You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

764 lines
30KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. void fdct_ifast (DCTELEM *data);
  36. void fdct_ifast248 (DCTELEM *data);
  37. void ff_jpeg_fdct_islow (DCTELEM *data);
  38. void ff_fdct248_islow (DCTELEM *data);
  39. void j_rev_dct (DCTELEM *data);
  40. void j_rev_dct4 (DCTELEM *data);
  41. void j_rev_dct2 (DCTELEM *data);
  42. void j_rev_dct1 (DCTELEM *data);
  43. void ff_wmv2_idct_c(DCTELEM *data);
  44. void ff_fdct_mmx(DCTELEM *block);
  45. void ff_fdct_mmx2(DCTELEM *block);
  46. void ff_fdct_sse2(DCTELEM *block);
  47. void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
  48. void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
  49. void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  50. void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
  51. void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
  52. void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
  53. void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  54. void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  55. void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  56. void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
  57. void ff_h264_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qmul);
  58. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp);
  59. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  60. /* encoding scans */
  61. extern const uint8_t ff_alternate_horizontal_scan[64];
  62. extern const uint8_t ff_alternate_vertical_scan[64];
  63. extern const uint8_t ff_zigzag_direct[64];
  64. extern const uint8_t ff_zigzag248_direct[64];
  65. /* pixel operations */
  66. #define MAX_NEG_CROP 1024
  67. /* temporary */
  68. extern uint32_t ff_squareTbl[512];
  69. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  70. void ff_put_pixels8x8_c(uint8_t *dst, uint8_t *src, int stride);
  71. void ff_avg_pixels8x8_c(uint8_t *dst, uint8_t *src, int stride);
  72. void ff_put_pixels16x16_c(uint8_t *dst, uint8_t *src, int stride);
  73. void ff_avg_pixels16x16_c(uint8_t *dst, uint8_t *src, int stride);
  74. /* VP3 DSP functions */
  75. void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
  76. void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  77. void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  78. void ff_vp3_idct_dc_add_c(uint8_t *dest/*align 8*/, int line_size, const DCTELEM *block/*align 16*/);
  79. void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  80. void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
  81. /* Bink functions */
  82. void ff_bink_idct_c (DCTELEM *block);
  83. void ff_bink_idct_add_c(uint8_t *dest, int linesize, DCTELEM *block);
  84. void ff_bink_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block);
  85. /* EA functions */
  86. void ff_ea_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block);
  87. /* 1/2^n downscaling functions from imgconvert.c */
  88. #if LIBAVCODEC_VERSION_MAJOR < 53
  89. /**
  90. * @deprecated Use av_image_copy_plane() instead.
  91. */
  92. attribute_deprecated
  93. void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  94. #endif
  95. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  96. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  97. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  98. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  99. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  100. /* minimum alignment rules ;)
  101. If you notice errors in the align stuff, need more alignment for some ASM code
  102. for some CPU or need to use a function with less aligned data then send a mail
  103. to the ffmpeg-devel mailing list, ...
  104. !warning These alignments might not match reality, (missing attribute((align))
  105. stuff somewhere possible).
  106. I (Michael) did not check them, these are just the alignments which I think
  107. could be reached easily ...
  108. !future video codecs might need functions with less strict alignment
  109. */
  110. /*
  111. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  112. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  113. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  114. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  115. void clear_blocks_c(DCTELEM *blocks);
  116. */
  117. /* add and put pixel (decoding) */
  118. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  119. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
  120. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  121. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  122. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  123. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  124. typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h);
  125. #define DEF_OLD_QPEL(name)\
  126. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  127. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  128. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  129. DEF_OLD_QPEL(qpel16_mc11_old_c)
  130. DEF_OLD_QPEL(qpel16_mc31_old_c)
  131. DEF_OLD_QPEL(qpel16_mc12_old_c)
  132. DEF_OLD_QPEL(qpel16_mc32_old_c)
  133. DEF_OLD_QPEL(qpel16_mc13_old_c)
  134. DEF_OLD_QPEL(qpel16_mc33_old_c)
  135. DEF_OLD_QPEL(qpel8_mc11_old_c)
  136. DEF_OLD_QPEL(qpel8_mc31_old_c)
  137. DEF_OLD_QPEL(qpel8_mc12_old_c)
  138. DEF_OLD_QPEL(qpel8_mc32_old_c)
  139. DEF_OLD_QPEL(qpel8_mc13_old_c)
  140. DEF_OLD_QPEL(qpel8_mc33_old_c)
  141. #define CALL_2X_PIXELS(a, b, n)\
  142. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  143. b(block , pixels , line_size, h);\
  144. b(block+n, pixels+n, line_size, h);\
  145. }
  146. /* motion estimation */
  147. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
  148. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  149. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  150. /**
  151. * Scantable.
  152. */
  153. typedef struct ScanTable{
  154. const uint8_t *scantable;
  155. uint8_t permutated[64];
  156. uint8_t raster_end[64];
  157. #if ARCH_PPC
  158. /** Used by dct_quantize_altivec to find last-non-zero */
  159. DECLARE_ALIGNED(16, uint8_t, inverse)[64];
  160. #endif
  161. } ScanTable;
  162. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  163. void ff_emulated_edge_mc(uint8_t *buf, const uint8_t *src, int linesize,
  164. int block_w, int block_h,
  165. int src_x, int src_y, int w, int h);
  166. /**
  167. * DSPContext.
  168. */
  169. typedef struct DSPContext {
  170. /* pixel ops : interface with DCT */
  171. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  172. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  173. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  174. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  175. void (*put_pixels_nonclamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  176. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  177. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  178. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  179. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  180. /**
  181. * Motion estimation with emulated edge values.
  182. * @param buf pointer to destination buffer (unaligned)
  183. * @param src pointer to pixel source (unaligned)
  184. * @param linesize width (in pixels) for src/buf
  185. * @param block_w number of pixels (per row) to copy to buf
  186. * @param block_h nummber of pixel rows to copy to buf
  187. * @param src_x offset of src to start of row - this may be negative
  188. * @param src_y offset of src to top of image - this may be negative
  189. * @param w width of src in pixels
  190. * @param h height of src in pixels
  191. */
  192. void (*emulated_edge_mc)(uint8_t *buf, const uint8_t *src, int linesize,
  193. int block_w, int block_h,
  194. int src_x, int src_y, int w, int h);
  195. /**
  196. * translational global motion compensation.
  197. */
  198. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  199. /**
  200. * global motion compensation.
  201. */
  202. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  203. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  204. void (*clear_block)(DCTELEM *block/*align 16*/);
  205. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  206. int (*pix_sum)(uint8_t * pix, int line_size);
  207. int (*pix_norm1)(uint8_t * pix, int line_size);
  208. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  209. me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
  210. me_cmp_func sse[6];
  211. me_cmp_func hadamard8_diff[6];
  212. me_cmp_func dct_sad[6];
  213. me_cmp_func quant_psnr[6];
  214. me_cmp_func bit[6];
  215. me_cmp_func rd[6];
  216. me_cmp_func vsad[6];
  217. me_cmp_func vsse[6];
  218. me_cmp_func nsse[6];
  219. me_cmp_func w53[6];
  220. me_cmp_func w97[6];
  221. me_cmp_func dct_max[6];
  222. me_cmp_func dct264_sad[6];
  223. me_cmp_func me_pre_cmp[6];
  224. me_cmp_func me_cmp[6];
  225. me_cmp_func me_sub_cmp[6];
  226. me_cmp_func mb_cmp[6];
  227. me_cmp_func ildct_cmp[6]; //only width 16 used
  228. me_cmp_func frame_skip_cmp[6]; //only width 8 used
  229. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  230. int size);
  231. /**
  232. * Halfpel motion compensation with rounding (a+b+1)>>1.
  233. * this is an array[4][4] of motion compensation functions for 4
  234. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  235. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  236. * @param block destination where the result is stored
  237. * @param pixels source
  238. * @param line_size number of bytes in a horizontal line of block
  239. * @param h height
  240. */
  241. op_pixels_func put_pixels_tab[4][4];
  242. /**
  243. * Halfpel motion compensation with rounding (a+b+1)>>1.
  244. * This is an array[4][4] of motion compensation functions for 4
  245. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  246. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  247. * @param block destination into which the result is averaged (a+b+1)>>1
  248. * @param pixels source
  249. * @param line_size number of bytes in a horizontal line of block
  250. * @param h height
  251. */
  252. op_pixels_func avg_pixels_tab[4][4];
  253. /**
  254. * Halfpel motion compensation with no rounding (a+b)>>1.
  255. * this is an array[2][4] of motion compensation functions for 2
  256. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  257. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  258. * @param block destination where the result is stored
  259. * @param pixels source
  260. * @param line_size number of bytes in a horizontal line of block
  261. * @param h height
  262. */
  263. op_pixels_func put_no_rnd_pixels_tab[4][4];
  264. /**
  265. * Halfpel motion compensation with no rounding (a+b)>>1.
  266. * this is an array[2][4] of motion compensation functions for 2
  267. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  268. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  269. * @param block destination into which the result is averaged (a+b)>>1
  270. * @param pixels source
  271. * @param line_size number of bytes in a horizontal line of block
  272. * @param h height
  273. */
  274. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  275. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  276. /**
  277. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  278. * this is an array[12] of motion compensation functions for the 9 thirdpe
  279. * positions<br>
  280. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  281. * @param block destination where the result is stored
  282. * @param pixels source
  283. * @param line_size number of bytes in a horizontal line of block
  284. * @param h height
  285. */
  286. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  287. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  288. qpel_mc_func put_qpel_pixels_tab[2][16];
  289. qpel_mc_func avg_qpel_pixels_tab[2][16];
  290. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  291. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  292. qpel_mc_func put_mspel_pixels_tab[8];
  293. /**
  294. * h264 Chroma MC
  295. */
  296. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  297. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  298. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  299. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  300. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  301. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  302. me_cmp_func pix_abs[2][4];
  303. /* huffyuv specific */
  304. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  305. void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
  306. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  307. /**
  308. * subtract huffyuv's variant of median prediction
  309. * note, this might read from src1[-1], src2[-1]
  310. */
  311. void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
  312. void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
  313. int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
  314. void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha);
  315. /* this might write to dst[w] */
  316. void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
  317. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  318. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  319. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  320. void (*h261_loop_filter)(uint8_t *src, int stride);
  321. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  322. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  323. void (*vp3_idct_dc_add)(uint8_t *dest/*align 8*/, int line_size, const DCTELEM *block/*align 16*/);
  324. void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  325. void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
  326. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  327. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  328. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  329. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  330. void (*vector_fmul)(float *dst, const float *src0, const float *src1, int len);
  331. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  332. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  333. void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
  334. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  335. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len);
  336. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  337. void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
  338. /**
  339. * Multiply a vector of floats by a scalar float. Source and
  340. * destination vectors must overlap exactly or not at all.
  341. * @param dst result vector, 16-byte aligned
  342. * @param src input vector, 16-byte aligned
  343. * @param mul scalar value
  344. * @param len length of vector, multiple of 4
  345. */
  346. void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
  347. int len);
  348. /**
  349. * Multiply a vector of floats by concatenated short vectors of
  350. * floats and by a scalar float. Source and destination vectors
  351. * must overlap exactly or not at all.
  352. * [0]: short vectors of length 2, 8-byte aligned
  353. * [1]: short vectors of length 4, 16-byte aligned
  354. * @param dst output vector, 16-byte aligned
  355. * @param src input vector, 16-byte aligned
  356. * @param sv array of pointers to short vectors
  357. * @param mul scalar value
  358. * @param len number of elements in src and dst, multiple of 4
  359. */
  360. void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
  361. const float **sv, float mul, int len);
  362. /**
  363. * Multiply short vectors of floats by a scalar float, store
  364. * concatenated result.
  365. * [0]: short vectors of length 2, 8-byte aligned
  366. * [1]: short vectors of length 4, 16-byte aligned
  367. * @param dst output vector, 16-byte aligned
  368. * @param sv array of pointers to short vectors
  369. * @param mul scalar value
  370. * @param len number of output elements, multiple of 4
  371. */
  372. void (*sv_fmul_scalar[2])(float *dst, const float **sv,
  373. float mul, int len);
  374. /**
  375. * Calculate the scalar product of two vectors of floats.
  376. * @param v1 first vector, 16-byte aligned
  377. * @param v2 second vector, 16-byte aligned
  378. * @param len length of vectors, multiple of 4
  379. */
  380. float (*scalarproduct_float)(const float *v1, const float *v2, int len);
  381. /**
  382. * Calculate the sum and difference of two vectors of floats.
  383. * @param v1 first input vector, sum output, 16-byte aligned
  384. * @param v2 second input vector, difference output, 16-byte aligned
  385. * @param len length of vectors, multiple of 4
  386. */
  387. void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
  388. /* (I)DCT */
  389. void (*fdct)(DCTELEM *block/* align 16*/);
  390. void (*fdct248)(DCTELEM *block/* align 16*/);
  391. /* IDCT really*/
  392. void (*idct)(DCTELEM *block/* align 16*/);
  393. /**
  394. * block -> idct -> clip to unsigned 8 bit -> dest.
  395. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  396. * @param line_size size in bytes of a horizontal line of dest
  397. */
  398. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  399. /**
  400. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  401. * @param line_size size in bytes of a horizontal line of dest
  402. */
  403. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  404. /**
  405. * idct input permutation.
  406. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  407. * IDCT)
  408. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  409. * with the zigzag/alternate scan<br>
  410. * an example to avoid confusion:
  411. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  412. * - (x -> referece dct -> reference idct -> x)
  413. * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  414. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  415. */
  416. uint8_t idct_permutation[64];
  417. int idct_permutation_type;
  418. #define FF_NO_IDCT_PERM 1
  419. #define FF_LIBMPEG2_IDCT_PERM 2
  420. #define FF_SIMPLE_IDCT_PERM 3
  421. #define FF_TRANSPOSE_IDCT_PERM 4
  422. #define FF_PARTTRANS_IDCT_PERM 5
  423. #define FF_SSE2_IDCT_PERM 6
  424. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  425. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  426. #define BASIS_SHIFT 16
  427. #define RECON_SHIFT 6
  428. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
  429. #define EDGE_WIDTH 16
  430. void (*prefetch)(void *mem, int stride, int h);
  431. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  432. /* mlp/truehd functions */
  433. void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
  434. int firorder, int iirorder,
  435. unsigned int filter_shift, int32_t mask, int blocksize,
  436. int32_t *sample_buffer);
  437. /* intrax8 functions */
  438. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  439. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  440. int * range, int * sum, int edges);
  441. /**
  442. * Calculate scalar product of two vectors.
  443. * @param len length of vectors, should be multiple of 16
  444. * @param shift number of bits to discard from product
  445. */
  446. int32_t (*scalarproduct_int16)(const int16_t *v1, const int16_t *v2/*align 16*/, int len, int shift);
  447. /* ape functions */
  448. /**
  449. * Calculate scalar product of v1 and v2,
  450. * and v1[i] += v3[i] * mul
  451. * @param len length of vectors, should be multiple of 16
  452. */
  453. int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, const int16_t *v2, const int16_t *v3, int len, int mul);
  454. /* rv30 functions */
  455. qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
  456. qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
  457. /* rv40 functions */
  458. qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
  459. qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
  460. h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
  461. h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
  462. /* bink functions */
  463. op_fill_func fill_block_tab[2];
  464. void (*scale_block)(const uint8_t src[64]/*align 8*/, uint8_t *dst/*align 8*/, int linesize);
  465. } DSPContext;
  466. void dsputil_static_init(void);
  467. void dsputil_init(DSPContext* p, AVCodecContext *avctx);
  468. int ff_check_alignment(void);
  469. /**
  470. * permute block according to permuatation.
  471. * @param last last non zero element in scantable order
  472. */
  473. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  474. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  475. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  476. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  477. {
  478. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  479. }
  480. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  481. {
  482. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  483. }
  484. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  485. switch(type&0xFF){
  486. default:
  487. case FF_CMP_SAD:
  488. return lambda>>FF_LAMBDA_SHIFT;
  489. case FF_CMP_DCT:
  490. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  491. case FF_CMP_W53:
  492. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  493. case FF_CMP_W97:
  494. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  495. case FF_CMP_SATD:
  496. case FF_CMP_DCT264:
  497. return (2*lambda)>>FF_LAMBDA_SHIFT;
  498. case FF_CMP_RD:
  499. case FF_CMP_PSNR:
  500. case FF_CMP_SSE:
  501. case FF_CMP_NSSE:
  502. return lambda2>>FF_LAMBDA_SHIFT;
  503. case FF_CMP_BIT:
  504. return 1;
  505. }
  506. }
  507. /**
  508. * Empty mmx state.
  509. * this must be called between any dsp function and float/double code.
  510. * for example sin(); dsp->idct_put(); emms_c(); cos()
  511. */
  512. #define emms_c()
  513. void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  514. void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  515. void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  516. void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
  517. void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  518. void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  519. void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  520. void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  521. void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  522. void ff_dsputil_init_dwt(DSPContext *c);
  523. void ff_rv30dsp_init(DSPContext* c, AVCodecContext *avctx);
  524. void ff_rv40dsp_init(DSPContext* c, AVCodecContext *avctx);
  525. void ff_intrax8dsp_init(DSPContext* c, AVCodecContext *avctx);
  526. void ff_mlp_init(DSPContext* c, AVCodecContext *avctx);
  527. void ff_mlp_init_x86(DSPContext* c, AVCodecContext *avctx);
  528. #if HAVE_MMX
  529. #undef emms_c
  530. static inline void emms(void)
  531. {
  532. __asm__ volatile ("emms;":::"memory");
  533. }
  534. #define emms_c() emms()
  535. #elif ARCH_ARM
  536. #if HAVE_NEON
  537. # define STRIDE_ALIGN 16
  538. #endif
  539. #elif ARCH_PPC
  540. #define STRIDE_ALIGN 16
  541. #elif HAVE_MMI
  542. #define STRIDE_ALIGN 16
  543. #endif
  544. #ifndef STRIDE_ALIGN
  545. # define STRIDE_ALIGN 8
  546. #endif
  547. #define LOCAL_ALIGNED_A(a, t, v, s, o, ...) \
  548. uint8_t la_##v[sizeof(t s o) + (a)]; \
  549. t (*v) o = (void *)FFALIGN((uintptr_t)la_##v, a)
  550. #define LOCAL_ALIGNED_D(a, t, v, s, o, ...) DECLARE_ALIGNED(a, t, v) s o
  551. #define LOCAL_ALIGNED(a, t, v, ...) LOCAL_ALIGNED_A(a, t, v, __VA_ARGS__,,)
  552. #if HAVE_LOCAL_ALIGNED_8
  553. # define LOCAL_ALIGNED_8(t, v, ...) LOCAL_ALIGNED_D(8, t, v, __VA_ARGS__,,)
  554. #else
  555. # define LOCAL_ALIGNED_8(t, v, ...) LOCAL_ALIGNED(8, t, v, __VA_ARGS__)
  556. #endif
  557. #if HAVE_LOCAL_ALIGNED_16
  558. # define LOCAL_ALIGNED_16(t, v, ...) LOCAL_ALIGNED_D(16, t, v, __VA_ARGS__,,)
  559. #else
  560. # define LOCAL_ALIGNED_16(t, v, ...) LOCAL_ALIGNED(16, t, v, __VA_ARGS__)
  561. #endif
  562. /* PSNR */
  563. void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
  564. int orig_linesize[3], int coded_linesize,
  565. AVCodecContext *avctx);
  566. #define WRAPPER8_16(name8, name16)\
  567. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  568. return name8(s, dst , src , stride, h)\
  569. +name8(s, dst+8 , src+8 , stride, h);\
  570. }
  571. #define WRAPPER8_16_SQ(name8, name16)\
  572. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  573. int score=0;\
  574. score +=name8(s, dst , src , stride, 8);\
  575. score +=name8(s, dst+8 , src+8 , stride, 8);\
  576. if(h==16){\
  577. dst += 8*stride;\
  578. src += 8*stride;\
  579. score +=name8(s, dst , src , stride, 8);\
  580. score +=name8(s, dst+8 , src+8 , stride, 8);\
  581. }\
  582. return score;\
  583. }
  584. static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  585. {
  586. int i;
  587. for(i=0; i<h; i++)
  588. {
  589. AV_WN16(dst , AV_RN16(src ));
  590. dst+=dstStride;
  591. src+=srcStride;
  592. }
  593. }
  594. static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  595. {
  596. int i;
  597. for(i=0; i<h; i++)
  598. {
  599. AV_WN32(dst , AV_RN32(src ));
  600. dst+=dstStride;
  601. src+=srcStride;
  602. }
  603. }
  604. static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  605. {
  606. int i;
  607. for(i=0; i<h; i++)
  608. {
  609. AV_WN32(dst , AV_RN32(src ));
  610. AV_WN32(dst+4 , AV_RN32(src+4 ));
  611. dst+=dstStride;
  612. src+=srcStride;
  613. }
  614. }
  615. static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  616. {
  617. int i;
  618. for(i=0; i<h; i++)
  619. {
  620. AV_WN32(dst , AV_RN32(src ));
  621. AV_WN32(dst+4 , AV_RN32(src+4 ));
  622. dst[8]= src[8];
  623. dst+=dstStride;
  624. src+=srcStride;
  625. }
  626. }
  627. static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  628. {
  629. int i;
  630. for(i=0; i<h; i++)
  631. {
  632. AV_WN32(dst , AV_RN32(src ));
  633. AV_WN32(dst+4 , AV_RN32(src+4 ));
  634. AV_WN32(dst+8 , AV_RN32(src+8 ));
  635. AV_WN32(dst+12, AV_RN32(src+12));
  636. dst+=dstStride;
  637. src+=srcStride;
  638. }
  639. }
  640. static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  641. {
  642. int i;
  643. for(i=0; i<h; i++)
  644. {
  645. AV_WN32(dst , AV_RN32(src ));
  646. AV_WN32(dst+4 , AV_RN32(src+4 ));
  647. AV_WN32(dst+8 , AV_RN32(src+8 ));
  648. AV_WN32(dst+12, AV_RN32(src+12));
  649. dst[16]= src[16];
  650. dst+=dstStride;
  651. src+=srcStride;
  652. }
  653. }
  654. #endif /* AVCODEC_DSPUTIL_H */