom left and bottom right corners.
  5286. Default values are @code{0:0:W:0:0:H:W:H} with which perspective will remain unchanged.
  5287. If the @code{sense} option is set to @code{source}, then the specified points will be sent
  5288. to the corners of the destination. If the @code{sense} option is set to @code{destination},
  5289. then the corners of the source will be sent to the specified coordinates.
  5290. The expressions can use the following variables:
  5291. @table @option
  5292. @item W
  5293. @item H
  5294. the width and height of video frame.
  5295. @end table
  5296. @item interpolation
  5297. Set interpolation for perspective correction.
  5298. It accepts the following values:
  5299. @table @samp
  5300. @item linear
  5301. @item cubic
  5302. @end table
  5303. Default value is @samp{linear}.
  5304. @item sense
  5305. Set interpretation of coordinate options.
  5306. It accepts the following values:
  5307. @table @samp
  5308. @item 0, source
  5309. Send point in the source specified by the given coordinates to
  5310. the corners of the destination.
  5311. @item 1, destination
  5312. Send the corners of the source to the point in the destination specified
  5313. by the given coordinates.
  5314. Default value is @samp{source}.
  5315. @end table
  5316. @end table
  5317. @section phase
  5318. Delay interlaced video by one field time so that the field order changes.
  5319. The intended use is to fix PAL movies that have been captured with the
  5320. opposite field order to the film-to-video transfer.
  5321. A description of the accepted parameters follows.
  5322. @table @option
  5323. @item mode
  5324. Set phase mode.
  5325. It accepts the following values:
  5326. @table @samp
  5327. @item t
  5328. Capture field order top-first, transfer bottom-first.
  5329. Filter will delay the bottom field.
  5330. @item b
  5331. Capture field order bottom-first, transfer top-first.
  5332. Filter will delay the top field.
  5333. @item p
  5334. Capture and transfer with the same field order. This mode only exists
  5335. for the documentation of the other options to refer to, but if you
  5336. actually select it, the filter will faithfully do nothing.
  5337. @item a
  5338. Capture field order determined automatically by field flags, transfer
  5339. opposite.
  5340. Filter selects among @samp{t} and @samp{b} modes on a frame by frame
  5341. basis using field flags. If no field information is available,
  5342. then this works just like @samp{u}.
  5343. @item u
  5344. Capture unknown or varying, transfer opposite.
  5345. Filter selects among @samp{t} and @samp{b} on a frame by frame basis by
  5346. analyzing the images and selecting the alternative that produces best
  5347. match between the fields.
  5348. @item T
  5349. Capture top-first, transfer unknown or varying.
  5350. Filter selects among @samp{t} and @samp{p} using image analysis.
  5351. @item B
  5352. Capture bottom-first, transfer unknown or varying.
  5353. Filter selects among @samp{b} and @samp{p} using image analysis.
  5354. @item A
  5355. Capture determined by field flags, transfer unknown or varying.
  5356. Filter selects among @samp{t}, @samp{b} and @samp{p} using field flags and
  5357. image analysis. If no field information is available, then this works just
  5358. like @samp{U}. This is the default mode.
  5359. @item U
  5360. Both capture and transfer unknown or varying.
  5361. Filter selects among @samp{t}, @samp{b} and @samp{p} using image analysis only.
  5362. @end table
  5363. @end table
  5364. @section pixdesctest
  5365. Pixel format descriptor test filter, mainly useful for internal
  5366. testing. The output video should be equal to the input video.
  5367. For example:
  5368. @example
  5369. format=monow, pixdesctest
  5370. @end example
  5371. can be used to test the monowhite pixel format descriptor definition.
  5372. @section pp
  5373. Enable the specified chain of postprocessing subfilters using libpostproc. This
  5374. library should be automatically selected with a GPL build (@code{--enable-gpl}).
  5375. Subfilters must be separated by '/' and can be disabled by prepending a '-'.
  5376. Each subfilter and some options have a short and a long name that can be used
  5377. interchangeably, i.e. dr/dering are the same.
  5378. The filters accept the following options:
  5379. @table @option
  5380. @item subfilters
  5381. Set postprocessing subfilters string.
  5382. @end table
  5383. All subfilters share common options to determine their scope:
  5384. @table @option
  5385. @item a/autoq
  5386. Honor the quality commands for this subfilter.
  5387. @item c/chrom
  5388. Do chrominance filtering, too (default).
  5389. @item y/nochrom
  5390. Do luminance filtering only (no chrominance).
  5391. @item n/noluma
  5392. Do chrominance filtering only (no luminance).
  5393. @end table
  5394. These options can be appended after the subfilter name, separated by a '|'.
  5395. Available subfilters are:
  5396. @table @option
  5397. @item hb/hdeblock[|difference[|flatness]]
  5398. Horizontal deblocking filter
  5399. @table @option
  5400. @item difference
  5401. Difference factor where higher values mean more deblocking (default: @code{32}).
  5402. @item flatness
  5403. Flatness threshold where lower values mean more deblocking (default: @code{39}).
  5404. @end table
  5405. @item vb/vdeblock[|difference[|flatness]]
  5406. Vertical deblocking filter
  5407. @table @option
  5408. @item difference
  5409. Difference factor where higher values mean more deblocking (default: @code{32}).
  5410. @item flatness
  5411. Flatness threshold where lower values mean more deblocking (default: @code{39}).
  5412. @end table
  5413. @item ha/hadeblock[|difference[|flatness]]
  5414. Accurate horizontal deblocking filter
  5415. @table @option
  5416. @item difference
  5417. Difference factor where higher values mean more deblocking (default: @code{32}).
  5418. @item flatness
  5419. Flatness threshold where lower values mean more deblocking (default: @code{39}).
  5420. @end table
  5421. @item va/vadeblock[|difference[|flatness]]
  5422. Accurate vertical deblocking filter
  5423. @table @option
  5424. @item difference
  5425. Difference factor where higher values mean more deblocking (default: @code{32}).
  5426. @item flatness
  5427. Flatness threshold where lower values mean more deblocking (default: @code{39}).
  5428. @end table
  5429. @end table
  5430. The horizontal and vertical deblocking filters share the difference and
  5431. flatness values so you cannot set different horizontal and vertical
  5432. thresholds.
  5433. @table @option
  5434. @item h1/x1hdeblock
  5435. Experimental horizontal deblocking filter
  5436. @item v1/x1vdeblock
  5437. Experimental vertical deblocking filter
  5438. @item dr/dering
  5439. Deringing filter
  5440. @item tn/tmpnoise[|threshold1[|threshold2[|threshold3]]], temporal noise reducer
  5441. @table @option
  5442. @item threshold1
  5443. larger -> stronger filtering
  5444. @item threshold2
  5445. larger -> stronger filtering
  5446. @item threshold3
  5447. larger -> stronger filtering
  5448. @end table
  5449. @item al/autolevels[:f/fullyrange], automatic brightness / contrast correction
  5450. @table @option
  5451. @item f/fullyrange
  5452. Stretch luminance to @code{0-255}.
  5453. @end table
  5454. @item lb/linblenddeint
  5455. Linear blend deinterlacing filter that deinterlaces the given block by
  5456. filtering all lines with a @code{(1 2 1)} filter.
  5457. @item li/linipoldeint
  5458. Linear interpolating deinterlacing filter that deinterlaces the given block by
  5459. linearly interpolating every second line.
  5460. @item ci/cubicipoldeint
  5461. Cubic interpolating deinterlacing filter deinterlaces the given block by
  5462. cubically interpolating every second line.
  5463. @item md/mediandeint
  5464. Median deinterlacing filter that deinterlaces the given block by applying a
  5465. median filter to every second line.
  5466. @item fd/ffmpegdeint
  5467. FFmpeg deinterlacing filter that deinterlaces the given block by filtering every
  5468. second line with a @code{(-1 4 2 4 -1)} filter.
  5469. @item l5/lowpass5
  5470. Vertically applied FIR lowpass deinterlacing filter that deinterlaces the given
  5471. block by filtering all lines with a @code{(-1 2 6 2 -1)} filter.
  5472. @item fq/forceQuant[|quantizer]
  5473. Overrides the quantizer table from the input with the constant quantizer you
  5474. specify.
  5475. @table @option
  5476. @item quantizer
  5477. Quantizer to use
  5478. @end table
  5479. @item de/default
  5480. Default pp filter combination (@code{hb|a,vb|a,dr|a})
  5481. @item fa/fast
  5482. Fast pp filter combination (@code{h1|a,v1|a,dr|a})
  5483. @item ac
  5484. High quality pp filter combination (@code{ha|a|128|7,va|a,dr|a})
  5485. @end table
  5486. @subsection Examples
  5487. @itemize
  5488. @item
  5489. Apply horizontal and vertical deblocking, deringing and automatic
  5490. brightness/contrast:
  5491. @example
  5492. pp=hb/vb/dr/al
  5493. @end example
  5494. @item
  5495. Apply default filters without brightness/contrast correction:
  5496. @example
  5497. pp=de/-al
  5498. @end example
  5499. @item
  5500. Apply default filters and temporal denoiser:
  5501. @example
  5502. pp=default/tmpnoise|1|2|3
  5503. @end example
  5504. @item
  5505. Apply deblocking on luminance only, and switch vertical deblocking on or off
  5506. automatically depending on available CPU time:
  5507. @example
  5508. pp=hb|y/vb|a
  5509. @end example
  5510. @end itemize
  5511. @section psnr
  5512. Obtain the average, maximum and minimum PSNR (Peak Signal to Noise
  5513. Ratio) between two input videos.
  5514. This filter takes in input two input videos, the first input is
  5515. considered the "main" source and is passed unchanged to the
  5516. output. The second input is used as a "reference" video for computing
  5517. the PSNR.
  5518. Both video inputs must have the same resolution and pixel format for
  5519. this filter to work correctly. Also it assumes that both inputs
  5520. have the same number of frames, which are compared one by one.
  5521. The obtained average PSNR is printed through the logging system.
  5522. The filter stores the accumulated MSE (mean squared error) of each
  5523. frame, and at the end of the processing it is averaged across all frames
  5524. equally, and the following formula is applied to obtain the PSNR:
  5525. @example
  5526. PSNR = 10*log10(MAX^2/MSE)
  5527. @end example
  5528. Where MAX is the average of the maximum values of each component of the
  5529. image.
  5530. The description of the accepted parameters follows.
  5531. @table @option
  5532. @item stats_file, f
  5533. If specified the filter will use the named file to save the PSNR of
  5534. each individual frame.
  5535. @end table
  5536. The file printed if @var{stats_file} is selected, contains a sequence of
  5537. key/value pairs of the form @var{key}:@var{value} for each compared
  5538. couple of frames.
  5539. A description of each shown parameter follows:
  5540. @table @option
  5541. @item n
  5542. sequential number of the input frame, starting from 1
  5543. @item mse_avg
  5544. Mean Square Error pixel-by-pixel average difference of the compared
  5545. frames, averaged over all the image components.
  5546. @item mse_y, mse_u, mse_v, mse_r, mse_g, mse_g, mse_a
  5547. Mean Square Error pixel-by-pixel average difference of the compared
  5548. frames for the component specified by the suffix.
  5549. @item psnr_y, psnr_u, psnr_v, psnr_r, psnr_g, psnr_b, psnr_a
  5550. Peak Signal to Noise ratio of the compared frames for the component
  5551. specified by the suffix.
  5552. @end table
  5553. For example:
  5554. @example
  5555. movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
  5556. [main][ref] psnr="stats_file=stats.log" [out]
  5557. @end example
  5558. On this example the input file being processed is compared with the
  5559. reference file @file{ref_movie.mpg}. The PSNR of each individual frame
  5560. is stored in @file{stats.log}.
  5561. @anchor{pullup}
  5562. @section pullup
  5563. Pulldown reversal (inverse telecine) filter, capable of handling mixed
  5564. hard-telecine, 24000/1001 fps progressive, and 30000/1001 fps progressive
  5565. content.
  5566. The pullup filter is designed to take advantage of future context in making
  5567. its decisions. This filter is stateless in the sense that it does not lock
  5568. onto a pattern to follow, but it instead looks forward to the following
  5569. fields in order to identify matches and rebuild progressive frames.
  5570. To produce content with an even framerate, insert the fps filter after
  5571. pullup, use @code{fps=24000/1001} if the input frame rate is 29.97fps,
  5572. @code{fps=24} for 30fps and the (rare) telecined 25fps input.
  5573. The filter accepts the following options:
  5574. @table @option
  5575. @item jl
  5576. @item jr
  5577. @item jt
  5578. @item jb
  5579. These options set the amount of "junk" to ignore at the left, right, top, and
  5580. bottom of the image, respectively. Left and right are in units of 8 pixels,
  5581. while top and bottom are in units of 2 lines.
  5582. The default is 8 pixels on each side.
  5583. @item sb
  5584. Set the strict breaks. Setting this option to 1 will reduce the chances of
  5585. filter generating an occasional mismatched frame, but it may also cause an
  5586. excessive number of frames to be dropped during high motion sequences.
  5587. Conversely, setting it to -1 will make filter match fields more easily.
  5588. This may help processing of video where there is slight blurring between
  5589. the fields, but may also cause there to be interlaced frames in the output.
  5590. Default value is @code{0}.
  5591. @item mp
  5592. Set the metric plane to use. It accepts the following values:
  5593. @table @samp
  5594. @item l
  5595. Use luma plane.
  5596. @item u
  5597. Use chroma blue plane.
  5598. @item v
  5599. Use chroma red plane.
  5600. @end table
  5601. This option may be set to use chroma plane instead of the default luma plane
  5602. for doing filter's computations. This may improve accuracy on very clean
  5603. source material, but more likely will decrease accuracy, especially if there
  5604. is chroma noise (rainbow effect) or any grayscale video.
  5605. The main purpose of setting @option{mp} to a chroma plane is to reduce CPU
  5606. load and make pullup usable in realtime on slow machines.
  5607. @end table
  5608. For best results (without duplicated frames in the output file) it is
  5609. necessary to change the output frame rate. For example, to inverse
  5610. telecine NTSC input:
  5611. @example
  5612. ffmpeg -i input -vf pullup -r 24000/1001 ...
  5613. @end example
  5614. @section removelogo
  5615. Suppress a TV station logo, using an image file to determine which
  5616. pixels comprise the logo. It works by filling in the pixels that
  5617. comprise the logo with neighboring pixels.
  5618. The filter accepts the following options:
  5619. @table @option
  5620. @item filename, f
  5621. Set the filter bitmap file, which can be any image format supported by
  5622. libavformat. The width and height of the image file must match those of the
  5623. video stream being processed.
  5624. @end table
  5625. Pixels in the provided bitmap image with a value of zero are not
  5626. considered part of the logo, non-zero pixels are considered part of
  5627. the logo. If you use white (255) for the logo and black (0) for the
  5628. rest, you will be safe. For making the filter bitmap, it is
  5629. recommended to take a screen capture of a black frame with the logo
  5630. visible, and then using a threshold filter followed by the erode
  5631. filter once or twice.
  5632. If needed, little splotches can be fixed manually. Remember that if
  5633. logo pixels are not covered, the filter quality will be much
  5634. reduced. Marking too many pixels as part of the logo does not hurt as
  5635. much, but it will increase the amount of blurring needed to cover over
  5636. the image and will destroy more information than necessary, and extra
  5637. pixels will slow things down on a large logo.
  5638. @section rotate
  5639. Rotate video by an arbitrary angle expressed in radians.
  5640. The filter accepts the following options:
  5641. A description of the optional parameters follows.
  5642. @table @option
  5643. @item angle, a
  5644. Set an expression for the angle by which to rotate the input video
  5645. clockwise, expressed as a number of radians. A negative value will
  5646. result in a counter-clockwise rotation. By default it is set to "0".
  5647. This expression is evaluated for each frame.
  5648. @item out_w, ow
  5649. Set the output width expression, default value is "iw".
  5650. This expression is evaluated just once during configuration.
  5651. @item out_h, oh
  5652. Set the output height expression, default value is "ih".
  5653. This expression is evaluated just once during configuration.
  5654. @item bilinear
  5655. Enable bilinear interpolation if set to 1, a value of 0 disables
  5656. it. Default value is 1.
  5657. @item fillcolor, c
  5658. Set the color used to fill the output area not covered by the rotated
  5659. image. For the general syntax of this option, check the "Color" section in the
  5660. ffmpeg-utils manual. If the special value "none" is selected then no
  5661. background is printed (useful for example if the background is never shown).
  5662. Default value is "black".
  5663. @end table
  5664. The expressions for the angle and the output size can contain the
  5665. following constants and functions:
  5666. @table @option
  5667. @item n
  5668. sequential number of the input frame, starting from 0. It is always NAN
  5669. before the first frame is filtered.
  5670. @item t
  5671. time in seconds of the input frame, it is set to 0 when the filter is
  5672. configured. It is always NAN before the first frame is filtered.
  5673. @item hsub
  5674. @item vsub
  5675. horizontal and vertical chroma subsample values. For example for the
  5676. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  5677. @item in_w, iw
  5678. @item in_h, ih
  5679. the input video width and height
  5680. @item out_w, ow
  5681. @item out_h, oh
  5682. the output width and height, that is the size of the padded area as
  5683. specified by the @var{width} and @var{height} expressions
  5684. @item rotw(a)
  5685. @item roth(a)
  5686. the minimal width/height required for completely containing the input
  5687. video rotated by @var{a} radians.
  5688. These are only available when computing the @option{out_w} and
  5689. @option{out_h} expressions.
  5690. @end table
  5691. @subsection Examples
  5692. @itemize
  5693. @item
  5694. Rotate the input by PI/6 radians clockwise:
  5695. @example
  5696. rotate=PI/6
  5697. @end example
  5698. @item
  5699. Rotate the input by PI/6 radians counter-clockwise:
  5700. @example
  5701. rotate=-PI/6
  5702. @end example
  5703. @item
  5704. Rotate the input by 45 degrees clockwise:
  5705. @example
  5706. rotate=45*PI/180
  5707. @end example
  5708. @item
  5709. Apply a constant rotation with period T, starting from an angle of PI/3:
  5710. @example
  5711. rotate=PI/3+2*PI*t/T
  5712. @end example
  5713. @item
  5714. Make the input video rotation oscillating with a period of T
  5715. seconds and an amplitude of A radians:
  5716. @example
  5717. rotate=A*sin(2*PI/T*t)
  5718. @end example
  5719. @item
  5720. Rotate the video, output size is chosen so that the whole rotating
  5721. input video is always completely contained in the output:
  5722. @example
  5723. rotate='2*PI*t:ow=hypot(iw,ih):oh=ow'
  5724. @end example
  5725. @item
  5726. Rotate the video, reduce the output size so that no background is ever
  5727. shown:
  5728. @example
  5729. rotate=2*PI*t:ow='min(iw,ih)/sqrt(2)':oh=ow:c=none
  5730. @end example
  5731. @end itemize
  5732. @subsection Commands
  5733. The filter supports the following commands:
  5734. @table @option
  5735. @item a, angle
  5736. Set the angle expression.
  5737. The command accepts the same syntax of the corresponding option.
  5738. If the specified expression is not valid, it is kept at its current
  5739. value.
  5740. @end table
  5741. @section sab
  5742. Apply Shape Adaptive Blur.
  5743. The filter accepts the following options:
  5744. @table @option
  5745. @item luma_radius, lr
  5746. Set luma blur filter strength, must be a value in range 0.1-4.0, default
  5747. value is 1.0. A greater value will result in a more blurred image, and
  5748. in slower processing.
  5749. @item luma_pre_filter_radius, lpfr
  5750. Set luma pre-filter radius, must be a value in the 0.1-2.0 range, default
  5751. value is 1.0.
  5752. @item luma_strength, ls
  5753. Set luma maximum difference between pixels to still be considered, must
  5754. be a value in the 0.1-100.0 range, default value is 1.0.
  5755. @item chroma_radius, cr
  5756. Set chroma blur filter strength, must be a value in range 0.1-4.0. A
  5757. greater value will result in a more blurred image, and in slower
  5758. processing.
  5759. @item chroma_pre_filter_radius, cpfr
  5760. Set chroma pre-filter radius, must be a value in the 0.1-2.0 range.
  5761. @item chroma_strength, cs
  5762. Set chroma maximum difference between pixels to still be considered,
  5763. must be a value in the 0.1-100.0 range.
  5764. @end table
  5765. Each chroma option value, if not explicitly specified, is set to the
  5766. corresponding luma option value.
  5767. @anchor{scale}
  5768. @section scale
  5769. Scale (resize) the input video, using the libswscale library.
  5770. The scale filter forces the output display aspect ratio to be the same
  5771. of the input, by changing the output sample aspect ratio.
  5772. If the input image format is different from the format requested by
  5773. the next filter, the scale filter will convert the input to the
  5774. requested format.
  5775. @subsection Options
  5776. The filter accepts the following options, or any of the options
  5777. supported by the libswscale scaler.
  5778. See @ref{scaler_options,,the ffmpeg-scaler manual,ffmpeg-scaler} for
  5779. the complete list of scaler options.
  5780. @table @option
  5781. @item width, w
  5782. @item height, h
  5783. Set the output video dimension expression. Default value is the input
  5784. dimension.
  5785. If the value is 0, the input width is used for the output.
  5786. If one of the values is -1, the scale filter will use a value that
  5787. maintains the aspect ratio of the input image, calculated from the
  5788. other specified dimension. If both of them are -1, the input size is
  5789. used
  5790. If one of the values is -n with n > 1, the scale filter will also use a value
  5791. that maintains the aspect ratio of the input image, calculated from the other
  5792. specified dimension. After that it will, however, make sure that the calculated
  5793. dimension is divisible by n and adjust the value if necessary.
  5794. See below for the list of accepted constants for use in the dimension
  5795. expression.
  5796. @item interl
  5797. Set the interlacing mode. It accepts the following values:
  5798. @table @samp
  5799. @item 1
  5800. Force interlaced aware scaling.
  5801. @item 0
  5802. Do not apply interlaced scaling.
  5803. @item -1
  5804. Select interlaced aware scaling depending on whether the source frames
  5805. are flagged as interlaced or not.
  5806. @end table
  5807. Default value is @samp{0}.
  5808. @item flags
  5809. Set libswscale scaling flags. See
  5810. @ref{sws_flags,,the ffmpeg-scaler manual,ffmpeg-scaler} for the
  5811. complete list of values. If not explicitly specified the filter applies
  5812. the default flags.
  5813. @item size, s
  5814. Set the video size. For the syntax of this option, check the "Video size"
  5815. section in the ffmpeg-utils manual.
  5816. @item in_color_matrix
  5817. @item out_color_matrix
  5818. Set in/output YCbCr color space type.
  5819. This allows the autodetected value to be overridden as well as allows forcing
  5820. a specific value used for the output and encoder.
  5821. If not specified, the color space type depends on the pixel format.
  5822. Possible values:
  5823. @table @samp
  5824. @item auto
  5825. Choose automatically.
  5826. @item bt709
  5827. Format conforming to International Telecommunication Union (ITU)
  5828. Recommendation BT.709.
  5829. @item fcc
  5830. Set color space conforming to the United States Federal Communications
  5831. Commission (FCC) Code of Federal Regulations (CFR) Title 47 (2003) 73.682 (a).
  5832. @item bt601
  5833. Set color space conforming to:
  5834. @itemize
  5835. @item
  5836. ITU Radiocommunication Sector (ITU-R) Recommendation BT.601
  5837. @item
  5838. ITU-R Rec. BT.470-6 (1998) Systems B, B1, and G
  5839. @item
  5840. Society of Motion Picture and Television Engineers (SMPTE) ST 170:2004
  5841. @end itemize
  5842. @item smpte240m
  5843. Set color space conforming to SMPTE ST 240:1999.
  5844. @end table
  5845. @item in_range
  5846. @item out_range
  5847. Set in/output YCbCr sample range.
  5848. This allows the autodetected value to be overridden as well as allows forcing
  5849. a specific value used for the output and encoder. If not specified, the
  5850. range depends on the pixel format. Possible values:
  5851. @table @samp
  5852. @item auto
  5853. Choose automatically.
  5854. @item jpeg/full/pc
  5855. Set full range (0-255 in case of 8-bit luma).
  5856. @item mpeg/tv
  5857. Set "MPEG" range (16-235 in case of 8-bit luma).
  5858. @end table
  5859. @item force_original_aspect_ratio
  5860. Enable decreasing or increasing output video width or height if necessary to
  5861. keep the original aspect ratio. Possible values:
  5862. @table @samp
  5863. @item disable
  5864. Scale the video as specified and disable this feature.
  5865. @item decrease
  5866. The output video dimensions will automatically be decreased if needed.
  5867. @item increase
  5868. The output video dimensions will automatically be increased if needed.
  5869. @end table
  5870. One useful instance of this option is that when you know a specific device's
  5871. maximum allowed resolution, you can use this to limit the output video to
  5872. that, while retaining the aspect ratio. For example, device A allows
  5873. 1280x720 playback, and your video is 1920x800. Using this option (set it to
  5874. decrease) and specifying 1280x720 to the command line makes the output
  5875. 1280x533.
  5876. Please note that this is a different thing than specifying -1 for @option{w}
  5877. or @option{h}, you still need to specify the output resolution for this option
  5878. to work.
  5879. @end table
  5880. The values of the @option{w} and @option{h} options are expressions
  5881. containing the following constants:
  5882. @table @var
  5883. @item in_w
  5884. @item in_h
  5885. The input width and height
  5886. @item iw
  5887. @item ih
  5888. These are the same as @var{in_w} and @var{in_h}.
  5889. @item out_w
  5890. @item out_h
  5891. The output (scaled) width and height
  5892. @item ow
  5893. @item oh
  5894. These are the same as @var{out_w} and @var{out_h}
  5895. @item a
  5896. The same as @var{iw} / @var{ih}
  5897. @item sar
  5898. input sample aspect ratio
  5899. @item dar
  5900. The input display aspect ratio. Calculated from @code{(iw / ih) * sar}.
  5901. @item hsub
  5902. @item vsub
  5903. horizontal and vertical input chroma subsample values. For example for the
  5904. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  5905. @item ohsub
  5906. @item ovsub
  5907. horizontal and vertical output chroma subsample values. For example for the
  5908. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  5909. @end table
  5910. @subsection Examples
  5911. @itemize
  5912. @item
  5913. Scale the input video to a size of 200x100
  5914. @example
  5915. scale=w=200:h=100
  5916. @end example
  5917. This is equivalent to:
  5918. @example
  5919. scale=200:100
  5920. @end example
  5921. or:
  5922. @example
  5923. scale=200x100
  5924. @end example
  5925. @item
  5926. Specify a size abbreviation for the output size:
  5927. @example
  5928. scale=qcif
  5929. @end example
  5930. which can also be written as:
  5931. @example
  5932. scale=size=qcif
  5933. @end example
  5934. @item
  5935. Scale the input to 2x:
  5936. @example
  5937. scale=w=2*iw:h=2*ih
  5938. @end example
  5939. @item
  5940. The above is the same as:
  5941. @example
  5942. scale=2*in_w:2*in_h
  5943. @end example
  5944. @item
  5945. Scale the input to 2x with forced interlaced scaling:
  5946. @example
  5947. scale=2*iw:2*ih:interl=1
  5948. @end example
  5949. @item
  5950. Scale the input to half size:
  5951. @example
  5952. scale=w=iw/2:h=ih/2
  5953. @end example
  5954. @item
  5955. Increase the width, and set the height to the same size:
  5956. @example
  5957. scale=3/2*iw:ow
  5958. @end example
  5959. @item
  5960. Seek Greek harmony:
  5961. @example
  5962. scale=iw:1/PHI*iw
  5963. scale=ih*PHI:ih
  5964. @end example
  5965. @item
  5966. Increase the height, and set the width to 3/2 of the height:
  5967. @example
  5968. scale=w=3/2*oh:h=3/5*ih
  5969. @end example
  5970. @item
  5971. Increase the size, making the size a multiple of the chroma
  5972. subsample values:
  5973. @example
  5974. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  5975. @end example
  5976. @item
  5977. Increase the width to a maximum of 500 pixels,
  5978. keeping the same aspect ratio as the input:
  5979. @example
  5980. scale=w='min(500\, iw*3/2):h=-1'
  5981. @end example
  5982. @end itemize
  5983. @section separatefields
  5984. The @code{separatefields} takes a frame-based video input and splits
  5985. each frame into its components fields, producing a new half height clip
  5986. with twice the frame rate and twice the frame count.
  5987. This filter use field-dominance information in frame to decide which
  5988. of each pair of fields to place first in the output.
  5989. If it gets it wrong use @ref{setfield} filter before @code{separatefields} filter.
  5990. @section setdar, setsar
  5991. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  5992. output video.
  5993. This is done by changing the specified Sample (aka Pixel) Aspect
  5994. Ratio, according to the following equation:
  5995. @example
  5996. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  5997. @end example
  5998. Keep in mind that the @code{setdar} filter does not modify the pixel
  5999. dimensions of the video frame. Also, the display aspect ratio set by
  6000. this filter may be changed by later filters in the filterchain,
  6001. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  6002. applied.
  6003. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  6004. the filter output video.
  6005. Note that as a consequence of the application of this filter, the
  6006. output display aspect ratio will change according to the equation
  6007. above.
  6008. Keep in mind that the sample aspect ratio set by the @code{setsar}
  6009. filter may be changed by later filters in the filterchain, e.g. if
  6010. another "setsar" or a "setdar" filter is applied.
  6011. It accepts the following parameters:
  6012. @table @option
  6013. @item r, ratio, dar (@code{setdar} only), sar (@code{setsar} only)
  6014. Set the aspect ratio used by the filter.
  6015. The parameter can be a floating point number string, an expression, or
  6016. a string of the form @var{num}:@var{den}, where @var{num} and
  6017. @var{den} are the numerator and denominator of the aspect ratio. If
  6018. the parameter is not specified, it is assumed the value "0".
  6019. In case the form "@var{num}:@var{den}" is used, the @code{:} character
  6020. should be escaped.
  6021. @item max
  6022. Set the maximum integer value to use for expressing numerator and
  6023. denominator when reducing the expressed aspect ratio to a rational.
  6024. Default value is @code{100}.
  6025. @end table
  6026. The parameter @var{sar} is an expression containing
  6027. the following constants:
  6028. @table @option
  6029. @item E, PI, PHI
  6030. These are approximated values for the mathematical constants e
  6031. (Euler's number), pi (Greek pi), and phi (the golden ratio).
  6032. @item w, h
  6033. The input width and height.
  6034. @item a
  6035. These are the same as @var{w} / @var{h}.
  6036. @item sar
  6037. The input sample aspect ratio.
  6038. @item dar
  6039. The input display aspect ratio. It is the same as
  6040. (@var{w} / @var{h}) * @var{sar}.
  6041. @item hsub, vsub
  6042. Horizontal and vertical chroma subsample values. For example, for the
  6043. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  6044. @end table
  6045. @subsection Examples
  6046. @itemize
  6047. @item
  6048. To change the display aspect ratio to 16:9, specify one of the following:
  6049. @example
  6050. setdar=dar=1.77777
  6051. setdar=dar=16/9
  6052. setdar=dar=1.77777
  6053. @end example
  6054. @item
  6055. To change the sample aspect ratio to 10:11, specify:
  6056. @example
  6057. setsar=sar=10/11
  6058. @end example
  6059. @item
  6060. To set a display aspect ratio of 16:9, and specify a maximum integer value of
  6061. 1000 in the aspect ratio reduction, use the command:
  6062. @example
  6063. setdar=ratio=16/9:max=1000
  6064. @end example
  6065. @end itemize
  6066. @anchor{setfield}
  6067. @section setfield
  6068. Force field for the output video frame.
  6069. The @code{setfield} filter marks the interlace type field for the
  6070. output frames. It does not change the input frame, but only sets the
  6071. corresponding property, which affects how the frame is treated by
  6072. following filters (e.g. @code{fieldorder} or @code{yadif}).
  6073. The filter accepts the following options:
  6074. @table @option
  6075. @item mode
  6076. Available values are:
  6077. @table @samp
  6078. @item auto
  6079. Keep the same field property.
  6080. @item bff
  6081. Mark the frame as bottom-field-first.
  6082. @item tff
  6083. Mark the frame as top-field-first.
  6084. @item prog
  6085. Mark the frame as progressive.
  6086. @end table
  6087. @end table
  6088. @section showinfo
  6089. Show a line containing various information for each input video frame.
  6090. The input video is not modified.
  6091. The shown line contains a sequence of key/value pairs of the form
  6092. @var{key}:@var{value}.
  6093. The following values are shown in the output:
  6094. @table @option
  6095. @item n
  6096. The (sequential) number of the input frame, starting from 0.
  6097. @item pts
  6098. The Presentation TimeStamp of the input frame, expressed as a number of
  6099. time base units. The time base unit depends on the filter input pad.
  6100. @item pts_time
  6101. The Presentation TimeStamp of the input frame, expressed as a number of
  6102. seconds.
  6103. @item pos
  6104. The position of the frame in the input stream, or -1 if this information is
  6105. unavailable and/or meaningless (for example in case of synthetic video).
  6106. @item fmt
  6107. The pixel format name.
  6108. @item sar
  6109. The sample aspect ratio of the input frame, expressed in the form
  6110. @var{num}/@var{den}.
  6111. @item s
  6112. The size of the input frame. For the syntax of this option, check the "Video size"
  6113. section in the ffmpeg-utils manual.
  6114. @item i
  6115. The type of interlaced mode ("P" for "progressive", "T" for top field first, "B"
  6116. for bottom field first).
  6117. @item iskey
  6118. This is 1 if the frame is a key frame, 0 otherwise.
  6119. @item type
  6120. The picture type of the input frame ("I" for an I-frame, "P" for a
  6121. P-frame, "B" for a B-frame, or "?" for an unknown type).
  6122. Also refer to the documentation of the @code{AVPictureType} enum and of
  6123. the @code{av_get_picture_type_char} function defined in
  6124. @file{libavutil/avutil.h}.
  6125. @item checksum
  6126. The Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame.
  6127. @item plane_checksum
  6128. The Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  6129. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]".
  6130. @end table
  6131. @section shuffleplanes
  6132. Reorder and/or duplicate video planes.
  6133. It accepts the following parameters:
  6134. @table @option
  6135. @item map0
  6136. The index of the input plane to be used as the first output plane.
  6137. @item map1
  6138. The index of the input plane to be used as the second output plane.
  6139. @item map2
  6140. The index of the input plane to be used as the third output plane.
  6141. @item map3
  6142. The index of the input plane to be used as the fourth output plane.
  6143. @end table
  6144. The first plane has the index 0. The default is to keep the input unchanged.
  6145. Swap the second and third planes of the input:
  6146. @example
  6147. ffmpeg -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT
  6148. @end example
  6149. @section signalstats
  6150. Evaluate various visual metrics that assist in determining issues associated
  6151. with the digitization of analog video media.
  6152. By default the filter will log these metadata values:
  6153. @table @option
  6154. @item YMIN
  6155. Display the minimal Y value contained within the input frame. Expressed in
  6156. range of [0-255].
  6157. @item YLOW
  6158. Display the Y value at the 10% percentile within the input frame. Expressed in
  6159. range of [0-255].
  6160. @item YAVG
  6161. Display the average Y value within the input frame. Expressed in range of
  6162. [0-255].
  6163. @item YHIGH
  6164. Display the Y value at the 90% percentile within the input frame. Expressed in
  6165. range of [0-255].
  6166. @item YMAX
  6167. Display the maximum Y value contained within the input frame. Expressed in
  6168. range of [0-255].
  6169. @item UMIN
  6170. Display the minimal U value contained within the input frame. Expressed in
  6171. range of [0-255].
  6172. @item ULOW
  6173. Display the U value at the 10% percentile within the input frame. Expressed in
  6174. range of [0-255].
  6175. @item UAVG
  6176. Display the average U value within the input frame. Expressed in range of
  6177. [0-255].
  6178. @item UHIGH
  6179. Display the U value at the 90% percentile within the input frame. Expressed in
  6180. range of [0-255].
  6181. @item UMAX
  6182. Display the maximum U value contained within the input frame. Expressed in
  6183. range of [0-255].
  6184. @item VMIN
  6185. Display the minimal V value contained within the input frame. Expressed in
  6186. range of [0-255].
  6187. @item VLOW
  6188. Display the V value at the 10% percentile within the input frame. Expressed in
  6189. range of [0-255].
  6190. @item VAVG
  6191. Display the average V value within the input frame. Expressed in range of
  6192. [0-255].
  6193. @item VHIGH
  6194. Display the V value at the 90% percentile within the input frame. Expressed in
  6195. range of [0-255].
  6196. @item VMAX
  6197. Display the maximum V value contained within the input frame. Expressed in
  6198. range of [0-255].
  6199. @item SATMIN
  6200. Display the minimal saturation value contained within the input frame.
  6201. Expressed in range of [0-~181.02].
  6202. @item SATLOW
  6203. Display the saturation value at the 10% percentile within the input frame.
  6204. Expressed in range of [0-~181.02].
  6205. @item SATAVG
  6206. Display the average saturation value within the input frame. Expressed in range
  6207. of [0-~181.02].
  6208. @item SATHIGH
  6209. Display the saturation value at the 90% percentile within the input frame.
  6210. Expressed in range of [0-~181.02].
  6211. @item SATMAX
  6212. Display the maximum saturation value contained within the input frame.
  6213. Expressed in range of [0-~181.02].
  6214. @item HUEMED
  6215. Display the median value for hue within the input frame. Expressed in range of
  6216. [0-360].
  6217. @item HUEAVG
  6218. Display the average value for hue within the input frame. Expressed in range of
  6219. [0-360].
  6220. @item YDIF
  6221. Display the average of sample value difference between all values of the Y
  6222. plane in the current frame and corresponding values of the previous input frame.
  6223. Expressed in range of [0-255].
  6224. @item UDIF
  6225. Display the average of sample value difference between all values of the U
  6226. plane in the current frame and corresponding values of the previous input frame.
  6227. Expressed in range of [0-255].
  6228. @item VDIF
  6229. Display the average of sample value difference between all values of the V
  6230. plane in the current frame and corresponding values of the previous input frame.
  6231. Expressed in range of [0-255].
  6232. @end table
  6233. The filter accepts the following options:
  6234. @table @option
  6235. @item stat
  6236. @item out
  6237. @option{stat} specify an additional form of image analysis.
  6238. @option{out} output video with the specified type of pixel highlighted.
  6239. Both options accept the following values:
  6240. @table @samp
  6241. @item tout
  6242. Identify @var{temporal outliers} pixels. A @var{temporal outlier} is a pixel
  6243. unlike the neighboring pixels of the same field. Examples of temporal outliers
  6244. include the results of video dropouts, head clogs, or tape tracking issues.
  6245. @item vrep
  6246. Identify @var{vertical line repetition}. Vertical line repetition includes
  6247. similar rows of pixels within a frame. In born-digital video vertical line
  6248. repetition is common, but this pattern is uncommon in video digitized from an
  6249. analog source. When it occurs in video that results from the digitization of an
  6250. analog source it can indicate concealment from a dropout compensator.
  6251. @item brng
  6252. Identify pixels that fall outside of legal broadcast range.
  6253. @end table
  6254. @item color, c
  6255. Set the highlight color for the @option{out} option. The default color is
  6256. yellow.
  6257. @end table
  6258. @subsection Examples
  6259. @itemize
  6260. @item
  6261. Output data of various video metrics:
  6262. @example
  6263. ffprobe -f lavfi movie=example.mov,signalstats="stat=tout+vrep+brng" -show_frames
  6264. @end example
  6265. @item
  6266. Output specific data about the minimum and maximum values of the Y plane per frame:
  6267. @example
  6268. ffprobe -f lavfi movie=example.mov,signalstats -show_entries frame_tags=lavfi.signalstats.YMAX,lavfi.signalstats.YMIN
  6269. @end example
  6270. @item
  6271. Playback video while highlighting pixels that are outside of broadcast range in red.
  6272. @example
  6273. ffplay example.mov -vf signalstats="out=brng:color=red"
  6274. @end example
  6275. @item
  6276. Playback video with signalstats metadata drawn over the frame.
  6277. @example
  6278. ffplay example.mov -vf signalstats=stat=brng+vrep+tout,drawtext=fontfile=FreeSerif.ttf:textfile=signalstat_drawtext.txt
  6279. @end example
  6280. The contents of signalstat_drawtext.txt used in the command are:
  6281. @example
  6282. time %@{pts:hms@}
  6283. Y (%@{metadata:lavfi.signalstats.YMIN@}-%@{metadata:lavfi.signalstats.YMAX@})
  6284. U (%@{metadata:lavfi.signalstats.UMIN@}-%@{metadata:lavfi.signalstats.UMAX@})
  6285. V (%@{metadata:lavfi.signalstats.VMIN@}-%@{metadata:lavfi.signalstats.VMAX@})
  6286. saturation maximum: %@{metadata:lavfi.signalstats.SATMAX@}
  6287. @end example
  6288. @end itemize
  6289. @anchor{smartblur}
  6290. @section smartblur
  6291. Blur the input video without impacting the outlines.
  6292. It accepts the following options:
  6293. @table @option
  6294. @item luma_radius, lr
  6295. Set the luma radius. The option value must be a float number in
  6296. the range [0.1,5.0] that specifies the variance of the gaussian filter
  6297. used to blur the image (slower if larger). Default value is 1.0.
  6298. @item luma_strength, ls
  6299. Set the luma strength. The option value must be a float number
  6300. in the range [-1.0,1.0] that configures the blurring. A value included
  6301. in [0.0,1.0] will blur the image whereas a value included in
  6302. [-1.0,0.0] will sharpen the image. Default value is 1.0.
  6303. @item luma_threshold, lt
  6304. Set the luma threshold used as a coefficient to determine
  6305. whether a pixel should be blurred or not. The option value must be an
  6306. integer in the range [-30,30]. A value of 0 will filter all the image,
  6307. a value included in [0,30] will filter flat areas and a value included
  6308. in [-30,0] will filter edges. Default value is 0.
  6309. @item chroma_radius, cr
  6310. Set the chroma radius. The option value must be a float number in
  6311. the range [0.1,5.0] that specifies the variance of the gaussian filter
  6312. used to blur the image (slower if larger). Default value is 1.0.
  6313. @item chroma_strength, cs
  6314. Set the chroma strength. The option value must be a float number
  6315. in the range [-1.0,1.0] that configures the blurring. A value included
  6316. in [0.0,1.0] will blur the image whereas a value included in
  6317. [-1.0,0.0] will sharpen the image. Default value is 1.0.
  6318. @item chroma_threshold, ct
  6319. Set the chroma threshold used as a coefficient to determine
  6320. whether a pixel should be blurred or not. The option value must be an
  6321. integer in the range [-30,30]. A value of 0 will filter all the image,
  6322. a value included in [0,30] will filter flat areas and a value included
  6323. in [-30,0] will filter edges. Default value is 0.
  6324. @end table
  6325. If a chroma option is not explicitly set, the corresponding luma value
  6326. is set.
  6327. @section stereo3d
  6328. Convert between different stereoscopic image formats.
  6329. The filters accept the following options:
  6330. @table @option
  6331. @item in
  6332. Set stereoscopic image format of input.
  6333. Available values for input image formats are:
  6334. @table @samp
  6335. @item sbsl
  6336. side by side parallel (left eye left, right eye right)
  6337. @item sbsr
  6338. side by side crosseye (right eye left, left eye right)
  6339. @item sbs2l
  6340. side by side parallel with half width resolution
  6341. (left eye left, right eye right)
  6342. @item sbs2r
  6343. side by side crosseye with half width resolution
  6344. (right eye left, left eye right)
  6345. @item abl
  6346. above-below (left eye above, right eye below)
  6347. @item abr
  6348. above-below (right eye above, left eye below)
  6349. @item ab2l
  6350. above-below with half height resolution
  6351. (left eye above, right eye below)
  6352. @item ab2r
  6353. above-below with half height resolution
  6354. (right eye above, left eye below)
  6355. @item al
  6356. alternating frames (left eye first, right eye second)
  6357. @item ar
  6358. alternating frames (right eye first, left eye second)
  6359. Default value is @samp{sbsl}.
  6360. @end table
  6361. @item out
  6362. Set stereoscopic image format of output.
  6363. Available values for output image formats are all the input formats as well as:
  6364. @table @samp
  6365. @item arbg
  6366. anaglyph red/blue gray
  6367. (red filter on left eye, blue filter on right eye)
  6368. @item argg
  6369. anaglyph red/green gray
  6370. (red filter on left eye, green filter on right eye)
  6371. @item arcg
  6372. anaglyph red/cyan gray
  6373. (red filter on left eye, cyan filter on right eye)
  6374. @item arch
  6375. anaglyph red/cyan half colored
  6376. (red filter on left eye, cyan filter on right eye)
  6377. @item arcc
  6378. anaglyph red/cyan color
  6379. (red filter on left eye, cyan filter on right eye)
  6380. @item arcd
  6381. anaglyph red/cyan color optimized with the least squares projection of dubois
  6382. (red filter on left eye, cyan filter on right eye)
  6383. @item agmg
  6384. anaglyph green/magenta gray
  6385. (green filter on left eye, magenta filter on right eye)
  6386. @item agmh
  6387. anaglyph green/magenta half colored
  6388. (green filter on left eye, magenta filter on right eye)
  6389. @item agmc
  6390. anaglyph green/magenta colored
  6391. (green filter on left eye, magenta filter on right eye)
  6392. @item agmd
  6393. anaglyph green/magenta color optimized with the least squares projection of dubois
  6394. (green filter on left eye, magenta filter on right eye)
  6395. @item aybg
  6396. anaglyph yellow/blue gray
  6397. (yellow filter on left eye, blue filter on right eye)
  6398. @item aybh
  6399. anaglyph yellow/blue half colored
  6400. (yellow filter on left eye, blue filter on right eye)
  6401. @item aybc
  6402. anaglyph yellow/blue colored
  6403. (yellow filter on left eye, blue filter on right eye)
  6404. @item aybd
  6405. anaglyph yellow/blue color optimized with the least squares projection of dubois
  6406. (yellow filter on left eye, blue filter on right eye)
  6407. @item irl
  6408. interleaved rows (left eye has top row, right eye starts on next row)
  6409. @item irr
  6410. interleaved rows (right eye has top row, left eye starts on next row)
  6411. @item ml
  6412. mono output (left eye only)
  6413. @item mr
  6414. mono output (right eye only)
  6415. @end table
  6416. Default value is @samp{arcd}.
  6417. @end table
  6418. @subsection Examples
  6419. @itemize
  6420. @item
  6421. Convert input video from side by side parallel to anaglyph yellow/blue dubois:
  6422. @example
  6423. stereo3d=sbsl:aybd
  6424. @end example
  6425. @item
  6426. Convert input video from above bellow (left eye above, right eye below) to side by side crosseye.
  6427. @example
  6428. stereo3d=abl:sbsr
  6429. @end example
  6430. @end itemize
  6431. @anchor{spp}
  6432. @section spp
  6433. Apply a simple postprocessing filter that compresses and decompresses the image
  6434. at several (or - in the case of @option{quality} level @code{6} - all) shifts
  6435. and average the results.
  6436. The filter accepts the following options:
  6437. @table @option
  6438. @item quality
  6439. Set quality. This option defines the number of levels for averaging. It accepts
  6440. an integer in the range 0-6. If set to @code{0}, the filter will have no
  6441. effect. A value of @code{6} means the higher quality. For each increment of
  6442. that value the speed drops by a factor of approximately 2. Default value is
  6443. @code{3}.
  6444. @item qp
  6445. Force a constant quantization parameter. If not set, the filter will use the QP
  6446. from the video stream (if available).
  6447. @item mode
  6448. Set thresholding mode. Available modes are:
  6449. @table @samp
  6450. @item hard
  6451. Set hard thresholding (default).
  6452. @item soft
  6453. Set soft thresholding (better de-ringing effect, but likely blurrier).
  6454. @end table
  6455. @item use_bframe_qp
  6456. Enable the use of the QP from the B-Frames if set to @code{1}. Using this
  6457. option may cause flicker since the B-Frames have often larger QP. Default is
  6458. @code{0} (not enabled).
  6459. @end table
  6460. @anchor{subtitles}
  6461. @section subtitles
  6462. Draw subtitles on top of input video using the libass library.
  6463. To enable compilation of this filter you need to configure FFmpeg with
  6464. @code{--enable-libass}. This filter also requires a build with libavcodec and
  6465. libavformat to convert the passed subtitles file to ASS (Advanced Substation
  6466. Alpha) subtitles format.
  6467. The filter accepts the following options:
  6468. @table @option
  6469. @item filename, f
  6470. Set the filename of the subtitle file to read. It must be specified.
  6471. @item original_size
  6472. Specify the size of the original video, the video for which the ASS file
  6473. was composed. For the syntax of this option, check the "Video size" section in
  6474. the ffmpeg-utils manual. Due to a misdesign in ASS aspect ratio arithmetic,
  6475. this is necessary to correctly scale the fonts if the aspect ratio has been
  6476. changed.
  6477. @item charenc
  6478. Set subtitles input character encoding. @code{subtitles} filter only. Only
  6479. useful if not UTF-8.
  6480. @item stream_index, si
  6481. Set subtitles stream index. @code{subtitles} filter only.
  6482. @end table
  6483. If the first key is not specified, it is assumed that the first value
  6484. specifies the @option{filename}.
  6485. For example, to render the file @file{sub.srt} on top of the input
  6486. video, use the command:
  6487. @example
  6488. subtitles=sub.srt
  6489. @end example
  6490. which is equivalent to:
  6491. @example
  6492. subtitles=filename=sub.srt
  6493. @end example
  6494. To render the default subtitles stream from file @file{video.mkv}, use:
  6495. @example
  6496. subtitles=video.mkv
  6497. @end example
  6498. To render the second subtitles stream from that file, use:
  6499. @example
  6500. subtitles=video.mkv:si=1
  6501. @end example
  6502. @section super2xsai
  6503. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  6504. Interpolate) pixel art scaling algorithm.
  6505. Useful for enlarging pixel art images without reducing sharpness.
  6506. @section swapuv
  6507. Swap U & V plane.
  6508. @section telecine
  6509. Apply telecine process to the video.
  6510. This filter accepts the following options:
  6511. @table @option
  6512. @item first_field
  6513. @table @samp
  6514. @item top, t
  6515. top field first
  6516. @item bottom, b
  6517. bottom field first
  6518. The default value is @code{top}.
  6519. @end table
  6520. @item pattern
  6521. A string of numbers representing the pulldown pattern you wish to apply.
  6522. The default value is @code{23}.
  6523. @end table
  6524. @example
  6525. Some typical patterns:
  6526. NTSC output (30i):
  6527. 27.5p: 32222
  6528. 24p: 23 (classic)
  6529. 24p: 2332 (preferred)
  6530. 20p: 33
  6531. 18p: 334
  6532. 16p: 3444
  6533. PAL output (25i):
  6534. 27.5p: 12222
  6535. 24p: 222222222223 ("Euro pulldown")
  6536. 16.67p: 33
  6537. 16p: 33333334
  6538. @end example
  6539. @section thumbnail
  6540. Select the most representative frame in a given sequence of consecutive frames.
  6541. The filter accepts the following options:
  6542. @table @option
  6543. @item n
  6544. Set the frames batch size to analyze; in a set of @var{n} frames, the filter
  6545. will pick one of them, and then handle the next batch of @var{n} frames until
  6546. the end. Default is @code{100}.
  6547. @end table
  6548. Since the filter keeps track of the whole frames sequence, a bigger @var{n}
  6549. value will result in a higher memory usage, so a high value is not recommended.
  6550. @subsection Examples
  6551. @itemize
  6552. @item
  6553. Extract one picture each 50 frames:
  6554. @example
  6555. thumbnail=50
  6556. @end example
  6557. @item
  6558. Complete example of a thumbnail creation with @command{ffmpeg}:
  6559. @example
  6560. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  6561. @end example
  6562. @end itemize
  6563. @section tile
  6564. Tile several successive frames together.
  6565. The filter accepts the following options:
  6566. @table @option
  6567. @item layout
  6568. Set the grid size (i.e. the number of lines and columns). For the syntax of
  6569. this option, check the "Video size" section in the ffmpeg-utils manual.
  6570. @item nb_frames
  6571. Set the maximum number of frames to render in the given area. It must be less
  6572. than or equal to @var{w}x@var{h}. The default value is @code{0}, meaning all
  6573. the area will be used.
  6574. @item margin
  6575. Set the outer border margin in pixels.
  6576. @item padding
  6577. Set the inner border thickness (i.e. the number of pixels between frames). For
  6578. more advanced padding options (such as having different values for the edges),
  6579. refer to the pad video filter.
  6580. @item color
  6581. Specify the color of the unused area. For the syntax of this option, check the
  6582. "Color" section in the ffmpeg-utils manual. The default value of @var{color}
  6583. is "black".
  6584. @end table
  6585. @subsection Examples
  6586. @itemize
  6587. @item
  6588. Produce 8x8 PNG tiles of all keyframes (@option{-skip_frame nokey}) in a movie:
  6589. @example
  6590. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  6591. @end example
  6592. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  6593. duplicating each output frame to accommodate the originally detected frame
  6594. rate.
  6595. @item
  6596. Display @code{5} pictures in an area of @code{3x2} frames,
  6597. with @code{7} pixels between them, and @code{2} pixels of initial margin, using
  6598. mixed flat and named options:
  6599. @example
  6600. tile=3x2:nb_frames=5:padding=7:margin=2
  6601. @end example
  6602. @end itemize
  6603. @section tinterlace
  6604. Perform various types of temporal field interlacing.
  6605. Frames are counted starting from 1, so the first input frame is
  6606. considered odd.
  6607. The filter accepts the following options:
  6608. @table @option
  6609. @item mode
  6610. Specify the mode of the interlacing. This option can also be specified
  6611. as a value alone. See below for a list of values for this option.
  6612. Available values are:
  6613. @table @samp
  6614. @item merge, 0
  6615. Move odd frames into the upper field, even into the lower field,
  6616. generating a double height frame at half frame rate.
  6617. @example
  6618. ------> time
  6619. Input:
  6620. Frame 1 Frame 2 Frame 3 Frame 4
  6621. 11111 22222 33333 44444
  6622. 11111 22222 33333 44444
  6623. 11111 22222 33333 44444
  6624. 11111 22222 33333 44444
  6625. Output:
  6626. 11111 33333
  6627. 22222 44444
  6628. 11111 33333
  6629. 22222 44444
  6630. 11111 33333
  6631. 22222 44444
  6632. 11111 33333
  6633. 22222 44444
  6634. @end example
  6635. @item drop_odd, 1
  6636. Only output even frames, odd frames are dropped, generating a frame with
  6637. unchanged height at half frame rate.
  6638. @example
  6639. ------> time
  6640. Input:
  6641. Frame 1 Frame 2 Frame 3 Frame 4
  6642. 11111 22222 33333 44444
  6643. 11111 22222 33333 44444
  6644. 11111 22222 33333 44444
  6645. 11111 22222 33333 44444
  6646. Output:
  6647. 22222 44444
  6648. 22222 44444
  6649. 22222 44444
  6650. 22222 44444
  6651. @end example
  6652. @item drop_even, 2
  6653. Only output odd frames, even frames are dropped, generating a frame with
  6654. unchanged height at half frame rate.
  6655. @example
  6656. ------> time
  6657. Input:
  6658. Frame 1 Frame 2 Frame 3 Frame 4
  6659. 11111 22222 33333 44444
  6660. 11111 22222 33333 44444
  6661. 11111 22222 33333 44444
  6662. 11111 22222 33333 44444
  6663. Output:
  6664. 11111 33333
  6665. 11111 33333
  6666. 11111 33333
  6667. 11111 33333
  6668. @end example
  6669. @item pad, 3
  6670. Expand each frame to full height, but pad alternate lines with black,
  6671. generating a frame with double height at the same input frame rate.
  6672. @example
  6673. ------> time
  6674. Input:
  6675. Frame 1 Frame 2 Frame 3 Frame 4
  6676. 11111 22222 33333 44444
  6677. 11111 22222 33333 44444
  6678. 11111 22222 33333 44444
  6679. 11111 22222 33333 44444
  6680. Output:
  6681. 11111 ..... 33333 .....
  6682. ..... 22222 ..... 44444
  6683. 11111 ..... 33333 .....
  6684. ..... 22222 ..... 44444
  6685. 11111 ..... 33333 .....
  6686. ..... 22222 ..... 44444
  6687. 11111 ..... 33333 .....
  6688. ..... 22222 ..... 44444
  6689. @end example
  6690. @item interleave_top, 4
  6691. Interleave the upper field from odd frames with the lower field from
  6692. even frames, generating a frame with unchanged height at half frame rate.
  6693. @example
  6694. ------> time
  6695. Input:
  6696. Frame 1 Frame 2 Frame 3 Frame 4
  6697. 11111<- 22222 33333<- 44444
  6698. 11111 22222<- 33333 44444<-
  6699. 11111<- 22222 33333<- 44444
  6700. 11111 22222<- 33333 44444<-
  6701. Output:
  6702. 11111 33333
  6703. 22222 44444
  6704. 11111 33333
  6705. 22222 44444
  6706. @end example
  6707. @item interleave_bottom, 5
  6708. Interleave the lower field from odd frames with the upper field from
  6709. even frames, generating a frame with unchanged height at half frame rate.
  6710. @example
  6711. ------> time
  6712. Input:
  6713. Frame 1 Frame 2 Frame 3 Frame 4
  6714. 11111 22222<- 33333 44444<-
  6715. 11111<- 22222 33333<- 44444
  6716. 11111 22222<- 33333 44444<-
  6717. 11111<- 22222 33333<- 44444
  6718. Output:
  6719. 22222 44444
  6720. 11111 33333
  6721. 22222 44444
  6722. 11111 33333
  6723. @end example
  6724. @item interlacex2, 6
  6725. Double frame rate with unchanged height. Frames are inserted each
  6726. containing the second temporal field from the previous input frame and
  6727. the first temporal field from the next input frame. This mode relies on
  6728. the top_field_first flag. Useful for interlaced video displays with no
  6729. field synchronisation.
  6730. @example
  6731. ------> time
  6732. Input:
  6733. Frame 1 Frame 2 Frame 3 Frame 4
  6734. 11111 22222 33333 44444
  6735. 11111 22222 33333 44444
  6736. 11111 22222 33333 44444
  6737. 11111 22222 33333 44444
  6738. Output:
  6739. 11111 22222 22222 33333 33333 44444 44444
  6740. 11111 11111 22222 22222 33333 33333 44444
  6741. 11111 22222 22222 33333 33333 44444 44444
  6742. 11111 11111 22222 22222 33333 33333 44444
  6743. @end example
  6744. @end table
  6745. Numeric values are deprecated but are accepted for backward
  6746. compatibility reasons.
  6747. Default mode is @code{merge}.
  6748. @item flags
  6749. Specify flags influencing the filter process.
  6750. Available value for @var{flags} is:
  6751. @table @option
  6752. @item low_pass_filter, vlfp
  6753. Enable vertical low-pass filtering in the filter.
  6754. Vertical low-pass filtering is required when creating an interlaced
  6755. destination from a progressive source which contains high-frequency
  6756. vertical detail. Filtering will reduce interlace 'twitter' and Moire
  6757. patterning.
  6758. Vertical low-pass filtering can only be enabled for @option{mode}
  6759. @var{interleave_top} and @var{interleave_bottom}.
  6760. @end table
  6761. @end table
  6762. @section transpose
  6763. Transpose rows with columns in the input video and optionally flip it.
  6764. It accepts the following parameters:
  6765. @table @option
  6766. @item dir
  6767. Specify the transposition direction.
  6768. Can assume the following values:
  6769. @table @samp
  6770. @item 0, 4, cclock_flip
  6771. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  6772. @example
  6773. L.R L.l
  6774. . . -> . .
  6775. l.r R.r
  6776. @end example
  6777. @item 1, 5, clock
  6778. Rotate by 90 degrees clockwise, that is:
  6779. @example
  6780. L.R l.L
  6781. . . -> . .
  6782. l.r r.R
  6783. @end example
  6784. @item 2, 6, cclock
  6785. Rotate by 90 degrees counterclockwise, that is:
  6786. @example
  6787. L.R R.r
  6788. . . -> . .
  6789. l.r L.l
  6790. @end example
  6791. @item 3, 7, clock_flip
  6792. Rotate by 90 degrees clockwise and vertically flip, that is:
  6793. @example
  6794. L.R r.R
  6795. . . -> . .
  6796. l.r l.L
  6797. @end example
  6798. @end table
  6799. For values between 4-7, the transposition is only done if the input
  6800. video geometry is portrait and not landscape. These values are
  6801. deprecated, the @code{passthrough} option should be used instead.
  6802. Numerical values are deprecated, and should be dropped in favor of
  6803. symbolic constants.
  6804. @item passthrough
  6805. Do not apply the transposition if the input geometry matches the one
  6806. specified by the specified value. It accepts the following values:
  6807. @table @samp
  6808. @item none
  6809. Always apply transposition.
  6810. @item portrait
  6811. Preserve portrait geometry (when @var{height} >= @var{width}).
  6812. @item landscape
  6813. Preserve landscape geometry (when @var{width} >= @var{height}).
  6814. @end table
  6815. Default value is @code{none}.
  6816. @end table
  6817. For example to rotate by 90 degrees clockwise and preserve portrait
  6818. layout:
  6819. @example
  6820. transpose=dir=1:passthrough=portrait
  6821. @end example
  6822. The command above can also be specified as:
  6823. @example
  6824. transpose=1:portrait
  6825. @end example
  6826. @section trim
  6827. Trim the input so that the output contains one continuous subpart of the input.
  6828. It accepts the following parameters:
  6829. @table @option
  6830. @item start
  6831. Specify the time of the start of the kept section, i.e. the frame with the
  6832. timestamp @var{start} will be the first frame in the output.
  6833. @item end
  6834. Specify the time of the first frame that will be dropped, i.e. the frame
  6835. immediately preceding the one with the timestamp @var{end} will be the last
  6836. frame in the output.
  6837. @item start_pts
  6838. This is the same as @var{start}, except this option sets the start timestamp
  6839. in timebase units instead of seconds.
  6840. @item end_pts
  6841. This is the same as @var{end}, except this option sets the end timestamp
  6842. in timebase units instead of seconds.
  6843. @item duration
  6844. The maximum duration of the output in seconds.
  6845. @item start_frame
  6846. The number of the first frame that should be passed to the output.
  6847. @item end_frame
  6848. The number of the first frame that should be dropped.
  6849. @end table
  6850. @option{start}, @option{end}, and @option{duration} are expressed as time
  6851. duration specifications; see
  6852. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  6853. for the accepted syntax.
  6854. Note that the first two sets of the start/end options and the @option{duration}
  6855. option look at the frame timestamp, while the _frame variants simply count the
  6856. frames that pass through the filter. Also note that this filter does not modify
  6857. the timestamps. If you wish for the output timestamps to start at zero, insert a
  6858. setpts filter after the trim filter.
  6859. If multiple start or end options are set, this filter tries to be greedy and
  6860. keep all the frames that match at least one of the specified constraints. To keep
  6861. only the part that matches all the constraints at once, chain multiple trim
  6862. filters.
  6863. The defaults are such that all the input is kept. So it is possible to set e.g.
  6864. just the end values to keep everything before the specified time.
  6865. Examples:
  6866. @itemize
  6867. @item
  6868. Drop everything except the second minute of input:
  6869. @example
  6870. ffmpeg -i INPUT -vf trim=60:120
  6871. @end example
  6872. @item
  6873. Keep only the first second:
  6874. @example
  6875. ffmpeg -i INPUT -vf trim=duration=1
  6876. @end example
  6877. @end itemize
  6878. @anchor{unsharp}
  6879. @section unsharp
  6880. Sharpen or blur the input video.
  6881. It accepts the following parameters:
  6882. @table @option
  6883. @item luma_msize_x, lx
  6884. Set the luma matrix horizontal size. It must be an odd integer between
  6885. 3 and 63. The default value is 5.
  6886. @item luma_msize_y, ly
  6887. Set the luma matrix vertical size. It must be an odd integer between 3
  6888. and 63. The default value is 5.
  6889. @item luma_amount, la
  6890. Set the luma effect strength. It must be a floating point number, reasonable
  6891. values lay between -1.5 and 1.5.
  6892. Negative values will blur the input video, while positive values will
  6893. sharpen it, a value of zero will disable the effect.
  6894. Default value is 1.0.
  6895. @item chroma_msize_x, cx
  6896. Set the chroma matrix horizontal size. It must be an odd integer
  6897. between 3 and 63. The default value is 5.
  6898. @item chroma_msize_y, cy
  6899. Set the chroma matrix vertical size. It must be an odd integer
  6900. between 3 and 63. The default value is 5.
  6901. @item chroma_amount, ca
  6902. Set the chroma effect strength. It must be a floating point number, reasonable
  6903. values lay between -1.5 and 1.5.
  6904. Negative values will blur the input video, while positive values will
  6905. sharpen it, a value of zero will disable the effect.
  6906. Default value is 0.0.
  6907. @item opencl
  6908. If set to 1, specify using OpenCL capabilities, only available if
  6909. FFmpeg was configured with @code{--enable-opencl}. Default value is 0.
  6910. @end table
  6911. All parameters are optional and default to the equivalent of the
  6912. string '5:5:1.0:5:5:0.0'.
  6913. @subsection Examples
  6914. @itemize
  6915. @item
  6916. Apply strong luma sharpen effect:
  6917. @example
  6918. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  6919. @end example
  6920. @item
  6921. Apply a strong blur of both luma and chroma parameters:
  6922. @example
  6923. unsharp=7:7:-2:7:7:-2
  6924. @end example
  6925. @end itemize
  6926. @section uspp
  6927. Apply ultra slow/simple postprocessing filter that compresses and decompresses
  6928. the image at several (or - in the case of @option{quality} level @code{8} - all)
  6929. shifts and average the results.
  6930. The way this differs from the behavior of spp is that uspp actually encodes &
  6931. decodes each case with libavcodec Snow, whereas spp uses a simplified intra only 8x8
  6932. DCT similar to MJPEG.
  6933. The filter accepts the following options:
  6934. @table @option
  6935. @item quality
  6936. Set quality. This option defines the number of levels for averaging. It accepts
  6937. an integer in the range 0-8. If set to @code{0}, the filter will have no
  6938. effect. A value of @code{8} means the higher quality. For each increment of
  6939. that value the speed drops by a factor of approximately 2. Default value is
  6940. @code{3}.
  6941. @item qp
  6942. Force a constant quantization parameter. If not set, the filter will use the QP
  6943. from the video stream (if available).
  6944. @end table
  6945. @anchor{vidstabdetect}
  6946. @section vidstabdetect
  6947. Analyze video stabilization/deshaking. Perform pass 1 of 2, see
  6948. @ref{vidstabtransform} for pass 2.
  6949. This filter generates a file with relative translation and rotation
  6950. transform information about subsequent frames, which is then used by
  6951. the @ref{vidstabtransform} filter.
  6952. To enable compilation of this filter you need to configure FFmpeg with
  6953. @code{--enable-libvidstab}.
  6954. This filter accepts the following options:
  6955. @table @option
  6956. @item result
  6957. Set the path to the file used to write the transforms information.
  6958. Default value is @file{transforms.trf}.
  6959. @item shakiness
  6960. Set how shaky the video is and how quick the camera is. It accepts an
  6961. integer in the range 1-10, a value of 1 means little shakiness, a
  6962. value of 10 means strong shakiness. Default value is 5.
  6963. @item accuracy
  6964. Set the accuracy of the detection process. It must be a value in the
  6965. range 1-15. A value of 1 means low accuracy, a value of 15 means high
  6966. accuracy. Default value is 15.
  6967. @item stepsize
  6968. Set stepsize of the search process. The region around minimum is
  6969. scanned with 1 pixel resolution. Default value is 6.
  6970. @item mincontrast
  6971. Set minimum contrast. Below this value a local measurement field is
  6972. discarded. Must be a floating point value in the range 0-1. Default
  6973. value is 0.3.
  6974. @item tripod
  6975. Set reference frame number for tripod mode.
  6976. If enabled, the motion of the frames is compared to a reference frame
  6977. in the filtered stream, identified by the specified number. The idea
  6978. is to compensate all movements in a more-or-less static scene and keep
  6979. the camera view absolutely still.
  6980. If set to 0, it is disabled. The frames are counted starting from 1.
  6981. @item show
  6982. Show fields and transforms in the resulting frames. It accepts an
  6983. integer in the range 0-2. Default value is 0, which disables any
  6984. visualization.
  6985. @end table
  6986. @subsection Examples
  6987. @itemize
  6988. @item
  6989. Use default values:
  6990. @example
  6991. vidstabdetect
  6992. @end example
  6993. @item
  6994. Analyze strongly shaky movie and put the results in file
  6995. @file{mytransforms.trf}:
  6996. @example
  6997. vidstabdetect=shakiness=10:accuracy=15:result="mytransforms.trf"
  6998. @end example
  6999. @item
  7000. Visualize the result of internal transformations in the resulting
  7001. video:
  7002. @example
  7003. vidstabdetect=show=1
  7004. @end example
  7005. @item
  7006. Analyze a video with medium shakiness using @command{ffmpeg}:
  7007. @example
  7008. ffmpeg -i input -vf vidstabdetect=shakiness=5:show=1 dummy.avi
  7009. @end example
  7010. @end itemize
  7011. @anchor{vidstabtransform}
  7012. @section vidstabtransform
  7013. Video stabilization/deshaking: pass 2 of 2,
  7014. see @ref{vidstabdetect} for pass 1.
  7015. Read a file with transform information for each frame and
  7016. apply/compensate them. Together with the @ref{vidstabdetect}
  7017. filter this can be used to deshake videos. See also
  7018. @url{http://public.hronopik.de/vid.stab}. It is important to also use
  7019. the @ref{unsharp} filter, see below.
  7020. To enable compilation of this filter you need to configure FFmpeg with
  7021. @code{--enable-libvidstab}.
  7022. @subsection Options
  7023. @table @option
  7024. @item input
  7025. Set path to the file used to read the transforms. Default value is
  7026. @file{transforms.trf}.
  7027. @item smoothing
  7028. Set the number of frames (value*2 + 1) used for lowpass filtering the
  7029. camera movements. Default value is 10.
  7030. For example a number of 10 means that 21 frames are used (10 in the
  7031. past and 10 in the future) to smoothen the motion in the video. A
  7032. larger value leads to a smoother video, but limits the acceleration of
  7033. the camera (pan/tilt movements). 0 is a special case where a static
  7034. camera is simulated.
  7035. @item optalgo
  7036. Set the camera path optimization algorithm.
  7037. Accepted values are:
  7038. @table @samp
  7039. @item gauss
  7040. gaussian kernel low-pass filter on camera motion (default)
  7041. @item avg
  7042. averaging on transformations
  7043. @end table
  7044. @item maxshift
  7045. Set maximal number of pixels to translate frames. Default value is -1,
  7046. meaning no limit.
  7047. @item maxangle
  7048. Set maximal angle in radians (degree*PI/180) to rotate frames. Default
  7049. value is -1, meaning no limit.
  7050. @item crop
  7051. Specify how to deal with borders that may be visible due to movement
  7052. compensation.
  7053. Available values are:
  7054. @table @samp
  7055. @item keep
  7056. keep image information from previous frame (default)
  7057. @item black
  7058. fill the border black
  7059. @end table
  7060. @item invert
  7061. Invert transforms if set to 1. Default value is 0.
  7062. @item relative
  7063. Consider transforms as relative to previous frame if set to 1,
  7064. absolute if set to 0. Default value is 0.
  7065. @item zoom
  7066. Set percentage to zoom. A positive value will result in a zoom-in
  7067. effect, a negative value in a zoom-out effect. Default value is 0 (no
  7068. zoom).
  7069. @item optzoom
  7070. Set optimal zooming to avoid borders.
  7071. Accepted values are:
  7072. @table @samp
  7073. @item 0
  7074. disabled
  7075. @item 1
  7076. optimal static zoom value is determined (only very strong movements
  7077. will lead to visible borders) (default)
  7078. @item 2
  7079. optimal adaptive zoom value is determined (no borders will be
  7080. visible), see @option{zoomspeed}
  7081. @end table
  7082. Note that the value given at zoom is added to the one calculated here.
  7083. @item zoomspeed
  7084. Set percent to zoom maximally each frame (enabled when
  7085. @option{optzoom} is set to 2). Range is from 0 to 5, default value is
  7086. 0.25.
  7087. @item interpol
  7088. Specify type of interpolation.
  7089. Available values are:
  7090. @table @samp
  7091. @item no
  7092. no interpolation
  7093. @item linear
  7094. linear only horizontal
  7095. @item bilinear
  7096. linear in both directions (default)
  7097. @item bicubic
  7098. cubic in both directions (slow)
  7099. @end table
  7100. @item tripod
  7101. Enable virtual tripod mode if set to 1, which is equivalent to
  7102. @code{relative=0:smoothing=0}. Default value is 0.
  7103. Use also @code{tripod} option of @ref{vidstabdetect}.
  7104. @item debug
  7105. Increase log verbosity if set to 1. Also the detected global motions
  7106. are written to the temporary file @file{global_motions.trf}. Default
  7107. value is 0.
  7108. @end table
  7109. @subsection Examples
  7110. @itemize
  7111. @item
  7112. Use @command{ffmpeg} for a typical stabilization with default values:
  7113. @example
  7114. ffmpeg -i inp.mpeg -vf vidstabtransform,unsharp=5:5:0.8:3:3:0.4 inp_stabilized.mpeg
  7115. @end example
  7116. Note the use of the @ref{unsharp} filter which is always recommended.
  7117. @item
  7118. Zoom in a bit more and load transform data from a given file:
  7119. @example
  7120. vidstabtransform=zoom=5:input="mytransforms.trf"
  7121. @end example
  7122. @item
  7123. Smoothen the video even more:
  7124. @example
  7125. vidstabtransform=smoothing=30
  7126. @end example
  7127. @end itemize
  7128. @section vflip
  7129. Flip the input video vertically.
  7130. For example, to vertically flip a video with @command{ffmpeg}:
  7131. @example
  7132. ffmpeg -i in.avi -vf "vflip" out.avi
  7133. @end example
  7134. @anchor{vignette}
  7135. @section vignette
  7136. Make or reverse a natural vignetting effect.
  7137. The filter accepts the following options:
  7138. @table @option
  7139. @item angle, a
  7140. Set lens angle expression as a number of radians.
  7141. The value is clipped in the @code{[0,PI/2]} range.
  7142. Default value: @code{"PI/5"}
  7143. @item x0
  7144. @item y0
  7145. Set center coordinates expressions. Respectively @code{"w/2"} and @code{"h/2"}
  7146. by default.
  7147. @item mode
  7148. Set forward/backward mode.
  7149. Available modes are:
  7150. @table @samp
  7151. @item forward
  7152. The larger the distance from the central point, the darker the image becomes.
  7153. @item backward
  7154. The larger the distance from the central point, the brighter the image becomes.
  7155. This can be used to reverse a vignette effect, though there is no automatic
  7156. detection to extract the lens @option{angle} and other settings (yet). It can
  7157. also be used to create a burning effect.
  7158. @end table
  7159. Default value is @samp{forward}.
  7160. @item eval
  7161. Set evaluation mode for the expressions (@option{angle}, @option{x0}, @option{y0}).
  7162. It accepts the following values:
  7163. @table @samp
  7164. @item init
  7165. Evaluate expressions only once during the filter initialization.
  7166. @item frame
  7167. Evaluate expressions for each incoming frame. This is way slower than the
  7168. @samp{init} mode since it requires all the scalers to be re-computed, but it
  7169. allows advanced dynamic expressions.
  7170. @end table
  7171. Default value is @samp{init}.
  7172. @item dither
  7173. Set dithering to reduce the circular banding effects. Default is @code{1}
  7174. (enabled).
  7175. @item aspect
  7176. Set vignette aspect. This setting allows one to adjust the shape of the vignette.
  7177. Setting this value to the SAR of the input will make a rectangular vignetting
  7178. following the dimensions of the video.
  7179. Default is @code{1/1}.
  7180. @end table
  7181. @subsection Expressions
  7182. The @option{alpha}, @option{x0} and @option{y0} expressions can contain the
  7183. following parameters.
  7184. @table @option
  7185. @item w
  7186. @item h
  7187. input width and height
  7188. @item n
  7189. the number of input frame, starting from 0
  7190. @item pts
  7191. the PTS (Presentation TimeStamp) time of the filtered video frame, expressed in
  7192. @var{TB} units, NAN if undefined
  7193. @item r
  7194. frame rate of the input video, NAN if the input frame rate is unknown
  7195. @item t
  7196. the PTS (Presentation TimeStamp) of the filtered video frame,
  7197. expressed in seconds, NAN if undefined
  7198. @item tb
  7199. time base of the input video
  7200. @end table
  7201. @subsection Examples
  7202. @itemize
  7203. @item
  7204. Apply simple strong vignetting effect:
  7205. @example
  7206. vignette=PI/4
  7207. @end example
  7208. @item
  7209. Make a flickering vignetting:
  7210. @example
  7211. vignette='PI/4+random(1)*PI/50':eval=frame
  7212. @end example
  7213. @end itemize
  7214. @section w3fdif
  7215. Deinterlace the input video ("w3fdif" stands for "Weston 3 Field
  7216. Deinterlacing Filter").
  7217. Based on the process described by Martin Weston for BBC R&D, and
  7218. implemented based on the de-interlace algorithm written by Jim
  7219. Easterbrook for BBC R&D, the Weston 3 field deinterlacing filter
  7220. uses filter coefficients calculated by BBC R&D.
  7221. There are two sets of filter coefficients, so called "simple":
  7222. and "complex". Which set of filter coefficients is used can
  7223. be set by passing an optional parameter:
  7224. @table @option
  7225. @item filter
  7226. Set the interlacing filter coefficients. Accepts one of the following values:
  7227. @table @samp
  7228. @item simple
  7229. Simple filter coefficient set.
  7230. @item complex
  7231. More-complex filter coefficient set.
  7232. @end table
  7233. Default value is @samp{complex}.
  7234. @item deint
  7235. Specify which frames to deinterlace. Accept one of the following values:
  7236. @table @samp
  7237. @item all
  7238. Deinterlace all frames,
  7239. @item interlaced
  7240. Only deinterlace frames marked as interlaced.
  7241. @end table
  7242. Default value is @samp{all}.
  7243. @end table
  7244. @section xbr
  7245. Apply the xBR high-quality magnification filter which is designed for pixel
  7246. art. It follows a set of edge-detection rules, see
  7247. @url{http://www.libretro.com/forums/viewtopic.php?f=6&t=134}.
  7248. It accepts the following option:
  7249. @table @option
  7250. @item n
  7251. Set the scaling dimension: @code{2} for @code{2xBR}, @code{3} for
  7252. @code{3xBR} and @code{4} for @code{4xBR}.
  7253. Default is @code{3}.
  7254. @end table
  7255. @anchor{yadif}
  7256. @section yadif
  7257. Deinterlace the input video ("yadif" means "yet another deinterlacing
  7258. filter").
  7259. It accepts the following parameters:
  7260. @table @option
  7261. @item mode
  7262. The interlacing mode to adopt. It accepts one of the following values:
  7263. @table @option
  7264. @item 0, send_frame
  7265. Output one frame for each frame.
  7266. @item 1, send_field
  7267. Output one frame for each field.
  7268. @item 2, send_frame_nospatial
  7269. Like @code{send_frame}, but it skips the spatial interlacing check.
  7270. @item 3, send_field_nospatial
  7271. Like @code{send_field}, but it skips the spatial interlacing check.
  7272. @end table
  7273. The default value is @code{send_frame}.
  7274. @item parity
  7275. The picture field parity assumed for the input interlaced video. It accepts one
  7276. of the following values:
  7277. @table @option
  7278. @item 0, tff
  7279. Assume the top field is first.
  7280. @item 1, bff
  7281. Assume the bottom field is first.
  7282. @item -1, auto
  7283. Enable automatic detection of field parity.
  7284. @end table
  7285. The default value is @code{auto}.
  7286. If the interlacing is unknown or the decoder does not export this information,
  7287. top field first will be assumed.
  7288. @item deint
  7289. Specify which frames to deinterlace. Accept one of the following
  7290. values:
  7291. @table @option
  7292. @item 0, all
  7293. Deinterlace all frames.
  7294. @item 1, interlaced
  7295. Only deinterlace frames marked as interlaced.
  7296. @end table
  7297. The default value is @code{all}.
  7298. @end table
  7299. @section zoompan
  7300. Apply Zoom & Pan effect.
  7301. This filter accepts the following options:
  7302. @table @option
  7303. @item zoom, z
  7304. Set the zoom expression. Default is 1.
  7305. @item x
  7306. @item y
  7307. Set the x and y expression. Default is 0.
  7308. @item d
  7309. Set the duration expression in number of frames.
  7310. This sets for how many number of frames effect will last for
  7311. single input image.
  7312. @item s
  7313. Set the output image size, default is 'hd720'.
  7314. @end table
  7315. Each expression can contain the following constants:
  7316. @table @option
  7317. @item in_w, iw
  7318. Input width.
  7319. @item in_h, ih
  7320. Input height.
  7321. @item out_w, ow
  7322. Output width.
  7323. @item out_h, oh
  7324. Output height.
  7325. @item in
  7326. Input frame count.
  7327. @item on
  7328. Output frame count.
  7329. @item x
  7330. @item y
  7331. Last calculated 'x' and 'y' position from 'x' and 'y' expression
  7332. for current input frame.
  7333. @item px
  7334. @item py
  7335. 'x' and 'y' of last output frame of previous input frame or 0 when there was
  7336. not yet such frame (first input frame).
  7337. @item zoom
  7338. Last calculated zoom from 'z' expression for current input frame.
  7339. @item pzoom
  7340. Last calculated zoom of last output frame of previous input frame.
  7341. @item duration
  7342. Number of output frames for current input frame. Calculated from 'd' expression
  7343. for each input frame.
  7344. @item pduration
  7345. number of output frames created for previous input frame
  7346. @item a
  7347. Rational number: input width / input height
  7348. @item sar
  7349. sample aspect ratio
  7350. @item dar
  7351. display aspect ratio
  7352. @end table
  7353. @subsection Examples
  7354. @itemize
  7355. @item
  7356. Zoom-in up to 1.5 and pan at same time to some spot near center of picture:
  7357. @example
  7358. zoompan=z='min(zoom+0.0015,1.5)':d=700:x='if(gte(zoom,1.5),x,x+1/a)':y='if(gte(zoom,1.5),y,y+1)':s=640x360
  7359. @end example
  7360. @end itemize
  7361. @c man end VIDEO FILTERS
  7362. @chapter Video Sources
  7363. @c man begin VIDEO SOURCES
  7364. Below is a description of the currently available video sources.
  7365. @section buffer
  7366. Buffer video frames, and make them available to the filter chain.
  7367. This source is mainly intended for a programmatic use, in particular
  7368. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  7369. It accepts the following parameters:
  7370. @table @option
  7371. @item video_size
  7372. Specify the size (width and height) of the buffered video frames. For the
  7373. syntax of this option, check the "Video size" section in the ffmpeg-utils
  7374. manual.
  7375. @item width
  7376. The input video width.
  7377. @item height
  7378. The input video height.
  7379. @item pix_fmt
  7380. A string representing the pixel format of the buffered video frames.
  7381. It may be a number corresponding to a pixel format, or a pixel format
  7382. name.
  7383. @item time_base
  7384. Specify the timebase assumed by the timestamps of the buffered frames.
  7385. @item frame_rate
  7386. Specify the frame rate expected for the video stream.
  7387. @item pixel_aspect, sar
  7388. The sample (pixel) aspect ratio of the input video.
  7389. @item sws_param
  7390. Specify the optional parameters to be used for the scale filter which
  7391. is automatically inserted when an input change is detected in the
  7392. input size or format.
  7393. @end table
  7394. For example:
  7395. @example
  7396. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  7397. @end example
  7398. will instruct the source to accept video frames with size 320x240 and
  7399. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  7400. square pixels (1:1 sample aspect ratio).
  7401. Since the pixel format with name "yuv410p" corresponds to the number 6
  7402. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  7403. this example corresponds to:
  7404. @example
  7405. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  7406. @end example
  7407. Alternatively, the options can be specified as a flat string, but this
  7408. syntax is deprecated:
  7409. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  7410. @section cellauto
  7411. Create a pattern generated by an elementary cellular automaton.
  7412. The initial state of the cellular automaton can be defined through the
  7413. @option{filename}, and @option{pattern} options. If such options are
  7414. not specified an initial state is created randomly.
  7415. At each new frame a new row in the video is filled with the result of
  7416. the cellular automaton next generation. The behavior when the whole
  7417. frame is filled is defined by the @option{scroll} option.
  7418. This source accepts the following options:
  7419. @table @option
  7420. @item filename, f
  7421. Read the initial cellular automaton state, i.e. the starting row, from
  7422. the specified file.
  7423. In the file, each non-whitespace character is considered an alive
  7424. cell, a newline will terminate the row, and further characters in the
  7425. file will be ignored.
  7426. @item pattern, p
  7427. Read the initial cellular automaton state, i.e. the starting row, from
  7428. the specified string.
  7429. Each non-whitespace character in the string is considered an alive
  7430. cell, a newline will terminate the row, and further characters in the
  7431. string will be ignored.
  7432. @item rate, r
  7433. Set the video rate, that is the number of frames generated per second.
  7434. Default is 25.
  7435. @item random_fill_ratio, ratio
  7436. Set the random fill ratio for the initial cellular automaton row. It
  7437. is a floating point number value ranging from 0 to 1, defaults to
  7438. 1/PHI.
  7439. This option is ignored when a file or a pattern is specified.
  7440. @item random_seed, seed
  7441. Set the seed for filling randomly the initial row, must be an integer
  7442. included between 0 and UINT32_MAX. If not specified, or if explicitly
  7443. set to -1, the filter will try to use a good random seed on a best
  7444. effort basis.
  7445. @item rule
  7446. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  7447. Default value is 110.
  7448. @item size, s
  7449. Set the size of the output video. For the syntax of this option, check
  7450. the "Video size" section in the ffmpeg-utils manual.
  7451. If @option{filename} or @option{pattern} is specified, the size is set
  7452. by default to the width of the specified initial state row, and the
  7453. height is set to @var{width} * PHI.
  7454. If @option{size} is set, it must contain the width of the specified
  7455. pattern string, and the specified pattern will be centered in the
  7456. larger row.
  7457. If a filename or a pattern string is not specified, the size value
  7458. defaults to "320x518" (used for a randomly generated initial state).
  7459. @item scroll
  7460. If set to 1, scroll the output upward when all the rows in the output
  7461. have been already filled. If set to 0, the new generated row will be
  7462. written over the top row just after the bottom row is filled.
  7463. Defaults to 1.
  7464. @item start_full, full
  7465. If set to 1, completely fill the output with generated rows before
  7466. outputting the first frame.
  7467. This is the default behavior, for disabling set the value to 0.
  7468. @item stitch
  7469. If set to 1, stitch the left and right row edges together.
  7470. This is the default behavior, for disabling set the value to 0.
  7471. @end table
  7472. @subsection Examples
  7473. @itemize
  7474. @item
  7475. Read the initial state from @file{pattern}, and specify an output of
  7476. size 200x400.
  7477. @example
  7478. cellauto=f=pattern:s=200x400
  7479. @end example
  7480. @item
  7481. Generate a random initial row with a width of 200 cells, with a fill
  7482. ratio of 2/3:
  7483. @example
  7484. cellauto=ratio=2/3:s=200x200
  7485. @end example
  7486. @item
  7487. Create a pattern generated by rule 18 starting by a single alive cell
  7488. centered on an initial row with width 100:
  7489. @example
  7490. cellauto=p=@@:s=100x400:full=0:rule=18
  7491. @end example
  7492. @item
  7493. Specify a more elaborated initial pattern:
  7494. @example
  7495. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  7496. @end example
  7497. @end itemize
  7498. @section mandelbrot
  7499. Generate a Mandelbrot set fractal, and progressively zoom towards the
  7500. point specified with @var{start_x} and @var{start_y}.
  7501. This source accepts the following options:
  7502. @table @option
  7503. @item end_pts
  7504. Set the terminal pts value. Default value is 400.
  7505. @item end_scale
  7506. Set the terminal scale value.
  7507. Must be a floating point value. Default value is 0.3.
  7508. @item inner
  7509. Set the inner coloring mode, that is the algorithm used to draw the
  7510. Mandelbrot fractal internal region.
  7511. It shall assume one of the following values:
  7512. @table @option
  7513. @item black
  7514. Set black mode.
  7515. @item convergence
  7516. Show time until convergence.
  7517. @item mincol
  7518. Set color based on point closest to the origin of the iterations.
  7519. @item period
  7520. Set period mode.
  7521. @end table
  7522. Default value is @var{mincol}.
  7523. @item bailout
  7524. Set the bailout value. Default value is 10.0.
  7525. @item maxiter
  7526. Set the maximum of iterations performed by the rendering
  7527. algorithm. Default value is 7189.
  7528. @item outer
  7529. Set outer coloring mode.
  7530. It shall assume one of following values:
  7531. @table @option
  7532. @item iteration_count
  7533. Set iteration cound mode.
  7534. @item normalized_iteration_count
  7535. set normalized iteration count mode.
  7536. @end table
  7537. Default value is @var{normalized_iteration_count}.
  7538. @item rate, r
  7539. Set frame rate, expressed as number of frames per second. Default
  7540. value is "25".
  7541. @item size, s
  7542. Set frame size. For the syntax of this option, check the "Video
  7543. size" section in the ffmpeg-utils manual. Default value is "640x480".
  7544. @item start_scale
  7545. Set the initial scale value. Default value is 3.0.
  7546. @item start_x
  7547. Set the initial x position. Must be a floating point value between
  7548. -100 and 100. Default value is -0.743643887037158704752191506114774.
  7549. @item start_y
  7550. Set the initial y position. Must be a floating point value between
  7551. -100 and 100. Default value is -0.131825904205311970493132056385139.
  7552. @end table
  7553. @section mptestsrc
  7554. Generate various test patterns, as generated by the MPlayer test filter.
  7555. The size of the generated video is fixed, and is 256x256.
  7556. This source is useful in particular for testing encoding features.
  7557. This source accepts the following options:
  7558. @table @option
  7559. @item rate, r
  7560. Specify the frame rate of the sourced video, as the number of frames
  7561. generated per second. It has to be a string in the format
  7562. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  7563. number or a valid video frame rate abbreviation. The default value is
  7564. "25".
  7565. @item duration, d
  7566. Set the duration of the sourced video. See
  7567. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  7568. for the accepted syntax.
  7569. If not specified, or the expressed duration is negative, the video is
  7570. supposed to be generated forever.
  7571. @item test, t
  7572. Set the number or the name of the test to perform. Supported tests are:
  7573. @table @option
  7574. @item dc_luma
  7575. @item dc_chroma
  7576. @item freq_luma
  7577. @item freq_chroma
  7578. @item amp_luma
  7579. @item amp_chroma
  7580. @item cbp
  7581. @item mv
  7582. @item ring1
  7583. @item ring2
  7584. @item all
  7585. @end table
  7586. Default value is "all", which will cycle through the list of all tests.
  7587. @end table
  7588. Some examples:
  7589. @example
  7590. mptestsrc=t=dc_luma
  7591. @end example
  7592. will generate a "dc_luma" test pattern.
  7593. @section frei0r_src
  7594. Provide a frei0r source.
  7595. To enable compilation of this filter you need to install the frei0r
  7596. header and configure FFmpeg with @code{--enable-frei0r}.
  7597. This source accepts the following parameters:
  7598. @table @option
  7599. @item size
  7600. The size of the video to generate. For the syntax of this option, check the
  7601. "Video size" section in the ffmpeg-utils manual.
  7602. @item framerate
  7603. The framerate of the generated video. It may be a string of the form
  7604. @var{num}/@var{den} or a frame rate abbreviation.
  7605. @item filter_name
  7606. The name to the frei0r source to load. For more information regarding frei0r and
  7607. how to set the parameters, read the @ref{frei0r} section in the video filters
  7608. documentation.
  7609. @item filter_params
  7610. A '|'-separated list of parameters to pass to the frei0r source.
  7611. @end table
  7612. For example, to generate a frei0r partik0l source with size 200x200
  7613. and frame rate 10 which is overlaid on the overlay filter main input:
  7614. @example
  7615. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  7616. @end example
  7617. @section life
  7618. Generate a life pattern.
  7619. This source is based on a generalization of John Conway's life game.
  7620. The sourced input represents a life grid, each pixel represents a cell
  7621. which can be in one of two possible states, alive or dead. Every cell
  7622. interacts with its eight neighbours, which are the cells that are
  7623. horizontally, vertically, or diagonally adjacent.
  7624. At each interaction the grid evolves according to the adopted rule,
  7625. which specifies the number of neighbor alive cells which will make a
  7626. cell stay alive or born. The @option{rule} option allows one to specify
  7627. the rule to adopt.
  7628. This source accepts the following options:
  7629. @table @option
  7630. @item filename, f
  7631. Set the file from which to read the initial grid state. In the file,
  7632. each non-whitespace character is considered an alive cell, and newline
  7633. is used to delimit the end of each row.
  7634. If this option is not specified, the initial grid is generated
  7635. randomly.
  7636. @item rate, r
  7637. Set the video rate, that is the number of frames generated per second.
  7638. Default is 25.
  7639. @item random_fill_ratio, ratio
  7640. Set the random fill ratio for the initial random grid. It is a
  7641. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  7642. It is ignored when a file is specified.
  7643. @item random_seed, seed
  7644. Set the seed for filling the initial random grid, must be an integer
  7645. included between 0 and UINT32_MAX. If not specified, or if explicitly
  7646. set to -1, the filter will try to use a good random seed on a best
  7647. effort basis.
  7648. @item rule
  7649. Set the life rule.
  7650. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  7651. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  7652. @var{NS} specifies the number of alive neighbor cells which make a
  7653. live cell stay alive, and @var{NB} the number of alive neighbor cells
  7654. which make a dead cell to become alive (i.e. to "born").
  7655. "s" and "b" can be used in place of "S" and "B", respectively.
  7656. Alternatively a rule can be specified by an 18-bits integer. The 9
  7657. high order bits are used to encode the next cell state if it is alive
  7658. for each number of neighbor alive cells, the low order bits specify
  7659. the rule for "borning" new cells. Higher order bits encode for an
  7660. higher number of neighbor cells.
  7661. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  7662. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  7663. Default value is "S23/B3", which is the original Conway's game of life
  7664. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  7665. cells, and will born a new cell if there are three alive cells around
  7666. a dead cell.
  7667. @item size, s
  7668. Set the size of the output video. For the syntax of this option, check the
  7669. "Video size" section in the ffmpeg-utils manual.
  7670. If @option{filename} is specified, the size is set by default to the
  7671. same size of the input file. If @option{size} is set, it must contain
  7672. the size specified in the input file, and the initial grid defined in
  7673. that file is centered in the larger resulting area.
  7674. If a filename is not specified, the size value defaults to "320x240"
  7675. (used for a randomly generated initial grid).
  7676. @item stitch
  7677. If set to 1, stitch the left and right grid edges together, and the
  7678. top and bottom edges also. Defaults to 1.
  7679. @item mold
  7680. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  7681. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  7682. value from 0 to 255.
  7683. @item life_color
  7684. Set the color of living (or new born) cells.
  7685. @item death_color
  7686. Set the color of dead cells. If @option{mold} is set, this is the first color
  7687. used to represent a dead cell.
  7688. @item mold_color
  7689. Set mold color, for definitely dead and moldy cells.
  7690. For the syntax of these 3 color options, check the "Color" section in the
  7691. ffmpeg-utils manual.
  7692. @end table
  7693. @subsection Examples
  7694. @itemize
  7695. @item
  7696. Read a grid from @file{pattern}, and center it on a grid of size
  7697. 300x300 pixels:
  7698. @example
  7699. life=f=pattern:s=300x300
  7700. @end example
  7701. @item
  7702. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  7703. @example
  7704. life=ratio=2/3:s=200x200
  7705. @end example
  7706. @item
  7707. Specify a custom rule for evolving a randomly generated grid:
  7708. @example
  7709. life=rule=S14/B34
  7710. @end example
  7711. @item
  7712. Full example with slow death effect (mold) using @command{ffplay}:
  7713. @example
  7714. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  7715. @end example
  7716. @end itemize
  7717. @anchor{color}
  7718. @anchor{haldclutsrc}
  7719. @anchor{nullsrc}
  7720. @anchor{rgbtestsrc}
  7721. @anchor{smptebars}
  7722. @anchor{smptehdbars}
  7723. @anchor{testsrc}
  7724. @section color, haldclutsrc, nullsrc, rgbtestsrc, smptebars, smptehdbars, testsrc
  7725. The @code{color} source provides an uniformly colored input.
  7726. The @code{haldclutsrc} source provides an identity Hald CLUT. See also
  7727. @ref{haldclut} filter.
  7728. The @code{nullsrc} source returns unprocessed video frames. It is
  7729. mainly useful to be employed in analysis / debugging tools, or as the
  7730. source for filters which ignore the input data.
  7731. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  7732. detecting RGB vs BGR issues. You should see a red, green and blue
  7733. stripe from top to bottom.
  7734. The @code{smptebars} source generates a color bars pattern, based on
  7735. the SMPTE Engineering Guideline EG 1-1990.
  7736. The @code{smptehdbars} source generates a color bars pattern, based on
  7737. the SMPTE RP 219-2002.
  7738. The @code{testsrc} source generates a test video pattern, showing a
  7739. color pattern, a scrolling gradient and a timestamp. This is mainly
  7740. intended for testing purposes.
  7741. The sources accept the following parameters:
  7742. @table @option
  7743. @item color, c
  7744. Specify the color of the source, only available in the @code{color}
  7745. source. For the syntax of this option, check the "Color" section in the
  7746. ffmpeg-utils manual.
  7747. @item level
  7748. Specify the level of the Hald CLUT, only available in the @code{haldclutsrc}
  7749. source. A level of @code{N} generates a picture of @code{N*N*N} by @code{N*N*N}
  7750. pixels to be used as identity matrix for 3D lookup tables. Each component is
  7751. coded on a @code{1/(N*N)} scale.
  7752. @item size, s
  7753. Specify the size of the sourced video. For the syntax of this option, check the
  7754. "Video size" section in the ffmpeg-utils manual. The default value is
  7755. "320x240".
  7756. This option is not available with the @code{haldclutsrc} filter.
  7757. @item rate, r
  7758. Specify the frame rate of the sourced video, as the number of frames
  7759. generated per second. It has to be a string in the format
  7760. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a floating point
  7761. number or a valid video frame rate abbreviation. The default value is
  7762. "25".
  7763. @item sar
  7764. Set the sample aspect ratio of the sourced video.
  7765. @item duration, d
  7766. Set the duration of the sourced video. See
  7767. @ref{time duration syntax,,the Time duration section in the ffmpeg-utils(1) manual,ffmpeg-utils}
  7768. for the accepted syntax.
  7769. If not specified, or the expressed duration is negative, the video is
  7770. supposed to be generated forever.
  7771. @item decimals, n
  7772. Set the number of decimals to show in the timestamp, only available in the
  7773. @code{testsrc} source.
  7774. The displayed timestamp value will correspond to the original
  7775. timestamp value multiplied by the power of 10 of the specified
  7776. value. Default value is 0.
  7777. @end table
  7778. For example the following:
  7779. @example
  7780. testsrc=duration=5.3:size=qcif:rate=10
  7781. @end example
  7782. will generate a video with a duration of 5.3 seconds, with size
  7783. 176x144 and a frame rate of 10 frames per second.
  7784. The following graph description will generate a red source
  7785. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  7786. frames per second.
  7787. @example
  7788. color=c=red@@0.2:s=qcif:r=10
  7789. @end example
  7790. If the input content is to be ignored, @code{nullsrc} can be used. The
  7791. following command generates noise in the luminance plane by employing
  7792. the @code{geq} filter:
  7793. @example
  7794. nullsrc=s=256x256, geq=random(1)*255:128:128
  7795. @end example
  7796. @subsection Commands
  7797. The @code{color} source supports the following commands:
  7798. @table @option
  7799. @item c, color
  7800. Set the color of the created image. Accepts the same syntax of the
  7801. corresponding @option{color} option.
  7802. @end table
  7803. @c man end VIDEO SOURCES
  7804. @chapter Video Sinks
  7805. @c man begin VIDEO SINKS
  7806. Below is a description of the currently available video sinks.
  7807. @section buffersink
  7808. Buffer video frames, and make them available to the end of the filter
  7809. graph.
  7810. This sink is mainly intended for programmatic use, in particular
  7811. through the interface defined in @file{libavfilter/buffersink.h}
  7812. or the options system.
  7813. It accepts a pointer to an AVBufferSinkContext structure, which
  7814. defines the incoming buffers' formats, to be passed as the opaque
  7815. parameter to @code{avfilter_init_filter} for initialization.
  7816. @section nullsink
  7817. Null video sink: do absolutely nothing with the input video. It is
  7818. mainly useful as a template and for use in analysis / debugging
  7819. tools.
  7820. @c man end VIDEO SINKS
  7821. @chapter Multimedia Filters
  7822. @c man begin MULTIMEDIA FILTERS
  7823. Below is a description of the currently available multimedia filters.
  7824. @section avectorscope
  7825. Convert input audio to a video output, representing the audio vector
  7826. scope.
  7827. The filter is used to measure the difference between channels of stereo
  7828. audio stream. A monoaural signal, consisting of identical left and right
  7829. signal, results in straight vertical line. Any stereo separation is visible
  7830. as a deviation from this line, creating a Lissajous figure.
  7831. If the straight (or deviation from it) but horizontal line appears this
  7832. indicates that the left and right channels are out of phase.
  7833. The filter accepts the following options:
  7834. @table @option
  7835. @item mode, m
  7836. Set the vectorscope mode.
  7837. Available values are:
  7838. @table @samp
  7839. @item lissajous
  7840. Lissajous rotated by 45 degrees.
  7841. @item lissajous_xy
  7842. Same as above but not rotated.
  7843. @end table
  7844. Default value is @samp{lissajous}.
  7845. @item size, s
  7846. Set the video size for the output. For the syntax of this option, check the "Video size"
  7847. section in the ffmpeg-utils manual. Default value is @code{400x400}.
  7848. @item rate, r
  7849. Set the output frame rate. Default value is @code{25}.
  7850. @item rc
  7851. @item gc
  7852. @item bc
  7853. Specify the red, green and blue contrast. Default values are @code{40}, @code{160} and @code{80}.
  7854. Allowed range is @code{[0, 255]}.
  7855. @item rf
  7856. @item gf
  7857. @item bf
  7858. Specify the red, green and blue fade. Default values are @code{15}, @code{10} and @code{5}.
  7859. Allowed range is @code{[0, 255]}.
  7860. @item zoom
  7861. Set the zoom factor. Default value is @code{1}. Allowed range is @code{[1, 10]}.
  7862. @end table
  7863. @subsection Examples
  7864. @itemize
  7865. @item
  7866. Complete example using @command{ffplay}:
  7867. @example
  7868. ffplay -f lavfi 'amovie=input.mp3, asplit [a][out1];
  7869. [a] avectorscope=zoom=1.3:rc=2:gc=200:bc=10:rf=1:gf=8:bf=7 [out0]'
  7870. @end example
  7871. @end itemize
  7872. @section concat
  7873. Concatenate audio and video streams, joining them together one after the
  7874. other.
  7875. The filter works on segments of synchronized video and audio streams. All
  7876. segments must have the same number of streams of each type, and that will
  7877. also be the number of streams at output.
  7878. The filter accepts the following options:
  7879. @table @option
  7880. @item n
  7881. Set the number of segments. Default is 2.
  7882. @item v
  7883. Set the number of output video streams, that is also the number of video
  7884. streams in each segment. Default is 1.
  7885. @item a
  7886. Set the number of output audio streams, that is also the number of audio
  7887. streams in each segment. Default is 0.
  7888. @item unsafe
  7889. Activate unsafe mode: do not fail if segments have a different format.
  7890. @end table
  7891. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  7892. @var{a} audio outputs.
  7893. There are @var{n}x(@var{v}+@var{a}) inputs: first the inputs for the first
  7894. segment, in the same order as the outputs, then the inputs for the second
  7895. segment, etc.
  7896. Related streams do not always have exactly the same duration, for various
  7897. reasons including codec frame size or sloppy authoring. For that reason,
  7898. related synchronized streams (e.g. a video and its audio track) should be
  7899. concatenated at once. The concat filter will use the duration of the longest
  7900. stream in each segment (except the last one), and if necessary pad shorter
  7901. audio streams with silence.
  7902. For this filter to work correctly, all segments must start at timestamp 0.
  7903. All corresponding streams must have the same parameters in all segments; the
  7904. filtering system will automatically select a common pixel format for video
  7905. streams, and a common sample format, sample rate and channel layout for
  7906. audio streams, but other settings, such as resolution, must be converted
  7907. explicitly by the user.
  7908. Different frame rates are acceptable but will result in variable frame rate
  7909. at output; be sure to configure the output file to handle it.
  7910. @subsection Examples
  7911. @itemize
  7912. @item
  7913. Concatenate an opening, an episode and an ending, all in bilingual version
  7914. (video in stream 0, audio in streams 1 and 2):
  7915. @example
  7916. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  7917. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  7918. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  7919. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  7920. @end example
  7921. @item
  7922. Concatenate two parts, handling audio and video separately, using the
  7923. (a)movie sources, and adjusting the resolution:
  7924. @example
  7925. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  7926. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  7927. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  7928. @end example
  7929. Note that a desync will happen at the stitch if the audio and video streams
  7930. do not have exactly the same duration in the first file.
  7931. @end itemize
  7932. @section ebur128
  7933. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  7934. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  7935. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  7936. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  7937. The filter also has a video output (see the @var{video} option) with a real
  7938. time graph to observe the loudness evolution. The graphic contains the logged
  7939. message mentioned above, so it is not printed anymore when this option is set,
  7940. unless the verbose logging is set. The main graphing area contains the
  7941. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  7942. the momentary loudness (400 milliseconds).
  7943. More information about the Loudness Recommendation EBU R128 on
  7944. @url{http://tech.ebu.ch/loudness}.
  7945. The filter accepts the following options:
  7946. @table @option
  7947. @item video
  7948. Activate the video output. The audio stream is passed unchanged whether this
  7949. option is set or no. The video stream will be the first output stream if
  7950. activated. Default is @code{0}.
  7951. @item size
  7952. Set the video size. This option is for video only. For the syntax of this
  7953. option, check the "Video size" section in the ffmpeg-utils manual. Default
  7954. and minimum resolution is @code{640x480}.
  7955. @item meter
  7956. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  7957. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  7958. other integer value between this range is allowed.
  7959. @item metadata
  7960. Set metadata injection. If set to @code{1}, the audio input will be segmented
  7961. into 100ms output frames, each of them containing various loudness information
  7962. in metadata. All the metadata keys are prefixed with @code{lavfi.r128.}.
  7963. Default is @code{0}.
  7964. @item framelog
  7965. Force the frame logging level.
  7966. Available values are:
  7967. @table @samp
  7968. @item info
  7969. information logging level
  7970. @item verbose
  7971. verbose logging level
  7972. @end table
  7973. By default, the logging level is set to @var{info}. If the @option{video} or
  7974. the @option{metadata} options are set, it switches to @var{verbose}.
  7975. @item peak
  7976. Set peak mode(s).
  7977. Available modes can be cumulated (the option is a @code{flag} type). Possible
  7978. values are:
  7979. @table @samp
  7980. @item none
  7981. Disable any peak mode (default).
  7982. @item sample
  7983. Enable sample-peak mode.
  7984. Simple peak mode looking for the higher sample value. It logs a message
  7985. for sample-peak (identified by @code{SPK}).
  7986. @item true
  7987. Enable true-peak mode.
  7988. If enabled, the peak lookup is done on an over-sampled version of the input
  7989. stream for better peak accuracy. It logs a message for true-peak.
  7990. (identified by @code{TPK}) and true-peak per frame (identified by @code{FTPK}).
  7991. This mode requires a build with @code{libswresample}.
  7992. @end table
  7993. @end table
  7994. @subsection Examples
  7995. @itemize
  7996. @item
  7997. Real-time graph using @command{ffplay}, with a EBU scale meter +18:
  7998. @example
  7999. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  8000. @end example
  8001. @item
  8002. Run an analysis with @command{ffmpeg}:
  8003. @example
  8004. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  8005. @end example
  8006. @end itemize
  8007. @section interleave, ainterleave
  8008. Temporally interleave frames from several inputs.
  8009. @code{interleave} works with video inputs, @code{ainterleave} with audio.
  8010. These filters read frames from several inputs and send the oldest
  8011. queued frame to the output.
  8012. Input streams must have a well defined, monotonically increasing frame
  8013. timestamp values.
  8014. In order to submit one frame to output, these filters need to enqueue
  8015. at least one frame for each input, so they cannot work in case one
  8016. input is not yet terminated and will not receive incoming frames.
  8017. For example consider the case when one input is a @code{select} filter
  8018. which always drop input frames. The @code{interleave} filter will keep
  8019. reading from that input, but it will never be able to send new frames
  8020. to output until the input will send an end-of-stream signal.
  8021. Also, depending on inputs synchronization, the filters will drop
  8022. frames in case one input receives more frames than the other ones, and
  8023. the queue is already filled.
  8024. These filters accept the following options:
  8025. @table @option
  8026. @item nb_inputs, n
  8027. Set the number of different inputs, it is 2 by default.
  8028. @end table
  8029. @subsection Examples
  8030. @itemize
  8031. @item
  8032. Interleave frames belonging to different streams using @command{ffmpeg}:
  8033. @example
  8034. ffmpeg -i bambi.avi -i pr0n.mkv -filter_complex "[0:v][1:v] interleave" out.avi
  8035. @end example
  8036. @item
  8037. Add flickering blur effect:
  8038. @example
  8039. select='if(gt(random(0), 0.2), 1, 2)':n=2 [tmp], boxblur=2:2, [tmp] interleave
  8040. @end example
  8041. @end itemize
  8042. @section perms, aperms
  8043. Set read/write permissions for the output frames.
  8044. These filters are mainly aimed at developers to test direct path in the
  8045. following filter in the filtergraph.
  8046. The filters accept the following options:
  8047. @table @option
  8048. @item mode
  8049. Select the permissions mode.
  8050. It accepts the following values:
  8051. @table @samp
  8052. @item none
  8053. Do nothing. This is the default.
  8054. @item ro
  8055. Set all the output frames read-only.
  8056. @item rw
  8057. Set all the output frames directly writable.
  8058. @item toggle
  8059. Make the frame read-only if writable, and writable if read-only.
  8060. @item random
  8061. Set each output frame read-only or writable randomly.
  8062. @end table
  8063. @item seed
  8064. Set the seed for the @var{random} mode, must be an integer included between
  8065. @code{0} and @code{UINT32_MAX}. If not specified, or if explicitly set to
  8066. @code{-1}, the filter will try to use a good random seed on a best effort
  8067. basis.
  8068. @end table
  8069. Note: in case of auto-inserted filter between the permission filter and the
  8070. following one, the permission might not be received as expected in that
  8071. following filter. Inserting a @ref{format} or @ref{aformat} filter before the
  8072. perms/aperms filter can avoid this problem.
  8073. @section select, aselect
  8074. Select frames to pass in output.
  8075. This filter accepts the following options:
  8076. @table @option
  8077. @item expr, e
  8078. Set expression, which is evaluated for each input frame.
  8079. If the expression is evaluated to zero, the frame is discarded.
  8080. If the evaluation result is negative or NaN, the frame is sent to the
  8081. first output; otherwise it is sent to the output with index
  8082. @code{ceil(val)-1}, assuming that the input index starts from 0.
  8083. For example a value of @code{1.2} corresponds to the output with index
  8084. @code{ceil(1.2)-1 = 2-1 = 1}, that is the second output.
  8085. @item outputs, n
  8086. Set the number of outputs. The output to which to send the selected
  8087. frame is based on the result of the evaluation. Default value is 1.
  8088. @end table
  8089. The expression can contain the following constants:
  8090. @table @option
  8091. @item n
  8092. The (sequential) number of the filtered frame, starting from 0.
  8093. @item selected_n
  8094. The (sequential) number of the selected frame, starting from 0.
  8095. @item prev_selected_n
  8096. The sequential number of the last selected frame. It's NAN if undefined.
  8097. @item TB
  8098. The timebase of the input timestamps.
  8099. @item pts
  8100. The PTS (Presentation TimeStamp) of the filtered video frame,
  8101. expressed in @var{TB} units. It's NAN if undefined.
  8102. @item t
  8103. The PTS of the filtered video frame,
  8104. expressed in seconds. It's NAN if undefined.
  8105. @item prev_pts
  8106. The PTS of the previously filtered video frame. It's NAN if undefined.
  8107. @item prev_selected_pts
  8108. The PTS of the last previously filtered video frame. It's NAN if undefined.
  8109. @item prev_selected_t
  8110. The PTS of the last previously selected video frame. It's NAN if undefined.
  8111. @item start_pts
  8112. The PTS of the first video frame in the video. It's NAN if undefined.
  8113. @item start_t
  8114. The time of the first video frame in the video. It's NAN if undefined.
  8115. @item pict_type @emph{(video only)}
  8116. The type of the filtered frame. It can assume one of the following
  8117. values:
  8118. @table @option
  8119. @item I
  8120. @item P
  8121. @item B
  8122. @item S
  8123. @item SI
  8124. @item SP
  8125. @item BI
  8126. @end table
  8127. @item interlace_type @emph{(video only)}
  8128. The frame interlace type. It can assume one of the following values:
  8129. @table @option
  8130. @item PROGRESSIVE
  8131. The frame is progressive (not interlaced).
  8132. @item TOPFIRST
  8133. The frame is top-field-first.
  8134. @item BOTTOMFIRST
  8135. The frame is bottom-field-first.
  8136. @end table
  8137. @item consumed_sample_n @emph{(audio only)}
  8138. the number of selected samples before the current frame
  8139. @item samples_n @emph{(audio only)}
  8140. the number of samples in the current frame
  8141. @item sample_rate @emph{(audio only)}
  8142. the input sample rate
  8143. @item key
  8144. This is 1 if the filtered frame is a key-frame, 0 otherwise.
  8145. @item pos
  8146. the position in the file of the filtered frame, -1 if the information
  8147. is not available (e.g. for synthetic video)
  8148. @item scene @emph{(video only)}
  8149. value between 0 and 1 to indicate a new scene; a low value reflects a low
  8150. probability for the current frame to introduce a new scene, while a higher
  8151. value means the current frame is more likely to be one (see the example below)
  8152. @end table
  8153. The default value of the select expression is "1".
  8154. @subsection Examples
  8155. @itemize
  8156. @item
  8157. Select all frames in input:
  8158. @example
  8159. select
  8160. @end example
  8161. The example above is the same as:
  8162. @example
  8163. select=1
  8164. @end example
  8165. @item
  8166. Skip all frames:
  8167. @example
  8168. select=0
  8169. @end example
  8170. @item
  8171. Select only I-frames:
  8172. @example
  8173. select='eq(pict_type\,I)'
  8174. @end example
  8175. @item
  8176. Select one frame every 100:
  8177. @example
  8178. select='not(mod(n\,100))'
  8179. @end example
  8180. @item
  8181. Select only frames contained in the 10-20 time interval:
  8182. @example
  8183. select=between(t\,10\,20)
  8184. @end example
  8185. @item
  8186. Select only I frames contained in the 10-20 time interval:
  8187. @example
  8188. select=between(t\,10\,20)*eq(pict_type\,I)
  8189. @end example
  8190. @item
  8191. Select frames with a minimum distance of 10 seconds:
  8192. @example
  8193. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  8194. @end example
  8195. @item
  8196. Use aselect to select only audio frames with samples number > 100:
  8197. @example
  8198. aselect='gt(samples_n\,100)'
  8199. @end example
  8200. @item
  8201. Create a mosaic of the first scenes:
  8202. @example
  8203. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  8204. @end example
  8205. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  8206. choice.
  8207. @item
  8208. Send even and odd frames to separate outputs, and compose them:
  8209. @example
  8210. select=n=2:e='mod(n, 2)+1' [odd][even]; [odd] pad=h=2*ih [tmp]; [tmp][even] overlay=y=h
  8211. @end example
  8212. @end itemize
  8213. @section sendcmd, asendcmd
  8214. Send commands to filters in the filtergraph.
  8215. These filters read commands to be sent to other filters in the
  8216. filtergraph.
  8217. @code{sendcmd} must be inserted between two video filters,
  8218. @code{asendcmd} must be inserted between two audio filters, but apart
  8219. from that they act the same way.
  8220. The specification of commands can be provided in the filter arguments
  8221. with the @var{commands} option, or in a file specified by the
  8222. @var{filename} option.
  8223. These filters accept the following options:
  8224. @table @option
  8225. @item commands, c
  8226. Set the commands to be read and sent to the other filters.
  8227. @item filename, f
  8228. Set the filename of the commands to be read and sent to the other
  8229. filters.
  8230. @end table
  8231. @subsection Commands syntax
  8232. A commands description consists of a sequence of interval
  8233. specifications, comprising a list of commands to be executed when a
  8234. particular event related to that interval occurs. The occurring event
  8235. is typically the current frame time entering or leaving a given time
  8236. interval.
  8237. An interval is specified by the following syntax:
  8238. @example
  8239. @var{START}[-@var{END}] @var{COMMANDS};
  8240. @end example
  8241. The time interval is specified by the @var{START} and @var{END} times.
  8242. @var{END} is optional and defaults to the maximum time.
  8243. The current frame time is considered within the specified interval if
  8244. it is included in the interval [@var{START}, @var{END}), that is when
  8245. the time is greater or equal to @var{START} and is lesser than
  8246. @var{END}.
  8247. @var{COMMANDS} consists of a sequence of one or more command
  8248. specifications, separated by ",", relating to that interval. The
  8249. syntax of a command specification is given by:
  8250. @example
  8251. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  8252. @end example
  8253. @var{FLAGS} is optional and specifies the type of events relating to
  8254. the time interval which enable sending the specified command, and must
  8255. be a non-null sequence of identifier flags separated by "+" or "|" and
  8256. enclosed between "[" and "]".
  8257. The following flags are recognized:
  8258. @table @option
  8259. @item enter
  8260. The command is sent when the current frame timestamp enters the
  8261. specified interval. In other words, the command is sent when the
  8262. previous frame timestamp was not in the given interval, and the
  8263. current is.
  8264. @item leave
  8265. The command is sent when the current frame timestamp leaves the
  8266. specified interval. In other words, the command is sent when the
  8267. previous frame timestamp was in the given interval, and the
  8268. current is not.
  8269. @end table
  8270. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  8271. assumed.
  8272. @var{TARGET} specifies the target of the command, usually the name of
  8273. the filter class or a specific filter instance name.
  8274. @var{COMMAND} specifies the name of the command for the target filter.
  8275. @var{ARG} is optional and specifies the optional list of argument for
  8276. the given @var{COMMAND}.
  8277. Between one interval specification and another, whitespaces, or
  8278. sequences of characters starting with @code{#} until the end of line,
  8279. are ignored and can be used to annotate comments.
  8280. A simplified BNF description of the commands specification syntax
  8281. follows:
  8282. @example
  8283. @var{COMMAND_FLAG} ::= "enter" | "leave"
  8284. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  8285. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  8286. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  8287. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  8288. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  8289. @end example
  8290. @subsection Examples
  8291. @itemize
  8292. @item
  8293. Specify audio tempo change at second 4:
  8294. @example
  8295. asendcmd=c='4.0 atempo tempo 1.5',atempo
  8296. @end example
  8297. @item
  8298. Specify a list of drawtext and hue commands in a file.
  8299. @example
  8300. # show text in the interval 5-10
  8301. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  8302. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  8303. # desaturate the image in the interval 15-20
  8304. 15.0-20.0 [enter] hue s 0,
  8305. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  8306. [leave] hue s 1,
  8307. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  8308. # apply an exponential saturation fade-out effect, starting from time 25
  8309. 25 [enter] hue s exp(25-t)
  8310. @end example
  8311. A filtergraph allowing to read and process the above command list
  8312. stored in a file @file{test.cmd}, can be specified with:
  8313. @example
  8314. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  8315. @end example
  8316. @end itemize
  8317. @anchor{setpts}
  8318. @section setpts, asetpts
  8319. Change the PTS (presentation timestamp) of the input frames.
  8320. @code{setpts} works on video frames, @code{asetpts} on audio frames.
  8321. This filter accepts the following options:
  8322. @table @option
  8323. @item expr
  8324. The expression which is evaluated for each frame to construct its timestamp.
  8325. @end table
  8326. The expression is evaluated through the eval API and can contain the following
  8327. constants:
  8328. @table @option
  8329. @item FRAME_RATE
  8330. frame rate, only defined for constant frame-rate video
  8331. @item PTS
  8332. The presentation timestamp in input
  8333. @item N
  8334. The count of the input frame for video or the number of consumed samples,
  8335. not including the current frame for audio, starting from 0.
  8336. @item NB_CONSUMED_SAMPLES
  8337. The number of consumed samples, not including the current frame (only
  8338. audio)
  8339. @item NB_SAMPLES, S
  8340. The number of samples in the current frame (only audio)
  8341. @item SAMPLE_RATE, SR
  8342. The audio sample rate.
  8343. @item STARTPTS
  8344. The PTS of the first frame.
  8345. @item STARTT
  8346. the time in seconds of the first frame
  8347. @item INTERLACED
  8348. State whether the current frame is interlaced.
  8349. @item T
  8350. the time in seconds of the current frame
  8351. @item POS
  8352. original position in the file of the frame, or undefined if undefined
  8353. for the current frame
  8354. @item PREV_INPTS
  8355. The previous input PTS.
  8356. @item PREV_INT
  8357. previous input time in seconds
  8358. @item PREV_OUTPTS
  8359. The previous output PTS.
  8360. @item PREV_OUTT
  8361. previous output time in seconds
  8362. @item RTCTIME
  8363. The wallclock (RTC) time in microseconds. This is deprecated, use time(0)
  8364. instead.
  8365. @item RTCSTART
  8366. The wallclock (RTC) time at the start of the movie in microseconds.
  8367. @item TB
  8368. The timebase of the input timestamps.
  8369. @end table
  8370. @subsection Examples
  8371. @itemize
  8372. @item
  8373. Start counting PTS from zero
  8374. @example
  8375. setpts=PTS-STARTPTS
  8376. @end example
  8377. @item
  8378. Apply fast motion effect:
  8379. @example
  8380. setpts=0.5*PTS
  8381. @end example
  8382. @item
  8383. Apply slow motion effect:
  8384. @example
  8385. setpts=2.0*PTS
  8386. @end example
  8387. @item
  8388. Set fixed rate of 25 frames per second:
  8389. @example
  8390. setpts=N/(25*TB)
  8391. @end example
  8392. @item
  8393. Set fixed rate 25 fps with some jitter:
  8394. @example
  8395. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  8396. @end example
  8397. @item
  8398. Apply an offset of 10 seconds to the input PTS:
  8399. @example
  8400. setpts=PTS+10/TB
  8401. @end example
  8402. @item
  8403. Generate timestamps from a "live source" and rebase onto the current timebase:
  8404. @example
  8405. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)'
  8406. @end example
  8407. @item
  8408. Generate timestamps by counting samples:
  8409. @example
  8410. asetpts=N/SR/TB
  8411. @end example
  8412. @end itemize
  8413. @section settb, asettb
  8414. Set the timebase to use for the output frames timestamps.
  8415. It is mainly useful for testing timebase configuration.
  8416. It accepts the following parameters:
  8417. @table @option
  8418. @item expr, tb
  8419. The expression which is evaluated into the output timebase.
  8420. @end table
  8421. The value for @option{tb} is an arithmetic expression representing a
  8422. rational. The expression can contain the constants "AVTB" (the default
  8423. timebase), "intb" (the input timebase) and "sr" (the sample rate,
  8424. audio only). Default value is "intb".
  8425. @subsection Examples
  8426. @itemize
  8427. @item
  8428. Set the timebase to 1/25:
  8429. @example
  8430. settb=expr=1/25
  8431. @end example
  8432. @item
  8433. Set the timebase to 1/10:
  8434. @example
  8435. settb=expr=0.1
  8436. @end example
  8437. @item
  8438. Set the timebase to 1001/1000:
  8439. @example
  8440. settb=1+0.001
  8441. @end example
  8442. @item
  8443. Set the timebase to 2*intb:
  8444. @example
  8445. settb=2*intb
  8446. @end example
  8447. @item
  8448. Set the default timebase value:
  8449. @example
  8450. settb=AVTB
  8451. @end example
  8452. @end itemize
  8453. @section showcqt
  8454. Convert input audio to a video output representing
  8455. frequency spectrum logarithmically (using constant Q transform with
  8456. Brown-Puckette algorithm), with musical tone scale, from E0 to D#10 (10 octaves).
  8457. The filter accepts the following options:
  8458. @table @option
  8459. @item volume
  8460. Specify transform volume (multiplier) expression. The expression can contain
  8461. variables:
  8462. @table @option
  8463. @item frequency, freq, f
  8464. the frequency where transform is evaluated
  8465. @item timeclamp, tc
  8466. value of timeclamp option
  8467. @end table
  8468. and functions:
  8469. @table @option
  8470. @item a_weighting(f)
  8471. A-weighting of equal loudness
  8472. @item b_weighting(f)
  8473. B-weighting of equal loudness
  8474. @item c_weighting(f)
  8475. C-weighting of equal loudness
  8476. @end table
  8477. Default value is @code{16}.
  8478. @item tlength
  8479. Specify transform length expression. The expression can contain variables:
  8480. @table @option
  8481. @item frequency, freq, f
  8482. the frequency where transform is evaluated
  8483. @item timeclamp, tc
  8484. value of timeclamp option
  8485. @end table
  8486. Default value is @code{384/f*tc/(384/f+tc)}.
  8487. @item timeclamp
  8488. Specify the transform timeclamp. At low frequency, there is trade-off between
  8489. accuracy in time domain and frequency domain. If timeclamp is lower,
  8490. event in time domain is represented more accurately (such as fast bass drum),
  8491. otherwise event in frequency domain is represented more accurately
  8492. (such as bass guitar). Acceptable value is [0.1, 1.0]. Default value is @code{0.17}.
  8493. @item coeffclamp
  8494. Specify the transform coeffclamp. If coeffclamp is lower, transform is
  8495. more accurate, otherwise transform is faster. Acceptable value is [0.1, 10.0].
  8496. Default value is @code{1.0}.
  8497. @item gamma
  8498. Specify gamma. Lower gamma makes the spectrum more contrast, higher gamma
  8499. makes the spectrum having more range. Acceptable value is [1.0, 7.0].
  8500. Default value is @code{3.0}.
  8501. @item fontfile
  8502. Specify font file for use with freetype. If not specified, use embedded font.
  8503. @item fontcolor
  8504. Specify font color expression. This is arithmetic expression that should return
  8505. integer value 0xRRGGBB. The expression can contain variables:
  8506. @table @option
  8507. @item frequency, freq, f
  8508. the frequency where transform is evaluated
  8509. @item timeclamp, tc
  8510. value of timeclamp option
  8511. @end table
  8512. and functions:
  8513. @table @option
  8514. @item midi(f)
  8515. midi number of frequency f, some midi numbers: E0(16), C1(24), C2(36), A4(69)
  8516. @item r(x), g(x), b(x)
  8517. red, green, and blue value of intensity x
  8518. @end table
  8519. Default value is @code{st(0, (midi(f)-59.5)/12);
  8520. st(1, if(between(ld(0),0,1), 0.5-0.5*cos(2*PI*ld(0)), 0));
  8521. r(1-ld(1)) + b(ld(1))}
  8522. @item fullhd
  8523. If set to 1 (the default), the video size is 1920x1080 (full HD),
  8524. if set to 0, the video size is 960x540. Use this option to make CPU usage lower.
  8525. @item fps
  8526. Specify video fps. Default value is @code{25}.
  8527. @item count
  8528. Specify number of transform per frame, so there are fps*count transforms
  8529. per second. Note that audio data rate must be divisible by fps*count.
  8530. Default value is @code{6}.
  8531. @end table
  8532. @subsection Examples
  8533. @itemize
  8534. @item
  8535. Playing audio while showing the spectrum:
  8536. @example
  8537. ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt [out0]'
  8538. @end example
  8539. @item
  8540. Same as above, but with frame rate 30 fps:
  8541. @example
  8542. ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt=fps=30:count=5 [out0]'
  8543. @end example
  8544. @item
  8545. Playing at 960x540 and lower CPU usage:
  8546. @example
  8547. ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt=fullhd=0:count=3 [out0]'
  8548. @end example
  8549. @item
  8550. A1 and its harmonics: A1, A2, (near)E3, A3:
  8551. @example
  8552. ffplay -f lavfi 'aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
  8553. asplit[a][out1]; [a] showcqt [out0]'
  8554. @end example
  8555. @item
  8556. Same as above, but with more accuracy in frequency domain (and slower):
  8557. @example
  8558. ffplay -f lavfi 'aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
  8559. asplit[a][out1]; [a] showcqt=timeclamp=0.5 [out0]'
  8560. @end example
  8561. @item
  8562. B-weighting of equal loudness
  8563. @example
  8564. volume=16*b_weighting(f)
  8565. @end example
  8566. @item
  8567. Lower Q factor
  8568. @example
  8569. tlength=100/f*tc/(100/f+tc)
  8570. @end example
  8571. @item
  8572. Custom fontcolor, C-note is colored green, others are colored blue
  8573. @example
  8574. fontcolor='if(mod(floor(midi(f)+0.5),12), 0x0000FF, g(1))'
  8575. @end example
  8576. @end itemize
  8577. @section showspectrum
  8578. Convert input audio to a video output, representing the audio frequency
  8579. spectrum.
  8580. The filter accepts the following options:
  8581. @table @option
  8582. @item size, s
  8583. Specify the video size for the output. For the syntax of this option, check
  8584. the "Video size" section in the ffmpeg-utils manual. Default value is
  8585. @code{640x512}.
  8586. @item slide
  8587. Specify how the spectrum should slide along the window.
  8588. It accepts the following values:
  8589. @table @samp
  8590. @item replace
  8591. the samples start again on the left when they reach the right
  8592. @item scroll
  8593. the samples scroll from right to left
  8594. @item fullframe
  8595. frames are only produced when the samples reach the right
  8596. @end table
  8597. Default value is @code{replace}.
  8598. @item mode
  8599. Specify display mode.
  8600. It accepts the following values:
  8601. @table @samp
  8602. @item combined
  8603. all channels are displayed in the same row
  8604. @item separate
  8605. all channels are displayed in separate rows
  8606. @end table
  8607. Default value is @samp{combined}.
  8608. @item color
  8609. Specify display color mode.
  8610. It accepts the following values:
  8611. @table @samp
  8612. @item channel
  8613. each channel is displayed in a separate color
  8614. @item intensity
  8615. each channel is is displayed using the same color scheme
  8616. @end table
  8617. Default value is @samp{channel}.
  8618. @item scale
  8619. Specify scale used for calculating intensity color values.
  8620. It accepts the following values:
  8621. @table @samp
  8622. @item lin
  8623. linear
  8624. @item sqrt
  8625. square root, default
  8626. @item cbrt
  8627. cubic root
  8628. @item log
  8629. logarithmic
  8630. @end table
  8631. Default value is @samp{sqrt}.
  8632. @item saturation
  8633. Set saturation modifier for displayed colors. Negative values provide
  8634. alternative color scheme. @code{0} is no saturation at all.
  8635. Saturation must be in [-10.0, 10.0] range.
  8636. Default value is @code{1}.
  8637. @item win_func
  8638. Set window function.
  8639. It accepts the following values:
  8640. @table @samp
  8641. @item none
  8642. No samples pre-processing (do not expect this to be faster)
  8643. @item hann
  8644. Hann window
  8645. @item hamming
  8646. Hamming window
  8647. @item blackman
  8648. Blackman window
  8649. @end table
  8650. Default value is @code{hann}.
  8651. @end table
  8652. The usage is very similar to the showwaves filter; see the examples in that
  8653. section.
  8654. @subsection Examples
  8655. @itemize
  8656. @item
  8657. Large window with logarithmic color scaling:
  8658. @example
  8659. showspectrum=s=1280x480:scale=log
  8660. @end example
  8661. @item
  8662. Complete example for a colored and sliding spectrum per channel using @command{ffplay}:
  8663. @example
  8664. ffplay -f lavfi 'amovie=input.mp3, asplit [a][out1];
  8665. [a] showspectrum=mode=separate:color=intensity:slide=1:scale=cbrt [out0]'
  8666. @end example
  8667. @end itemize
  8668. @section showwaves
  8669. Convert input audio to a video output, representing the samples waves.
  8670. The filter accepts the following options:
  8671. @table @option
  8672. @item size, s
  8673. Specify the video size for the output. For the syntax of this option, check
  8674. the "Video size" section in the ffmpeg-utils manual. Default value
  8675. is "600x240".
  8676. @item mode
  8677. Set display mode.
  8678. Available values are:
  8679. @table @samp
  8680. @item point
  8681. Draw a point for each sample.
  8682. @item line
  8683. Draw a vertical line for each sample.
  8684. @item p2p
  8685. Draw a point for each sample and a line between them.
  8686. @item cline
  8687. Draw a centered vertical line for each sample.
  8688. @end table
  8689. Default value is @code{point}.
  8690. @item n
  8691. Set the number of samples which are printed on the same column. A
  8692. larger value will decrease the frame rate. Must be a positive
  8693. integer. This option can be set only if the value for @var{rate}
  8694. is not explicitly specified.
  8695. @item rate, r
  8696. Set the (approximate) output frame rate. This is done by setting the
  8697. option @var{n}. Default value is "25".
  8698. @item split_channels
  8699. Set if channels should be drawn separately or overlap. Default value is 0.
  8700. @end table
  8701. @subsection Examples
  8702. @itemize
  8703. @item
  8704. Output the input file audio and the corresponding video representation
  8705. at the same time:
  8706. @example
  8707. amovie=a.mp3,asplit[out0],showwaves[out1]
  8708. @end example
  8709. @item
  8710. Create a synthetic signal and show it with showwaves, forcing a
  8711. frame rate of 30 frames per second:
  8712. @example
  8713. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  8714. @end example
  8715. @end itemize
  8716. @section split, asplit
  8717. Split input into several identical outputs.
  8718. @code{asplit} works with audio input, @code{split} with video.
  8719. The filter accepts a single parameter which specifies the number of outputs. If
  8720. unspecified, it defaults to 2.
  8721. @subsection Examples
  8722. @itemize
  8723. @item
  8724. Create two separate outputs from the same input:
  8725. @example
  8726. [in] split [out0][out1]
  8727. @end example
  8728. @item
  8729. To create 3 or more outputs, you need to specify the number of
  8730. outputs, like in:
  8731. @example
  8732. [in] asplit=3 [out0][out1][out2]
  8733. @end example
  8734. @item
  8735. Create two separate outputs from the same input, one cropped and
  8736. one padded:
  8737. @example
  8738. [in] split [splitout1][splitout2];
  8739. [splitout1] crop=100:100:0:0 [cropout];
  8740. [splitout2] pad=200:200:100:100 [padout];
  8741. @end example
  8742. @item
  8743. Create 5 copies of the input audio with @command{ffmpeg}:
  8744. @example
  8745. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  8746. @end example
  8747. @end itemize
  8748. @section zmq, azmq
  8749. Receive commands sent through a libzmq client, and forward them to
  8750. filters in the filtergraph.
  8751. @code{zmq} and @code{azmq} work as a pass-through filters. @code{zmq}
  8752. must be inserted between two video filters, @code{azmq} between two
  8753. audio filters.
  8754. To enable these filters you need to install the libzmq library and
  8755. headers and configure FFmpeg with @code{--enable-libzmq}.
  8756. For more information about libzmq see:
  8757. @url{http://www.zeromq.org/}
  8758. The @code{zmq} and @code{azmq} filters work as a libzmq server, which
  8759. receives messages sent through a network interface defined by the
  8760. @option{bind_address} option.
  8761. The received message must be in the form:
  8762. @example
  8763. @var{TARGET} @var{COMMAND} [@var{ARG}]
  8764. @end example
  8765. @var{TARGET} specifies the target of the command, usually the name of
  8766. the filter class or a specific filter instance name.
  8767. @var{COMMAND} specifies the name of the command for the target filter.
  8768. @var{ARG} is optional and specifies the optional argument list for the
  8769. given @var{COMMAND}.
  8770. Upon reception, the message is processed and the corresponding command
  8771. is injected into the filtergraph. Depending on the result, the filter
  8772. will send a reply to the client, adopting the format:
  8773. @example
  8774. @var{ERROR_CODE} @var{ERROR_REASON}
  8775. @var{MESSAGE}
  8776. @end example
  8777. @var{MESSAGE} is optional.
  8778. @subsection Examples
  8779. Look at @file{tools/zmqsend} for an example of a zmq client which can
  8780. be used to send commands processed by these filters.
  8781. Consider the following filtergraph generated by @command{ffplay}
  8782. @example
  8783. ffplay -dumpgraph 1 -f lavfi "
  8784. color=s=100x100:c=red [l];
  8785. color=s=100x100:c=blue [r];
  8786. nullsrc=s=200x100, zmq [bg];
  8787. [bg][l] overlay [bg+l];
  8788. [bg+l][r] overlay=x=100 "
  8789. @end example
  8790. To change the color of the left side of the video, the following
  8791. command can be used:
  8792. @example
  8793. echo Parsed_color_0 c yellow | tools/zmqsend
  8794. @end example
  8795. To change the right side:
  8796. @example
  8797. echo Parsed_color_1 c pink | tools/zmqsend
  8798. @end example
  8799. @c man end MULTIMEDIA FILTERS
  8800. @chapter Multimedia Sources
  8801. @c man begin MULTIMEDIA SOURCES
  8802. Below is a description of the currently available multimedia sources.
  8803. @section amovie
  8804. This is the same as @ref{movie} source, except it selects an audio
  8805. stream by default.
  8806. @anchor{movie}
  8807. @section movie
  8808. Read audio and/or video stream(s) from a movie container.
  8809. It accepts the following parameters:
  8810. @table @option
  8811. @item filename
  8812. The name of the resource to read (not necessarily a file; it can also be a
  8813. device or a stream accessed through some protocol).
  8814. @item format_name, f
  8815. Specifies the format assumed for the movie to read, and can be either
  8816. the name of a container or an input device. If not specified, the
  8817. format is guessed from @var{movie_name} or by probing.
  8818. @item seek_point, sp
  8819. Specifies the seek point in seconds. The frames will be output
  8820. starting from this seek point. The parameter is evaluated with
  8821. @code{av_strtod}, so the numerical value may be suffixed by an IS
  8822. postfix. The default value is "0".
  8823. @item streams, s
  8824. Specifies the streams to read. Several streams can be specified,
  8825. separated by "+". The source will then have as many outputs, in the
  8826. same order. The syntax is explained in the ``Stream specifiers''
  8827. section in the ffmpeg manual. Two special names, "dv" and "da" specify
  8828. respectively the default (best suited) video and audio stream. Default
  8829. is "dv", or "da" if the filter is called as "amovie".
  8830. @item stream_index, si
  8831. Specifies the index of the video stream to read. If the value is -1,
  8832. the most suitable video stream will be automatically selected. The default
  8833. value is "-1". Deprecated. If the filter is called "amovie", it will select
  8834. audio instead of video.
  8835. @item loop
  8836. Specifies how many times to read the stream in sequence.
  8837. If the value is less than 1, the stream will be read again and again.
  8838. Default value is "1".
  8839. Note that when the movie is looped the source timestamps are not
  8840. changed, so it will generate non monotonically increasing timestamps.
  8841. @end table
  8842. It allows overlaying a second video on top of the main input of
  8843. a filtergraph, as shown in this graph:
  8844. @example
  8845. input -----------> deltapts0 --> overlay --> output
  8846. ^
  8847. |
  8848. movie --> scale--> deltapts1 -------+
  8849. @end example
  8850. @subsection Examples
  8851. @itemize
  8852. @item
  8853. Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it
  8854. on top of the input labelled "in":
  8855. @example
  8856. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [over];
  8857. [in] setpts=PTS-STARTPTS [main];
  8858. [main][over] overlay=16:16 [out]
  8859. @end example
  8860. @item
  8861. Read from a video4linux2 device, and overlay it on top of the input
  8862. labelled "in":
  8863. @example
  8864. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [over];
  8865. [in] setpts=PTS-STARTPTS [main];
  8866. [main][over] overlay=16:16 [out]
  8867. @end example
  8868. @item
  8869. Read the first video stream and the audio stream with id 0x81 from
  8870. dvd.vob; the video is connected to the pad named "video" and the audio is
  8871. connected to the pad named "audio":
  8872. @example
  8873. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  8874. @end example
  8875. @end itemize
  8876. @c man end MULTIMEDIA SOURCES