You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2905 lines
86KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "mpegaudio.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  34. audio decoder */
  35. #ifdef CONFIG_MPEGAUDIO_HP
  36. #define USE_HIGHPRECISION
  37. #endif
  38. #ifdef USE_HIGHPRECISION
  39. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  40. #define WFRAC_BITS 16 /* fractional bits for window */
  41. #else
  42. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  43. #define WFRAC_BITS 14 /* fractional bits for window */
  44. #endif
  45. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  46. typedef int32_t OUT_INT;
  47. #define OUT_MAX INT32_MAX
  48. #define OUT_MIN INT32_MIN
  49. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 31)
  50. #else
  51. typedef int16_t OUT_INT;
  52. #define OUT_MAX INT16_MAX
  53. #define OUT_MIN INT16_MIN
  54. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  55. #endif
  56. #define FRAC_ONE (1 << FRAC_BITS)
  57. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  58. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  59. #define FIX(a) ((int)((a) * FRAC_ONE))
  60. /* WARNING: only correct for posititive numbers */
  61. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  62. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  63. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  64. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  65. static always_inline int MULH(int a, int b){
  66. return ((int64_t)(a) * (int64_t)(b))>>32;
  67. }
  68. #if FRAC_BITS <= 15
  69. typedef int16_t MPA_INT;
  70. #else
  71. typedef int32_t MPA_INT;
  72. #endif
  73. /****************/
  74. #define HEADER_SIZE 4
  75. #define BACKSTEP_SIZE 512
  76. struct GranuleDef;
  77. typedef struct MPADecodeContext {
  78. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  79. int inbuf_index;
  80. uint8_t *inbuf_ptr, *inbuf;
  81. int frame_size;
  82. int free_format_frame_size; /* frame size in case of free format
  83. (zero if currently unknown) */
  84. /* next header (used in free format parsing) */
  85. uint32_t free_format_next_header;
  86. int error_protection;
  87. int layer;
  88. int sample_rate;
  89. int sample_rate_index; /* between 0 and 8 */
  90. int bit_rate;
  91. int old_frame_size;
  92. GetBitContext gb;
  93. int nb_channels;
  94. int mode;
  95. int mode_ext;
  96. int lsf;
  97. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  98. int synth_buf_offset[MPA_MAX_CHANNELS];
  99. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  100. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  101. #ifdef DEBUG
  102. int frame_count;
  103. #endif
  104. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  105. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  106. unsigned int dither_state;
  107. } MPADecodeContext;
  108. /**
  109. * Context for MP3On4 decoder
  110. */
  111. typedef struct MP3On4DecodeContext {
  112. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  113. int chan_cfg; ///< channel config number
  114. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  115. } MP3On4DecodeContext;
  116. /* layer 3 "granule" */
  117. typedef struct GranuleDef {
  118. uint8_t scfsi;
  119. int part2_3_length;
  120. int big_values;
  121. int global_gain;
  122. int scalefac_compress;
  123. uint8_t block_type;
  124. uint8_t switch_point;
  125. int table_select[3];
  126. int subblock_gain[3];
  127. uint8_t scalefac_scale;
  128. uint8_t count1table_select;
  129. int region_size[3]; /* number of huffman codes in each region */
  130. int preflag;
  131. int short_start, long_end; /* long/short band indexes */
  132. uint8_t scale_factors[40];
  133. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  134. } GranuleDef;
  135. #define MODE_EXT_MS_STEREO 2
  136. #define MODE_EXT_I_STEREO 1
  137. /* layer 3 huffman tables */
  138. typedef struct HuffTable {
  139. int xsize;
  140. const uint8_t *bits;
  141. const uint16_t *codes;
  142. } HuffTable;
  143. #include "mpegaudiodectab.h"
  144. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  145. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  146. /* vlc structure for decoding layer 3 huffman tables */
  147. static VLC huff_vlc[16];
  148. static uint8_t *huff_code_table[16];
  149. static VLC huff_quad_vlc[2];
  150. /* computed from band_size_long */
  151. static uint16_t band_index_long[9][23];
  152. /* XXX: free when all decoders are closed */
  153. #define TABLE_4_3_SIZE (8191 + 16)*4
  154. static int8_t *table_4_3_exp;
  155. static uint32_t *table_4_3_value;
  156. /* intensity stereo coef table */
  157. static int32_t is_table[2][16];
  158. static int32_t is_table_lsf[2][2][16];
  159. static int32_t csa_table[8][4];
  160. static float csa_table_float[8][4];
  161. static int32_t mdct_win[8][36];
  162. /* lower 2 bits: modulo 3, higher bits: shift */
  163. static uint16_t scale_factor_modshift[64];
  164. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  165. static int32_t scale_factor_mult[15][3];
  166. /* mult table for layer 2 group quantization */
  167. #define SCALE_GEN(v) \
  168. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  169. static int32_t scale_factor_mult2[3][3] = {
  170. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  171. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  172. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  173. };
  174. void ff_mpa_synth_init(MPA_INT *window);
  175. static MPA_INT window[512] __attribute__((aligned(16)));
  176. /* layer 1 unscaling */
  177. /* n = number of bits of the mantissa minus 1 */
  178. static inline int l1_unscale(int n, int mant, int scale_factor)
  179. {
  180. int shift, mod;
  181. int64_t val;
  182. shift = scale_factor_modshift[scale_factor];
  183. mod = shift & 3;
  184. shift >>= 2;
  185. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  186. shift += n;
  187. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  188. return (int)((val + (1LL << (shift - 1))) >> shift);
  189. }
  190. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  191. {
  192. int shift, mod, val;
  193. shift = scale_factor_modshift[scale_factor];
  194. mod = shift & 3;
  195. shift >>= 2;
  196. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  197. /* NOTE: at this point, 0 <= shift <= 21 */
  198. if (shift > 0)
  199. val = (val + (1 << (shift - 1))) >> shift;
  200. return val;
  201. }
  202. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  203. static inline int l3_unscale(int value, int exponent)
  204. {
  205. unsigned int m;
  206. int e;
  207. e = table_4_3_exp [4*value + (exponent&3)];
  208. m = table_4_3_value[4*value + (exponent&3)];
  209. e -= (exponent >> 2);
  210. assert(e>=1);
  211. if (e > 31)
  212. return 0;
  213. m = (m + (1 << (e-1))) >> e;
  214. return m;
  215. }
  216. /* all integer n^(4/3) computation code */
  217. #define DEV_ORDER 13
  218. #define POW_FRAC_BITS 24
  219. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  220. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  221. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  222. static int dev_4_3_coefs[DEV_ORDER];
  223. static int pow_mult3[3] = {
  224. POW_FIX(1.0),
  225. POW_FIX(1.25992104989487316476),
  226. POW_FIX(1.58740105196819947474),
  227. };
  228. static void int_pow_init(void)
  229. {
  230. int i, a;
  231. a = POW_FIX(1.0);
  232. for(i=0;i<DEV_ORDER;i++) {
  233. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  234. dev_4_3_coefs[i] = a;
  235. }
  236. }
  237. /* return the mantissa and the binary exponent */
  238. static int int_pow(int i, int *exp_ptr)
  239. {
  240. int e, er, eq, j;
  241. int a, a1;
  242. /* renormalize */
  243. a = i;
  244. e = POW_FRAC_BITS;
  245. while (a < (1 << (POW_FRAC_BITS - 1))) {
  246. a = a << 1;
  247. e--;
  248. }
  249. a -= (1 << POW_FRAC_BITS);
  250. a1 = 0;
  251. for(j = DEV_ORDER - 1; j >= 0; j--)
  252. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  253. a = (1 << POW_FRAC_BITS) + a1;
  254. /* exponent compute (exact) */
  255. e = e * 4;
  256. er = e % 3;
  257. eq = e / 3;
  258. a = POW_MULL(a, pow_mult3[er]);
  259. while (a >= 2 * POW_FRAC_ONE) {
  260. a = a >> 1;
  261. eq++;
  262. }
  263. /* convert to float */
  264. while (a < POW_FRAC_ONE) {
  265. a = a << 1;
  266. eq--;
  267. }
  268. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  269. #if POW_FRAC_BITS > FRAC_BITS
  270. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  271. /* correct overflow */
  272. if (a >= 2 * (1 << FRAC_BITS)) {
  273. a = a >> 1;
  274. eq++;
  275. }
  276. #endif
  277. *exp_ptr = eq;
  278. return a;
  279. }
  280. static int decode_init(AVCodecContext * avctx)
  281. {
  282. MPADecodeContext *s = avctx->priv_data;
  283. static int init=0;
  284. int i, j, k;
  285. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  286. avctx->sample_fmt= SAMPLE_FMT_S32;
  287. #else
  288. avctx->sample_fmt= SAMPLE_FMT_S16;
  289. #endif
  290. if(avctx->antialias_algo != FF_AA_FLOAT)
  291. s->compute_antialias= compute_antialias_integer;
  292. else
  293. s->compute_antialias= compute_antialias_float;
  294. if (!init && !avctx->parse_only) {
  295. /* scale factors table for layer 1/2 */
  296. for(i=0;i<64;i++) {
  297. int shift, mod;
  298. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  299. shift = (i / 3);
  300. mod = i % 3;
  301. scale_factor_modshift[i] = mod | (shift << 2);
  302. }
  303. /* scale factor multiply for layer 1 */
  304. for(i=0;i<15;i++) {
  305. int n, norm;
  306. n = i + 2;
  307. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  308. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  309. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  310. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  311. dprintf("%d: norm=%x s=%x %x %x\n",
  312. i, norm,
  313. scale_factor_mult[i][0],
  314. scale_factor_mult[i][1],
  315. scale_factor_mult[i][2]);
  316. }
  317. ff_mpa_synth_init(window);
  318. /* huffman decode tables */
  319. huff_code_table[0] = NULL;
  320. for(i=1;i<16;i++) {
  321. const HuffTable *h = &mpa_huff_tables[i];
  322. int xsize, x, y;
  323. unsigned int n;
  324. uint8_t *code_table;
  325. xsize = h->xsize;
  326. n = xsize * xsize;
  327. /* XXX: fail test */
  328. init_vlc(&huff_vlc[i], 8, n,
  329. h->bits, 1, 1, h->codes, 2, 2, 1);
  330. code_table = av_mallocz(n);
  331. j = 0;
  332. for(x=0;x<xsize;x++) {
  333. for(y=0;y<xsize;y++)
  334. code_table[j++] = (x << 4) | y;
  335. }
  336. huff_code_table[i] = code_table;
  337. }
  338. for(i=0;i<2;i++) {
  339. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  340. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  341. }
  342. for(i=0;i<9;i++) {
  343. k = 0;
  344. for(j=0;j<22;j++) {
  345. band_index_long[i][j] = k;
  346. k += band_size_long[i][j];
  347. }
  348. band_index_long[i][22] = k;
  349. }
  350. /* compute n ^ (4/3) and store it in mantissa/exp format */
  351. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  352. if(!table_4_3_exp)
  353. return -1;
  354. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  355. if(!table_4_3_value)
  356. return -1;
  357. int_pow_init();
  358. for(i=1;i<TABLE_4_3_SIZE;i++) {
  359. double f, fm;
  360. int e, m;
  361. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  362. fm = frexp(f, &e);
  363. m = FIXHR(fm*0.5);
  364. e+= FRAC_BITS - 31 + 5;
  365. /* normalized to FRAC_BITS */
  366. table_4_3_value[i] = m;
  367. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  368. table_4_3_exp[i] = -e;
  369. }
  370. for(i=0;i<7;i++) {
  371. float f;
  372. int v;
  373. if (i != 6) {
  374. f = tan((double)i * M_PI / 12.0);
  375. v = FIXR(f / (1.0 + f));
  376. } else {
  377. v = FIXR(1.0);
  378. }
  379. is_table[0][i] = v;
  380. is_table[1][6 - i] = v;
  381. }
  382. /* invalid values */
  383. for(i=7;i<16;i++)
  384. is_table[0][i] = is_table[1][i] = 0.0;
  385. for(i=0;i<16;i++) {
  386. double f;
  387. int e, k;
  388. for(j=0;j<2;j++) {
  389. e = -(j + 1) * ((i + 1) >> 1);
  390. f = pow(2.0, e / 4.0);
  391. k = i & 1;
  392. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  393. is_table_lsf[j][k][i] = FIXR(1.0);
  394. dprintf("is_table_lsf %d %d: %x %x\n",
  395. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  396. }
  397. }
  398. for(i=0;i<8;i++) {
  399. float ci, cs, ca;
  400. ci = ci_table[i];
  401. cs = 1.0 / sqrt(1.0 + ci * ci);
  402. ca = cs * ci;
  403. csa_table[i][0] = FIXHR(cs/4);
  404. csa_table[i][1] = FIXHR(ca/4);
  405. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  406. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  407. csa_table_float[i][0] = cs;
  408. csa_table_float[i][1] = ca;
  409. csa_table_float[i][2] = ca + cs;
  410. csa_table_float[i][3] = ca - cs;
  411. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  412. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  413. }
  414. /* compute mdct windows */
  415. for(i=0;i<36;i++) {
  416. for(j=0; j<4; j++){
  417. double d;
  418. if(j==2 && i%3 != 1)
  419. continue;
  420. d= sin(M_PI * (i + 0.5) / 36.0);
  421. if(j==1){
  422. if (i>=30) d= 0;
  423. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  424. else if(i>=18) d= 1;
  425. }else if(j==3){
  426. if (i< 6) d= 0;
  427. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  428. else if(i< 18) d= 1;
  429. }
  430. //merge last stage of imdct into the window coefficients
  431. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  432. if(j==2)
  433. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  434. else
  435. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  436. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  437. }
  438. }
  439. /* NOTE: we do frequency inversion adter the MDCT by changing
  440. the sign of the right window coefs */
  441. for(j=0;j<4;j++) {
  442. for(i=0;i<36;i+=2) {
  443. mdct_win[j + 4][i] = mdct_win[j][i];
  444. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  445. }
  446. }
  447. #if defined(DEBUG)
  448. for(j=0;j<8;j++) {
  449. printf("win%d=\n", j);
  450. for(i=0;i<36;i++)
  451. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  452. printf("\n");
  453. }
  454. #endif
  455. init = 1;
  456. }
  457. s->inbuf_index = 0;
  458. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  459. s->inbuf_ptr = s->inbuf;
  460. #ifdef DEBUG
  461. s->frame_count = 0;
  462. #endif
  463. if (avctx->codec_id == CODEC_ID_MP3ADU)
  464. s->adu_mode = 1;
  465. return 0;
  466. }
  467. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  468. /* cos(i*pi/64) */
  469. #define COS0_0 FIXR(0.50060299823519630134)
  470. #define COS0_1 FIXR(0.50547095989754365998)
  471. #define COS0_2 FIXR(0.51544730992262454697)
  472. #define COS0_3 FIXR(0.53104259108978417447)
  473. #define COS0_4 FIXR(0.55310389603444452782)
  474. #define COS0_5 FIXR(0.58293496820613387367)
  475. #define COS0_6 FIXR(0.62250412303566481615)
  476. #define COS0_7 FIXR(0.67480834145500574602)
  477. #define COS0_8 FIXR(0.74453627100229844977)
  478. #define COS0_9 FIXR(0.83934964541552703873)
  479. #define COS0_10 FIXR(0.97256823786196069369)
  480. #define COS0_11 FIXR(1.16943993343288495515)
  481. #define COS0_12 FIXR(1.48416461631416627724)
  482. #define COS0_13 FIXR(2.05778100995341155085)
  483. #define COS0_14 FIXR(3.40760841846871878570)
  484. #define COS0_15 FIXR(10.19000812354805681150)
  485. #define COS1_0 FIXR(0.50241928618815570551)
  486. #define COS1_1 FIXR(0.52249861493968888062)
  487. #define COS1_2 FIXR(0.56694403481635770368)
  488. #define COS1_3 FIXR(0.64682178335999012954)
  489. #define COS1_4 FIXR(0.78815462345125022473)
  490. #define COS1_5 FIXR(1.06067768599034747134)
  491. #define COS1_6 FIXR(1.72244709823833392782)
  492. #define COS1_7 FIXR(5.10114861868916385802)
  493. #define COS2_0 FIXR(0.50979557910415916894)
  494. #define COS2_1 FIXR(0.60134488693504528054)
  495. #define COS2_2 FIXR(0.89997622313641570463)
  496. #define COS2_3 FIXR(2.56291544774150617881)
  497. #define COS3_0 FIXR(0.54119610014619698439)
  498. #define COS3_1 FIXR(1.30656296487637652785)
  499. #define COS4_0 FIXR(0.70710678118654752439)
  500. /* butterfly operator */
  501. #define BF(a, b, c)\
  502. {\
  503. tmp0 = tab[a] + tab[b];\
  504. tmp1 = tab[a] - tab[b];\
  505. tab[a] = tmp0;\
  506. tab[b] = MULL(tmp1, c);\
  507. }
  508. #define BF1(a, b, c, d)\
  509. {\
  510. BF(a, b, COS4_0);\
  511. BF(c, d, -COS4_0);\
  512. tab[c] += tab[d];\
  513. }
  514. #define BF2(a, b, c, d)\
  515. {\
  516. BF(a, b, COS4_0);\
  517. BF(c, d, -COS4_0);\
  518. tab[c] += tab[d];\
  519. tab[a] += tab[c];\
  520. tab[c] += tab[b];\
  521. tab[b] += tab[d];\
  522. }
  523. #define ADD(a, b) tab[a] += tab[b]
  524. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  525. static void dct32(int32_t *out, int32_t *tab)
  526. {
  527. int tmp0, tmp1;
  528. /* pass 1 */
  529. BF(0, 31, COS0_0);
  530. BF(1, 30, COS0_1);
  531. BF(2, 29, COS0_2);
  532. BF(3, 28, COS0_3);
  533. BF(4, 27, COS0_4);
  534. BF(5, 26, COS0_5);
  535. BF(6, 25, COS0_6);
  536. BF(7, 24, COS0_7);
  537. BF(8, 23, COS0_8);
  538. BF(9, 22, COS0_9);
  539. BF(10, 21, COS0_10);
  540. BF(11, 20, COS0_11);
  541. BF(12, 19, COS0_12);
  542. BF(13, 18, COS0_13);
  543. BF(14, 17, COS0_14);
  544. BF(15, 16, COS0_15);
  545. /* pass 2 */
  546. BF(0, 15, COS1_0);
  547. BF(1, 14, COS1_1);
  548. BF(2, 13, COS1_2);
  549. BF(3, 12, COS1_3);
  550. BF(4, 11, COS1_4);
  551. BF(5, 10, COS1_5);
  552. BF(6, 9, COS1_6);
  553. BF(7, 8, COS1_7);
  554. BF(16, 31, -COS1_0);
  555. BF(17, 30, -COS1_1);
  556. BF(18, 29, -COS1_2);
  557. BF(19, 28, -COS1_3);
  558. BF(20, 27, -COS1_4);
  559. BF(21, 26, -COS1_5);
  560. BF(22, 25, -COS1_6);
  561. BF(23, 24, -COS1_7);
  562. /* pass 3 */
  563. BF(0, 7, COS2_0);
  564. BF(1, 6, COS2_1);
  565. BF(2, 5, COS2_2);
  566. BF(3, 4, COS2_3);
  567. BF(8, 15, -COS2_0);
  568. BF(9, 14, -COS2_1);
  569. BF(10, 13, -COS2_2);
  570. BF(11, 12, -COS2_3);
  571. BF(16, 23, COS2_0);
  572. BF(17, 22, COS2_1);
  573. BF(18, 21, COS2_2);
  574. BF(19, 20, COS2_3);
  575. BF(24, 31, -COS2_0);
  576. BF(25, 30, -COS2_1);
  577. BF(26, 29, -COS2_2);
  578. BF(27, 28, -COS2_3);
  579. /* pass 4 */
  580. BF(0, 3, COS3_0);
  581. BF(1, 2, COS3_1);
  582. BF(4, 7, -COS3_0);
  583. BF(5, 6, -COS3_1);
  584. BF(8, 11, COS3_0);
  585. BF(9, 10, COS3_1);
  586. BF(12, 15, -COS3_0);
  587. BF(13, 14, -COS3_1);
  588. BF(16, 19, COS3_0);
  589. BF(17, 18, COS3_1);
  590. BF(20, 23, -COS3_0);
  591. BF(21, 22, -COS3_1);
  592. BF(24, 27, COS3_0);
  593. BF(25, 26, COS3_1);
  594. BF(28, 31, -COS3_0);
  595. BF(29, 30, -COS3_1);
  596. /* pass 5 */
  597. BF1(0, 1, 2, 3);
  598. BF2(4, 5, 6, 7);
  599. BF1(8, 9, 10, 11);
  600. BF2(12, 13, 14, 15);
  601. BF1(16, 17, 18, 19);
  602. BF2(20, 21, 22, 23);
  603. BF1(24, 25, 26, 27);
  604. BF2(28, 29, 30, 31);
  605. /* pass 6 */
  606. ADD( 8, 12);
  607. ADD(12, 10);
  608. ADD(10, 14);
  609. ADD(14, 9);
  610. ADD( 9, 13);
  611. ADD(13, 11);
  612. ADD(11, 15);
  613. out[ 0] = tab[0];
  614. out[16] = tab[1];
  615. out[ 8] = tab[2];
  616. out[24] = tab[3];
  617. out[ 4] = tab[4];
  618. out[20] = tab[5];
  619. out[12] = tab[6];
  620. out[28] = tab[7];
  621. out[ 2] = tab[8];
  622. out[18] = tab[9];
  623. out[10] = tab[10];
  624. out[26] = tab[11];
  625. out[ 6] = tab[12];
  626. out[22] = tab[13];
  627. out[14] = tab[14];
  628. out[30] = tab[15];
  629. ADD(24, 28);
  630. ADD(28, 26);
  631. ADD(26, 30);
  632. ADD(30, 25);
  633. ADD(25, 29);
  634. ADD(29, 27);
  635. ADD(27, 31);
  636. out[ 1] = tab[16] + tab[24];
  637. out[17] = tab[17] + tab[25];
  638. out[ 9] = tab[18] + tab[26];
  639. out[25] = tab[19] + tab[27];
  640. out[ 5] = tab[20] + tab[28];
  641. out[21] = tab[21] + tab[29];
  642. out[13] = tab[22] + tab[30];
  643. out[29] = tab[23] + tab[31];
  644. out[ 3] = tab[24] + tab[20];
  645. out[19] = tab[25] + tab[21];
  646. out[11] = tab[26] + tab[22];
  647. out[27] = tab[27] + tab[23];
  648. out[ 7] = tab[28] + tab[18];
  649. out[23] = tab[29] + tab[19];
  650. out[15] = tab[30] + tab[17];
  651. out[31] = tab[31];
  652. }
  653. #if FRAC_BITS <= 15
  654. static inline int round_sample(int *sum)
  655. {
  656. int sum1;
  657. sum1 = (*sum) >> OUT_SHIFT;
  658. *sum &= (1<<OUT_SHIFT)-1;
  659. if (sum1 < OUT_MIN)
  660. sum1 = OUT_MIN;
  661. else if (sum1 > OUT_MAX)
  662. sum1 = OUT_MAX;
  663. return sum1;
  664. }
  665. #if defined(ARCH_POWERPC_405)
  666. /* signed 16x16 -> 32 multiply add accumulate */
  667. #define MACS(rt, ra, rb) \
  668. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  669. /* signed 16x16 -> 32 multiply */
  670. #define MULS(ra, rb) \
  671. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  672. #else
  673. /* signed 16x16 -> 32 multiply add accumulate */
  674. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  675. /* signed 16x16 -> 32 multiply */
  676. #define MULS(ra, rb) ((ra) * (rb))
  677. #endif
  678. #else
  679. static inline int round_sample(int64_t *sum)
  680. {
  681. int sum1;
  682. sum1 = (int)((*sum) >> OUT_SHIFT);
  683. *sum &= (1<<OUT_SHIFT)-1;
  684. if (sum1 < OUT_MIN)
  685. sum1 = OUT_MIN;
  686. else if (sum1 > OUT_MAX)
  687. sum1 = OUT_MAX;
  688. return sum1;
  689. }
  690. #define MULS(ra, rb) MUL64(ra, rb)
  691. #endif
  692. #define SUM8(sum, op, w, p) \
  693. { \
  694. sum op MULS((w)[0 * 64], p[0 * 64]);\
  695. sum op MULS((w)[1 * 64], p[1 * 64]);\
  696. sum op MULS((w)[2 * 64], p[2 * 64]);\
  697. sum op MULS((w)[3 * 64], p[3 * 64]);\
  698. sum op MULS((w)[4 * 64], p[4 * 64]);\
  699. sum op MULS((w)[5 * 64], p[5 * 64]);\
  700. sum op MULS((w)[6 * 64], p[6 * 64]);\
  701. sum op MULS((w)[7 * 64], p[7 * 64]);\
  702. }
  703. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  704. { \
  705. int tmp;\
  706. tmp = p[0 * 64];\
  707. sum1 op1 MULS((w1)[0 * 64], tmp);\
  708. sum2 op2 MULS((w2)[0 * 64], tmp);\
  709. tmp = p[1 * 64];\
  710. sum1 op1 MULS((w1)[1 * 64], tmp);\
  711. sum2 op2 MULS((w2)[1 * 64], tmp);\
  712. tmp = p[2 * 64];\
  713. sum1 op1 MULS((w1)[2 * 64], tmp);\
  714. sum2 op2 MULS((w2)[2 * 64], tmp);\
  715. tmp = p[3 * 64];\
  716. sum1 op1 MULS((w1)[3 * 64], tmp);\
  717. sum2 op2 MULS((w2)[3 * 64], tmp);\
  718. tmp = p[4 * 64];\
  719. sum1 op1 MULS((w1)[4 * 64], tmp);\
  720. sum2 op2 MULS((w2)[4 * 64], tmp);\
  721. tmp = p[5 * 64];\
  722. sum1 op1 MULS((w1)[5 * 64], tmp);\
  723. sum2 op2 MULS((w2)[5 * 64], tmp);\
  724. tmp = p[6 * 64];\
  725. sum1 op1 MULS((w1)[6 * 64], tmp);\
  726. sum2 op2 MULS((w2)[6 * 64], tmp);\
  727. tmp = p[7 * 64];\
  728. sum1 op1 MULS((w1)[7 * 64], tmp);\
  729. sum2 op2 MULS((w2)[7 * 64], tmp);\
  730. }
  731. void ff_mpa_synth_init(MPA_INT *window)
  732. {
  733. int i;
  734. /* max = 18760, max sum over all 16 coefs : 44736 */
  735. for(i=0;i<257;i++) {
  736. int v;
  737. v = mpa_enwindow[i];
  738. #if WFRAC_BITS < 16
  739. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  740. #endif
  741. window[i] = v;
  742. if ((i & 63) != 0)
  743. v = -v;
  744. if (i != 0)
  745. window[512 - i] = v;
  746. }
  747. }
  748. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  749. 32 samples. */
  750. /* XXX: optimize by avoiding ring buffer usage */
  751. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  752. MPA_INT *window, int *dither_state,
  753. OUT_INT *samples, int incr,
  754. int32_t sb_samples[SBLIMIT])
  755. {
  756. int32_t tmp[32];
  757. register MPA_INT *synth_buf;
  758. register const MPA_INT *w, *w2, *p;
  759. int j, offset, v;
  760. OUT_INT *samples2;
  761. #if FRAC_BITS <= 15
  762. int sum, sum2;
  763. #else
  764. int64_t sum, sum2;
  765. #endif
  766. dct32(tmp, sb_samples);
  767. offset = *synth_buf_offset;
  768. synth_buf = synth_buf_ptr + offset;
  769. for(j=0;j<32;j++) {
  770. v = tmp[j];
  771. #if FRAC_BITS <= 15
  772. /* NOTE: can cause a loss in precision if very high amplitude
  773. sound */
  774. if (v > 32767)
  775. v = 32767;
  776. else if (v < -32768)
  777. v = -32768;
  778. #endif
  779. synth_buf[j] = v;
  780. }
  781. /* copy to avoid wrap */
  782. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  783. samples2 = samples + 31 * incr;
  784. w = window;
  785. w2 = window + 31;
  786. sum = *dither_state;
  787. p = synth_buf + 16;
  788. SUM8(sum, +=, w, p);
  789. p = synth_buf + 48;
  790. SUM8(sum, -=, w + 32, p);
  791. *samples = round_sample(&sum);
  792. samples += incr;
  793. w++;
  794. /* we calculate two samples at the same time to avoid one memory
  795. access per two sample */
  796. for(j=1;j<16;j++) {
  797. sum2 = 0;
  798. p = synth_buf + 16 + j;
  799. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  800. p = synth_buf + 48 - j;
  801. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  802. *samples = round_sample(&sum);
  803. samples += incr;
  804. sum += sum2;
  805. *samples2 = round_sample(&sum);
  806. samples2 -= incr;
  807. w++;
  808. w2--;
  809. }
  810. p = synth_buf + 32;
  811. SUM8(sum, -=, w + 32, p);
  812. *samples = round_sample(&sum);
  813. *dither_state= sum;
  814. offset = (offset - 32) & 511;
  815. *synth_buf_offset = offset;
  816. }
  817. #define C3 FIXHR(0.86602540378443864676/2)
  818. /* 0.5 / cos(pi*(2*i+1)/36) */
  819. static const int icos36[9] = {
  820. FIXR(0.50190991877167369479),
  821. FIXR(0.51763809020504152469), //0
  822. FIXR(0.55168895948124587824),
  823. FIXR(0.61038729438072803416),
  824. FIXR(0.70710678118654752439), //1
  825. FIXR(0.87172339781054900991),
  826. FIXR(1.18310079157624925896),
  827. FIXR(1.93185165257813657349), //2
  828. FIXR(5.73685662283492756461),
  829. };
  830. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  831. cases. */
  832. static void imdct12(int *out, int *in)
  833. {
  834. int in0, in1, in2, in3, in4, in5, t1, t2;
  835. in0= in[0*3];
  836. in1= in[1*3] + in[0*3];
  837. in2= in[2*3] + in[1*3];
  838. in3= in[3*3] + in[2*3];
  839. in4= in[4*3] + in[3*3];
  840. in5= in[5*3] + in[4*3];
  841. in5 += in3;
  842. in3 += in1;
  843. in2= MULH(2*in2, C3);
  844. in3= MULH(2*in3, C3);
  845. t1 = in0 - in4;
  846. t2 = MULL(in1 - in5, icos36[4]);
  847. out[ 7]=
  848. out[10]= t1 + t2;
  849. out[ 1]=
  850. out[ 4]= t1 - t2;
  851. in0 += in4>>1;
  852. in4 = in0 + in2;
  853. in1 += in5>>1;
  854. in5 = MULL(in1 + in3, icos36[1]);
  855. out[ 8]=
  856. out[ 9]= in4 + in5;
  857. out[ 2]=
  858. out[ 3]= in4 - in5;
  859. in0 -= in2;
  860. in1 = MULL(in1 - in3, icos36[7]);
  861. out[ 0]=
  862. out[ 5]= in0 - in1;
  863. out[ 6]=
  864. out[11]= in0 + in1;
  865. }
  866. /* cos(pi*i/18) */
  867. #define C1 FIXHR(0.98480775301220805936/2)
  868. #define C2 FIXHR(0.93969262078590838405/2)
  869. #define C3 FIXHR(0.86602540378443864676/2)
  870. #define C4 FIXHR(0.76604444311897803520/2)
  871. #define C5 FIXHR(0.64278760968653932632/2)
  872. #define C6 FIXHR(0.5/2)
  873. #define C7 FIXHR(0.34202014332566873304/2)
  874. #define C8 FIXHR(0.17364817766693034885/2)
  875. /* using Lee like decomposition followed by hand coded 9 points DCT */
  876. static void imdct36(int *out, int *buf, int *in, int *win)
  877. {
  878. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  879. int tmp[18], *tmp1, *in1;
  880. for(i=17;i>=1;i--)
  881. in[i] += in[i-1];
  882. for(i=17;i>=3;i-=2)
  883. in[i] += in[i-2];
  884. for(j=0;j<2;j++) {
  885. tmp1 = tmp + j;
  886. in1 = in + j;
  887. #if 0
  888. //more accurate but slower
  889. int64_t t0, t1, t2, t3;
  890. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  891. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  892. t1 = in1[2*0] - in1[2*6];
  893. tmp1[ 6] = t1 - (t2>>1);
  894. tmp1[16] = t1 + t2;
  895. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  896. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  897. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  898. tmp1[10] = (t3 - t0 - t2) >> 32;
  899. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  900. tmp1[14] = (t3 + t2 - t1) >> 32;
  901. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  902. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  903. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  904. t0 = MUL64(2*in1[2*3], C3);
  905. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  906. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  907. tmp1[12] = (t2 + t1 - t0) >> 32;
  908. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  909. #else
  910. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  911. t3 = in1[2*0] + (in1[2*6]>>1);
  912. t1 = in1[2*0] - in1[2*6];
  913. tmp1[ 6] = t1 - (t2>>1);
  914. tmp1[16] = t1 + t2;
  915. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  916. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  917. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  918. tmp1[10] = t3 - t0 - t2;
  919. tmp1[ 2] = t3 + t0 + t1;
  920. tmp1[14] = t3 + t2 - t1;
  921. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  922. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  923. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  924. t0 = MULH(2*in1[2*3], C3);
  925. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  926. tmp1[ 0] = t2 + t3 + t0;
  927. tmp1[12] = t2 + t1 - t0;
  928. tmp1[ 8] = t3 - t1 - t0;
  929. #endif
  930. }
  931. i = 0;
  932. for(j=0;j<4;j++) {
  933. t0 = tmp[i];
  934. t1 = tmp[i + 2];
  935. s0 = t1 + t0;
  936. s2 = t1 - t0;
  937. t2 = tmp[i + 1];
  938. t3 = tmp[i + 3];
  939. s1 = MULL(t3 + t2, icos36[j]);
  940. s3 = MULL(t3 - t2, icos36[8 - j]);
  941. t0 = s0 + s1;
  942. t1 = s0 - s1;
  943. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  944. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  945. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  946. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  947. t0 = s2 + s3;
  948. t1 = s2 - s3;
  949. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  950. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  951. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  952. buf[ + j] = MULH(t0, win[18 + j]);
  953. i += 4;
  954. }
  955. s0 = tmp[16];
  956. s1 = MULL(tmp[17], icos36[4]);
  957. t0 = s0 + s1;
  958. t1 = s0 - s1;
  959. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  960. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  961. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  962. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  963. }
  964. /* header decoding. MUST check the header before because no
  965. consistency check is done there. Return 1 if free format found and
  966. that the frame size must be computed externally */
  967. static int decode_header(MPADecodeContext *s, uint32_t header)
  968. {
  969. int sample_rate, frame_size, mpeg25, padding;
  970. int sample_rate_index, bitrate_index;
  971. if (header & (1<<20)) {
  972. s->lsf = (header & (1<<19)) ? 0 : 1;
  973. mpeg25 = 0;
  974. } else {
  975. s->lsf = 1;
  976. mpeg25 = 1;
  977. }
  978. s->layer = 4 - ((header >> 17) & 3);
  979. /* extract frequency */
  980. sample_rate_index = (header >> 10) & 3;
  981. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  982. sample_rate_index += 3 * (s->lsf + mpeg25);
  983. s->sample_rate_index = sample_rate_index;
  984. s->error_protection = ((header >> 16) & 1) ^ 1;
  985. s->sample_rate = sample_rate;
  986. bitrate_index = (header >> 12) & 0xf;
  987. padding = (header >> 9) & 1;
  988. //extension = (header >> 8) & 1;
  989. s->mode = (header >> 6) & 3;
  990. s->mode_ext = (header >> 4) & 3;
  991. //copyright = (header >> 3) & 1;
  992. //original = (header >> 2) & 1;
  993. //emphasis = header & 3;
  994. if (s->mode == MPA_MONO)
  995. s->nb_channels = 1;
  996. else
  997. s->nb_channels = 2;
  998. if (bitrate_index != 0) {
  999. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1000. s->bit_rate = frame_size * 1000;
  1001. switch(s->layer) {
  1002. case 1:
  1003. frame_size = (frame_size * 12000) / sample_rate;
  1004. frame_size = (frame_size + padding) * 4;
  1005. break;
  1006. case 2:
  1007. frame_size = (frame_size * 144000) / sample_rate;
  1008. frame_size += padding;
  1009. break;
  1010. default:
  1011. case 3:
  1012. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1013. frame_size += padding;
  1014. break;
  1015. }
  1016. s->frame_size = frame_size;
  1017. } else {
  1018. /* if no frame size computed, signal it */
  1019. if (!s->free_format_frame_size)
  1020. return 1;
  1021. /* free format: compute bitrate and real frame size from the
  1022. frame size we extracted by reading the bitstream */
  1023. s->frame_size = s->free_format_frame_size;
  1024. switch(s->layer) {
  1025. case 1:
  1026. s->frame_size += padding * 4;
  1027. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1028. break;
  1029. case 2:
  1030. s->frame_size += padding;
  1031. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1032. break;
  1033. default:
  1034. case 3:
  1035. s->frame_size += padding;
  1036. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1037. break;
  1038. }
  1039. }
  1040. #if defined(DEBUG)
  1041. printf("layer%d, %d Hz, %d kbits/s, ",
  1042. s->layer, s->sample_rate, s->bit_rate);
  1043. if (s->nb_channels == 2) {
  1044. if (s->layer == 3) {
  1045. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1046. printf("ms-");
  1047. if (s->mode_ext & MODE_EXT_I_STEREO)
  1048. printf("i-");
  1049. }
  1050. printf("stereo");
  1051. } else {
  1052. printf("mono");
  1053. }
  1054. printf("\n");
  1055. #endif
  1056. return 0;
  1057. }
  1058. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1059. header, otherwise the coded frame size in bytes */
  1060. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1061. {
  1062. MPADecodeContext s1, *s = &s1;
  1063. memset( s, 0, sizeof(MPADecodeContext) );
  1064. if (ff_mpa_check_header(head) != 0)
  1065. return -1;
  1066. if (decode_header(s, head) != 0) {
  1067. return -1;
  1068. }
  1069. switch(s->layer) {
  1070. case 1:
  1071. avctx->frame_size = 384;
  1072. break;
  1073. case 2:
  1074. avctx->frame_size = 1152;
  1075. break;
  1076. default:
  1077. case 3:
  1078. if (s->lsf)
  1079. avctx->frame_size = 576;
  1080. else
  1081. avctx->frame_size = 1152;
  1082. break;
  1083. }
  1084. avctx->sample_rate = s->sample_rate;
  1085. avctx->channels = s->nb_channels;
  1086. avctx->bit_rate = s->bit_rate;
  1087. avctx->sub_id = s->layer;
  1088. return s->frame_size;
  1089. }
  1090. /* return the number of decoded frames */
  1091. static int mp_decode_layer1(MPADecodeContext *s)
  1092. {
  1093. int bound, i, v, n, ch, j, mant;
  1094. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1095. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1096. if (s->mode == MPA_JSTEREO)
  1097. bound = (s->mode_ext + 1) * 4;
  1098. else
  1099. bound = SBLIMIT;
  1100. /* allocation bits */
  1101. for(i=0;i<bound;i++) {
  1102. for(ch=0;ch<s->nb_channels;ch++) {
  1103. allocation[ch][i] = get_bits(&s->gb, 4);
  1104. }
  1105. }
  1106. for(i=bound;i<SBLIMIT;i++) {
  1107. allocation[0][i] = get_bits(&s->gb, 4);
  1108. }
  1109. /* scale factors */
  1110. for(i=0;i<bound;i++) {
  1111. for(ch=0;ch<s->nb_channels;ch++) {
  1112. if (allocation[ch][i])
  1113. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1114. }
  1115. }
  1116. for(i=bound;i<SBLIMIT;i++) {
  1117. if (allocation[0][i]) {
  1118. scale_factors[0][i] = get_bits(&s->gb, 6);
  1119. scale_factors[1][i] = get_bits(&s->gb, 6);
  1120. }
  1121. }
  1122. /* compute samples */
  1123. for(j=0;j<12;j++) {
  1124. for(i=0;i<bound;i++) {
  1125. for(ch=0;ch<s->nb_channels;ch++) {
  1126. n = allocation[ch][i];
  1127. if (n) {
  1128. mant = get_bits(&s->gb, n + 1);
  1129. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1130. } else {
  1131. v = 0;
  1132. }
  1133. s->sb_samples[ch][j][i] = v;
  1134. }
  1135. }
  1136. for(i=bound;i<SBLIMIT;i++) {
  1137. n = allocation[0][i];
  1138. if (n) {
  1139. mant = get_bits(&s->gb, n + 1);
  1140. v = l1_unscale(n, mant, scale_factors[0][i]);
  1141. s->sb_samples[0][j][i] = v;
  1142. v = l1_unscale(n, mant, scale_factors[1][i]);
  1143. s->sb_samples[1][j][i] = v;
  1144. } else {
  1145. s->sb_samples[0][j][i] = 0;
  1146. s->sb_samples[1][j][i] = 0;
  1147. }
  1148. }
  1149. }
  1150. return 12;
  1151. }
  1152. /* bitrate is in kb/s */
  1153. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1154. {
  1155. int ch_bitrate, table;
  1156. ch_bitrate = bitrate / nb_channels;
  1157. if (!lsf) {
  1158. if ((freq == 48000 && ch_bitrate >= 56) ||
  1159. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1160. table = 0;
  1161. else if (freq != 48000 && ch_bitrate >= 96)
  1162. table = 1;
  1163. else if (freq != 32000 && ch_bitrate <= 48)
  1164. table = 2;
  1165. else
  1166. table = 3;
  1167. } else {
  1168. table = 4;
  1169. }
  1170. return table;
  1171. }
  1172. static int mp_decode_layer2(MPADecodeContext *s)
  1173. {
  1174. int sblimit; /* number of used subbands */
  1175. const unsigned char *alloc_table;
  1176. int table, bit_alloc_bits, i, j, ch, bound, v;
  1177. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1178. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1179. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1180. int scale, qindex, bits, steps, k, l, m, b;
  1181. /* select decoding table */
  1182. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1183. s->sample_rate, s->lsf);
  1184. sblimit = sblimit_table[table];
  1185. alloc_table = alloc_tables[table];
  1186. if (s->mode == MPA_JSTEREO)
  1187. bound = (s->mode_ext + 1) * 4;
  1188. else
  1189. bound = sblimit;
  1190. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1191. /* sanity check */
  1192. if( bound > sblimit ) bound = sblimit;
  1193. /* parse bit allocation */
  1194. j = 0;
  1195. for(i=0;i<bound;i++) {
  1196. bit_alloc_bits = alloc_table[j];
  1197. for(ch=0;ch<s->nb_channels;ch++) {
  1198. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1199. }
  1200. j += 1 << bit_alloc_bits;
  1201. }
  1202. for(i=bound;i<sblimit;i++) {
  1203. bit_alloc_bits = alloc_table[j];
  1204. v = get_bits(&s->gb, bit_alloc_bits);
  1205. bit_alloc[0][i] = v;
  1206. bit_alloc[1][i] = v;
  1207. j += 1 << bit_alloc_bits;
  1208. }
  1209. #ifdef DEBUG
  1210. {
  1211. for(ch=0;ch<s->nb_channels;ch++) {
  1212. for(i=0;i<sblimit;i++)
  1213. printf(" %d", bit_alloc[ch][i]);
  1214. printf("\n");
  1215. }
  1216. }
  1217. #endif
  1218. /* scale codes */
  1219. for(i=0;i<sblimit;i++) {
  1220. for(ch=0;ch<s->nb_channels;ch++) {
  1221. if (bit_alloc[ch][i])
  1222. scale_code[ch][i] = get_bits(&s->gb, 2);
  1223. }
  1224. }
  1225. /* scale factors */
  1226. for(i=0;i<sblimit;i++) {
  1227. for(ch=0;ch<s->nb_channels;ch++) {
  1228. if (bit_alloc[ch][i]) {
  1229. sf = scale_factors[ch][i];
  1230. switch(scale_code[ch][i]) {
  1231. default:
  1232. case 0:
  1233. sf[0] = get_bits(&s->gb, 6);
  1234. sf[1] = get_bits(&s->gb, 6);
  1235. sf[2] = get_bits(&s->gb, 6);
  1236. break;
  1237. case 2:
  1238. sf[0] = get_bits(&s->gb, 6);
  1239. sf[1] = sf[0];
  1240. sf[2] = sf[0];
  1241. break;
  1242. case 1:
  1243. sf[0] = get_bits(&s->gb, 6);
  1244. sf[2] = get_bits(&s->gb, 6);
  1245. sf[1] = sf[0];
  1246. break;
  1247. case 3:
  1248. sf[0] = get_bits(&s->gb, 6);
  1249. sf[2] = get_bits(&s->gb, 6);
  1250. sf[1] = sf[2];
  1251. break;
  1252. }
  1253. }
  1254. }
  1255. }
  1256. #ifdef DEBUG
  1257. for(ch=0;ch<s->nb_channels;ch++) {
  1258. for(i=0;i<sblimit;i++) {
  1259. if (bit_alloc[ch][i]) {
  1260. sf = scale_factors[ch][i];
  1261. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1262. } else {
  1263. printf(" -");
  1264. }
  1265. }
  1266. printf("\n");
  1267. }
  1268. #endif
  1269. /* samples */
  1270. for(k=0;k<3;k++) {
  1271. for(l=0;l<12;l+=3) {
  1272. j = 0;
  1273. for(i=0;i<bound;i++) {
  1274. bit_alloc_bits = alloc_table[j];
  1275. for(ch=0;ch<s->nb_channels;ch++) {
  1276. b = bit_alloc[ch][i];
  1277. if (b) {
  1278. scale = scale_factors[ch][i][k];
  1279. qindex = alloc_table[j+b];
  1280. bits = quant_bits[qindex];
  1281. if (bits < 0) {
  1282. /* 3 values at the same time */
  1283. v = get_bits(&s->gb, -bits);
  1284. steps = quant_steps[qindex];
  1285. s->sb_samples[ch][k * 12 + l + 0][i] =
  1286. l2_unscale_group(steps, v % steps, scale);
  1287. v = v / steps;
  1288. s->sb_samples[ch][k * 12 + l + 1][i] =
  1289. l2_unscale_group(steps, v % steps, scale);
  1290. v = v / steps;
  1291. s->sb_samples[ch][k * 12 + l + 2][i] =
  1292. l2_unscale_group(steps, v, scale);
  1293. } else {
  1294. for(m=0;m<3;m++) {
  1295. v = get_bits(&s->gb, bits);
  1296. v = l1_unscale(bits - 1, v, scale);
  1297. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1298. }
  1299. }
  1300. } else {
  1301. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1302. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1303. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1304. }
  1305. }
  1306. /* next subband in alloc table */
  1307. j += 1 << bit_alloc_bits;
  1308. }
  1309. /* XXX: find a way to avoid this duplication of code */
  1310. for(i=bound;i<sblimit;i++) {
  1311. bit_alloc_bits = alloc_table[j];
  1312. b = bit_alloc[0][i];
  1313. if (b) {
  1314. int mant, scale0, scale1;
  1315. scale0 = scale_factors[0][i][k];
  1316. scale1 = scale_factors[1][i][k];
  1317. qindex = alloc_table[j+b];
  1318. bits = quant_bits[qindex];
  1319. if (bits < 0) {
  1320. /* 3 values at the same time */
  1321. v = get_bits(&s->gb, -bits);
  1322. steps = quant_steps[qindex];
  1323. mant = v % steps;
  1324. v = v / steps;
  1325. s->sb_samples[0][k * 12 + l + 0][i] =
  1326. l2_unscale_group(steps, mant, scale0);
  1327. s->sb_samples[1][k * 12 + l + 0][i] =
  1328. l2_unscale_group(steps, mant, scale1);
  1329. mant = v % steps;
  1330. v = v / steps;
  1331. s->sb_samples[0][k * 12 + l + 1][i] =
  1332. l2_unscale_group(steps, mant, scale0);
  1333. s->sb_samples[1][k * 12 + l + 1][i] =
  1334. l2_unscale_group(steps, mant, scale1);
  1335. s->sb_samples[0][k * 12 + l + 2][i] =
  1336. l2_unscale_group(steps, v, scale0);
  1337. s->sb_samples[1][k * 12 + l + 2][i] =
  1338. l2_unscale_group(steps, v, scale1);
  1339. } else {
  1340. for(m=0;m<3;m++) {
  1341. mant = get_bits(&s->gb, bits);
  1342. s->sb_samples[0][k * 12 + l + m][i] =
  1343. l1_unscale(bits - 1, mant, scale0);
  1344. s->sb_samples[1][k * 12 + l + m][i] =
  1345. l1_unscale(bits - 1, mant, scale1);
  1346. }
  1347. }
  1348. } else {
  1349. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1350. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1351. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1352. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1353. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1354. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1355. }
  1356. /* next subband in alloc table */
  1357. j += 1 << bit_alloc_bits;
  1358. }
  1359. /* fill remaining samples to zero */
  1360. for(i=sblimit;i<SBLIMIT;i++) {
  1361. for(ch=0;ch<s->nb_channels;ch++) {
  1362. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1363. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1364. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1365. }
  1366. }
  1367. }
  1368. }
  1369. return 3 * 12;
  1370. }
  1371. /*
  1372. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1373. */
  1374. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1375. {
  1376. uint8_t *ptr;
  1377. /* compute current position in stream */
  1378. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1379. /* copy old data before current one */
  1380. ptr -= backstep;
  1381. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1382. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1383. /* init get bits again */
  1384. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1385. /* prepare next buffer */
  1386. s->inbuf_index ^= 1;
  1387. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1388. s->old_frame_size = s->frame_size;
  1389. }
  1390. static inline void lsf_sf_expand(int *slen,
  1391. int sf, int n1, int n2, int n3)
  1392. {
  1393. if (n3) {
  1394. slen[3] = sf % n3;
  1395. sf /= n3;
  1396. } else {
  1397. slen[3] = 0;
  1398. }
  1399. if (n2) {
  1400. slen[2] = sf % n2;
  1401. sf /= n2;
  1402. } else {
  1403. slen[2] = 0;
  1404. }
  1405. slen[1] = sf % n1;
  1406. sf /= n1;
  1407. slen[0] = sf;
  1408. }
  1409. static void exponents_from_scale_factors(MPADecodeContext *s,
  1410. GranuleDef *g,
  1411. int16_t *exponents)
  1412. {
  1413. const uint8_t *bstab, *pretab;
  1414. int len, i, j, k, l, v0, shift, gain, gains[3];
  1415. int16_t *exp_ptr;
  1416. exp_ptr = exponents;
  1417. gain = g->global_gain - 210;
  1418. shift = g->scalefac_scale + 1;
  1419. bstab = band_size_long[s->sample_rate_index];
  1420. pretab = mpa_pretab[g->preflag];
  1421. for(i=0;i<g->long_end;i++) {
  1422. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1423. len = bstab[i];
  1424. for(j=len;j>0;j--)
  1425. *exp_ptr++ = v0;
  1426. }
  1427. if (g->short_start < 13) {
  1428. bstab = band_size_short[s->sample_rate_index];
  1429. gains[0] = gain - (g->subblock_gain[0] << 3);
  1430. gains[1] = gain - (g->subblock_gain[1] << 3);
  1431. gains[2] = gain - (g->subblock_gain[2] << 3);
  1432. k = g->long_end;
  1433. for(i=g->short_start;i<13;i++) {
  1434. len = bstab[i];
  1435. for(l=0;l<3;l++) {
  1436. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1437. for(j=len;j>0;j--)
  1438. *exp_ptr++ = v0;
  1439. }
  1440. }
  1441. }
  1442. }
  1443. /* handle n = 0 too */
  1444. static inline int get_bitsz(GetBitContext *s, int n)
  1445. {
  1446. if (n == 0)
  1447. return 0;
  1448. else
  1449. return get_bits(s, n);
  1450. }
  1451. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1452. int16_t *exponents, int end_pos)
  1453. {
  1454. int s_index;
  1455. int linbits, code, x, y, l, v, i, j, k, pos;
  1456. GetBitContext last_gb;
  1457. VLC *vlc;
  1458. uint8_t *code_table;
  1459. /* low frequencies (called big values) */
  1460. s_index = 0;
  1461. for(i=0;i<3;i++) {
  1462. j = g->region_size[i];
  1463. if (j == 0)
  1464. continue;
  1465. /* select vlc table */
  1466. k = g->table_select[i];
  1467. l = mpa_huff_data[k][0];
  1468. linbits = mpa_huff_data[k][1];
  1469. vlc = &huff_vlc[l];
  1470. code_table = huff_code_table[l];
  1471. /* read huffcode and compute each couple */
  1472. for(;j>0;j--) {
  1473. if (get_bits_count(&s->gb) >= end_pos)
  1474. break;
  1475. if (code_table) {
  1476. code = get_vlc(&s->gb, vlc);
  1477. if (code < 0)
  1478. return -1;
  1479. y = code_table[code];
  1480. x = y >> 4;
  1481. y = y & 0x0f;
  1482. } else {
  1483. x = 0;
  1484. y = 0;
  1485. }
  1486. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1487. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1488. if (x) {
  1489. if (x == 15)
  1490. x += get_bitsz(&s->gb, linbits);
  1491. v = l3_unscale(x, exponents[s_index]);
  1492. if (get_bits1(&s->gb))
  1493. v = -v;
  1494. } else {
  1495. v = 0;
  1496. }
  1497. g->sb_hybrid[s_index++] = v;
  1498. if (y) {
  1499. if (y == 15)
  1500. y += get_bitsz(&s->gb, linbits);
  1501. v = l3_unscale(y, exponents[s_index]);
  1502. if (get_bits1(&s->gb))
  1503. v = -v;
  1504. } else {
  1505. v = 0;
  1506. }
  1507. g->sb_hybrid[s_index++] = v;
  1508. }
  1509. }
  1510. /* high frequencies */
  1511. vlc = &huff_quad_vlc[g->count1table_select];
  1512. last_gb.buffer = NULL;
  1513. while (s_index <= 572) {
  1514. pos = get_bits_count(&s->gb);
  1515. if (pos >= end_pos) {
  1516. if (pos > end_pos && last_gb.buffer != NULL) {
  1517. /* some encoders generate an incorrect size for this
  1518. part. We must go back into the data */
  1519. s_index -= 4;
  1520. s->gb = last_gb;
  1521. }
  1522. break;
  1523. }
  1524. last_gb= s->gb;
  1525. code = get_vlc(&s->gb, vlc);
  1526. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1527. if (code < 0)
  1528. return -1;
  1529. for(i=0;i<4;i++) {
  1530. if (code & (8 >> i)) {
  1531. /* non zero value. Could use a hand coded function for
  1532. 'one' value */
  1533. v = l3_unscale(1, exponents[s_index]);
  1534. if(get_bits1(&s->gb))
  1535. v = -v;
  1536. } else {
  1537. v = 0;
  1538. }
  1539. g->sb_hybrid[s_index++] = v;
  1540. }
  1541. }
  1542. while (s_index < 576)
  1543. g->sb_hybrid[s_index++] = 0;
  1544. return 0;
  1545. }
  1546. /* Reorder short blocks from bitstream order to interleaved order. It
  1547. would be faster to do it in parsing, but the code would be far more
  1548. complicated */
  1549. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1550. {
  1551. int i, j, k, len;
  1552. int32_t *ptr, *dst, *ptr1;
  1553. int32_t tmp[576];
  1554. if (g->block_type != 2)
  1555. return;
  1556. if (g->switch_point) {
  1557. if (s->sample_rate_index != 8) {
  1558. ptr = g->sb_hybrid + 36;
  1559. } else {
  1560. ptr = g->sb_hybrid + 48;
  1561. }
  1562. } else {
  1563. ptr = g->sb_hybrid;
  1564. }
  1565. for(i=g->short_start;i<13;i++) {
  1566. len = band_size_short[s->sample_rate_index][i];
  1567. ptr1 = ptr;
  1568. for(k=0;k<3;k++) {
  1569. dst = tmp + k;
  1570. for(j=len;j>0;j--) {
  1571. *dst = *ptr++;
  1572. dst += 3;
  1573. }
  1574. }
  1575. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1576. }
  1577. }
  1578. #define ISQRT2 FIXR(0.70710678118654752440)
  1579. static void compute_stereo(MPADecodeContext *s,
  1580. GranuleDef *g0, GranuleDef *g1)
  1581. {
  1582. int i, j, k, l;
  1583. int32_t v1, v2;
  1584. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1585. int32_t (*is_tab)[16];
  1586. int32_t *tab0, *tab1;
  1587. int non_zero_found_short[3];
  1588. /* intensity stereo */
  1589. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1590. if (!s->lsf) {
  1591. is_tab = is_table;
  1592. sf_max = 7;
  1593. } else {
  1594. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1595. sf_max = 16;
  1596. }
  1597. tab0 = g0->sb_hybrid + 576;
  1598. tab1 = g1->sb_hybrid + 576;
  1599. non_zero_found_short[0] = 0;
  1600. non_zero_found_short[1] = 0;
  1601. non_zero_found_short[2] = 0;
  1602. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1603. for(i = 12;i >= g1->short_start;i--) {
  1604. /* for last band, use previous scale factor */
  1605. if (i != 11)
  1606. k -= 3;
  1607. len = band_size_short[s->sample_rate_index][i];
  1608. for(l=2;l>=0;l--) {
  1609. tab0 -= len;
  1610. tab1 -= len;
  1611. if (!non_zero_found_short[l]) {
  1612. /* test if non zero band. if so, stop doing i-stereo */
  1613. for(j=0;j<len;j++) {
  1614. if (tab1[j] != 0) {
  1615. non_zero_found_short[l] = 1;
  1616. goto found1;
  1617. }
  1618. }
  1619. sf = g1->scale_factors[k + l];
  1620. if (sf >= sf_max)
  1621. goto found1;
  1622. v1 = is_tab[0][sf];
  1623. v2 = is_tab[1][sf];
  1624. for(j=0;j<len;j++) {
  1625. tmp0 = tab0[j];
  1626. tab0[j] = MULL(tmp0, v1);
  1627. tab1[j] = MULL(tmp0, v2);
  1628. }
  1629. } else {
  1630. found1:
  1631. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1632. /* lower part of the spectrum : do ms stereo
  1633. if enabled */
  1634. for(j=0;j<len;j++) {
  1635. tmp0 = tab0[j];
  1636. tmp1 = tab1[j];
  1637. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1638. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1639. }
  1640. }
  1641. }
  1642. }
  1643. }
  1644. non_zero_found = non_zero_found_short[0] |
  1645. non_zero_found_short[1] |
  1646. non_zero_found_short[2];
  1647. for(i = g1->long_end - 1;i >= 0;i--) {
  1648. len = band_size_long[s->sample_rate_index][i];
  1649. tab0 -= len;
  1650. tab1 -= len;
  1651. /* test if non zero band. if so, stop doing i-stereo */
  1652. if (!non_zero_found) {
  1653. for(j=0;j<len;j++) {
  1654. if (tab1[j] != 0) {
  1655. non_zero_found = 1;
  1656. goto found2;
  1657. }
  1658. }
  1659. /* for last band, use previous scale factor */
  1660. k = (i == 21) ? 20 : i;
  1661. sf = g1->scale_factors[k];
  1662. if (sf >= sf_max)
  1663. goto found2;
  1664. v1 = is_tab[0][sf];
  1665. v2 = is_tab[1][sf];
  1666. for(j=0;j<len;j++) {
  1667. tmp0 = tab0[j];
  1668. tab0[j] = MULL(tmp0, v1);
  1669. tab1[j] = MULL(tmp0, v2);
  1670. }
  1671. } else {
  1672. found2:
  1673. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1674. /* lower part of the spectrum : do ms stereo
  1675. if enabled */
  1676. for(j=0;j<len;j++) {
  1677. tmp0 = tab0[j];
  1678. tmp1 = tab1[j];
  1679. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1680. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1681. }
  1682. }
  1683. }
  1684. }
  1685. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1686. /* ms stereo ONLY */
  1687. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1688. global gain */
  1689. tab0 = g0->sb_hybrid;
  1690. tab1 = g1->sb_hybrid;
  1691. for(i=0;i<576;i++) {
  1692. tmp0 = tab0[i];
  1693. tmp1 = tab1[i];
  1694. tab0[i] = tmp0 + tmp1;
  1695. tab1[i] = tmp0 - tmp1;
  1696. }
  1697. }
  1698. }
  1699. static void compute_antialias_integer(MPADecodeContext *s,
  1700. GranuleDef *g)
  1701. {
  1702. int32_t *ptr, *csa;
  1703. int n, i;
  1704. /* we antialias only "long" bands */
  1705. if (g->block_type == 2) {
  1706. if (!g->switch_point)
  1707. return;
  1708. /* XXX: check this for 8000Hz case */
  1709. n = 1;
  1710. } else {
  1711. n = SBLIMIT - 1;
  1712. }
  1713. ptr = g->sb_hybrid + 18;
  1714. for(i = n;i > 0;i--) {
  1715. int tmp0, tmp1, tmp2;
  1716. csa = &csa_table[0][0];
  1717. #define INT_AA(j) \
  1718. tmp0 = ptr[-1-j];\
  1719. tmp1 = ptr[ j];\
  1720. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1721. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1722. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1723. INT_AA(0)
  1724. INT_AA(1)
  1725. INT_AA(2)
  1726. INT_AA(3)
  1727. INT_AA(4)
  1728. INT_AA(5)
  1729. INT_AA(6)
  1730. INT_AA(7)
  1731. ptr += 18;
  1732. }
  1733. }
  1734. static void compute_antialias_float(MPADecodeContext *s,
  1735. GranuleDef *g)
  1736. {
  1737. int32_t *ptr;
  1738. int n, i;
  1739. /* we antialias only "long" bands */
  1740. if (g->block_type == 2) {
  1741. if (!g->switch_point)
  1742. return;
  1743. /* XXX: check this for 8000Hz case */
  1744. n = 1;
  1745. } else {
  1746. n = SBLIMIT - 1;
  1747. }
  1748. ptr = g->sb_hybrid + 18;
  1749. for(i = n;i > 0;i--) {
  1750. float tmp0, tmp1;
  1751. float *csa = &csa_table_float[0][0];
  1752. #define FLOAT_AA(j)\
  1753. tmp0= ptr[-1-j];\
  1754. tmp1= ptr[ j];\
  1755. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1756. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1757. FLOAT_AA(0)
  1758. FLOAT_AA(1)
  1759. FLOAT_AA(2)
  1760. FLOAT_AA(3)
  1761. FLOAT_AA(4)
  1762. FLOAT_AA(5)
  1763. FLOAT_AA(6)
  1764. FLOAT_AA(7)
  1765. ptr += 18;
  1766. }
  1767. }
  1768. static void compute_imdct(MPADecodeContext *s,
  1769. GranuleDef *g,
  1770. int32_t *sb_samples,
  1771. int32_t *mdct_buf)
  1772. {
  1773. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1774. int32_t out2[12];
  1775. int i, j, mdct_long_end, v, sblimit;
  1776. /* find last non zero block */
  1777. ptr = g->sb_hybrid + 576;
  1778. ptr1 = g->sb_hybrid + 2 * 18;
  1779. while (ptr >= ptr1) {
  1780. ptr -= 6;
  1781. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1782. if (v != 0)
  1783. break;
  1784. }
  1785. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1786. if (g->block_type == 2) {
  1787. /* XXX: check for 8000 Hz */
  1788. if (g->switch_point)
  1789. mdct_long_end = 2;
  1790. else
  1791. mdct_long_end = 0;
  1792. } else {
  1793. mdct_long_end = sblimit;
  1794. }
  1795. buf = mdct_buf;
  1796. ptr = g->sb_hybrid;
  1797. for(j=0;j<mdct_long_end;j++) {
  1798. /* apply window & overlap with previous buffer */
  1799. out_ptr = sb_samples + j;
  1800. /* select window */
  1801. if (g->switch_point && j < 2)
  1802. win1 = mdct_win[0];
  1803. else
  1804. win1 = mdct_win[g->block_type];
  1805. /* select frequency inversion */
  1806. win = win1 + ((4 * 36) & -(j & 1));
  1807. imdct36(out_ptr, buf, ptr, win);
  1808. out_ptr += 18*SBLIMIT;
  1809. ptr += 18;
  1810. buf += 18;
  1811. }
  1812. for(j=mdct_long_end;j<sblimit;j++) {
  1813. /* select frequency inversion */
  1814. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1815. out_ptr = sb_samples + j;
  1816. for(i=0; i<6; i++){
  1817. *out_ptr = buf[i];
  1818. out_ptr += SBLIMIT;
  1819. }
  1820. imdct12(out2, ptr + 0);
  1821. for(i=0;i<6;i++) {
  1822. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1823. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1824. out_ptr += SBLIMIT;
  1825. }
  1826. imdct12(out2, ptr + 1);
  1827. for(i=0;i<6;i++) {
  1828. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1829. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1830. out_ptr += SBLIMIT;
  1831. }
  1832. imdct12(out2, ptr + 2);
  1833. for(i=0;i<6;i++) {
  1834. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1835. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1836. buf[i + 6*2] = 0;
  1837. }
  1838. ptr += 18;
  1839. buf += 18;
  1840. }
  1841. /* zero bands */
  1842. for(j=sblimit;j<SBLIMIT;j++) {
  1843. /* overlap */
  1844. out_ptr = sb_samples + j;
  1845. for(i=0;i<18;i++) {
  1846. *out_ptr = buf[i];
  1847. buf[i] = 0;
  1848. out_ptr += SBLIMIT;
  1849. }
  1850. buf += 18;
  1851. }
  1852. }
  1853. #if defined(DEBUG)
  1854. void sample_dump(int fnum, int32_t *tab, int n)
  1855. {
  1856. static FILE *files[16], *f;
  1857. char buf[512];
  1858. int i;
  1859. int32_t v;
  1860. f = files[fnum];
  1861. if (!f) {
  1862. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1863. fnum,
  1864. #ifdef USE_HIGHPRECISION
  1865. "hp"
  1866. #else
  1867. "lp"
  1868. #endif
  1869. );
  1870. f = fopen(buf, "w");
  1871. if (!f)
  1872. return;
  1873. files[fnum] = f;
  1874. }
  1875. if (fnum == 0) {
  1876. static int pos = 0;
  1877. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1878. for(i=0;i<n;i++) {
  1879. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1880. if ((i % 18) == 17)
  1881. av_log(NULL, AV_LOG_DEBUG, "\n");
  1882. }
  1883. pos += n;
  1884. }
  1885. for(i=0;i<n;i++) {
  1886. /* normalize to 23 frac bits */
  1887. v = tab[i] << (23 - FRAC_BITS);
  1888. fwrite(&v, 1, sizeof(int32_t), f);
  1889. }
  1890. }
  1891. #endif
  1892. /* main layer3 decoding function */
  1893. static int mp_decode_layer3(MPADecodeContext *s)
  1894. {
  1895. int nb_granules, main_data_begin, private_bits;
  1896. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1897. GranuleDef granules[2][2], *g;
  1898. int16_t exponents[576];
  1899. /* read side info */
  1900. if (s->lsf) {
  1901. main_data_begin = get_bits(&s->gb, 8);
  1902. if (s->nb_channels == 2)
  1903. private_bits = get_bits(&s->gb, 2);
  1904. else
  1905. private_bits = get_bits(&s->gb, 1);
  1906. nb_granules = 1;
  1907. } else {
  1908. main_data_begin = get_bits(&s->gb, 9);
  1909. if (s->nb_channels == 2)
  1910. private_bits = get_bits(&s->gb, 3);
  1911. else
  1912. private_bits = get_bits(&s->gb, 5);
  1913. nb_granules = 2;
  1914. for(ch=0;ch<s->nb_channels;ch++) {
  1915. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1916. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1917. }
  1918. }
  1919. for(gr=0;gr<nb_granules;gr++) {
  1920. for(ch=0;ch<s->nb_channels;ch++) {
  1921. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1922. g = &granules[ch][gr];
  1923. g->part2_3_length = get_bits(&s->gb, 12);
  1924. g->big_values = get_bits(&s->gb, 9);
  1925. g->global_gain = get_bits(&s->gb, 8);
  1926. /* if MS stereo only is selected, we precompute the
  1927. 1/sqrt(2) renormalization factor */
  1928. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1929. MODE_EXT_MS_STEREO)
  1930. g->global_gain -= 2;
  1931. if (s->lsf)
  1932. g->scalefac_compress = get_bits(&s->gb, 9);
  1933. else
  1934. g->scalefac_compress = get_bits(&s->gb, 4);
  1935. blocksplit_flag = get_bits(&s->gb, 1);
  1936. if (blocksplit_flag) {
  1937. g->block_type = get_bits(&s->gb, 2);
  1938. if (g->block_type == 0)
  1939. return -1;
  1940. g->switch_point = get_bits(&s->gb, 1);
  1941. for(i=0;i<2;i++)
  1942. g->table_select[i] = get_bits(&s->gb, 5);
  1943. for(i=0;i<3;i++)
  1944. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1945. /* compute huffman coded region sizes */
  1946. if (g->block_type == 2)
  1947. g->region_size[0] = (36 / 2);
  1948. else {
  1949. if (s->sample_rate_index <= 2)
  1950. g->region_size[0] = (36 / 2);
  1951. else if (s->sample_rate_index != 8)
  1952. g->region_size[0] = (54 / 2);
  1953. else
  1954. g->region_size[0] = (108 / 2);
  1955. }
  1956. g->region_size[1] = (576 / 2);
  1957. } else {
  1958. int region_address1, region_address2, l;
  1959. g->block_type = 0;
  1960. g->switch_point = 0;
  1961. for(i=0;i<3;i++)
  1962. g->table_select[i] = get_bits(&s->gb, 5);
  1963. /* compute huffman coded region sizes */
  1964. region_address1 = get_bits(&s->gb, 4);
  1965. region_address2 = get_bits(&s->gb, 3);
  1966. dprintf("region1=%d region2=%d\n",
  1967. region_address1, region_address2);
  1968. g->region_size[0] =
  1969. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1970. l = region_address1 + region_address2 + 2;
  1971. /* should not overflow */
  1972. if (l > 22)
  1973. l = 22;
  1974. g->region_size[1] =
  1975. band_index_long[s->sample_rate_index][l] >> 1;
  1976. }
  1977. /* convert region offsets to region sizes and truncate
  1978. size to big_values */
  1979. g->region_size[2] = (576 / 2);
  1980. j = 0;
  1981. for(i=0;i<3;i++) {
  1982. k = g->region_size[i];
  1983. if (k > g->big_values)
  1984. k = g->big_values;
  1985. g->region_size[i] = k - j;
  1986. j = k;
  1987. }
  1988. /* compute band indexes */
  1989. if (g->block_type == 2) {
  1990. if (g->switch_point) {
  1991. /* if switched mode, we handle the 36 first samples as
  1992. long blocks. For 8000Hz, we handle the 48 first
  1993. exponents as long blocks (XXX: check this!) */
  1994. if (s->sample_rate_index <= 2)
  1995. g->long_end = 8;
  1996. else if (s->sample_rate_index != 8)
  1997. g->long_end = 6;
  1998. else
  1999. g->long_end = 4; /* 8000 Hz */
  2000. if (s->sample_rate_index != 8)
  2001. g->short_start = 3;
  2002. else
  2003. g->short_start = 2;
  2004. } else {
  2005. g->long_end = 0;
  2006. g->short_start = 0;
  2007. }
  2008. } else {
  2009. g->short_start = 13;
  2010. g->long_end = 22;
  2011. }
  2012. g->preflag = 0;
  2013. if (!s->lsf)
  2014. g->preflag = get_bits(&s->gb, 1);
  2015. g->scalefac_scale = get_bits(&s->gb, 1);
  2016. g->count1table_select = get_bits(&s->gb, 1);
  2017. dprintf("block_type=%d switch_point=%d\n",
  2018. g->block_type, g->switch_point);
  2019. }
  2020. }
  2021. if (!s->adu_mode) {
  2022. /* now we get bits from the main_data_begin offset */
  2023. dprintf("seekback: %d\n", main_data_begin);
  2024. seek_to_maindata(s, main_data_begin);
  2025. }
  2026. for(gr=0;gr<nb_granules;gr++) {
  2027. for(ch=0;ch<s->nb_channels;ch++) {
  2028. g = &granules[ch][gr];
  2029. bits_pos = get_bits_count(&s->gb);
  2030. if (!s->lsf) {
  2031. uint8_t *sc;
  2032. int slen, slen1, slen2;
  2033. /* MPEG1 scale factors */
  2034. slen1 = slen_table[0][g->scalefac_compress];
  2035. slen2 = slen_table[1][g->scalefac_compress];
  2036. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2037. if (g->block_type == 2) {
  2038. n = g->switch_point ? 17 : 18;
  2039. j = 0;
  2040. for(i=0;i<n;i++)
  2041. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2042. for(i=0;i<18;i++)
  2043. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2044. for(i=0;i<3;i++)
  2045. g->scale_factors[j++] = 0;
  2046. } else {
  2047. sc = granules[ch][0].scale_factors;
  2048. j = 0;
  2049. for(k=0;k<4;k++) {
  2050. n = (k == 0 ? 6 : 5);
  2051. if ((g->scfsi & (0x8 >> k)) == 0) {
  2052. slen = (k < 2) ? slen1 : slen2;
  2053. for(i=0;i<n;i++)
  2054. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2055. } else {
  2056. /* simply copy from last granule */
  2057. for(i=0;i<n;i++) {
  2058. g->scale_factors[j] = sc[j];
  2059. j++;
  2060. }
  2061. }
  2062. }
  2063. g->scale_factors[j++] = 0;
  2064. }
  2065. #if defined(DEBUG)
  2066. {
  2067. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2068. g->scfsi, gr, ch);
  2069. for(i=0;i<j;i++)
  2070. printf(" %d", g->scale_factors[i]);
  2071. printf("\n");
  2072. }
  2073. #endif
  2074. } else {
  2075. int tindex, tindex2, slen[4], sl, sf;
  2076. /* LSF scale factors */
  2077. if (g->block_type == 2) {
  2078. tindex = g->switch_point ? 2 : 1;
  2079. } else {
  2080. tindex = 0;
  2081. }
  2082. sf = g->scalefac_compress;
  2083. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2084. /* intensity stereo case */
  2085. sf >>= 1;
  2086. if (sf < 180) {
  2087. lsf_sf_expand(slen, sf, 6, 6, 0);
  2088. tindex2 = 3;
  2089. } else if (sf < 244) {
  2090. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2091. tindex2 = 4;
  2092. } else {
  2093. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2094. tindex2 = 5;
  2095. }
  2096. } else {
  2097. /* normal case */
  2098. if (sf < 400) {
  2099. lsf_sf_expand(slen, sf, 5, 4, 4);
  2100. tindex2 = 0;
  2101. } else if (sf < 500) {
  2102. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2103. tindex2 = 1;
  2104. } else {
  2105. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2106. tindex2 = 2;
  2107. g->preflag = 1;
  2108. }
  2109. }
  2110. j = 0;
  2111. for(k=0;k<4;k++) {
  2112. n = lsf_nsf_table[tindex2][tindex][k];
  2113. sl = slen[k];
  2114. for(i=0;i<n;i++)
  2115. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2116. }
  2117. /* XXX: should compute exact size */
  2118. for(;j<40;j++)
  2119. g->scale_factors[j] = 0;
  2120. #if defined(DEBUG)
  2121. {
  2122. printf("gr=%d ch=%d scale_factors:\n",
  2123. gr, ch);
  2124. for(i=0;i<40;i++)
  2125. printf(" %d", g->scale_factors[i]);
  2126. printf("\n");
  2127. }
  2128. #endif
  2129. }
  2130. exponents_from_scale_factors(s, g, exponents);
  2131. /* read Huffman coded residue */
  2132. if (huffman_decode(s, g, exponents,
  2133. bits_pos + g->part2_3_length) < 0)
  2134. return -1;
  2135. #if defined(DEBUG)
  2136. sample_dump(0, g->sb_hybrid, 576);
  2137. #endif
  2138. /* skip extension bits */
  2139. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2140. if (bits_left < 0) {
  2141. dprintf("bits_left=%d\n", bits_left);
  2142. return -1;
  2143. }
  2144. while (bits_left >= 16) {
  2145. skip_bits(&s->gb, 16);
  2146. bits_left -= 16;
  2147. }
  2148. if (bits_left > 0)
  2149. skip_bits(&s->gb, bits_left);
  2150. } /* ch */
  2151. if (s->nb_channels == 2)
  2152. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2153. for(ch=0;ch<s->nb_channels;ch++) {
  2154. g = &granules[ch][gr];
  2155. reorder_block(s, g);
  2156. #if defined(DEBUG)
  2157. sample_dump(0, g->sb_hybrid, 576);
  2158. #endif
  2159. s->compute_antialias(s, g);
  2160. #if defined(DEBUG)
  2161. sample_dump(1, g->sb_hybrid, 576);
  2162. #endif
  2163. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2164. #if defined(DEBUG)
  2165. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2166. #endif
  2167. }
  2168. } /* gr */
  2169. return nb_granules * 18;
  2170. }
  2171. static int mp_decode_frame(MPADecodeContext *s,
  2172. OUT_INT *samples)
  2173. {
  2174. int i, nb_frames, ch;
  2175. OUT_INT *samples_ptr;
  2176. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2177. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2178. /* skip error protection field */
  2179. if (s->error_protection)
  2180. get_bits(&s->gb, 16);
  2181. dprintf("frame %d:\n", s->frame_count);
  2182. switch(s->layer) {
  2183. case 1:
  2184. nb_frames = mp_decode_layer1(s);
  2185. break;
  2186. case 2:
  2187. nb_frames = mp_decode_layer2(s);
  2188. break;
  2189. case 3:
  2190. default:
  2191. nb_frames = mp_decode_layer3(s);
  2192. break;
  2193. }
  2194. #if defined(DEBUG)
  2195. for(i=0;i<nb_frames;i++) {
  2196. for(ch=0;ch<s->nb_channels;ch++) {
  2197. int j;
  2198. printf("%d-%d:", i, ch);
  2199. for(j=0;j<SBLIMIT;j++)
  2200. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2201. printf("\n");
  2202. }
  2203. }
  2204. #endif
  2205. /* apply the synthesis filter */
  2206. for(ch=0;ch<s->nb_channels;ch++) {
  2207. samples_ptr = samples + ch;
  2208. for(i=0;i<nb_frames;i++) {
  2209. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2210. window, &s->dither_state,
  2211. samples_ptr, s->nb_channels,
  2212. s->sb_samples[ch][i]);
  2213. samples_ptr += 32 * s->nb_channels;
  2214. }
  2215. }
  2216. #ifdef DEBUG
  2217. s->frame_count++;
  2218. #endif
  2219. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2220. }
  2221. static int decode_frame(AVCodecContext * avctx,
  2222. void *data, int *data_size,
  2223. uint8_t * buf, int buf_size)
  2224. {
  2225. MPADecodeContext *s = avctx->priv_data;
  2226. uint32_t header;
  2227. uint8_t *buf_ptr;
  2228. int len, out_size;
  2229. OUT_INT *out_samples = data;
  2230. buf_ptr = buf;
  2231. while (buf_size > 0) {
  2232. len = s->inbuf_ptr - s->inbuf;
  2233. if (s->frame_size == 0) {
  2234. /* special case for next header for first frame in free
  2235. format case (XXX: find a simpler method) */
  2236. if (s->free_format_next_header != 0) {
  2237. s->inbuf[0] = s->free_format_next_header >> 24;
  2238. s->inbuf[1] = s->free_format_next_header >> 16;
  2239. s->inbuf[2] = s->free_format_next_header >> 8;
  2240. s->inbuf[3] = s->free_format_next_header;
  2241. s->inbuf_ptr = s->inbuf + 4;
  2242. s->free_format_next_header = 0;
  2243. goto got_header;
  2244. }
  2245. /* no header seen : find one. We need at least HEADER_SIZE
  2246. bytes to parse it */
  2247. len = HEADER_SIZE - len;
  2248. if (len > buf_size)
  2249. len = buf_size;
  2250. if (len > 0) {
  2251. memcpy(s->inbuf_ptr, buf_ptr, len);
  2252. buf_ptr += len;
  2253. buf_size -= len;
  2254. s->inbuf_ptr += len;
  2255. }
  2256. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2257. got_header:
  2258. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2259. (s->inbuf[2] << 8) | s->inbuf[3];
  2260. if (ff_mpa_check_header(header) < 0) {
  2261. /* no sync found : move by one byte (inefficient, but simple!) */
  2262. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2263. s->inbuf_ptr--;
  2264. dprintf("skip %x\n", header);
  2265. /* reset free format frame size to give a chance
  2266. to get a new bitrate */
  2267. s->free_format_frame_size = 0;
  2268. } else {
  2269. if (decode_header(s, header) == 1) {
  2270. /* free format: prepare to compute frame size */
  2271. s->frame_size = -1;
  2272. }
  2273. /* update codec info */
  2274. avctx->sample_rate = s->sample_rate;
  2275. avctx->channels = s->nb_channels;
  2276. avctx->bit_rate = s->bit_rate;
  2277. avctx->sub_id = s->layer;
  2278. switch(s->layer) {
  2279. case 1:
  2280. avctx->frame_size = 384;
  2281. break;
  2282. case 2:
  2283. avctx->frame_size = 1152;
  2284. break;
  2285. case 3:
  2286. if (s->lsf)
  2287. avctx->frame_size = 576;
  2288. else
  2289. avctx->frame_size = 1152;
  2290. break;
  2291. }
  2292. }
  2293. }
  2294. } else if (s->frame_size == -1) {
  2295. /* free format : find next sync to compute frame size */
  2296. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2297. if (len > buf_size)
  2298. len = buf_size;
  2299. if (len == 0) {
  2300. /* frame too long: resync */
  2301. s->frame_size = 0;
  2302. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2303. s->inbuf_ptr--;
  2304. } else {
  2305. uint8_t *p, *pend;
  2306. uint32_t header1;
  2307. int padding;
  2308. memcpy(s->inbuf_ptr, buf_ptr, len);
  2309. /* check for header */
  2310. p = s->inbuf_ptr - 3;
  2311. pend = s->inbuf_ptr + len - 4;
  2312. while (p <= pend) {
  2313. header = (p[0] << 24) | (p[1] << 16) |
  2314. (p[2] << 8) | p[3];
  2315. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2316. (s->inbuf[2] << 8) | s->inbuf[3];
  2317. /* check with high probability that we have a
  2318. valid header */
  2319. if ((header & SAME_HEADER_MASK) ==
  2320. (header1 & SAME_HEADER_MASK)) {
  2321. /* header found: update pointers */
  2322. len = (p + 4) - s->inbuf_ptr;
  2323. buf_ptr += len;
  2324. buf_size -= len;
  2325. s->inbuf_ptr = p;
  2326. /* compute frame size */
  2327. s->free_format_next_header = header;
  2328. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2329. padding = (header1 >> 9) & 1;
  2330. if (s->layer == 1)
  2331. s->free_format_frame_size -= padding * 4;
  2332. else
  2333. s->free_format_frame_size -= padding;
  2334. dprintf("free frame size=%d padding=%d\n",
  2335. s->free_format_frame_size, padding);
  2336. decode_header(s, header1);
  2337. goto next_data;
  2338. }
  2339. p++;
  2340. }
  2341. /* not found: simply increase pointers */
  2342. buf_ptr += len;
  2343. s->inbuf_ptr += len;
  2344. buf_size -= len;
  2345. }
  2346. } else if (len < s->frame_size) {
  2347. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2348. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2349. len = s->frame_size - len;
  2350. if (len > buf_size)
  2351. len = buf_size;
  2352. memcpy(s->inbuf_ptr, buf_ptr, len);
  2353. buf_ptr += len;
  2354. s->inbuf_ptr += len;
  2355. buf_size -= len;
  2356. }
  2357. next_data:
  2358. if (s->frame_size > 0 &&
  2359. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2360. if (avctx->parse_only) {
  2361. /* simply return the frame data */
  2362. *(uint8_t **)data = s->inbuf;
  2363. out_size = s->inbuf_ptr - s->inbuf;
  2364. } else {
  2365. out_size = mp_decode_frame(s, out_samples);
  2366. }
  2367. s->inbuf_ptr = s->inbuf;
  2368. s->frame_size = 0;
  2369. *data_size = out_size;
  2370. break;
  2371. }
  2372. }
  2373. return buf_ptr - buf;
  2374. }
  2375. static int decode_frame_adu(AVCodecContext * avctx,
  2376. void *data, int *data_size,
  2377. uint8_t * buf, int buf_size)
  2378. {
  2379. MPADecodeContext *s = avctx->priv_data;
  2380. uint32_t header;
  2381. int len, out_size;
  2382. OUT_INT *out_samples = data;
  2383. len = buf_size;
  2384. // Discard too short frames
  2385. if (buf_size < HEADER_SIZE) {
  2386. *data_size = 0;
  2387. return buf_size;
  2388. }
  2389. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2390. len = MPA_MAX_CODED_FRAME_SIZE;
  2391. memcpy(s->inbuf, buf, len);
  2392. s->inbuf_ptr = s->inbuf + len;
  2393. // Get header and restore sync word
  2394. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2395. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2396. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2397. *data_size = 0;
  2398. return buf_size;
  2399. }
  2400. decode_header(s, header);
  2401. /* update codec info */
  2402. avctx->sample_rate = s->sample_rate;
  2403. avctx->channels = s->nb_channels;
  2404. avctx->bit_rate = s->bit_rate;
  2405. avctx->sub_id = s->layer;
  2406. avctx->frame_size=s->frame_size = len;
  2407. if (avctx->parse_only) {
  2408. /* simply return the frame data */
  2409. *(uint8_t **)data = s->inbuf;
  2410. out_size = s->inbuf_ptr - s->inbuf;
  2411. } else {
  2412. out_size = mp_decode_frame(s, out_samples);
  2413. }
  2414. *data_size = out_size;
  2415. return buf_size;
  2416. }
  2417. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2418. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2419. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2420. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2421. static int chan_offset[9][5] = {
  2422. {0},
  2423. {0}, // C
  2424. {0}, // FLR
  2425. {2,0}, // C FLR
  2426. {2,0,3}, // C FLR BS
  2427. {4,0,2}, // C FLR BLRS
  2428. {4,0,2,5}, // C FLR BLRS LFE
  2429. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2430. {0,2} // FLR BLRS
  2431. };
  2432. static int decode_init_mp3on4(AVCodecContext * avctx)
  2433. {
  2434. MP3On4DecodeContext *s = avctx->priv_data;
  2435. int i;
  2436. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2437. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2438. return -1;
  2439. }
  2440. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2441. s->frames = mp3Frames[s->chan_cfg];
  2442. if(!s->frames) {
  2443. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2444. return -1;
  2445. }
  2446. avctx->channels = mp3Channels[s->chan_cfg];
  2447. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2448. * We replace avctx->priv_data with the context of the first decoder so that
  2449. * decode_init() does not have to be changed.
  2450. * Other decoders will be inited here copying data from the first context
  2451. */
  2452. // Allocate zeroed memory for the first decoder context
  2453. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2454. // Put decoder context in place to make init_decode() happy
  2455. avctx->priv_data = s->mp3decctx[0];
  2456. decode_init(avctx);
  2457. // Restore mp3on4 context pointer
  2458. avctx->priv_data = s;
  2459. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2460. /* Create a separate codec/context for each frame (first is already ok).
  2461. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2462. */
  2463. for (i = 1; i < s->frames; i++) {
  2464. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2465. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2466. s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
  2467. s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
  2468. s->mp3decctx[i]->adu_mode = 1;
  2469. }
  2470. return 0;
  2471. }
  2472. static int decode_close_mp3on4(AVCodecContext * avctx)
  2473. {
  2474. MP3On4DecodeContext *s = avctx->priv_data;
  2475. int i;
  2476. for (i = 0; i < s->frames; i++)
  2477. if (s->mp3decctx[i])
  2478. av_free(s->mp3decctx[i]);
  2479. return 0;
  2480. }
  2481. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2482. void *data, int *data_size,
  2483. uint8_t * buf, int buf_size)
  2484. {
  2485. MP3On4DecodeContext *s = avctx->priv_data;
  2486. MPADecodeContext *m;
  2487. int len, out_size = 0;
  2488. uint32_t header;
  2489. OUT_INT *out_samples = data;
  2490. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2491. OUT_INT *outptr, *bp;
  2492. int fsize;
  2493. unsigned char *start2 = buf, *start;
  2494. int fr, i, j, n;
  2495. int off = avctx->channels;
  2496. int *coff = chan_offset[s->chan_cfg];
  2497. len = buf_size;
  2498. // Discard too short frames
  2499. if (buf_size < HEADER_SIZE) {
  2500. *data_size = 0;
  2501. return buf_size;
  2502. }
  2503. // If only one decoder interleave is not needed
  2504. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2505. for (fr = 0; fr < s->frames; fr++) {
  2506. start = start2;
  2507. fsize = (start[0] << 4) | (start[1] >> 4);
  2508. start2 += fsize;
  2509. if (fsize > len)
  2510. fsize = len;
  2511. len -= fsize;
  2512. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2513. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2514. m = s->mp3decctx[fr];
  2515. assert (m != NULL);
  2516. /* copy original to new */
  2517. m->inbuf_ptr = m->inbuf + fsize;
  2518. memcpy(m->inbuf, start, fsize);
  2519. // Get header
  2520. header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
  2521. (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
  2522. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2523. *data_size = 0;
  2524. return buf_size;
  2525. }
  2526. decode_header(m, header);
  2527. mp_decode_frame(m, decoded_buf);
  2528. n = MPA_FRAME_SIZE * m->nb_channels;
  2529. out_size += n * sizeof(OUT_INT);
  2530. if(s->frames > 1) {
  2531. /* interleave output data */
  2532. bp = out_samples + coff[fr];
  2533. if(m->nb_channels == 1) {
  2534. for(j = 0; j < n; j++) {
  2535. *bp = decoded_buf[j];
  2536. bp += off;
  2537. }
  2538. } else {
  2539. for(j = 0; j < n; j++) {
  2540. bp[0] = decoded_buf[j++];
  2541. bp[1] = decoded_buf[j];
  2542. bp += off;
  2543. }
  2544. }
  2545. }
  2546. }
  2547. /* update codec info */
  2548. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2549. avctx->frame_size= buf_size;
  2550. avctx->bit_rate = 0;
  2551. for (i = 0; i < s->frames; i++)
  2552. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2553. *data_size = out_size;
  2554. return buf_size;
  2555. }
  2556. AVCodec mp2_decoder =
  2557. {
  2558. "mp2",
  2559. CODEC_TYPE_AUDIO,
  2560. CODEC_ID_MP2,
  2561. sizeof(MPADecodeContext),
  2562. decode_init,
  2563. NULL,
  2564. NULL,
  2565. decode_frame,
  2566. CODEC_CAP_PARSE_ONLY,
  2567. };
  2568. AVCodec mp3_decoder =
  2569. {
  2570. "mp3",
  2571. CODEC_TYPE_AUDIO,
  2572. CODEC_ID_MP3,
  2573. sizeof(MPADecodeContext),
  2574. decode_init,
  2575. NULL,
  2576. NULL,
  2577. decode_frame,
  2578. CODEC_CAP_PARSE_ONLY,
  2579. };
  2580. AVCodec mp3adu_decoder =
  2581. {
  2582. "mp3adu",
  2583. CODEC_TYPE_AUDIO,
  2584. CODEC_ID_MP3ADU,
  2585. sizeof(MPADecodeContext),
  2586. decode_init,
  2587. NULL,
  2588. NULL,
  2589. decode_frame_adu,
  2590. CODEC_CAP_PARSE_ONLY,
  2591. };
  2592. AVCodec mp3on4_decoder =
  2593. {
  2594. "mp3on4",
  2595. CODEC_TYPE_AUDIO,
  2596. CODEC_ID_MP3ON4,
  2597. sizeof(MP3On4DecodeContext),
  2598. decode_init_mp3on4,
  2599. NULL,
  2600. decode_close_mp3on4,
  2601. decode_frame_mp3on4,
  2602. 0
  2603. };