You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4148 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. #define AC_VLC_BITS 9
  39. static const uint16_t table_mb_intra[64][2];
  40. static inline int decode210(GetBitContext *gb){
  41. if (get_bits1(gb))
  42. return 0;
  43. else
  44. return 2 - get_bits1(gb);
  45. }
  46. /**
  47. * Init VC-1 specific tables and VC1Context members
  48. * @param v The VC1Context to initialize
  49. * @return Status
  50. */
  51. static int vc1_init_common(VC1Context *v)
  52. {
  53. static int done = 0;
  54. int i = 0;
  55. v->hrd_rate = v->hrd_buffer = NULL;
  56. /* VLC tables */
  57. if(!done)
  58. {
  59. done = 1;
  60. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  61. ff_vc1_bfraction_bits, 1, 1,
  62. ff_vc1_bfraction_codes, 1, 1, 1);
  63. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  64. ff_vc1_norm2_bits, 1, 1,
  65. ff_vc1_norm2_codes, 1, 1, 1);
  66. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  67. ff_vc1_norm6_bits, 1, 1,
  68. ff_vc1_norm6_codes, 2, 2, 1);
  69. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  70. ff_vc1_imode_bits, 1, 1,
  71. ff_vc1_imode_codes, 1, 1, 1);
  72. for (i=0; i<3; i++)
  73. {
  74. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  75. ff_vc1_ttmb_bits[i], 1, 1,
  76. ff_vc1_ttmb_codes[i], 2, 2, 1);
  77. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  78. ff_vc1_ttblk_bits[i], 1, 1,
  79. ff_vc1_ttblk_codes[i], 1, 1, 1);
  80. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  81. ff_vc1_subblkpat_bits[i], 1, 1,
  82. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  83. }
  84. for(i=0; i<4; i++)
  85. {
  86. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  87. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  88. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  89. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  90. ff_vc1_cbpcy_p_bits[i], 1, 1,
  91. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  92. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  93. ff_vc1_mv_diff_bits[i], 1, 1,
  94. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  95. }
  96. for(i=0; i<8; i++)
  97. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  98. &vc1_ac_tables[i][0][1], 8, 4,
  99. &vc1_ac_tables[i][0][0], 8, 4, 1);
  100. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  101. &ff_msmp4_mb_i_table[0][1], 4, 2,
  102. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  103. }
  104. /* Other defaults */
  105. v->pq = -1;
  106. v->mvrange = 0; /* 7.1.1.18, p80 */
  107. return 0;
  108. }
  109. /***********************************************************************/
  110. /**
  111. * @defgroup bitplane VC9 Bitplane decoding
  112. * @see 8.7, p56
  113. * @{
  114. */
  115. /** @addtogroup bitplane
  116. * Imode types
  117. * @{
  118. */
  119. enum Imode {
  120. IMODE_RAW,
  121. IMODE_NORM2,
  122. IMODE_DIFF2,
  123. IMODE_NORM6,
  124. IMODE_DIFF6,
  125. IMODE_ROWSKIP,
  126. IMODE_COLSKIP
  127. };
  128. /** @} */ //imode defines
  129. /** Decode rows by checking if they are skipped
  130. * @param plane Buffer to store decoded bits
  131. * @param[in] width Width of this buffer
  132. * @param[in] height Height of this buffer
  133. * @param[in] stride of this buffer
  134. */
  135. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  136. int x, y;
  137. for (y=0; y<height; y++){
  138. if (!get_bits1(gb)) //rowskip
  139. memset(plane, 0, width);
  140. else
  141. for (x=0; x<width; x++)
  142. plane[x] = get_bits1(gb);
  143. plane += stride;
  144. }
  145. }
  146. /** Decode columns by checking if they are skipped
  147. * @param plane Buffer to store decoded bits
  148. * @param[in] width Width of this buffer
  149. * @param[in] height Height of this buffer
  150. * @param[in] stride of this buffer
  151. * @todo FIXME: Optimize
  152. */
  153. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  154. int x, y;
  155. for (x=0; x<width; x++){
  156. if (!get_bits1(gb)) //colskip
  157. for (y=0; y<height; y++)
  158. plane[y*stride] = 0;
  159. else
  160. for (y=0; y<height; y++)
  161. plane[y*stride] = get_bits1(gb);
  162. plane ++;
  163. }
  164. }
  165. /** Decode a bitplane's bits
  166. * @param bp Bitplane where to store the decode bits
  167. * @param v VC-1 context for bit reading and logging
  168. * @return Status
  169. * @todo FIXME: Optimize
  170. */
  171. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  172. {
  173. GetBitContext *gb = &v->s.gb;
  174. int imode, x, y, code, offset;
  175. uint8_t invert, *planep = data;
  176. int width, height, stride;
  177. width = v->s.mb_width;
  178. height = v->s.mb_height;
  179. stride = v->s.mb_stride;
  180. invert = get_bits1(gb);
  181. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  182. *raw_flag = 0;
  183. switch (imode)
  184. {
  185. case IMODE_RAW:
  186. //Data is actually read in the MB layer (same for all tests == "raw")
  187. *raw_flag = 1; //invert ignored
  188. return invert;
  189. case IMODE_DIFF2:
  190. case IMODE_NORM2:
  191. if ((height * width) & 1)
  192. {
  193. *planep++ = get_bits1(gb);
  194. offset = 1;
  195. }
  196. else offset = 0;
  197. // decode bitplane as one long line
  198. for (y = offset; y < height * width; y += 2) {
  199. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  200. *planep++ = code & 1;
  201. offset++;
  202. if(offset == width) {
  203. offset = 0;
  204. planep += stride - width;
  205. }
  206. *planep++ = code >> 1;
  207. offset++;
  208. if(offset == width) {
  209. offset = 0;
  210. planep += stride - width;
  211. }
  212. }
  213. break;
  214. case IMODE_DIFF6:
  215. case IMODE_NORM6:
  216. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  217. for(y = 0; y < height; y+= 3) {
  218. for(x = width & 1; x < width; x += 2) {
  219. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  220. if(code < 0){
  221. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  222. return -1;
  223. }
  224. planep[x + 0] = (code >> 0) & 1;
  225. planep[x + 1] = (code >> 1) & 1;
  226. planep[x + 0 + stride] = (code >> 2) & 1;
  227. planep[x + 1 + stride] = (code >> 3) & 1;
  228. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  229. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  230. }
  231. planep += stride * 3;
  232. }
  233. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  234. } else { // 3x2
  235. planep += (height & 1) * stride;
  236. for(y = height & 1; y < height; y += 2) {
  237. for(x = width % 3; x < width; x += 3) {
  238. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  239. if(code < 0){
  240. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  241. return -1;
  242. }
  243. planep[x + 0] = (code >> 0) & 1;
  244. planep[x + 1] = (code >> 1) & 1;
  245. planep[x + 2] = (code >> 2) & 1;
  246. planep[x + 0 + stride] = (code >> 3) & 1;
  247. planep[x + 1 + stride] = (code >> 4) & 1;
  248. planep[x + 2 + stride] = (code >> 5) & 1;
  249. }
  250. planep += stride * 2;
  251. }
  252. x = width % 3;
  253. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  254. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  255. }
  256. break;
  257. case IMODE_ROWSKIP:
  258. decode_rowskip(data, width, height, stride, &v->s.gb);
  259. break;
  260. case IMODE_COLSKIP:
  261. decode_colskip(data, width, height, stride, &v->s.gb);
  262. break;
  263. default: break;
  264. }
  265. /* Applying diff operator */
  266. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  267. {
  268. planep = data;
  269. planep[0] ^= invert;
  270. for (x=1; x<width; x++)
  271. planep[x] ^= planep[x-1];
  272. for (y=1; y<height; y++)
  273. {
  274. planep += stride;
  275. planep[0] ^= planep[-stride];
  276. for (x=1; x<width; x++)
  277. {
  278. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  279. else planep[x] ^= planep[x-1];
  280. }
  281. }
  282. }
  283. else if (invert)
  284. {
  285. planep = data;
  286. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  287. }
  288. return (imode<<1) + invert;
  289. }
  290. /** @} */ //Bitplane group
  291. /***********************************************************************/
  292. /** VOP Dquant decoding
  293. * @param v VC-1 Context
  294. */
  295. static int vop_dquant_decoding(VC1Context *v)
  296. {
  297. GetBitContext *gb = &v->s.gb;
  298. int pqdiff;
  299. //variable size
  300. if (v->dquant == 2)
  301. {
  302. pqdiff = get_bits(gb, 3);
  303. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  304. else v->altpq = v->pq + pqdiff + 1;
  305. }
  306. else
  307. {
  308. v->dquantfrm = get_bits1(gb);
  309. if ( v->dquantfrm )
  310. {
  311. v->dqprofile = get_bits(gb, 2);
  312. switch (v->dqprofile)
  313. {
  314. case DQPROFILE_SINGLE_EDGE:
  315. case DQPROFILE_DOUBLE_EDGES:
  316. v->dqsbedge = get_bits(gb, 2);
  317. break;
  318. case DQPROFILE_ALL_MBS:
  319. v->dqbilevel = get_bits1(gb);
  320. default: break; //Forbidden ?
  321. }
  322. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  323. {
  324. pqdiff = get_bits(gb, 3);
  325. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  326. else v->altpq = v->pq + pqdiff + 1;
  327. }
  328. }
  329. }
  330. return 0;
  331. }
  332. /** Put block onto picture
  333. */
  334. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  335. {
  336. uint8_t *Y;
  337. int ys, us, vs;
  338. DSPContext *dsp = &v->s.dsp;
  339. if(v->rangeredfrm) {
  340. int i, j, k;
  341. for(k = 0; k < 6; k++)
  342. for(j = 0; j < 8; j++)
  343. for(i = 0; i < 8; i++)
  344. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  345. }
  346. ys = v->s.current_picture.linesize[0];
  347. us = v->s.current_picture.linesize[1];
  348. vs = v->s.current_picture.linesize[2];
  349. Y = v->s.dest[0];
  350. dsp->put_pixels_clamped(block[0], Y, ys);
  351. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  352. Y += ys * 8;
  353. dsp->put_pixels_clamped(block[2], Y, ys);
  354. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  355. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  356. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  357. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  358. }
  359. }
  360. /** Do motion compensation over 1 macroblock
  361. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  362. */
  363. static void vc1_mc_1mv(VC1Context *v, int dir)
  364. {
  365. MpegEncContext *s = &v->s;
  366. DSPContext *dsp = &v->s.dsp;
  367. uint8_t *srcY, *srcU, *srcV;
  368. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  369. if(!v->s.last_picture.data[0])return;
  370. mx = s->mv[dir][0][0];
  371. my = s->mv[dir][0][1];
  372. // store motion vectors for further use in B frames
  373. if(s->pict_type == P_TYPE) {
  374. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  375. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  376. }
  377. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  378. uvmy = (my + ((my & 3) == 3)) >> 1;
  379. if(v->fastuvmc) {
  380. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  381. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  382. }
  383. if(!dir) {
  384. srcY = s->last_picture.data[0];
  385. srcU = s->last_picture.data[1];
  386. srcV = s->last_picture.data[2];
  387. } else {
  388. srcY = s->next_picture.data[0];
  389. srcU = s->next_picture.data[1];
  390. srcV = s->next_picture.data[2];
  391. }
  392. src_x = s->mb_x * 16 + (mx >> 2);
  393. src_y = s->mb_y * 16 + (my >> 2);
  394. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  395. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  396. if(v->profile != PROFILE_ADVANCED){
  397. src_x = av_clip( src_x, -16, s->mb_width * 16);
  398. src_y = av_clip( src_y, -16, s->mb_height * 16);
  399. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  400. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  401. }else{
  402. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  403. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  404. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  405. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  406. }
  407. srcY += src_y * s->linesize + src_x;
  408. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  409. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  410. /* for grayscale we should not try to read from unknown area */
  411. if(s->flags & CODEC_FLAG_GRAY) {
  412. srcU = s->edge_emu_buffer + 18 * s->linesize;
  413. srcV = s->edge_emu_buffer + 18 * s->linesize;
  414. }
  415. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  416. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  417. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  418. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  419. srcY -= s->mspel * (1 + s->linesize);
  420. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  421. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  422. srcY = s->edge_emu_buffer;
  423. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  424. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  425. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  426. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  427. srcU = uvbuf;
  428. srcV = uvbuf + 16;
  429. /* if we deal with range reduction we need to scale source blocks */
  430. if(v->rangeredfrm) {
  431. int i, j;
  432. uint8_t *src, *src2;
  433. src = srcY;
  434. for(j = 0; j < 17 + s->mspel*2; j++) {
  435. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  436. src += s->linesize;
  437. }
  438. src = srcU; src2 = srcV;
  439. for(j = 0; j < 9; j++) {
  440. for(i = 0; i < 9; i++) {
  441. src[i] = ((src[i] - 128) >> 1) + 128;
  442. src2[i] = ((src2[i] - 128) >> 1) + 128;
  443. }
  444. src += s->uvlinesize;
  445. src2 += s->uvlinesize;
  446. }
  447. }
  448. /* if we deal with intensity compensation we need to scale source blocks */
  449. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  450. int i, j;
  451. uint8_t *src, *src2;
  452. src = srcY;
  453. for(j = 0; j < 17 + s->mspel*2; j++) {
  454. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  455. src += s->linesize;
  456. }
  457. src = srcU; src2 = srcV;
  458. for(j = 0; j < 9; j++) {
  459. for(i = 0; i < 9; i++) {
  460. src[i] = v->lutuv[src[i]];
  461. src2[i] = v->lutuv[src2[i]];
  462. }
  463. src += s->uvlinesize;
  464. src2 += s->uvlinesize;
  465. }
  466. }
  467. srcY += s->mspel * (1 + s->linesize);
  468. }
  469. if(s->mspel) {
  470. dxy = ((my & 3) << 2) | (mx & 3);
  471. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  472. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  473. srcY += s->linesize * 8;
  474. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  475. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  476. } else { // hpel mc - always used for luma
  477. dxy = (my & 2) | ((mx & 2) >> 1);
  478. if(!v->rnd)
  479. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  480. else
  481. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  482. }
  483. if(s->flags & CODEC_FLAG_GRAY) return;
  484. /* Chroma MC always uses qpel bilinear */
  485. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  486. uvmx = (uvmx&3)<<1;
  487. uvmy = (uvmy&3)<<1;
  488. if(!v->rnd){
  489. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  490. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  491. }else{
  492. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  493. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  494. }
  495. }
  496. /** Do motion compensation for 4-MV macroblock - luminance block
  497. */
  498. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  499. {
  500. MpegEncContext *s = &v->s;
  501. DSPContext *dsp = &v->s.dsp;
  502. uint8_t *srcY;
  503. int dxy, mx, my, src_x, src_y;
  504. int off;
  505. if(!v->s.last_picture.data[0])return;
  506. mx = s->mv[0][n][0];
  507. my = s->mv[0][n][1];
  508. srcY = s->last_picture.data[0];
  509. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  510. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  511. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  512. if(v->profile != PROFILE_ADVANCED){
  513. src_x = av_clip( src_x, -16, s->mb_width * 16);
  514. src_y = av_clip( src_y, -16, s->mb_height * 16);
  515. }else{
  516. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  517. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  518. }
  519. srcY += src_y * s->linesize + src_x;
  520. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  521. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  522. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  523. srcY -= s->mspel * (1 + s->linesize);
  524. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  525. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  526. srcY = s->edge_emu_buffer;
  527. /* if we deal with range reduction we need to scale source blocks */
  528. if(v->rangeredfrm) {
  529. int i, j;
  530. uint8_t *src;
  531. src = srcY;
  532. for(j = 0; j < 9 + s->mspel*2; j++) {
  533. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  534. src += s->linesize;
  535. }
  536. }
  537. /* if we deal with intensity compensation we need to scale source blocks */
  538. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  539. int i, j;
  540. uint8_t *src;
  541. src = srcY;
  542. for(j = 0; j < 9 + s->mspel*2; j++) {
  543. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  544. src += s->linesize;
  545. }
  546. }
  547. srcY += s->mspel * (1 + s->linesize);
  548. }
  549. if(s->mspel) {
  550. dxy = ((my & 3) << 2) | (mx & 3);
  551. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  552. } else { // hpel mc - always used for luma
  553. dxy = (my & 2) | ((mx & 2) >> 1);
  554. if(!v->rnd)
  555. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  556. else
  557. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  558. }
  559. }
  560. static inline int median4(int a, int b, int c, int d)
  561. {
  562. if(a < b) {
  563. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  564. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  565. } else {
  566. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  567. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  568. }
  569. }
  570. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  571. */
  572. static void vc1_mc_4mv_chroma(VC1Context *v)
  573. {
  574. MpegEncContext *s = &v->s;
  575. DSPContext *dsp = &v->s.dsp;
  576. uint8_t *srcU, *srcV;
  577. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  578. int i, idx, tx = 0, ty = 0;
  579. int mvx[4], mvy[4], intra[4];
  580. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  581. if(!v->s.last_picture.data[0])return;
  582. if(s->flags & CODEC_FLAG_GRAY) return;
  583. for(i = 0; i < 4; i++) {
  584. mvx[i] = s->mv[0][i][0];
  585. mvy[i] = s->mv[0][i][1];
  586. intra[i] = v->mb_type[0][s->block_index[i]];
  587. }
  588. /* calculate chroma MV vector from four luma MVs */
  589. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  590. if(!idx) { // all blocks are inter
  591. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  592. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  593. } else if(count[idx] == 1) { // 3 inter blocks
  594. switch(idx) {
  595. case 0x1:
  596. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  597. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  598. break;
  599. case 0x2:
  600. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  601. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  602. break;
  603. case 0x4:
  604. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  605. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  606. break;
  607. case 0x8:
  608. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  609. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  610. break;
  611. }
  612. } else if(count[idx] == 2) {
  613. int t1 = 0, t2 = 0;
  614. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  615. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  616. tx = (mvx[t1] + mvx[t2]) / 2;
  617. ty = (mvy[t1] + mvy[t2]) / 2;
  618. } else {
  619. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  620. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  621. return; //no need to do MC for inter blocks
  622. }
  623. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  624. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  625. uvmx = (tx + ((tx&3) == 3)) >> 1;
  626. uvmy = (ty + ((ty&3) == 3)) >> 1;
  627. if(v->fastuvmc) {
  628. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  629. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  630. }
  631. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  632. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  633. if(v->profile != PROFILE_ADVANCED){
  634. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  635. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  636. }else{
  637. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  638. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  639. }
  640. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  641. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  642. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  643. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  644. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  645. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  646. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  647. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  648. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  649. srcU = s->edge_emu_buffer;
  650. srcV = s->edge_emu_buffer + 16;
  651. /* if we deal with range reduction we need to scale source blocks */
  652. if(v->rangeredfrm) {
  653. int i, j;
  654. uint8_t *src, *src2;
  655. src = srcU; src2 = srcV;
  656. for(j = 0; j < 9; j++) {
  657. for(i = 0; i < 9; i++) {
  658. src[i] = ((src[i] - 128) >> 1) + 128;
  659. src2[i] = ((src2[i] - 128) >> 1) + 128;
  660. }
  661. src += s->uvlinesize;
  662. src2 += s->uvlinesize;
  663. }
  664. }
  665. /* if we deal with intensity compensation we need to scale source blocks */
  666. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  667. int i, j;
  668. uint8_t *src, *src2;
  669. src = srcU; src2 = srcV;
  670. for(j = 0; j < 9; j++) {
  671. for(i = 0; i < 9; i++) {
  672. src[i] = v->lutuv[src[i]];
  673. src2[i] = v->lutuv[src2[i]];
  674. }
  675. src += s->uvlinesize;
  676. src2 += s->uvlinesize;
  677. }
  678. }
  679. }
  680. /* Chroma MC always uses qpel bilinear */
  681. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  682. uvmx = (uvmx&3)<<1;
  683. uvmy = (uvmy&3)<<1;
  684. if(!v->rnd){
  685. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  686. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  687. }else{
  688. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  689. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  690. }
  691. }
  692. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  693. /**
  694. * Decode Simple/Main Profiles sequence header
  695. * @see Figure 7-8, p16-17
  696. * @param avctx Codec context
  697. * @param gb GetBit context initialized from Codec context extra_data
  698. * @return Status
  699. */
  700. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  701. {
  702. VC1Context *v = avctx->priv_data;
  703. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  704. v->profile = get_bits(gb, 2);
  705. if (v->profile == PROFILE_COMPLEX)
  706. {
  707. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  708. }
  709. if (v->profile == PROFILE_ADVANCED)
  710. {
  711. return decode_sequence_header_adv(v, gb);
  712. }
  713. else
  714. {
  715. v->res_sm = get_bits(gb, 2); //reserved
  716. if (v->res_sm)
  717. {
  718. av_log(avctx, AV_LOG_ERROR,
  719. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  720. return -1;
  721. }
  722. }
  723. // (fps-2)/4 (->30)
  724. v->frmrtq_postproc = get_bits(gb, 3); //common
  725. // (bitrate-32kbps)/64kbps
  726. v->bitrtq_postproc = get_bits(gb, 5); //common
  727. v->s.loop_filter = get_bits1(gb); //common
  728. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  729. {
  730. av_log(avctx, AV_LOG_ERROR,
  731. "LOOPFILTER shell not be enabled in simple profile\n");
  732. }
  733. v->res_x8 = get_bits1(gb); //reserved
  734. if (v->res_x8)
  735. {
  736. av_log(avctx, AV_LOG_ERROR,
  737. "1 for reserved RES_X8 is forbidden\n");
  738. //return -1;
  739. }
  740. v->multires = get_bits1(gb);
  741. v->res_fasttx = get_bits1(gb);
  742. if (!v->res_fasttx)
  743. {
  744. av_log(avctx, AV_LOG_ERROR,
  745. "0 for reserved RES_FASTTX is forbidden\n");
  746. //return -1;
  747. }
  748. v->fastuvmc = get_bits1(gb); //common
  749. if (!v->profile && !v->fastuvmc)
  750. {
  751. av_log(avctx, AV_LOG_ERROR,
  752. "FASTUVMC unavailable in Simple Profile\n");
  753. return -1;
  754. }
  755. v->extended_mv = get_bits1(gb); //common
  756. if (!v->profile && v->extended_mv)
  757. {
  758. av_log(avctx, AV_LOG_ERROR,
  759. "Extended MVs unavailable in Simple Profile\n");
  760. return -1;
  761. }
  762. v->dquant = get_bits(gb, 2); //common
  763. v->vstransform = get_bits1(gb); //common
  764. v->res_transtab = get_bits1(gb);
  765. if (v->res_transtab)
  766. {
  767. av_log(avctx, AV_LOG_ERROR,
  768. "1 for reserved RES_TRANSTAB is forbidden\n");
  769. return -1;
  770. }
  771. v->overlap = get_bits1(gb); //common
  772. v->s.resync_marker = get_bits1(gb);
  773. v->rangered = get_bits1(gb);
  774. if (v->rangered && v->profile == PROFILE_SIMPLE)
  775. {
  776. av_log(avctx, AV_LOG_INFO,
  777. "RANGERED should be set to 0 in simple profile\n");
  778. }
  779. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  780. v->quantizer_mode = get_bits(gb, 2); //common
  781. v->finterpflag = get_bits1(gb); //common
  782. v->res_rtm_flag = get_bits1(gb); //reserved
  783. if (!v->res_rtm_flag)
  784. {
  785. // av_log(avctx, AV_LOG_ERROR,
  786. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  787. av_log(avctx, AV_LOG_ERROR,
  788. "Old WMV3 version detected, only I-frames will be decoded\n");
  789. //return -1;
  790. }
  791. //TODO: figure out what they mean (always 0x402F)
  792. if(!v->res_fasttx) skip_bits(gb, 16);
  793. av_log(avctx, AV_LOG_DEBUG,
  794. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  795. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  796. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  797. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  798. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  799. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  800. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  801. v->dquant, v->quantizer_mode, avctx->max_b_frames
  802. );
  803. return 0;
  804. }
  805. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  806. {
  807. v->res_rtm_flag = 1;
  808. v->level = get_bits(gb, 3);
  809. if(v->level >= 5)
  810. {
  811. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  812. }
  813. v->chromaformat = get_bits(gb, 2);
  814. if (v->chromaformat != 1)
  815. {
  816. av_log(v->s.avctx, AV_LOG_ERROR,
  817. "Only 4:2:0 chroma format supported\n");
  818. return -1;
  819. }
  820. // (fps-2)/4 (->30)
  821. v->frmrtq_postproc = get_bits(gb, 3); //common
  822. // (bitrate-32kbps)/64kbps
  823. v->bitrtq_postproc = get_bits(gb, 5); //common
  824. v->postprocflag = get_bits1(gb); //common
  825. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  826. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  827. v->s.avctx->width = v->s.avctx->coded_width;
  828. v->s.avctx->height = v->s.avctx->coded_height;
  829. v->broadcast = get_bits1(gb);
  830. v->interlace = get_bits1(gb);
  831. v->tfcntrflag = get_bits1(gb);
  832. v->finterpflag = get_bits1(gb);
  833. skip_bits1(gb); // reserved
  834. v->s.h_edge_pos = v->s.avctx->coded_width;
  835. v->s.v_edge_pos = v->s.avctx->coded_height;
  836. av_log(v->s.avctx, AV_LOG_DEBUG,
  837. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  838. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  839. "TFCTRflag=%i, FINTERPflag=%i\n",
  840. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  841. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  842. v->tfcntrflag, v->finterpflag
  843. );
  844. v->psf = get_bits1(gb);
  845. if(v->psf) { //PsF, 6.1.13
  846. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  847. return -1;
  848. }
  849. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  850. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  851. int w, h, ar = 0;
  852. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  853. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  854. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  855. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  856. if(get_bits1(gb))
  857. ar = get_bits(gb, 4);
  858. if(ar && ar < 14){
  859. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  860. }else if(ar == 15){
  861. w = get_bits(gb, 8);
  862. h = get_bits(gb, 8);
  863. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  864. }
  865. if(get_bits1(gb)){ //framerate stuff
  866. if(get_bits1(gb)) {
  867. v->s.avctx->time_base.num = 32;
  868. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  869. } else {
  870. int nr, dr;
  871. nr = get_bits(gb, 8);
  872. dr = get_bits(gb, 4);
  873. if(nr && nr < 8 && dr && dr < 3){
  874. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  875. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  876. }
  877. }
  878. }
  879. if(get_bits1(gb)){
  880. v->color_prim = get_bits(gb, 8);
  881. v->transfer_char = get_bits(gb, 8);
  882. v->matrix_coef = get_bits(gb, 8);
  883. }
  884. }
  885. v->hrd_param_flag = get_bits1(gb);
  886. if(v->hrd_param_flag) {
  887. int i;
  888. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  889. skip_bits(gb, 4); //bitrate exponent
  890. skip_bits(gb, 4); //buffer size exponent
  891. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  892. skip_bits(gb, 16); //hrd_rate[n]
  893. skip_bits(gb, 16); //hrd_buffer[n]
  894. }
  895. }
  896. return 0;
  897. }
  898. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  899. {
  900. VC1Context *v = avctx->priv_data;
  901. int i, blink, clentry, refdist;
  902. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  903. blink = get_bits1(gb); // broken link
  904. clentry = get_bits1(gb); // closed entry
  905. v->panscanflag = get_bits1(gb);
  906. refdist = get_bits1(gb); // refdist flag
  907. v->s.loop_filter = get_bits1(gb);
  908. v->fastuvmc = get_bits1(gb);
  909. v->extended_mv = get_bits1(gb);
  910. v->dquant = get_bits(gb, 2);
  911. v->vstransform = get_bits1(gb);
  912. v->overlap = get_bits1(gb);
  913. v->quantizer_mode = get_bits(gb, 2);
  914. if(v->hrd_param_flag){
  915. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  916. skip_bits(gb, 8); //hrd_full[n]
  917. }
  918. }
  919. if(get_bits1(gb)){
  920. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  921. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  922. }
  923. if(v->extended_mv)
  924. v->extended_dmv = get_bits1(gb);
  925. if(get_bits1(gb)) {
  926. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  927. skip_bits(gb, 3); // Y range, ignored for now
  928. }
  929. if(get_bits1(gb)) {
  930. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  931. skip_bits(gb, 3); // UV range, ignored for now
  932. }
  933. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  934. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  935. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  936. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  937. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  938. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  939. return 0;
  940. }
  941. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  942. {
  943. int pqindex, lowquant, status;
  944. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  945. skip_bits(gb, 2); //framecnt unused
  946. v->rangeredfrm = 0;
  947. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  948. v->s.pict_type = get_bits1(gb);
  949. if (v->s.avctx->max_b_frames) {
  950. if (!v->s.pict_type) {
  951. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  952. else v->s.pict_type = B_TYPE;
  953. } else v->s.pict_type = P_TYPE;
  954. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  955. v->bi_type = 0;
  956. if(v->s.pict_type == B_TYPE) {
  957. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  958. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  959. if(v->bfraction == 0) {
  960. v->s.pict_type = BI_TYPE;
  961. }
  962. }
  963. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  964. skip_bits(gb, 7); // skip buffer fullness
  965. /* calculate RND */
  966. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  967. v->rnd = 1;
  968. if(v->s.pict_type == P_TYPE)
  969. v->rnd ^= 1;
  970. /* Quantizer stuff */
  971. pqindex = get_bits(gb, 5);
  972. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  973. v->pq = ff_vc1_pquant_table[0][pqindex];
  974. else
  975. v->pq = ff_vc1_pquant_table[1][pqindex];
  976. v->pquantizer = 1;
  977. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  978. v->pquantizer = pqindex < 9;
  979. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  980. v->pquantizer = 0;
  981. v->pqindex = pqindex;
  982. if (pqindex < 9) v->halfpq = get_bits1(gb);
  983. else v->halfpq = 0;
  984. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  985. v->pquantizer = get_bits1(gb);
  986. v->dquantfrm = 0;
  987. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  988. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  989. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  990. v->range_x = 1 << (v->k_x - 1);
  991. v->range_y = 1 << (v->k_y - 1);
  992. if (v->profile == PROFILE_ADVANCED)
  993. {
  994. if (v->postprocflag) v->postproc = get_bits1(gb);
  995. }
  996. else
  997. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  998. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  999. if(get_bits1(gb))return -1;
  1000. }
  1001. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1002. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1003. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1004. switch(v->s.pict_type) {
  1005. case P_TYPE:
  1006. if (v->pq < 5) v->tt_index = 0;
  1007. else if(v->pq < 13) v->tt_index = 1;
  1008. else v->tt_index = 2;
  1009. lowquant = (v->pq > 12) ? 0 : 1;
  1010. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1011. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1012. {
  1013. int scale, shift, i;
  1014. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1015. v->lumscale = get_bits(gb, 6);
  1016. v->lumshift = get_bits(gb, 6);
  1017. v->use_ic = 1;
  1018. /* fill lookup tables for intensity compensation */
  1019. if(!v->lumscale) {
  1020. scale = -64;
  1021. shift = (255 - v->lumshift * 2) << 6;
  1022. if(v->lumshift > 31)
  1023. shift += 128 << 6;
  1024. } else {
  1025. scale = v->lumscale + 32;
  1026. if(v->lumshift > 31)
  1027. shift = (v->lumshift - 64) << 6;
  1028. else
  1029. shift = v->lumshift << 6;
  1030. }
  1031. for(i = 0; i < 256; i++) {
  1032. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1033. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1034. }
  1035. }
  1036. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1037. v->s.quarter_sample = 0;
  1038. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1039. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1040. v->s.quarter_sample = 0;
  1041. else
  1042. v->s.quarter_sample = 1;
  1043. } else
  1044. v->s.quarter_sample = 1;
  1045. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1046. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1047. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1048. || v->mv_mode == MV_PMODE_MIXED_MV)
  1049. {
  1050. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1051. if (status < 0) return -1;
  1052. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1053. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1054. } else {
  1055. v->mv_type_is_raw = 0;
  1056. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1057. }
  1058. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1059. if (status < 0) return -1;
  1060. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1061. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1062. /* Hopefully this is correct for P frames */
  1063. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1064. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1065. if (v->dquant)
  1066. {
  1067. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1068. vop_dquant_decoding(v);
  1069. }
  1070. v->ttfrm = 0; //FIXME Is that so ?
  1071. if (v->vstransform)
  1072. {
  1073. v->ttmbf = get_bits1(gb);
  1074. if (v->ttmbf)
  1075. {
  1076. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1077. }
  1078. } else {
  1079. v->ttmbf = 1;
  1080. v->ttfrm = TT_8X8;
  1081. }
  1082. break;
  1083. case B_TYPE:
  1084. if (v->pq < 5) v->tt_index = 0;
  1085. else if(v->pq < 13) v->tt_index = 1;
  1086. else v->tt_index = 2;
  1087. lowquant = (v->pq > 12) ? 0 : 1;
  1088. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1089. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1090. v->s.mspel = v->s.quarter_sample;
  1091. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1092. if (status < 0) return -1;
  1093. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1094. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1095. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1096. if (status < 0) return -1;
  1097. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1098. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1099. v->s.mv_table_index = get_bits(gb, 2);
  1100. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1101. if (v->dquant)
  1102. {
  1103. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1104. vop_dquant_decoding(v);
  1105. }
  1106. v->ttfrm = 0;
  1107. if (v->vstransform)
  1108. {
  1109. v->ttmbf = get_bits1(gb);
  1110. if (v->ttmbf)
  1111. {
  1112. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1113. }
  1114. } else {
  1115. v->ttmbf = 1;
  1116. v->ttfrm = TT_8X8;
  1117. }
  1118. break;
  1119. }
  1120. /* AC Syntax */
  1121. v->c_ac_table_index = decode012(gb);
  1122. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1123. {
  1124. v->y_ac_table_index = decode012(gb);
  1125. }
  1126. /* DC Syntax */
  1127. v->s.dc_table_index = get_bits1(gb);
  1128. if(v->s.pict_type == BI_TYPE) {
  1129. v->s.pict_type = B_TYPE;
  1130. v->bi_type = 1;
  1131. }
  1132. return 0;
  1133. }
  1134. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1135. {
  1136. int pqindex, lowquant;
  1137. int status;
  1138. v->p_frame_skipped = 0;
  1139. if(v->interlace){
  1140. v->fcm = decode012(gb);
  1141. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1142. }
  1143. switch(get_unary(gb, 0, 4)) {
  1144. case 0:
  1145. v->s.pict_type = P_TYPE;
  1146. break;
  1147. case 1:
  1148. v->s.pict_type = B_TYPE;
  1149. break;
  1150. case 2:
  1151. v->s.pict_type = I_TYPE;
  1152. break;
  1153. case 3:
  1154. v->s.pict_type = BI_TYPE;
  1155. break;
  1156. case 4:
  1157. v->s.pict_type = P_TYPE; // skipped pic
  1158. v->p_frame_skipped = 1;
  1159. return 0;
  1160. }
  1161. if(v->tfcntrflag)
  1162. skip_bits(gb, 8);
  1163. if(v->broadcast) {
  1164. if(!v->interlace || v->psf) {
  1165. v->rptfrm = get_bits(gb, 2);
  1166. } else {
  1167. v->tff = get_bits1(gb);
  1168. v->rptfrm = get_bits1(gb);
  1169. }
  1170. }
  1171. if(v->panscanflag) {
  1172. //...
  1173. }
  1174. v->rnd = get_bits1(gb);
  1175. if(v->interlace)
  1176. v->uvsamp = get_bits1(gb);
  1177. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1178. if(v->s.pict_type == B_TYPE) {
  1179. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1180. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1181. if(v->bfraction == 0) {
  1182. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1183. }
  1184. }
  1185. pqindex = get_bits(gb, 5);
  1186. v->pqindex = pqindex;
  1187. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1188. v->pq = ff_vc1_pquant_table[0][pqindex];
  1189. else
  1190. v->pq = ff_vc1_pquant_table[1][pqindex];
  1191. v->pquantizer = 1;
  1192. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1193. v->pquantizer = pqindex < 9;
  1194. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1195. v->pquantizer = 0;
  1196. v->pqindex = pqindex;
  1197. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1198. else v->halfpq = 0;
  1199. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1200. v->pquantizer = get_bits1(gb);
  1201. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1202. switch(v->s.pict_type) {
  1203. case I_TYPE:
  1204. case BI_TYPE:
  1205. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1206. if (status < 0) return -1;
  1207. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1208. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1209. v->condover = CONDOVER_NONE;
  1210. if(v->overlap && v->pq <= 8) {
  1211. v->condover = decode012(gb);
  1212. if(v->condover == CONDOVER_SELECT) {
  1213. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1214. if (status < 0) return -1;
  1215. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1216. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1217. }
  1218. }
  1219. break;
  1220. case P_TYPE:
  1221. if(v->postprocflag)
  1222. v->postproc = get_bits1(gb);
  1223. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1224. else v->mvrange = 0;
  1225. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1226. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1227. v->range_x = 1 << (v->k_x - 1);
  1228. v->range_y = 1 << (v->k_y - 1);
  1229. if (v->pq < 5) v->tt_index = 0;
  1230. else if(v->pq < 13) v->tt_index = 1;
  1231. else v->tt_index = 2;
  1232. lowquant = (v->pq > 12) ? 0 : 1;
  1233. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1234. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1235. {
  1236. int scale, shift, i;
  1237. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1238. v->lumscale = get_bits(gb, 6);
  1239. v->lumshift = get_bits(gb, 6);
  1240. /* fill lookup tables for intensity compensation */
  1241. if(!v->lumscale) {
  1242. scale = -64;
  1243. shift = (255 - v->lumshift * 2) << 6;
  1244. if(v->lumshift > 31)
  1245. shift += 128 << 6;
  1246. } else {
  1247. scale = v->lumscale + 32;
  1248. if(v->lumshift > 31)
  1249. shift = (v->lumshift - 64) << 6;
  1250. else
  1251. shift = v->lumshift << 6;
  1252. }
  1253. for(i = 0; i < 256; i++) {
  1254. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1255. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1256. }
  1257. v->use_ic = 1;
  1258. }
  1259. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1260. v->s.quarter_sample = 0;
  1261. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1262. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1263. v->s.quarter_sample = 0;
  1264. else
  1265. v->s.quarter_sample = 1;
  1266. } else
  1267. v->s.quarter_sample = 1;
  1268. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1269. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1270. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1271. || v->mv_mode == MV_PMODE_MIXED_MV)
  1272. {
  1273. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1274. if (status < 0) return -1;
  1275. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1276. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1277. } else {
  1278. v->mv_type_is_raw = 0;
  1279. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1280. }
  1281. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1282. if (status < 0) return -1;
  1283. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1284. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1285. /* Hopefully this is correct for P frames */
  1286. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1287. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1288. if (v->dquant)
  1289. {
  1290. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1291. vop_dquant_decoding(v);
  1292. }
  1293. v->ttfrm = 0; //FIXME Is that so ?
  1294. if (v->vstransform)
  1295. {
  1296. v->ttmbf = get_bits1(gb);
  1297. if (v->ttmbf)
  1298. {
  1299. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1300. }
  1301. } else {
  1302. v->ttmbf = 1;
  1303. v->ttfrm = TT_8X8;
  1304. }
  1305. break;
  1306. case B_TYPE:
  1307. if(v->postprocflag)
  1308. v->postproc = get_bits1(gb);
  1309. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1310. else v->mvrange = 0;
  1311. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1312. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1313. v->range_x = 1 << (v->k_x - 1);
  1314. v->range_y = 1 << (v->k_y - 1);
  1315. if (v->pq < 5) v->tt_index = 0;
  1316. else if(v->pq < 13) v->tt_index = 1;
  1317. else v->tt_index = 2;
  1318. lowquant = (v->pq > 12) ? 0 : 1;
  1319. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1320. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1321. v->s.mspel = v->s.quarter_sample;
  1322. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1323. if (status < 0) return -1;
  1324. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1325. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1326. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1327. if (status < 0) return -1;
  1328. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1329. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1330. v->s.mv_table_index = get_bits(gb, 2);
  1331. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1332. if (v->dquant)
  1333. {
  1334. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1335. vop_dquant_decoding(v);
  1336. }
  1337. v->ttfrm = 0;
  1338. if (v->vstransform)
  1339. {
  1340. v->ttmbf = get_bits1(gb);
  1341. if (v->ttmbf)
  1342. {
  1343. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1344. }
  1345. } else {
  1346. v->ttmbf = 1;
  1347. v->ttfrm = TT_8X8;
  1348. }
  1349. break;
  1350. }
  1351. /* AC Syntax */
  1352. v->c_ac_table_index = decode012(gb);
  1353. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1354. {
  1355. v->y_ac_table_index = decode012(gb);
  1356. }
  1357. /* DC Syntax */
  1358. v->s.dc_table_index = get_bits1(gb);
  1359. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1360. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1361. vop_dquant_decoding(v);
  1362. }
  1363. v->bi_type = 0;
  1364. if(v->s.pict_type == BI_TYPE) {
  1365. v->s.pict_type = B_TYPE;
  1366. v->bi_type = 1;
  1367. }
  1368. return 0;
  1369. }
  1370. /***********************************************************************/
  1371. /**
  1372. * @defgroup block VC-1 Block-level functions
  1373. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1374. * @{
  1375. */
  1376. /**
  1377. * @def GET_MQUANT
  1378. * @brief Get macroblock-level quantizer scale
  1379. */
  1380. #define GET_MQUANT() \
  1381. if (v->dquantfrm) \
  1382. { \
  1383. int edges = 0; \
  1384. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1385. { \
  1386. if (v->dqbilevel) \
  1387. { \
  1388. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1389. } \
  1390. else \
  1391. { \
  1392. mqdiff = get_bits(gb, 3); \
  1393. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1394. else mquant = get_bits(gb, 5); \
  1395. } \
  1396. } \
  1397. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1398. edges = 1 << v->dqsbedge; \
  1399. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1400. edges = (3 << v->dqsbedge) % 15; \
  1401. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1402. edges = 15; \
  1403. if((edges&1) && !s->mb_x) \
  1404. mquant = v->altpq; \
  1405. if((edges&2) && s->first_slice_line) \
  1406. mquant = v->altpq; \
  1407. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1408. mquant = v->altpq; \
  1409. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1410. mquant = v->altpq; \
  1411. }
  1412. /**
  1413. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1414. * @brief Get MV differentials
  1415. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1416. * @param _dmv_x Horizontal differential for decoded MV
  1417. * @param _dmv_y Vertical differential for decoded MV
  1418. */
  1419. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1420. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1421. VC1_MV_DIFF_VLC_BITS, 2); \
  1422. if (index > 36) \
  1423. { \
  1424. mb_has_coeffs = 1; \
  1425. index -= 37; \
  1426. } \
  1427. else mb_has_coeffs = 0; \
  1428. s->mb_intra = 0; \
  1429. if (!index) { _dmv_x = _dmv_y = 0; } \
  1430. else if (index == 35) \
  1431. { \
  1432. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1433. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1434. } \
  1435. else if (index == 36) \
  1436. { \
  1437. _dmv_x = 0; \
  1438. _dmv_y = 0; \
  1439. s->mb_intra = 1; \
  1440. } \
  1441. else \
  1442. { \
  1443. index1 = index%6; \
  1444. if (!s->quarter_sample && index1 == 5) val = 1; \
  1445. else val = 0; \
  1446. if(size_table[index1] - val > 0) \
  1447. val = get_bits(gb, size_table[index1] - val); \
  1448. else val = 0; \
  1449. sign = 0 - (val&1); \
  1450. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1451. \
  1452. index1 = index/6; \
  1453. if (!s->quarter_sample && index1 == 5) val = 1; \
  1454. else val = 0; \
  1455. if(size_table[index1] - val > 0) \
  1456. val = get_bits(gb, size_table[index1] - val); \
  1457. else val = 0; \
  1458. sign = 0 - (val&1); \
  1459. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1460. }
  1461. /** Predict and set motion vector
  1462. */
  1463. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1464. {
  1465. int xy, wrap, off = 0;
  1466. int16_t *A, *B, *C;
  1467. int px, py;
  1468. int sum;
  1469. /* scale MV difference to be quad-pel */
  1470. dmv_x <<= 1 - s->quarter_sample;
  1471. dmv_y <<= 1 - s->quarter_sample;
  1472. wrap = s->b8_stride;
  1473. xy = s->block_index[n];
  1474. if(s->mb_intra){
  1475. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1476. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1477. s->current_picture.motion_val[1][xy][0] = 0;
  1478. s->current_picture.motion_val[1][xy][1] = 0;
  1479. if(mv1) { /* duplicate motion data for 1-MV block */
  1480. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1481. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1482. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1483. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1484. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1485. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1486. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1487. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1488. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1489. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1490. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1491. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1492. }
  1493. return;
  1494. }
  1495. C = s->current_picture.motion_val[0][xy - 1];
  1496. A = s->current_picture.motion_val[0][xy - wrap];
  1497. if(mv1)
  1498. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1499. else {
  1500. //in 4-MV mode different blocks have different B predictor position
  1501. switch(n){
  1502. case 0:
  1503. off = (s->mb_x > 0) ? -1 : 1;
  1504. break;
  1505. case 1:
  1506. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1507. break;
  1508. case 2:
  1509. off = 1;
  1510. break;
  1511. case 3:
  1512. off = -1;
  1513. }
  1514. }
  1515. B = s->current_picture.motion_val[0][xy - wrap + off];
  1516. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1517. if(s->mb_width == 1) {
  1518. px = A[0];
  1519. py = A[1];
  1520. } else {
  1521. px = mid_pred(A[0], B[0], C[0]);
  1522. py = mid_pred(A[1], B[1], C[1]);
  1523. }
  1524. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1525. px = C[0];
  1526. py = C[1];
  1527. } else {
  1528. px = py = 0;
  1529. }
  1530. /* Pullback MV as specified in 8.3.5.3.4 */
  1531. {
  1532. int qx, qy, X, Y;
  1533. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1534. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1535. X = (s->mb_width << 6) - 4;
  1536. Y = (s->mb_height << 6) - 4;
  1537. if(mv1) {
  1538. if(qx + px < -60) px = -60 - qx;
  1539. if(qy + py < -60) py = -60 - qy;
  1540. } else {
  1541. if(qx + px < -28) px = -28 - qx;
  1542. if(qy + py < -28) py = -28 - qy;
  1543. }
  1544. if(qx + px > X) px = X - qx;
  1545. if(qy + py > Y) py = Y - qy;
  1546. }
  1547. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1548. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1549. if(is_intra[xy - wrap])
  1550. sum = FFABS(px) + FFABS(py);
  1551. else
  1552. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1553. if(sum > 32) {
  1554. if(get_bits1(&s->gb)) {
  1555. px = A[0];
  1556. py = A[1];
  1557. } else {
  1558. px = C[0];
  1559. py = C[1];
  1560. }
  1561. } else {
  1562. if(is_intra[xy - 1])
  1563. sum = FFABS(px) + FFABS(py);
  1564. else
  1565. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1566. if(sum > 32) {
  1567. if(get_bits1(&s->gb)) {
  1568. px = A[0];
  1569. py = A[1];
  1570. } else {
  1571. px = C[0];
  1572. py = C[1];
  1573. }
  1574. }
  1575. }
  1576. }
  1577. /* store MV using signed modulus of MV range defined in 4.11 */
  1578. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1579. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1580. if(mv1) { /* duplicate motion data for 1-MV block */
  1581. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1582. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1583. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1584. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1585. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1586. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1587. }
  1588. }
  1589. /** Motion compensation for direct or interpolated blocks in B-frames
  1590. */
  1591. static void vc1_interp_mc(VC1Context *v)
  1592. {
  1593. MpegEncContext *s = &v->s;
  1594. DSPContext *dsp = &v->s.dsp;
  1595. uint8_t *srcY, *srcU, *srcV;
  1596. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1597. if(!v->s.next_picture.data[0])return;
  1598. mx = s->mv[1][0][0];
  1599. my = s->mv[1][0][1];
  1600. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1601. uvmy = (my + ((my & 3) == 3)) >> 1;
  1602. if(v->fastuvmc) {
  1603. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1604. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1605. }
  1606. srcY = s->next_picture.data[0];
  1607. srcU = s->next_picture.data[1];
  1608. srcV = s->next_picture.data[2];
  1609. src_x = s->mb_x * 16 + (mx >> 2);
  1610. src_y = s->mb_y * 16 + (my >> 2);
  1611. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1612. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1613. if(v->profile != PROFILE_ADVANCED){
  1614. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1615. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1616. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1617. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1618. }else{
  1619. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1620. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1621. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1622. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1623. }
  1624. srcY += src_y * s->linesize + src_x;
  1625. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1626. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1627. /* for grayscale we should not try to read from unknown area */
  1628. if(s->flags & CODEC_FLAG_GRAY) {
  1629. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1630. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1631. }
  1632. if(v->rangeredfrm
  1633. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1634. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1635. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1636. srcY -= s->mspel * (1 + s->linesize);
  1637. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1638. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1639. srcY = s->edge_emu_buffer;
  1640. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1641. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1642. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1643. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1644. srcU = uvbuf;
  1645. srcV = uvbuf + 16;
  1646. /* if we deal with range reduction we need to scale source blocks */
  1647. if(v->rangeredfrm) {
  1648. int i, j;
  1649. uint8_t *src, *src2;
  1650. src = srcY;
  1651. for(j = 0; j < 17 + s->mspel*2; j++) {
  1652. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1653. src += s->linesize;
  1654. }
  1655. src = srcU; src2 = srcV;
  1656. for(j = 0; j < 9; j++) {
  1657. for(i = 0; i < 9; i++) {
  1658. src[i] = ((src[i] - 128) >> 1) + 128;
  1659. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1660. }
  1661. src += s->uvlinesize;
  1662. src2 += s->uvlinesize;
  1663. }
  1664. }
  1665. srcY += s->mspel * (1 + s->linesize);
  1666. }
  1667. mx >>= 1;
  1668. my >>= 1;
  1669. dxy = ((my & 1) << 1) | (mx & 1);
  1670. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1671. if(s->flags & CODEC_FLAG_GRAY) return;
  1672. /* Chroma MC always uses qpel blilinear */
  1673. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1674. uvmx = (uvmx&3)<<1;
  1675. uvmy = (uvmy&3)<<1;
  1676. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1677. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1678. }
  1679. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1680. {
  1681. int n = bfrac;
  1682. #if B_FRACTION_DEN==256
  1683. if(inv)
  1684. n -= 256;
  1685. if(!qs)
  1686. return 2 * ((value * n + 255) >> 9);
  1687. return (value * n + 128) >> 8;
  1688. #else
  1689. if(inv)
  1690. n -= B_FRACTION_DEN;
  1691. if(!qs)
  1692. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1693. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1694. #endif
  1695. }
  1696. /** Reconstruct motion vector for B-frame and do motion compensation
  1697. */
  1698. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1699. {
  1700. if(v->use_ic) {
  1701. v->mv_mode2 = v->mv_mode;
  1702. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1703. }
  1704. if(direct) {
  1705. vc1_mc_1mv(v, 0);
  1706. vc1_interp_mc(v);
  1707. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1708. return;
  1709. }
  1710. if(mode == BMV_TYPE_INTERPOLATED) {
  1711. vc1_mc_1mv(v, 0);
  1712. vc1_interp_mc(v);
  1713. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1714. return;
  1715. }
  1716. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1717. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1718. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1719. }
  1720. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1721. {
  1722. MpegEncContext *s = &v->s;
  1723. int xy, wrap, off = 0;
  1724. int16_t *A, *B, *C;
  1725. int px, py;
  1726. int sum;
  1727. int r_x, r_y;
  1728. const uint8_t *is_intra = v->mb_type[0];
  1729. r_x = v->range_x;
  1730. r_y = v->range_y;
  1731. /* scale MV difference to be quad-pel */
  1732. dmv_x[0] <<= 1 - s->quarter_sample;
  1733. dmv_y[0] <<= 1 - s->quarter_sample;
  1734. dmv_x[1] <<= 1 - s->quarter_sample;
  1735. dmv_y[1] <<= 1 - s->quarter_sample;
  1736. wrap = s->b8_stride;
  1737. xy = s->block_index[0];
  1738. if(s->mb_intra) {
  1739. s->current_picture.motion_val[0][xy][0] =
  1740. s->current_picture.motion_val[0][xy][1] =
  1741. s->current_picture.motion_val[1][xy][0] =
  1742. s->current_picture.motion_val[1][xy][1] = 0;
  1743. return;
  1744. }
  1745. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1746. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1747. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1748. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1749. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1750. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1751. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1752. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1753. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1754. if(direct) {
  1755. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1756. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1757. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1758. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1759. return;
  1760. }
  1761. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1762. C = s->current_picture.motion_val[0][xy - 2];
  1763. A = s->current_picture.motion_val[0][xy - wrap*2];
  1764. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1765. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1766. if(!s->mb_x) C[0] = C[1] = 0;
  1767. if(!s->first_slice_line) { // predictor A is not out of bounds
  1768. if(s->mb_width == 1) {
  1769. px = A[0];
  1770. py = A[1];
  1771. } else {
  1772. px = mid_pred(A[0], B[0], C[0]);
  1773. py = mid_pred(A[1], B[1], C[1]);
  1774. }
  1775. } else if(s->mb_x) { // predictor C is not out of bounds
  1776. px = C[0];
  1777. py = C[1];
  1778. } else {
  1779. px = py = 0;
  1780. }
  1781. /* Pullback MV as specified in 8.3.5.3.4 */
  1782. {
  1783. int qx, qy, X, Y;
  1784. if(v->profile < PROFILE_ADVANCED) {
  1785. qx = (s->mb_x << 5);
  1786. qy = (s->mb_y << 5);
  1787. X = (s->mb_width << 5) - 4;
  1788. Y = (s->mb_height << 5) - 4;
  1789. if(qx + px < -28) px = -28 - qx;
  1790. if(qy + py < -28) py = -28 - qy;
  1791. if(qx + px > X) px = X - qx;
  1792. if(qy + py > Y) py = Y - qy;
  1793. } else {
  1794. qx = (s->mb_x << 6);
  1795. qy = (s->mb_y << 6);
  1796. X = (s->mb_width << 6) - 4;
  1797. Y = (s->mb_height << 6) - 4;
  1798. if(qx + px < -60) px = -60 - qx;
  1799. if(qy + py < -60) py = -60 - qy;
  1800. if(qx + px > X) px = X - qx;
  1801. if(qy + py > Y) py = Y - qy;
  1802. }
  1803. }
  1804. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1805. if(0 && !s->first_slice_line && s->mb_x) {
  1806. if(is_intra[xy - wrap])
  1807. sum = FFABS(px) + FFABS(py);
  1808. else
  1809. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1810. if(sum > 32) {
  1811. if(get_bits1(&s->gb)) {
  1812. px = A[0];
  1813. py = A[1];
  1814. } else {
  1815. px = C[0];
  1816. py = C[1];
  1817. }
  1818. } else {
  1819. if(is_intra[xy - 2])
  1820. sum = FFABS(px) + FFABS(py);
  1821. else
  1822. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1823. if(sum > 32) {
  1824. if(get_bits1(&s->gb)) {
  1825. px = A[0];
  1826. py = A[1];
  1827. } else {
  1828. px = C[0];
  1829. py = C[1];
  1830. }
  1831. }
  1832. }
  1833. }
  1834. /* store MV using signed modulus of MV range defined in 4.11 */
  1835. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1836. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1837. }
  1838. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1839. C = s->current_picture.motion_val[1][xy - 2];
  1840. A = s->current_picture.motion_val[1][xy - wrap*2];
  1841. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1842. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1843. if(!s->mb_x) C[0] = C[1] = 0;
  1844. if(!s->first_slice_line) { // predictor A is not out of bounds
  1845. if(s->mb_width == 1) {
  1846. px = A[0];
  1847. py = A[1];
  1848. } else {
  1849. px = mid_pred(A[0], B[0], C[0]);
  1850. py = mid_pred(A[1], B[1], C[1]);
  1851. }
  1852. } else if(s->mb_x) { // predictor C is not out of bounds
  1853. px = C[0];
  1854. py = C[1];
  1855. } else {
  1856. px = py = 0;
  1857. }
  1858. /* Pullback MV as specified in 8.3.5.3.4 */
  1859. {
  1860. int qx, qy, X, Y;
  1861. if(v->profile < PROFILE_ADVANCED) {
  1862. qx = (s->mb_x << 5);
  1863. qy = (s->mb_y << 5);
  1864. X = (s->mb_width << 5) - 4;
  1865. Y = (s->mb_height << 5) - 4;
  1866. if(qx + px < -28) px = -28 - qx;
  1867. if(qy + py < -28) py = -28 - qy;
  1868. if(qx + px > X) px = X - qx;
  1869. if(qy + py > Y) py = Y - qy;
  1870. } else {
  1871. qx = (s->mb_x << 6);
  1872. qy = (s->mb_y << 6);
  1873. X = (s->mb_width << 6) - 4;
  1874. Y = (s->mb_height << 6) - 4;
  1875. if(qx + px < -60) px = -60 - qx;
  1876. if(qy + py < -60) py = -60 - qy;
  1877. if(qx + px > X) px = X - qx;
  1878. if(qy + py > Y) py = Y - qy;
  1879. }
  1880. }
  1881. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1882. if(0 && !s->first_slice_line && s->mb_x) {
  1883. if(is_intra[xy - wrap])
  1884. sum = FFABS(px) + FFABS(py);
  1885. else
  1886. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1887. if(sum > 32) {
  1888. if(get_bits1(&s->gb)) {
  1889. px = A[0];
  1890. py = A[1];
  1891. } else {
  1892. px = C[0];
  1893. py = C[1];
  1894. }
  1895. } else {
  1896. if(is_intra[xy - 2])
  1897. sum = FFABS(px) + FFABS(py);
  1898. else
  1899. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1900. if(sum > 32) {
  1901. if(get_bits1(&s->gb)) {
  1902. px = A[0];
  1903. py = A[1];
  1904. } else {
  1905. px = C[0];
  1906. py = C[1];
  1907. }
  1908. }
  1909. }
  1910. }
  1911. /* store MV using signed modulus of MV range defined in 4.11 */
  1912. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1913. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1914. }
  1915. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1916. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1917. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1918. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1919. }
  1920. /** Get predicted DC value for I-frames only
  1921. * prediction dir: left=0, top=1
  1922. * @param s MpegEncContext
  1923. * @param[in] n block index in the current MB
  1924. * @param dc_val_ptr Pointer to DC predictor
  1925. * @param dir_ptr Prediction direction for use in AC prediction
  1926. */
  1927. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1928. int16_t **dc_val_ptr, int *dir_ptr)
  1929. {
  1930. int a, b, c, wrap, pred, scale;
  1931. int16_t *dc_val;
  1932. static const uint16_t dcpred[32] = {
  1933. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1934. 114, 102, 93, 85, 79, 73, 68, 64,
  1935. 60, 57, 54, 51, 49, 47, 45, 43,
  1936. 41, 39, 38, 37, 35, 34, 33
  1937. };
  1938. /* find prediction - wmv3_dc_scale always used here in fact */
  1939. if (n < 4) scale = s->y_dc_scale;
  1940. else scale = s->c_dc_scale;
  1941. wrap = s->block_wrap[n];
  1942. dc_val= s->dc_val[0] + s->block_index[n];
  1943. /* B A
  1944. * C X
  1945. */
  1946. c = dc_val[ - 1];
  1947. b = dc_val[ - 1 - wrap];
  1948. a = dc_val[ - wrap];
  1949. if (pq < 9 || !overlap)
  1950. {
  1951. /* Set outer values */
  1952. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1953. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1954. }
  1955. else
  1956. {
  1957. /* Set outer values */
  1958. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1959. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1960. }
  1961. if (abs(a - b) <= abs(b - c)) {
  1962. pred = c;
  1963. *dir_ptr = 1;//left
  1964. } else {
  1965. pred = a;
  1966. *dir_ptr = 0;//top
  1967. }
  1968. /* update predictor */
  1969. *dc_val_ptr = &dc_val[0];
  1970. return pred;
  1971. }
  1972. /** Get predicted DC value
  1973. * prediction dir: left=0, top=1
  1974. * @param s MpegEncContext
  1975. * @param[in] n block index in the current MB
  1976. * @param dc_val_ptr Pointer to DC predictor
  1977. * @param dir_ptr Prediction direction for use in AC prediction
  1978. */
  1979. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1980. int a_avail, int c_avail,
  1981. int16_t **dc_val_ptr, int *dir_ptr)
  1982. {
  1983. int a, b, c, wrap, pred, scale;
  1984. int16_t *dc_val;
  1985. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1986. int q1, q2 = 0;
  1987. /* find prediction - wmv3_dc_scale always used here in fact */
  1988. if (n < 4) scale = s->y_dc_scale;
  1989. else scale = s->c_dc_scale;
  1990. wrap = s->block_wrap[n];
  1991. dc_val= s->dc_val[0] + s->block_index[n];
  1992. /* B A
  1993. * C X
  1994. */
  1995. c = dc_val[ - 1];
  1996. b = dc_val[ - 1 - wrap];
  1997. a = dc_val[ - wrap];
  1998. /* scale predictors if needed */
  1999. q1 = s->current_picture.qscale_table[mb_pos];
  2000. if(c_avail && (n!= 1 && n!=3)) {
  2001. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2002. if(q2 && q2 != q1)
  2003. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2004. }
  2005. if(a_avail && (n!= 2 && n!=3)) {
  2006. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2007. if(q2 && q2 != q1)
  2008. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2009. }
  2010. if(a_avail && c_avail && (n!=3)) {
  2011. int off = mb_pos;
  2012. if(n != 1) off--;
  2013. if(n != 2) off -= s->mb_stride;
  2014. q2 = s->current_picture.qscale_table[off];
  2015. if(q2 && q2 != q1)
  2016. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2017. }
  2018. if(a_avail && c_avail) {
  2019. if(abs(a - b) <= abs(b - c)) {
  2020. pred = c;
  2021. *dir_ptr = 1;//left
  2022. } else {
  2023. pred = a;
  2024. *dir_ptr = 0;//top
  2025. }
  2026. } else if(a_avail) {
  2027. pred = a;
  2028. *dir_ptr = 0;//top
  2029. } else if(c_avail) {
  2030. pred = c;
  2031. *dir_ptr = 1;//left
  2032. } else {
  2033. pred = 0;
  2034. *dir_ptr = 1;//left
  2035. }
  2036. /* update predictor */
  2037. *dc_val_ptr = &dc_val[0];
  2038. return pred;
  2039. }
  2040. /**
  2041. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2042. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2043. * @{
  2044. */
  2045. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2046. {
  2047. int xy, wrap, pred, a, b, c;
  2048. xy = s->block_index[n];
  2049. wrap = s->b8_stride;
  2050. /* B C
  2051. * A X
  2052. */
  2053. a = s->coded_block[xy - 1 ];
  2054. b = s->coded_block[xy - 1 - wrap];
  2055. c = s->coded_block[xy - wrap];
  2056. if (b == c) {
  2057. pred = a;
  2058. } else {
  2059. pred = c;
  2060. }
  2061. /* store value */
  2062. *coded_block_ptr = &s->coded_block[xy];
  2063. return pred;
  2064. }
  2065. /**
  2066. * Decode one AC coefficient
  2067. * @param v The VC1 context
  2068. * @param last Last coefficient
  2069. * @param skip How much zero coefficients to skip
  2070. * @param value Decoded AC coefficient value
  2071. * @see 8.1.3.4
  2072. */
  2073. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2074. {
  2075. GetBitContext *gb = &v->s.gb;
  2076. int index, escape, run = 0, level = 0, lst = 0;
  2077. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2078. if (index != vc1_ac_sizes[codingset] - 1) {
  2079. run = vc1_index_decode_table[codingset][index][0];
  2080. level = vc1_index_decode_table[codingset][index][1];
  2081. lst = index >= vc1_last_decode_table[codingset];
  2082. if(get_bits1(gb))
  2083. level = -level;
  2084. } else {
  2085. escape = decode210(gb);
  2086. if (escape != 2) {
  2087. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2088. run = vc1_index_decode_table[codingset][index][0];
  2089. level = vc1_index_decode_table[codingset][index][1];
  2090. lst = index >= vc1_last_decode_table[codingset];
  2091. if(escape == 0) {
  2092. if(lst)
  2093. level += vc1_last_delta_level_table[codingset][run];
  2094. else
  2095. level += vc1_delta_level_table[codingset][run];
  2096. } else {
  2097. if(lst)
  2098. run += vc1_last_delta_run_table[codingset][level] + 1;
  2099. else
  2100. run += vc1_delta_run_table[codingset][level] + 1;
  2101. }
  2102. if(get_bits1(gb))
  2103. level = -level;
  2104. } else {
  2105. int sign;
  2106. lst = get_bits1(gb);
  2107. if(v->s.esc3_level_length == 0) {
  2108. if(v->pq < 8 || v->dquantfrm) { // table 59
  2109. v->s.esc3_level_length = get_bits(gb, 3);
  2110. if(!v->s.esc3_level_length)
  2111. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2112. } else { //table 60
  2113. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2114. }
  2115. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2116. }
  2117. run = get_bits(gb, v->s.esc3_run_length);
  2118. sign = get_bits1(gb);
  2119. level = get_bits(gb, v->s.esc3_level_length);
  2120. if(sign)
  2121. level = -level;
  2122. }
  2123. }
  2124. *last = lst;
  2125. *skip = run;
  2126. *value = level;
  2127. }
  2128. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2129. * @param v VC1Context
  2130. * @param block block to decode
  2131. * @param coded are AC coeffs present or not
  2132. * @param codingset set of VLC to decode data
  2133. */
  2134. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2135. {
  2136. GetBitContext *gb = &v->s.gb;
  2137. MpegEncContext *s = &v->s;
  2138. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2139. int run_diff, i;
  2140. int16_t *dc_val;
  2141. int16_t *ac_val, *ac_val2;
  2142. int dcdiff;
  2143. /* Get DC differential */
  2144. if (n < 4) {
  2145. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2146. } else {
  2147. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2148. }
  2149. if (dcdiff < 0){
  2150. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2151. return -1;
  2152. }
  2153. if (dcdiff)
  2154. {
  2155. if (dcdiff == 119 /* ESC index value */)
  2156. {
  2157. /* TODO: Optimize */
  2158. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2159. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2160. else dcdiff = get_bits(gb, 8);
  2161. }
  2162. else
  2163. {
  2164. if (v->pq == 1)
  2165. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2166. else if (v->pq == 2)
  2167. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2168. }
  2169. if (get_bits1(gb))
  2170. dcdiff = -dcdiff;
  2171. }
  2172. /* Prediction */
  2173. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2174. *dc_val = dcdiff;
  2175. /* Store the quantized DC coeff, used for prediction */
  2176. if (n < 4) {
  2177. block[0] = dcdiff * s->y_dc_scale;
  2178. } else {
  2179. block[0] = dcdiff * s->c_dc_scale;
  2180. }
  2181. /* Skip ? */
  2182. run_diff = 0;
  2183. i = 0;
  2184. if (!coded) {
  2185. goto not_coded;
  2186. }
  2187. //AC Decoding
  2188. i = 1;
  2189. {
  2190. int last = 0, skip, value;
  2191. const int8_t *zz_table;
  2192. int scale;
  2193. int k;
  2194. scale = v->pq * 2 + v->halfpq;
  2195. if(v->s.ac_pred) {
  2196. if(!dc_pred_dir)
  2197. zz_table = ff_vc1_horizontal_zz;
  2198. else
  2199. zz_table = ff_vc1_vertical_zz;
  2200. } else
  2201. zz_table = ff_vc1_normal_zz;
  2202. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2203. ac_val2 = ac_val;
  2204. if(dc_pred_dir) //left
  2205. ac_val -= 16;
  2206. else //top
  2207. ac_val -= 16 * s->block_wrap[n];
  2208. while (!last) {
  2209. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2210. i += skip;
  2211. if(i > 63)
  2212. break;
  2213. block[zz_table[i++]] = value;
  2214. }
  2215. /* apply AC prediction if needed */
  2216. if(s->ac_pred) {
  2217. if(dc_pred_dir) { //left
  2218. for(k = 1; k < 8; k++)
  2219. block[k << 3] += ac_val[k];
  2220. } else { //top
  2221. for(k = 1; k < 8; k++)
  2222. block[k] += ac_val[k + 8];
  2223. }
  2224. }
  2225. /* save AC coeffs for further prediction */
  2226. for(k = 1; k < 8; k++) {
  2227. ac_val2[k] = block[k << 3];
  2228. ac_val2[k + 8] = block[k];
  2229. }
  2230. /* scale AC coeffs */
  2231. for(k = 1; k < 64; k++)
  2232. if(block[k]) {
  2233. block[k] *= scale;
  2234. if(!v->pquantizer)
  2235. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2236. }
  2237. if(s->ac_pred) i = 63;
  2238. }
  2239. not_coded:
  2240. if(!coded) {
  2241. int k, scale;
  2242. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2243. ac_val2 = ac_val;
  2244. scale = v->pq * 2 + v->halfpq;
  2245. memset(ac_val2, 0, 16 * 2);
  2246. if(dc_pred_dir) {//left
  2247. ac_val -= 16;
  2248. if(s->ac_pred)
  2249. memcpy(ac_val2, ac_val, 8 * 2);
  2250. } else {//top
  2251. ac_val -= 16 * s->block_wrap[n];
  2252. if(s->ac_pred)
  2253. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2254. }
  2255. /* apply AC prediction if needed */
  2256. if(s->ac_pred) {
  2257. if(dc_pred_dir) { //left
  2258. for(k = 1; k < 8; k++) {
  2259. block[k << 3] = ac_val[k] * scale;
  2260. if(!v->pquantizer && block[k << 3])
  2261. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2262. }
  2263. } else { //top
  2264. for(k = 1; k < 8; k++) {
  2265. block[k] = ac_val[k + 8] * scale;
  2266. if(!v->pquantizer && block[k])
  2267. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2268. }
  2269. }
  2270. i = 63;
  2271. }
  2272. }
  2273. s->block_last_index[n] = i;
  2274. return 0;
  2275. }
  2276. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2277. * @param v VC1Context
  2278. * @param block block to decode
  2279. * @param coded are AC coeffs present or not
  2280. * @param codingset set of VLC to decode data
  2281. */
  2282. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2283. {
  2284. GetBitContext *gb = &v->s.gb;
  2285. MpegEncContext *s = &v->s;
  2286. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2287. int run_diff, i;
  2288. int16_t *dc_val;
  2289. int16_t *ac_val, *ac_val2;
  2290. int dcdiff;
  2291. int a_avail = v->a_avail, c_avail = v->c_avail;
  2292. int use_pred = s->ac_pred;
  2293. int scale;
  2294. int q1, q2 = 0;
  2295. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2296. /* Get DC differential */
  2297. if (n < 4) {
  2298. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2299. } else {
  2300. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2301. }
  2302. if (dcdiff < 0){
  2303. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2304. return -1;
  2305. }
  2306. if (dcdiff)
  2307. {
  2308. if (dcdiff == 119 /* ESC index value */)
  2309. {
  2310. /* TODO: Optimize */
  2311. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2312. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2313. else dcdiff = get_bits(gb, 8);
  2314. }
  2315. else
  2316. {
  2317. if (mquant == 1)
  2318. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2319. else if (mquant == 2)
  2320. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2321. }
  2322. if (get_bits1(gb))
  2323. dcdiff = -dcdiff;
  2324. }
  2325. /* Prediction */
  2326. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2327. *dc_val = dcdiff;
  2328. /* Store the quantized DC coeff, used for prediction */
  2329. if (n < 4) {
  2330. block[0] = dcdiff * s->y_dc_scale;
  2331. } else {
  2332. block[0] = dcdiff * s->c_dc_scale;
  2333. }
  2334. /* Skip ? */
  2335. run_diff = 0;
  2336. i = 0;
  2337. //AC Decoding
  2338. i = 1;
  2339. /* check if AC is needed at all */
  2340. if(!a_avail && !c_avail) use_pred = 0;
  2341. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2342. ac_val2 = ac_val;
  2343. scale = mquant * 2 + v->halfpq;
  2344. if(dc_pred_dir) //left
  2345. ac_val -= 16;
  2346. else //top
  2347. ac_val -= 16 * s->block_wrap[n];
  2348. q1 = s->current_picture.qscale_table[mb_pos];
  2349. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2350. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2351. if(dc_pred_dir && n==1) q2 = q1;
  2352. if(!dc_pred_dir && n==2) q2 = q1;
  2353. if(n==3) q2 = q1;
  2354. if(coded) {
  2355. int last = 0, skip, value;
  2356. const int8_t *zz_table;
  2357. int k;
  2358. if(v->s.ac_pred) {
  2359. if(!dc_pred_dir)
  2360. zz_table = ff_vc1_horizontal_zz;
  2361. else
  2362. zz_table = ff_vc1_vertical_zz;
  2363. } else
  2364. zz_table = ff_vc1_normal_zz;
  2365. while (!last) {
  2366. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2367. i += skip;
  2368. if(i > 63)
  2369. break;
  2370. block[zz_table[i++]] = value;
  2371. }
  2372. /* apply AC prediction if needed */
  2373. if(use_pred) {
  2374. /* scale predictors if needed*/
  2375. if(q2 && q1!=q2) {
  2376. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2377. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2378. if(dc_pred_dir) { //left
  2379. for(k = 1; k < 8; k++)
  2380. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2381. } else { //top
  2382. for(k = 1; k < 8; k++)
  2383. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2384. }
  2385. } else {
  2386. if(dc_pred_dir) { //left
  2387. for(k = 1; k < 8; k++)
  2388. block[k << 3] += ac_val[k];
  2389. } else { //top
  2390. for(k = 1; k < 8; k++)
  2391. block[k] += ac_val[k + 8];
  2392. }
  2393. }
  2394. }
  2395. /* save AC coeffs for further prediction */
  2396. for(k = 1; k < 8; k++) {
  2397. ac_val2[k] = block[k << 3];
  2398. ac_val2[k + 8] = block[k];
  2399. }
  2400. /* scale AC coeffs */
  2401. for(k = 1; k < 64; k++)
  2402. if(block[k]) {
  2403. block[k] *= scale;
  2404. if(!v->pquantizer)
  2405. block[k] += (block[k] < 0) ? -mquant : mquant;
  2406. }
  2407. if(use_pred) i = 63;
  2408. } else { // no AC coeffs
  2409. int k;
  2410. memset(ac_val2, 0, 16 * 2);
  2411. if(dc_pred_dir) {//left
  2412. if(use_pred) {
  2413. memcpy(ac_val2, ac_val, 8 * 2);
  2414. if(q2 && q1!=q2) {
  2415. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2416. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2417. for(k = 1; k < 8; k++)
  2418. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2419. }
  2420. }
  2421. } else {//top
  2422. if(use_pred) {
  2423. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2424. if(q2 && q1!=q2) {
  2425. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2426. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2427. for(k = 1; k < 8; k++)
  2428. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2429. }
  2430. }
  2431. }
  2432. /* apply AC prediction if needed */
  2433. if(use_pred) {
  2434. if(dc_pred_dir) { //left
  2435. for(k = 1; k < 8; k++) {
  2436. block[k << 3] = ac_val2[k] * scale;
  2437. if(!v->pquantizer && block[k << 3])
  2438. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2439. }
  2440. } else { //top
  2441. for(k = 1; k < 8; k++) {
  2442. block[k] = ac_val2[k + 8] * scale;
  2443. if(!v->pquantizer && block[k])
  2444. block[k] += (block[k] < 0) ? -mquant : mquant;
  2445. }
  2446. }
  2447. i = 63;
  2448. }
  2449. }
  2450. s->block_last_index[n] = i;
  2451. return 0;
  2452. }
  2453. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2454. * @param v VC1Context
  2455. * @param block block to decode
  2456. * @param coded are AC coeffs present or not
  2457. * @param mquant block quantizer
  2458. * @param codingset set of VLC to decode data
  2459. */
  2460. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2461. {
  2462. GetBitContext *gb = &v->s.gb;
  2463. MpegEncContext *s = &v->s;
  2464. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2465. int run_diff, i;
  2466. int16_t *dc_val;
  2467. int16_t *ac_val, *ac_val2;
  2468. int dcdiff;
  2469. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2470. int a_avail = v->a_avail, c_avail = v->c_avail;
  2471. int use_pred = s->ac_pred;
  2472. int scale;
  2473. int q1, q2 = 0;
  2474. /* XXX: Guard against dumb values of mquant */
  2475. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2476. /* Set DC scale - y and c use the same */
  2477. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2478. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2479. /* Get DC differential */
  2480. if (n < 4) {
  2481. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2482. } else {
  2483. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2484. }
  2485. if (dcdiff < 0){
  2486. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2487. return -1;
  2488. }
  2489. if (dcdiff)
  2490. {
  2491. if (dcdiff == 119 /* ESC index value */)
  2492. {
  2493. /* TODO: Optimize */
  2494. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2495. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2496. else dcdiff = get_bits(gb, 8);
  2497. }
  2498. else
  2499. {
  2500. if (mquant == 1)
  2501. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2502. else if (mquant == 2)
  2503. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2504. }
  2505. if (get_bits1(gb))
  2506. dcdiff = -dcdiff;
  2507. }
  2508. /* Prediction */
  2509. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2510. *dc_val = dcdiff;
  2511. /* Store the quantized DC coeff, used for prediction */
  2512. if (n < 4) {
  2513. block[0] = dcdiff * s->y_dc_scale;
  2514. } else {
  2515. block[0] = dcdiff * s->c_dc_scale;
  2516. }
  2517. /* Skip ? */
  2518. run_diff = 0;
  2519. i = 0;
  2520. //AC Decoding
  2521. i = 1;
  2522. /* check if AC is needed at all and adjust direction if needed */
  2523. if(!a_avail) dc_pred_dir = 1;
  2524. if(!c_avail) dc_pred_dir = 0;
  2525. if(!a_avail && !c_avail) use_pred = 0;
  2526. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2527. ac_val2 = ac_val;
  2528. scale = mquant * 2 + v->halfpq;
  2529. if(dc_pred_dir) //left
  2530. ac_val -= 16;
  2531. else //top
  2532. ac_val -= 16 * s->block_wrap[n];
  2533. q1 = s->current_picture.qscale_table[mb_pos];
  2534. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2535. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2536. if(dc_pred_dir && n==1) q2 = q1;
  2537. if(!dc_pred_dir && n==2) q2 = q1;
  2538. if(n==3) q2 = q1;
  2539. if(coded) {
  2540. int last = 0, skip, value;
  2541. const int8_t *zz_table;
  2542. int k;
  2543. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2544. while (!last) {
  2545. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2546. i += skip;
  2547. if(i > 63)
  2548. break;
  2549. block[zz_table[i++]] = value;
  2550. }
  2551. /* apply AC prediction if needed */
  2552. if(use_pred) {
  2553. /* scale predictors if needed*/
  2554. if(q2 && q1!=q2) {
  2555. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2556. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2557. if(dc_pred_dir) { //left
  2558. for(k = 1; k < 8; k++)
  2559. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2560. } else { //top
  2561. for(k = 1; k < 8; k++)
  2562. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2563. }
  2564. } else {
  2565. if(dc_pred_dir) { //left
  2566. for(k = 1; k < 8; k++)
  2567. block[k << 3] += ac_val[k];
  2568. } else { //top
  2569. for(k = 1; k < 8; k++)
  2570. block[k] += ac_val[k + 8];
  2571. }
  2572. }
  2573. }
  2574. /* save AC coeffs for further prediction */
  2575. for(k = 1; k < 8; k++) {
  2576. ac_val2[k] = block[k << 3];
  2577. ac_val2[k + 8] = block[k];
  2578. }
  2579. /* scale AC coeffs */
  2580. for(k = 1; k < 64; k++)
  2581. if(block[k]) {
  2582. block[k] *= scale;
  2583. if(!v->pquantizer)
  2584. block[k] += (block[k] < 0) ? -mquant : mquant;
  2585. }
  2586. if(use_pred) i = 63;
  2587. } else { // no AC coeffs
  2588. int k;
  2589. memset(ac_val2, 0, 16 * 2);
  2590. if(dc_pred_dir) {//left
  2591. if(use_pred) {
  2592. memcpy(ac_val2, ac_val, 8 * 2);
  2593. if(q2 && q1!=q2) {
  2594. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2595. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2596. for(k = 1; k < 8; k++)
  2597. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2598. }
  2599. }
  2600. } else {//top
  2601. if(use_pred) {
  2602. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2603. if(q2 && q1!=q2) {
  2604. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2605. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2606. for(k = 1; k < 8; k++)
  2607. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2608. }
  2609. }
  2610. }
  2611. /* apply AC prediction if needed */
  2612. if(use_pred) {
  2613. if(dc_pred_dir) { //left
  2614. for(k = 1; k < 8; k++) {
  2615. block[k << 3] = ac_val2[k] * scale;
  2616. if(!v->pquantizer && block[k << 3])
  2617. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2618. }
  2619. } else { //top
  2620. for(k = 1; k < 8; k++) {
  2621. block[k] = ac_val2[k + 8] * scale;
  2622. if(!v->pquantizer && block[k])
  2623. block[k] += (block[k] < 0) ? -mquant : mquant;
  2624. }
  2625. }
  2626. i = 63;
  2627. }
  2628. }
  2629. s->block_last_index[n] = i;
  2630. return 0;
  2631. }
  2632. /** Decode P block
  2633. */
  2634. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2635. {
  2636. MpegEncContext *s = &v->s;
  2637. GetBitContext *gb = &s->gb;
  2638. int i, j;
  2639. int subblkpat = 0;
  2640. int scale, off, idx, last, skip, value;
  2641. int ttblk = ttmb & 7;
  2642. if(ttmb == -1) {
  2643. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2644. }
  2645. if(ttblk == TT_4X4) {
  2646. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2647. }
  2648. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2649. subblkpat = decode012(gb);
  2650. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2651. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2652. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2653. }
  2654. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2655. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2656. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2657. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2658. ttblk = TT_8X4;
  2659. }
  2660. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2661. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2662. ttblk = TT_4X8;
  2663. }
  2664. switch(ttblk) {
  2665. case TT_8X8:
  2666. i = 0;
  2667. last = 0;
  2668. while (!last) {
  2669. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2670. i += skip;
  2671. if(i > 63)
  2672. break;
  2673. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2674. block[idx] = value * scale;
  2675. if(!v->pquantizer)
  2676. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2677. }
  2678. s->dsp.vc1_inv_trans_8x8(block);
  2679. break;
  2680. case TT_4X4:
  2681. for(j = 0; j < 4; j++) {
  2682. last = subblkpat & (1 << (3 - j));
  2683. i = 0;
  2684. off = (j & 1) * 4 + (j & 2) * 16;
  2685. while (!last) {
  2686. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2687. i += skip;
  2688. if(i > 15)
  2689. break;
  2690. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2691. block[idx + off] = value * scale;
  2692. if(!v->pquantizer)
  2693. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2694. }
  2695. if(!(subblkpat & (1 << (3 - j))))
  2696. s->dsp.vc1_inv_trans_4x4(block, j);
  2697. }
  2698. break;
  2699. case TT_8X4:
  2700. for(j = 0; j < 2; j++) {
  2701. last = subblkpat & (1 << (1 - j));
  2702. i = 0;
  2703. off = j * 32;
  2704. while (!last) {
  2705. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2706. i += skip;
  2707. if(i > 31)
  2708. break;
  2709. if(v->profile < PROFILE_ADVANCED)
  2710. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2711. else
  2712. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2713. block[idx + off] = value * scale;
  2714. if(!v->pquantizer)
  2715. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2716. }
  2717. if(!(subblkpat & (1 << (1 - j))))
  2718. s->dsp.vc1_inv_trans_8x4(block, j);
  2719. }
  2720. break;
  2721. case TT_4X8:
  2722. for(j = 0; j < 2; j++) {
  2723. last = subblkpat & (1 << (1 - j));
  2724. i = 0;
  2725. off = j * 4;
  2726. while (!last) {
  2727. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2728. i += skip;
  2729. if(i > 31)
  2730. break;
  2731. if(v->profile < PROFILE_ADVANCED)
  2732. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2733. else
  2734. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2735. block[idx + off] = value * scale;
  2736. if(!v->pquantizer)
  2737. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2738. }
  2739. if(!(subblkpat & (1 << (1 - j))))
  2740. s->dsp.vc1_inv_trans_4x8(block, j);
  2741. }
  2742. break;
  2743. }
  2744. return 0;
  2745. }
  2746. /** Decode one P-frame MB (in Simple/Main profile)
  2747. */
  2748. static int vc1_decode_p_mb(VC1Context *v)
  2749. {
  2750. MpegEncContext *s = &v->s;
  2751. GetBitContext *gb = &s->gb;
  2752. int i, j;
  2753. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2754. int cbp; /* cbp decoding stuff */
  2755. int mqdiff, mquant; /* MB quantization */
  2756. int ttmb = v->ttfrm; /* MB Transform type */
  2757. int status;
  2758. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2759. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2760. int mb_has_coeffs = 1; /* last_flag */
  2761. int dmv_x, dmv_y; /* Differential MV components */
  2762. int index, index1; /* LUT indices */
  2763. int val, sign; /* temp values */
  2764. int first_block = 1;
  2765. int dst_idx, off;
  2766. int skipped, fourmv;
  2767. mquant = v->pq; /* Loosy initialization */
  2768. if (v->mv_type_is_raw)
  2769. fourmv = get_bits1(gb);
  2770. else
  2771. fourmv = v->mv_type_mb_plane[mb_pos];
  2772. if (v->skip_is_raw)
  2773. skipped = get_bits1(gb);
  2774. else
  2775. skipped = v->s.mbskip_table[mb_pos];
  2776. s->dsp.clear_blocks(s->block[0]);
  2777. if (!fourmv) /* 1MV mode */
  2778. {
  2779. if (!skipped)
  2780. {
  2781. GET_MVDATA(dmv_x, dmv_y);
  2782. if (s->mb_intra) {
  2783. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2784. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2785. }
  2786. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2787. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2788. /* FIXME Set DC val for inter block ? */
  2789. if (s->mb_intra && !mb_has_coeffs)
  2790. {
  2791. GET_MQUANT();
  2792. s->ac_pred = get_bits1(gb);
  2793. cbp = 0;
  2794. }
  2795. else if (mb_has_coeffs)
  2796. {
  2797. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2798. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2799. GET_MQUANT();
  2800. }
  2801. else
  2802. {
  2803. mquant = v->pq;
  2804. cbp = 0;
  2805. }
  2806. s->current_picture.qscale_table[mb_pos] = mquant;
  2807. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2808. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2809. VC1_TTMB_VLC_BITS, 2);
  2810. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2811. dst_idx = 0;
  2812. for (i=0; i<6; i++)
  2813. {
  2814. s->dc_val[0][s->block_index[i]] = 0;
  2815. dst_idx += i >> 2;
  2816. val = ((cbp >> (5 - i)) & 1);
  2817. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2818. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2819. if(s->mb_intra) {
  2820. /* check if prediction blocks A and C are available */
  2821. v->a_avail = v->c_avail = 0;
  2822. if(i == 2 || i == 3 || !s->first_slice_line)
  2823. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2824. if(i == 1 || i == 3 || s->mb_x)
  2825. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2826. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2827. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2828. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2829. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2830. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2831. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2832. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2833. if(v->pq >= 9 && v->overlap) {
  2834. if(v->c_avail)
  2835. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2836. if(v->a_avail)
  2837. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2838. }
  2839. } else if(val) {
  2840. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2841. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2842. first_block = 0;
  2843. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2844. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2845. }
  2846. }
  2847. }
  2848. else //Skipped
  2849. {
  2850. s->mb_intra = 0;
  2851. for(i = 0; i < 6; i++) {
  2852. v->mb_type[0][s->block_index[i]] = 0;
  2853. s->dc_val[0][s->block_index[i]] = 0;
  2854. }
  2855. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2856. s->current_picture.qscale_table[mb_pos] = 0;
  2857. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2858. vc1_mc_1mv(v, 0);
  2859. return 0;
  2860. }
  2861. } //1MV mode
  2862. else //4MV mode
  2863. {
  2864. if (!skipped /* unskipped MB */)
  2865. {
  2866. int intra_count = 0, coded_inter = 0;
  2867. int is_intra[6], is_coded[6];
  2868. /* Get CBPCY */
  2869. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2870. for (i=0; i<6; i++)
  2871. {
  2872. val = ((cbp >> (5 - i)) & 1);
  2873. s->dc_val[0][s->block_index[i]] = 0;
  2874. s->mb_intra = 0;
  2875. if(i < 4) {
  2876. dmv_x = dmv_y = 0;
  2877. s->mb_intra = 0;
  2878. mb_has_coeffs = 0;
  2879. if(val) {
  2880. GET_MVDATA(dmv_x, dmv_y);
  2881. }
  2882. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2883. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2884. intra_count += s->mb_intra;
  2885. is_intra[i] = s->mb_intra;
  2886. is_coded[i] = mb_has_coeffs;
  2887. }
  2888. if(i&4){
  2889. is_intra[i] = (intra_count >= 3);
  2890. is_coded[i] = val;
  2891. }
  2892. if(i == 4) vc1_mc_4mv_chroma(v);
  2893. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2894. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2895. }
  2896. // if there are no coded blocks then don't do anything more
  2897. if(!intra_count && !coded_inter) return 0;
  2898. dst_idx = 0;
  2899. GET_MQUANT();
  2900. s->current_picture.qscale_table[mb_pos] = mquant;
  2901. /* test if block is intra and has pred */
  2902. {
  2903. int intrapred = 0;
  2904. for(i=0; i<6; i++)
  2905. if(is_intra[i]) {
  2906. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2907. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2908. intrapred = 1;
  2909. break;
  2910. }
  2911. }
  2912. if(intrapred)s->ac_pred = get_bits1(gb);
  2913. else s->ac_pred = 0;
  2914. }
  2915. if (!v->ttmbf && coded_inter)
  2916. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2917. for (i=0; i<6; i++)
  2918. {
  2919. dst_idx += i >> 2;
  2920. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2921. s->mb_intra = is_intra[i];
  2922. if (is_intra[i]) {
  2923. /* check if prediction blocks A and C are available */
  2924. v->a_avail = v->c_avail = 0;
  2925. if(i == 2 || i == 3 || !s->first_slice_line)
  2926. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2927. if(i == 1 || i == 3 || s->mb_x)
  2928. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2929. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2930. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2931. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2932. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2933. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2934. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2935. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2936. if(v->pq >= 9 && v->overlap) {
  2937. if(v->c_avail)
  2938. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2939. if(v->a_avail)
  2940. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2941. }
  2942. } else if(is_coded[i]) {
  2943. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2944. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2945. first_block = 0;
  2946. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2947. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2948. }
  2949. }
  2950. return status;
  2951. }
  2952. else //Skipped MB
  2953. {
  2954. s->mb_intra = 0;
  2955. s->current_picture.qscale_table[mb_pos] = 0;
  2956. for (i=0; i<6; i++) {
  2957. v->mb_type[0][s->block_index[i]] = 0;
  2958. s->dc_val[0][s->block_index[i]] = 0;
  2959. }
  2960. for (i=0; i<4; i++)
  2961. {
  2962. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2963. vc1_mc_4mv_luma(v, i);
  2964. }
  2965. vc1_mc_4mv_chroma(v);
  2966. s->current_picture.qscale_table[mb_pos] = 0;
  2967. return 0;
  2968. }
  2969. }
  2970. /* Should never happen */
  2971. return -1;
  2972. }
  2973. /** Decode one B-frame MB (in Main profile)
  2974. */
  2975. static void vc1_decode_b_mb(VC1Context *v)
  2976. {
  2977. MpegEncContext *s = &v->s;
  2978. GetBitContext *gb = &s->gb;
  2979. int i, j;
  2980. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2981. int cbp = 0; /* cbp decoding stuff */
  2982. int mqdiff, mquant; /* MB quantization */
  2983. int ttmb = v->ttfrm; /* MB Transform type */
  2984. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2985. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2986. int mb_has_coeffs = 0; /* last_flag */
  2987. int index, index1; /* LUT indices */
  2988. int val, sign; /* temp values */
  2989. int first_block = 1;
  2990. int dst_idx, off;
  2991. int skipped, direct;
  2992. int dmv_x[2], dmv_y[2];
  2993. int bmvtype = BMV_TYPE_BACKWARD;
  2994. mquant = v->pq; /* Loosy initialization */
  2995. s->mb_intra = 0;
  2996. if (v->dmb_is_raw)
  2997. direct = get_bits1(gb);
  2998. else
  2999. direct = v->direct_mb_plane[mb_pos];
  3000. if (v->skip_is_raw)
  3001. skipped = get_bits1(gb);
  3002. else
  3003. skipped = v->s.mbskip_table[mb_pos];
  3004. s->dsp.clear_blocks(s->block[0]);
  3005. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3006. for(i = 0; i < 6; i++) {
  3007. v->mb_type[0][s->block_index[i]] = 0;
  3008. s->dc_val[0][s->block_index[i]] = 0;
  3009. }
  3010. s->current_picture.qscale_table[mb_pos] = 0;
  3011. if (!direct) {
  3012. if (!skipped) {
  3013. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3014. dmv_x[1] = dmv_x[0];
  3015. dmv_y[1] = dmv_y[0];
  3016. }
  3017. if(skipped || !s->mb_intra) {
  3018. bmvtype = decode012(gb);
  3019. switch(bmvtype) {
  3020. case 0:
  3021. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3022. break;
  3023. case 1:
  3024. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3025. break;
  3026. case 2:
  3027. bmvtype = BMV_TYPE_INTERPOLATED;
  3028. dmv_x[0] = dmv_y[0] = 0;
  3029. }
  3030. }
  3031. }
  3032. for(i = 0; i < 6; i++)
  3033. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3034. if (skipped) {
  3035. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3036. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3037. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3038. return;
  3039. }
  3040. if (direct) {
  3041. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3042. GET_MQUANT();
  3043. s->mb_intra = 0;
  3044. mb_has_coeffs = 0;
  3045. s->current_picture.qscale_table[mb_pos] = mquant;
  3046. if(!v->ttmbf)
  3047. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3048. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3049. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3050. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3051. } else {
  3052. if(!mb_has_coeffs && !s->mb_intra) {
  3053. /* no coded blocks - effectively skipped */
  3054. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3055. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3056. return;
  3057. }
  3058. if(s->mb_intra && !mb_has_coeffs) {
  3059. GET_MQUANT();
  3060. s->current_picture.qscale_table[mb_pos] = mquant;
  3061. s->ac_pred = get_bits1(gb);
  3062. cbp = 0;
  3063. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3064. } else {
  3065. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3066. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3067. if(!mb_has_coeffs) {
  3068. /* interpolated skipped block */
  3069. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3070. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3071. return;
  3072. }
  3073. }
  3074. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3075. if(!s->mb_intra) {
  3076. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3077. }
  3078. if(s->mb_intra)
  3079. s->ac_pred = get_bits1(gb);
  3080. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3081. GET_MQUANT();
  3082. s->current_picture.qscale_table[mb_pos] = mquant;
  3083. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3084. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3085. }
  3086. }
  3087. dst_idx = 0;
  3088. for (i=0; i<6; i++)
  3089. {
  3090. s->dc_val[0][s->block_index[i]] = 0;
  3091. dst_idx += i >> 2;
  3092. val = ((cbp >> (5 - i)) & 1);
  3093. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3094. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3095. if(s->mb_intra) {
  3096. /* check if prediction blocks A and C are available */
  3097. v->a_avail = v->c_avail = 0;
  3098. if(i == 2 || i == 3 || !s->first_slice_line)
  3099. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3100. if(i == 1 || i == 3 || s->mb_x)
  3101. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3102. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3103. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3104. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3105. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3106. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3107. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3108. } else if(val) {
  3109. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3110. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3111. first_block = 0;
  3112. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3113. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3114. }
  3115. }
  3116. }
  3117. /** Decode blocks of I-frame
  3118. */
  3119. static void vc1_decode_i_blocks(VC1Context *v)
  3120. {
  3121. int k, j;
  3122. MpegEncContext *s = &v->s;
  3123. int cbp, val;
  3124. uint8_t *coded_val;
  3125. int mb_pos;
  3126. /* select codingmode used for VLC tables selection */
  3127. switch(v->y_ac_table_index){
  3128. case 0:
  3129. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3130. break;
  3131. case 1:
  3132. v->codingset = CS_HIGH_MOT_INTRA;
  3133. break;
  3134. case 2:
  3135. v->codingset = CS_MID_RATE_INTRA;
  3136. break;
  3137. }
  3138. switch(v->c_ac_table_index){
  3139. case 0:
  3140. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3141. break;
  3142. case 1:
  3143. v->codingset2 = CS_HIGH_MOT_INTER;
  3144. break;
  3145. case 2:
  3146. v->codingset2 = CS_MID_RATE_INTER;
  3147. break;
  3148. }
  3149. /* Set DC scale - y and c use the same */
  3150. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3151. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3152. //do frame decode
  3153. s->mb_x = s->mb_y = 0;
  3154. s->mb_intra = 1;
  3155. s->first_slice_line = 1;
  3156. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3157. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3158. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3159. ff_init_block_index(s);
  3160. ff_update_block_index(s);
  3161. s->dsp.clear_blocks(s->block[0]);
  3162. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3163. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3164. s->current_picture.qscale_table[mb_pos] = v->pq;
  3165. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3166. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3167. // do actual MB decoding and displaying
  3168. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3169. v->s.ac_pred = get_bits1(&v->s.gb);
  3170. for(k = 0; k < 6; k++) {
  3171. val = ((cbp >> (5 - k)) & 1);
  3172. if (k < 4) {
  3173. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3174. val = val ^ pred;
  3175. *coded_val = val;
  3176. }
  3177. cbp |= val << (5 - k);
  3178. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3179. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3180. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3181. if(v->pq >= 9 && v->overlap) {
  3182. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3183. }
  3184. }
  3185. vc1_put_block(v, s->block);
  3186. if(v->pq >= 9 && v->overlap) {
  3187. if(s->mb_x) {
  3188. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3189. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3190. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3191. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3192. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3193. }
  3194. }
  3195. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3196. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3197. if(!s->first_slice_line) {
  3198. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3199. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3200. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3201. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3202. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3203. }
  3204. }
  3205. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3206. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3207. }
  3208. if(get_bits_count(&s->gb) > v->bits) {
  3209. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3210. return;
  3211. }
  3212. }
  3213. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3214. s->first_slice_line = 0;
  3215. }
  3216. }
  3217. /** Decode blocks of I-frame for advanced profile
  3218. */
  3219. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3220. {
  3221. int k, j;
  3222. MpegEncContext *s = &v->s;
  3223. int cbp, val;
  3224. uint8_t *coded_val;
  3225. int mb_pos;
  3226. int mquant = v->pq;
  3227. int mqdiff;
  3228. int overlap;
  3229. GetBitContext *gb = &s->gb;
  3230. /* select codingmode used for VLC tables selection */
  3231. switch(v->y_ac_table_index){
  3232. case 0:
  3233. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3234. break;
  3235. case 1:
  3236. v->codingset = CS_HIGH_MOT_INTRA;
  3237. break;
  3238. case 2:
  3239. v->codingset = CS_MID_RATE_INTRA;
  3240. break;
  3241. }
  3242. switch(v->c_ac_table_index){
  3243. case 0:
  3244. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3245. break;
  3246. case 1:
  3247. v->codingset2 = CS_HIGH_MOT_INTER;
  3248. break;
  3249. case 2:
  3250. v->codingset2 = CS_MID_RATE_INTER;
  3251. break;
  3252. }
  3253. //do frame decode
  3254. s->mb_x = s->mb_y = 0;
  3255. s->mb_intra = 1;
  3256. s->first_slice_line = 1;
  3257. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3258. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3259. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3260. ff_init_block_index(s);
  3261. ff_update_block_index(s);
  3262. s->dsp.clear_blocks(s->block[0]);
  3263. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3264. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3265. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3266. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3267. // do actual MB decoding and displaying
  3268. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3269. if(v->acpred_is_raw)
  3270. v->s.ac_pred = get_bits1(&v->s.gb);
  3271. else
  3272. v->s.ac_pred = v->acpred_plane[mb_pos];
  3273. if(v->condover == CONDOVER_SELECT) {
  3274. if(v->overflg_is_raw)
  3275. overlap = get_bits1(&v->s.gb);
  3276. else
  3277. overlap = v->over_flags_plane[mb_pos];
  3278. } else
  3279. overlap = (v->condover == CONDOVER_ALL);
  3280. GET_MQUANT();
  3281. s->current_picture.qscale_table[mb_pos] = mquant;
  3282. /* Set DC scale - y and c use the same */
  3283. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3284. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3285. for(k = 0; k < 6; k++) {
  3286. val = ((cbp >> (5 - k)) & 1);
  3287. if (k < 4) {
  3288. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3289. val = val ^ pred;
  3290. *coded_val = val;
  3291. }
  3292. cbp |= val << (5 - k);
  3293. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3294. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3295. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3296. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3297. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3298. }
  3299. vc1_put_block(v, s->block);
  3300. if(overlap) {
  3301. if(s->mb_x) {
  3302. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3303. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3304. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3305. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3306. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3307. }
  3308. }
  3309. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3310. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3311. if(!s->first_slice_line) {
  3312. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3313. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3314. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3315. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3316. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3317. }
  3318. }
  3319. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3320. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3321. }
  3322. if(get_bits_count(&s->gb) > v->bits) {
  3323. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3324. return;
  3325. }
  3326. }
  3327. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3328. s->first_slice_line = 0;
  3329. }
  3330. }
  3331. static void vc1_decode_p_blocks(VC1Context *v)
  3332. {
  3333. MpegEncContext *s = &v->s;
  3334. /* select codingmode used for VLC tables selection */
  3335. switch(v->c_ac_table_index){
  3336. case 0:
  3337. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3338. break;
  3339. case 1:
  3340. v->codingset = CS_HIGH_MOT_INTRA;
  3341. break;
  3342. case 2:
  3343. v->codingset = CS_MID_RATE_INTRA;
  3344. break;
  3345. }
  3346. switch(v->c_ac_table_index){
  3347. case 0:
  3348. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3349. break;
  3350. case 1:
  3351. v->codingset2 = CS_HIGH_MOT_INTER;
  3352. break;
  3353. case 2:
  3354. v->codingset2 = CS_MID_RATE_INTER;
  3355. break;
  3356. }
  3357. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3358. s->first_slice_line = 1;
  3359. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3360. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3361. ff_init_block_index(s);
  3362. ff_update_block_index(s);
  3363. s->dsp.clear_blocks(s->block[0]);
  3364. vc1_decode_p_mb(v);
  3365. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3366. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3367. return;
  3368. }
  3369. }
  3370. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3371. s->first_slice_line = 0;
  3372. }
  3373. }
  3374. static void vc1_decode_b_blocks(VC1Context *v)
  3375. {
  3376. MpegEncContext *s = &v->s;
  3377. /* select codingmode used for VLC tables selection */
  3378. switch(v->c_ac_table_index){
  3379. case 0:
  3380. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3381. break;
  3382. case 1:
  3383. v->codingset = CS_HIGH_MOT_INTRA;
  3384. break;
  3385. case 2:
  3386. v->codingset = CS_MID_RATE_INTRA;
  3387. break;
  3388. }
  3389. switch(v->c_ac_table_index){
  3390. case 0:
  3391. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3392. break;
  3393. case 1:
  3394. v->codingset2 = CS_HIGH_MOT_INTER;
  3395. break;
  3396. case 2:
  3397. v->codingset2 = CS_MID_RATE_INTER;
  3398. break;
  3399. }
  3400. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3401. s->first_slice_line = 1;
  3402. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3403. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3404. ff_init_block_index(s);
  3405. ff_update_block_index(s);
  3406. s->dsp.clear_blocks(s->block[0]);
  3407. vc1_decode_b_mb(v);
  3408. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3409. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3410. return;
  3411. }
  3412. }
  3413. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3414. s->first_slice_line = 0;
  3415. }
  3416. }
  3417. static void vc1_decode_skip_blocks(VC1Context *v)
  3418. {
  3419. MpegEncContext *s = &v->s;
  3420. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3421. s->first_slice_line = 1;
  3422. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3423. s->mb_x = 0;
  3424. ff_init_block_index(s);
  3425. ff_update_block_index(s);
  3426. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3427. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3428. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3429. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3430. s->first_slice_line = 0;
  3431. }
  3432. s->pict_type = P_TYPE;
  3433. }
  3434. static void vc1_decode_blocks(VC1Context *v)
  3435. {
  3436. v->s.esc3_level_length = 0;
  3437. switch(v->s.pict_type) {
  3438. case I_TYPE:
  3439. if(v->profile == PROFILE_ADVANCED)
  3440. vc1_decode_i_blocks_adv(v);
  3441. else
  3442. vc1_decode_i_blocks(v);
  3443. break;
  3444. case P_TYPE:
  3445. if(v->p_frame_skipped)
  3446. vc1_decode_skip_blocks(v);
  3447. else
  3448. vc1_decode_p_blocks(v);
  3449. break;
  3450. case B_TYPE:
  3451. if(v->bi_type){
  3452. if(v->profile == PROFILE_ADVANCED)
  3453. vc1_decode_i_blocks_adv(v);
  3454. else
  3455. vc1_decode_i_blocks(v);
  3456. }else
  3457. vc1_decode_b_blocks(v);
  3458. break;
  3459. }
  3460. }
  3461. /** Find VC-1 marker in buffer
  3462. * @return position where next marker starts or end of buffer if no marker found
  3463. */
  3464. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3465. {
  3466. uint32_t mrk = 0xFFFFFFFF;
  3467. if(end-src < 4) return end;
  3468. while(src < end){
  3469. mrk = (mrk << 8) | *src++;
  3470. if(IS_MARKER(mrk))
  3471. return src-4;
  3472. }
  3473. return end;
  3474. }
  3475. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3476. {
  3477. int dsize = 0, i;
  3478. if(size < 4){
  3479. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3480. return size;
  3481. }
  3482. for(i = 0; i < size; i++, src++) {
  3483. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3484. dst[dsize++] = src[1];
  3485. src++;
  3486. i++;
  3487. } else
  3488. dst[dsize++] = *src;
  3489. }
  3490. return dsize;
  3491. }
  3492. /** Initialize a VC1/WMV3 decoder
  3493. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3494. * @todo TODO: Decypher remaining bits in extra_data
  3495. */
  3496. static int vc1_decode_init(AVCodecContext *avctx)
  3497. {
  3498. VC1Context *v = avctx->priv_data;
  3499. MpegEncContext *s = &v->s;
  3500. GetBitContext gb;
  3501. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3502. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3503. avctx->pix_fmt = PIX_FMT_YUV420P;
  3504. else
  3505. avctx->pix_fmt = PIX_FMT_GRAY8;
  3506. v->s.avctx = avctx;
  3507. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3508. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3509. if(ff_h263_decode_init(avctx) < 0)
  3510. return -1;
  3511. if (vc1_init_common(v) < 0) return -1;
  3512. avctx->coded_width = avctx->width;
  3513. avctx->coded_height = avctx->height;
  3514. if (avctx->codec_id == CODEC_ID_WMV3)
  3515. {
  3516. int count = 0;
  3517. // looks like WMV3 has a sequence header stored in the extradata
  3518. // advanced sequence header may be before the first frame
  3519. // the last byte of the extradata is a version number, 1 for the
  3520. // samples we can decode
  3521. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3522. if (decode_sequence_header(avctx, &gb) < 0)
  3523. return -1;
  3524. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3525. if (count>0)
  3526. {
  3527. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3528. count, get_bits(&gb, count));
  3529. }
  3530. else if (count < 0)
  3531. {
  3532. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3533. }
  3534. } else { // VC1/WVC1
  3535. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3536. uint8_t *next; int size, buf2_size;
  3537. uint8_t *buf2 = NULL;
  3538. int seq_inited = 0, ep_inited = 0;
  3539. if(avctx->extradata_size < 16) {
  3540. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3541. return -1;
  3542. }
  3543. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3544. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3545. next = start;
  3546. for(; next < end; start = next){
  3547. next = find_next_marker(start + 4, end);
  3548. size = next - start - 4;
  3549. if(size <= 0) continue;
  3550. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3551. init_get_bits(&gb, buf2, buf2_size * 8);
  3552. switch(AV_RB32(start)){
  3553. case VC1_CODE_SEQHDR:
  3554. if(decode_sequence_header(avctx, &gb) < 0){
  3555. av_free(buf2);
  3556. return -1;
  3557. }
  3558. seq_inited = 1;
  3559. break;
  3560. case VC1_CODE_ENTRYPOINT:
  3561. if(decode_entry_point(avctx, &gb) < 0){
  3562. av_free(buf2);
  3563. return -1;
  3564. }
  3565. ep_inited = 1;
  3566. break;
  3567. }
  3568. }
  3569. av_free(buf2);
  3570. if(!seq_inited || !ep_inited){
  3571. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3572. return -1;
  3573. }
  3574. }
  3575. avctx->has_b_frames= !!(avctx->max_b_frames);
  3576. s->low_delay = !avctx->has_b_frames;
  3577. s->mb_width = (avctx->coded_width+15)>>4;
  3578. s->mb_height = (avctx->coded_height+15)>>4;
  3579. /* Allocate mb bitplanes */
  3580. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3581. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3582. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3583. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3584. /* allocate block type info in that way so it could be used with s->block_index[] */
  3585. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3586. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3587. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3588. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3589. /* Init coded blocks info */
  3590. if (v->profile == PROFILE_ADVANCED)
  3591. {
  3592. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3593. // return -1;
  3594. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3595. // return -1;
  3596. }
  3597. return 0;
  3598. }
  3599. /** Decode a VC1/WMV3 frame
  3600. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3601. */
  3602. static int vc1_decode_frame(AVCodecContext *avctx,
  3603. void *data, int *data_size,
  3604. uint8_t *buf, int buf_size)
  3605. {
  3606. VC1Context *v = avctx->priv_data;
  3607. MpegEncContext *s = &v->s;
  3608. AVFrame *pict = data;
  3609. uint8_t *buf2 = NULL;
  3610. /* no supplementary picture */
  3611. if (buf_size == 0) {
  3612. /* special case for last picture */
  3613. if (s->low_delay==0 && s->next_picture_ptr) {
  3614. *pict= *(AVFrame*)s->next_picture_ptr;
  3615. s->next_picture_ptr= NULL;
  3616. *data_size = sizeof(AVFrame);
  3617. }
  3618. return 0;
  3619. }
  3620. /* We need to set current_picture_ptr before reading the header,
  3621. * otherwise we cannot store anything in there. */
  3622. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3623. int i= ff_find_unused_picture(s, 0);
  3624. s->current_picture_ptr= &s->picture[i];
  3625. }
  3626. //for advanced profile we may need to parse and unescape data
  3627. if (avctx->codec_id == CODEC_ID_VC1) {
  3628. int buf_size2 = 0;
  3629. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3630. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3631. uint8_t *start, *end, *next;
  3632. int size;
  3633. next = buf;
  3634. for(start = buf, end = buf + buf_size; next < end; start = next){
  3635. next = find_next_marker(start + 4, end);
  3636. size = next - start - 4;
  3637. if(size <= 0) continue;
  3638. switch(AV_RB32(start)){
  3639. case VC1_CODE_FRAME:
  3640. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3641. break;
  3642. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3643. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3644. init_get_bits(&s->gb, buf2, buf_size2*8);
  3645. decode_entry_point(avctx, &s->gb);
  3646. break;
  3647. case VC1_CODE_SLICE:
  3648. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3649. av_free(buf2);
  3650. return -1;
  3651. }
  3652. }
  3653. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3654. uint8_t *divider;
  3655. divider = find_next_marker(buf, buf + buf_size);
  3656. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3657. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3658. return -1;
  3659. }
  3660. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3661. // TODO
  3662. av_free(buf2);return -1;
  3663. }else{
  3664. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3665. }
  3666. init_get_bits(&s->gb, buf2, buf_size2*8);
  3667. } else
  3668. init_get_bits(&s->gb, buf, buf_size*8);
  3669. // do parse frame header
  3670. if(v->profile < PROFILE_ADVANCED) {
  3671. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3672. av_free(buf2);
  3673. return -1;
  3674. }
  3675. } else {
  3676. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3677. av_free(buf2);
  3678. return -1;
  3679. }
  3680. }
  3681. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3682. av_free(buf2);
  3683. return -1;
  3684. }
  3685. // for hurry_up==5
  3686. s->current_picture.pict_type= s->pict_type;
  3687. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3688. /* skip B-frames if we don't have reference frames */
  3689. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3690. av_free(buf2);
  3691. return -1;//buf_size;
  3692. }
  3693. /* skip b frames if we are in a hurry */
  3694. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3695. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3696. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3697. || avctx->skip_frame >= AVDISCARD_ALL) {
  3698. av_free(buf2);
  3699. return buf_size;
  3700. }
  3701. /* skip everything if we are in a hurry>=5 */
  3702. if(avctx->hurry_up>=5) {
  3703. av_free(buf2);
  3704. return -1;//buf_size;
  3705. }
  3706. if(s->next_p_frame_damaged){
  3707. if(s->pict_type==B_TYPE)
  3708. return buf_size;
  3709. else
  3710. s->next_p_frame_damaged=0;
  3711. }
  3712. if(MPV_frame_start(s, avctx) < 0) {
  3713. av_free(buf2);
  3714. return -1;
  3715. }
  3716. ff_er_frame_start(s);
  3717. v->bits = buf_size * 8;
  3718. vc1_decode_blocks(v);
  3719. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3720. // if(get_bits_count(&s->gb) > buf_size * 8)
  3721. // return -1;
  3722. ff_er_frame_end(s);
  3723. MPV_frame_end(s);
  3724. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3725. assert(s->current_picture.pict_type == s->pict_type);
  3726. if (s->pict_type == B_TYPE || s->low_delay) {
  3727. *pict= *(AVFrame*)s->current_picture_ptr;
  3728. } else if (s->last_picture_ptr != NULL) {
  3729. *pict= *(AVFrame*)s->last_picture_ptr;
  3730. }
  3731. if(s->last_picture_ptr || s->low_delay){
  3732. *data_size = sizeof(AVFrame);
  3733. ff_print_debug_info(s, pict);
  3734. }
  3735. /* Return the Picture timestamp as the frame number */
  3736. /* we substract 1 because it is added on utils.c */
  3737. avctx->frame_number = s->picture_number - 1;
  3738. av_free(buf2);
  3739. return buf_size;
  3740. }
  3741. /** Close a VC1/WMV3 decoder
  3742. * @warning Initial try at using MpegEncContext stuff
  3743. */
  3744. static int vc1_decode_end(AVCodecContext *avctx)
  3745. {
  3746. VC1Context *v = avctx->priv_data;
  3747. av_freep(&v->hrd_rate);
  3748. av_freep(&v->hrd_buffer);
  3749. MPV_common_end(&v->s);
  3750. av_freep(&v->mv_type_mb_plane);
  3751. av_freep(&v->direct_mb_plane);
  3752. av_freep(&v->acpred_plane);
  3753. av_freep(&v->over_flags_plane);
  3754. av_freep(&v->mb_type_base);
  3755. return 0;
  3756. }
  3757. AVCodec vc1_decoder = {
  3758. "vc1",
  3759. CODEC_TYPE_VIDEO,
  3760. CODEC_ID_VC1,
  3761. sizeof(VC1Context),
  3762. vc1_decode_init,
  3763. NULL,
  3764. vc1_decode_end,
  3765. vc1_decode_frame,
  3766. CODEC_CAP_DELAY,
  3767. NULL
  3768. };
  3769. AVCodec wmv3_decoder = {
  3770. "wmv3",
  3771. CODEC_TYPE_VIDEO,
  3772. CODEC_ID_WMV3,
  3773. sizeof(VC1Context),
  3774. vc1_decode_init,
  3775. NULL,
  3776. vc1_decode_end,
  3777. vc1_decode_frame,
  3778. CODEC_CAP_DELAY,
  3779. NULL
  3780. };