| 
							- /*
 -  * AC-3 Audio Decoder
 -  * This code is developed as part of Google Summer of Code 2006 Program.
 -  *
 -  * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
 -  * Copyright (c) 2007 Justin Ruggles
 -  *
 -  * Portions of this code are derived from liba52
 -  * http://liba52.sourceforge.net
 -  * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
 -  * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - #include <stdio.h>
 - #include <stddef.h>
 - #include <math.h>
 - #include <string.h>
 - 
 - #include "libavutil/crc.h"
 - #include "libavutil/random.h"
 - #include "avcodec.h"
 - #include "ac3_parser.h"
 - #include "bitstream.h"
 - #include "dsputil.h"
 - #include "ac3dec.h"
 - #include "ac3dec_data.h"
 - 
 - /** Maximum possible frame size when the specification limit is ignored */
 - #define AC3_MAX_FRAME_SIZE 21695
 - 
 - /**
 -  * table for ungrouping 3 values in 7 bits.
 -  * used for exponents and bap=2 mantissas
 -  */
 - static uint8_t ungroup_3_in_7_bits_tab[128][3];
 - 
 - 
 - /** tables for ungrouping mantissas */
 - static int b1_mantissas[32][3];
 - static int b2_mantissas[128][3];
 - static int b3_mantissas[8];
 - static int b4_mantissas[128][2];
 - static int b5_mantissas[16];
 - 
 - /**
 -  * Quantization table: levels for symmetric. bits for asymmetric.
 -  * reference: Table 7.18 Mapping of bap to Quantizer
 -  */
 - static const uint8_t quantization_tab[16] = {
 -     0, 3, 5, 7, 11, 15,
 -     5, 6, 7, 8, 9, 10, 11, 12, 14, 16
 - };
 - 
 - /** dynamic range table. converts codes to scale factors. */
 - static float dynamic_range_tab[256];
 - 
 - /** Adjustments in dB gain */
 - #define LEVEL_PLUS_3DB          1.4142135623730950
 - #define LEVEL_PLUS_1POINT5DB    1.1892071150027209
 - #define LEVEL_MINUS_1POINT5DB   0.8408964152537145
 - #define LEVEL_MINUS_3DB         0.7071067811865476
 - #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
 - #define LEVEL_MINUS_6DB         0.5000000000000000
 - #define LEVEL_MINUS_9DB         0.3535533905932738
 - #define LEVEL_ZERO              0.0000000000000000
 - #define LEVEL_ONE               1.0000000000000000
 - 
 - static const float gain_levels[9] = {
 -     LEVEL_PLUS_3DB,
 -     LEVEL_PLUS_1POINT5DB,
 -     LEVEL_ONE,
 -     LEVEL_MINUS_1POINT5DB,
 -     LEVEL_MINUS_3DB,
 -     LEVEL_MINUS_4POINT5DB,
 -     LEVEL_MINUS_6DB,
 -     LEVEL_ZERO,
 -     LEVEL_MINUS_9DB
 - };
 - 
 - /**
 -  * Table for center mix levels
 -  * reference: Section 5.4.2.4 cmixlev
 -  */
 - static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
 - 
 - /**
 -  * Table for surround mix levels
 -  * reference: Section 5.4.2.5 surmixlev
 -  */
 - static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
 - 
 - /**
 -  * Table for default stereo downmixing coefficients
 -  * reference: Section 7.8.2 Downmixing Into Two Channels
 -  */
 - static const uint8_t ac3_default_coeffs[8][5][2] = {
 -     { { 2, 7 }, { 7, 2 },                               },
 -     { { 4, 4 },                                         },
 -     { { 2, 7 }, { 7, 2 },                               },
 -     { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
 -     { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
 -     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
 -     { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
 -     { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
 - };
 - 
 - /**
 -  * Symmetrical Dequantization
 -  * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 -  *            Tables 7.19 to 7.23
 -  */
 - static inline int
 - symmetric_dequant(int code, int levels)
 - {
 -     return ((code - (levels >> 1)) << 24) / levels;
 - }
 - 
 - /*
 -  * Initialize tables at runtime.
 -  */
 - static av_cold void ac3_tables_init(void)
 - {
 -     int i;
 - 
 -     /* generate table for ungrouping 3 values in 7 bits
 -        reference: Section 7.1.3 Exponent Decoding */
 -     for(i=0; i<128; i++) {
 -         ungroup_3_in_7_bits_tab[i][0] =  i / 25;
 -         ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
 -         ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
 -     }
 - 
 -     /* generate grouped mantissa tables
 -        reference: Section 7.3.5 Ungrouping of Mantissas */
 -     for(i=0; i<32; i++) {
 -         /* bap=1 mantissas */
 -         b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
 -         b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
 -         b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
 -     }
 -     for(i=0; i<128; i++) {
 -         /* bap=2 mantissas */
 -         b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
 -         b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
 -         b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
 - 
 -         /* bap=4 mantissas */
 -         b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
 -         b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
 -     }
 -     /* generate ungrouped mantissa tables
 -        reference: Tables 7.21 and 7.23 */
 -     for(i=0; i<7; i++) {
 -         /* bap=3 mantissas */
 -         b3_mantissas[i] = symmetric_dequant(i, 7);
 -     }
 -     for(i=0; i<15; i++) {
 -         /* bap=5 mantissas */
 -         b5_mantissas[i] = symmetric_dequant(i, 15);
 -     }
 - 
 -     /* generate dynamic range table
 -        reference: Section 7.7.1 Dynamic Range Control */
 -     for(i=0; i<256; i++) {
 -         int v = (i >> 5) - ((i >> 7) << 3) - 5;
 -         dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
 -     }
 - }
 - 
 - 
 - /**
 -  * AVCodec initialization
 -  */
 - static av_cold int ac3_decode_init(AVCodecContext *avctx)
 - {
 -     AC3DecodeContext *s = avctx->priv_data;
 -     s->avctx = avctx;
 - 
 -     ac3_common_init();
 -     ac3_tables_init();
 -     ff_mdct_init(&s->imdct_256, 8, 1);
 -     ff_mdct_init(&s->imdct_512, 9, 1);
 -     ff_kbd_window_init(s->window, 5.0, 256);
 -     dsputil_init(&s->dsp, avctx);
 -     av_init_random(0, &s->dith_state);
 - 
 -     /* set bias values for float to int16 conversion */
 -     if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
 -         s->add_bias = 385.0f;
 -         s->mul_bias = 1.0f;
 -     } else {
 -         s->add_bias = 0.0f;
 -         s->mul_bias = 32767.0f;
 -     }
 - 
 -     /* allow downmixing to stereo or mono */
 -     if (avctx->channels > 0 && avctx->request_channels > 0 &&
 -             avctx->request_channels < avctx->channels &&
 -             avctx->request_channels <= 2) {
 -         avctx->channels = avctx->request_channels;
 -     }
 -     s->downmixed = 1;
 - 
 -     /* allocate context input buffer */
 -     if (avctx->error_resilience >= FF_ER_CAREFUL) {
 -         s->input_buffer = av_mallocz(AC3_MAX_FRAME_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
 -         if (!s->input_buffer)
 -             return AVERROR_NOMEM;
 -     }
 - 
 -     avctx->sample_fmt = SAMPLE_FMT_S16;
 -     return 0;
 - }
 - 
 - /**
 -  * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
 -  * GetBitContext within AC3DecodeContext must point to
 -  * the start of the synchronized AC-3 bitstream.
 -  */
 - static int ac3_parse_header(AC3DecodeContext *s)
 - {
 -     GetBitContext *gbc = &s->gbc;
 -     int i;
 - 
 -     /* read the rest of the bsi. read twice for dual mono mode. */
 -     i = !(s->channel_mode);
 -     do {
 -         skip_bits(gbc, 5); // skip dialog normalization
 -         if (get_bits1(gbc))
 -             skip_bits(gbc, 8); //skip compression
 -         if (get_bits1(gbc))
 -             skip_bits(gbc, 8); //skip language code
 -         if (get_bits1(gbc))
 -             skip_bits(gbc, 7); //skip audio production information
 -     } while (i--);
 - 
 -     skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
 - 
 -     /* skip the timecodes (or extra bitstream information for Alternate Syntax)
 -        TODO: read & use the xbsi1 downmix levels */
 -     if (get_bits1(gbc))
 -         skip_bits(gbc, 14); //skip timecode1 / xbsi1
 -     if (get_bits1(gbc))
 -         skip_bits(gbc, 14); //skip timecode2 / xbsi2
 - 
 -     /* skip additional bitstream info */
 -     if (get_bits1(gbc)) {
 -         i = get_bits(gbc, 6);
 -         do {
 -             skip_bits(gbc, 8);
 -         } while(i--);
 -     }
 - 
 -     return 0;
 - }
 - 
 - /**
 -  * Common function to parse AC-3 or E-AC-3 frame header
 -  */
 - static int parse_frame_header(AC3DecodeContext *s)
 - {
 -     AC3HeaderInfo hdr;
 -     int err;
 - 
 -     err = ff_ac3_parse_header(&s->gbc, &hdr);
 -     if(err)
 -         return err;
 - 
 -     /* get decoding parameters from header info */
 -     s->bit_alloc_params.sr_code     = hdr.sr_code;
 -     s->channel_mode                 = hdr.channel_mode;
 -     s->lfe_on                       = hdr.lfe_on;
 -     s->bit_alloc_params.sr_shift    = hdr.sr_shift;
 -     s->sample_rate                  = hdr.sample_rate;
 -     s->bit_rate                     = hdr.bit_rate;
 -     s->channels                     = hdr.channels;
 -     s->fbw_channels                 = s->channels - s->lfe_on;
 -     s->lfe_ch                       = s->fbw_channels + 1;
 -     s->frame_size                   = hdr.frame_size;
 -     s->center_mix_level             = hdr.center_mix_level;
 -     s->surround_mix_level           = hdr.surround_mix_level;
 -     s->num_blocks                   = hdr.num_blocks;
 -     s->frame_type                   = hdr.frame_type;
 -     s->substreamid                  = hdr.substreamid;
 - 
 -     if(s->lfe_on) {
 -         s->start_freq[s->lfe_ch] = 0;
 -         s->end_freq[s->lfe_ch] = 7;
 -         s->num_exp_groups[s->lfe_ch] = 2;
 -         s->channel_in_cpl[s->lfe_ch] = 0;
 -     }
 - 
 -     if(hdr.bitstream_id > 10)
 -         return AC3_PARSE_ERROR_BSID;
 - 
 -     return ac3_parse_header(s);
 - }
 - 
 - /**
 -  * Set stereo downmixing coefficients based on frame header info.
 -  * reference: Section 7.8.2 Downmixing Into Two Channels
 -  */
 - static void set_downmix_coeffs(AC3DecodeContext *s)
 - {
 -     int i;
 -     float cmix = gain_levels[center_levels[s->center_mix_level]];
 -     float smix = gain_levels[surround_levels[s->surround_mix_level]];
 - 
 -     for(i=0; i<s->fbw_channels; i++) {
 -         s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
 -         s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
 -     }
 -     if(s->channel_mode > 1 && s->channel_mode & 1) {
 -         s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
 -     }
 -     if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
 -         int nf = s->channel_mode - 2;
 -         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
 -     }
 -     if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
 -         int nf = s->channel_mode - 4;
 -         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
 -     }
 - 
 -     /* calculate adjustment needed for each channel to avoid clipping */
 -     s->downmix_coeff_adjust[0] = s->downmix_coeff_adjust[1] = 0.0f;
 -     for(i=0; i<s->fbw_channels; i++) {
 -         s->downmix_coeff_adjust[0] += s->downmix_coeffs[i][0];
 -         s->downmix_coeff_adjust[1] += s->downmix_coeffs[i][1];
 -     }
 -     s->downmix_coeff_adjust[0] = 1.0f / s->downmix_coeff_adjust[0];
 -     s->downmix_coeff_adjust[1] = 1.0f / s->downmix_coeff_adjust[1];
 - }
 - 
 - /**
 -  * Decode the grouped exponents according to exponent strategy.
 -  * reference: Section 7.1.3 Exponent Decoding
 -  */
 - static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
 -                              uint8_t absexp, int8_t *dexps)
 - {
 -     int i, j, grp, group_size;
 -     int dexp[256];
 -     int expacc, prevexp;
 - 
 -     /* unpack groups */
 -     group_size = exp_strategy + (exp_strategy == EXP_D45);
 -     for(grp=0,i=0; grp<ngrps; grp++) {
 -         expacc = get_bits(gbc, 7);
 -         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
 -         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
 -         dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
 -     }
 - 
 -     /* convert to absolute exps and expand groups */
 -     prevexp = absexp;
 -     for(i=0; i<ngrps*3; i++) {
 -         prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
 -         for(j=0; j<group_size; j++) {
 -             dexps[(i*group_size)+j] = prevexp;
 -         }
 -     }
 - }
 - 
 - /**
 -  * Generate transform coefficients for each coupled channel in the coupling
 -  * range using the coupling coefficients and coupling coordinates.
 -  * reference: Section 7.4.3 Coupling Coordinate Format
 -  */
 - static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
 - {
 -     int i, j, ch, bnd, subbnd;
 - 
 -     subbnd = -1;
 -     i = s->start_freq[CPL_CH];
 -     for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
 -         do {
 -             subbnd++;
 -             for(j=0; j<12; j++) {
 -                 for(ch=1; ch<=s->fbw_channels; ch++) {
 -                     if(s->channel_in_cpl[ch]) {
 -                         s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
 -                         if (ch == 2 && s->phase_flags[bnd])
 -                             s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
 -                     }
 -                 }
 -                 i++;
 -             }
 -         } while(s->cpl_band_struct[subbnd]);
 -     }
 - }
 - 
 - /**
 -  * Grouped mantissas for 3-level 5-level and 11-level quantization
 -  */
 - typedef struct {
 -     int b1_mant[3];
 -     int b2_mant[3];
 -     int b4_mant[2];
 -     int b1ptr;
 -     int b2ptr;
 -     int b4ptr;
 - } mant_groups;
 - 
 - /**
 -  * Get the transform coefficients for a particular channel
 -  * reference: Section 7.3 Quantization and Decoding of Mantissas
 -  */
 - static void get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
 - {
 -     GetBitContext *gbc = &s->gbc;
 -     int i, gcode, tbap, start, end;
 -     uint8_t *exps;
 -     uint8_t *bap;
 -     int *coeffs;
 - 
 -     exps = s->dexps[ch_index];
 -     bap = s->bap[ch_index];
 -     coeffs = s->fixed_coeffs[ch_index];
 -     start = s->start_freq[ch_index];
 -     end = s->end_freq[ch_index];
 - 
 -     for (i = start; i < end; i++) {
 -         tbap = bap[i];
 -         switch (tbap) {
 -             case 0:
 -                 coeffs[i] = (av_random(&s->dith_state) & 0x7FFFFF) - 0x400000;
 -                 break;
 - 
 -             case 1:
 -                 if(m->b1ptr > 2) {
 -                     gcode = get_bits(gbc, 5);
 -                     m->b1_mant[0] = b1_mantissas[gcode][0];
 -                     m->b1_mant[1] = b1_mantissas[gcode][1];
 -                     m->b1_mant[2] = b1_mantissas[gcode][2];
 -                     m->b1ptr = 0;
 -                 }
 -                 coeffs[i] = m->b1_mant[m->b1ptr++];
 -                 break;
 - 
 -             case 2:
 -                 if(m->b2ptr > 2) {
 -                     gcode = get_bits(gbc, 7);
 -                     m->b2_mant[0] = b2_mantissas[gcode][0];
 -                     m->b2_mant[1] = b2_mantissas[gcode][1];
 -                     m->b2_mant[2] = b2_mantissas[gcode][2];
 -                     m->b2ptr = 0;
 -                 }
 -                 coeffs[i] = m->b2_mant[m->b2ptr++];
 -                 break;
 - 
 -             case 3:
 -                 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
 -                 break;
 - 
 -             case 4:
 -                 if(m->b4ptr > 1) {
 -                     gcode = get_bits(gbc, 7);
 -                     m->b4_mant[0] = b4_mantissas[gcode][0];
 -                     m->b4_mant[1] = b4_mantissas[gcode][1];
 -                     m->b4ptr = 0;
 -                 }
 -                 coeffs[i] = m->b4_mant[m->b4ptr++];
 -                 break;
 - 
 -             case 5:
 -                 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
 -                 break;
 - 
 -             default: {
 -                 /* asymmetric dequantization */
 -                 int qlevel = quantization_tab[tbap];
 -                 coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
 -                 break;
 -             }
 -         }
 -         coeffs[i] >>= exps[i];
 -     }
 - }
 - 
 - /**
 -  * Remove random dithering from coefficients with zero-bit mantissas
 -  * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 -  */
 - static void remove_dithering(AC3DecodeContext *s) {
 -     int ch, i;
 -     int end=0;
 -     int *coeffs;
 -     uint8_t *bap;
 - 
 -     for(ch=1; ch<=s->fbw_channels; ch++) {
 -         if(!s->dither_flag[ch]) {
 -             coeffs = s->fixed_coeffs[ch];
 -             bap = s->bap[ch];
 -             if(s->channel_in_cpl[ch])
 -                 end = s->start_freq[CPL_CH];
 -             else
 -                 end = s->end_freq[ch];
 -             for(i=0; i<end; i++) {
 -                 if(!bap[i])
 -                     coeffs[i] = 0;
 -             }
 -             if(s->channel_in_cpl[ch]) {
 -                 bap = s->bap[CPL_CH];
 -                 for(; i<s->end_freq[CPL_CH]; i++) {
 -                     if(!bap[i])
 -                         coeffs[i] = 0;
 -                 }
 -             }
 -         }
 -     }
 - }
 - 
 - /**
 -  * Get the transform coefficients.
 -  */
 - static void get_transform_coeffs(AC3DecodeContext *s)
 - {
 -     int ch, end;
 -     int got_cplchan = 0;
 -     mant_groups m;
 - 
 -     m.b1ptr = m.b2ptr = m.b4ptr = 3;
 - 
 -     for (ch = 1; ch <= s->channels; ch++) {
 -         /* transform coefficients for full-bandwidth channel */
 -         get_transform_coeffs_ch(s, ch, &m);
 -         /* tranform coefficients for coupling channel come right after the
 -            coefficients for the first coupled channel*/
 -         if (s->channel_in_cpl[ch])  {
 -             if (!got_cplchan) {
 -                 get_transform_coeffs_ch(s, CPL_CH, &m);
 -                 calc_transform_coeffs_cpl(s);
 -                 got_cplchan = 1;
 -             }
 -             end = s->end_freq[CPL_CH];
 -         } else {
 -             end = s->end_freq[ch];
 -         }
 -         do
 -             s->fixed_coeffs[ch][end] = 0;
 -         while(++end < 256);
 -     }
 - 
 -     /* if any channel doesn't use dithering, zero appropriate coefficients */
 -     if(!s->dither_all)
 -         remove_dithering(s);
 - }
 - 
 - /**
 -  * Stereo rematrixing.
 -  * reference: Section 7.5.4 Rematrixing : Decoding Technique
 -  */
 - static void do_rematrixing(AC3DecodeContext *s)
 - {
 -     int bnd, i;
 -     int end, bndend;
 -     int tmp0, tmp1;
 - 
 -     end = FFMIN(s->end_freq[1], s->end_freq[2]);
 - 
 -     for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
 -         if(s->rematrixing_flags[bnd]) {
 -             bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
 -             for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
 -                 tmp0 = s->fixed_coeffs[1][i];
 -                 tmp1 = s->fixed_coeffs[2][i];
 -                 s->fixed_coeffs[1][i] = tmp0 + tmp1;
 -                 s->fixed_coeffs[2][i] = tmp0 - tmp1;
 -             }
 -         }
 -     }
 - }
 - 
 - /**
 -  * Inverse MDCT Transform.
 -  * Convert frequency domain coefficients to time-domain audio samples.
 -  * reference: Section 7.9.4 Transformation Equations
 -  */
 - static inline void do_imdct(AC3DecodeContext *s, int channels)
 - {
 -     int ch;
 - 
 -     for (ch=1; ch<=channels; ch++) {
 -         if (s->block_switch[ch]) {
 -             int i;
 -             float *x = s->tmp_output+128;
 -             for(i=0; i<128; i++)
 -                 x[i] = s->transform_coeffs[ch][2*i];
 -             ff_imdct_half(&s->imdct_256, s->tmp_output, x);
 -             s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, s->add_bias, 128);
 -             for(i=0; i<128; i++)
 -                 x[i] = s->transform_coeffs[ch][2*i+1];
 -             ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
 -         } else {
 -             ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
 -             s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, s->add_bias, 128);
 -             memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
 -         }
 -     }
 - }
 - 
 - /**
 -  * Downmix the output to mono or stereo.
 -  */
 - static void ac3_downmix(AC3DecodeContext *s,
 -                         float samples[AC3_MAX_CHANNELS][256], int ch_offset)
 - {
 -     int i, j;
 -     float v0, v1;
 - 
 -     for(i=0; i<256; i++) {
 -         v0 = v1 = 0.0f;
 -         for(j=0; j<s->fbw_channels; j++) {
 -             v0 += samples[j+ch_offset][i] * s->downmix_coeffs[j][0];
 -             v1 += samples[j+ch_offset][i] * s->downmix_coeffs[j][1];
 -         }
 -         v0 *= s->downmix_coeff_adjust[0];
 -         v1 *= s->downmix_coeff_adjust[1];
 -         if(s->output_mode == AC3_CHMODE_MONO) {
 -             samples[ch_offset][i] = (v0 + v1) * LEVEL_MINUS_3DB;
 -         } else if(s->output_mode == AC3_CHMODE_STEREO) {
 -             samples[  ch_offset][i] = v0;
 -             samples[1+ch_offset][i] = v1;
 -         }
 -     }
 - }
 - 
 - /**
 -  * Upmix delay samples from stereo to original channel layout.
 -  */
 - static void ac3_upmix_delay(AC3DecodeContext *s)
 - {
 -     int channel_data_size = 128*sizeof(float);
 -     switch(s->channel_mode) {
 -         case AC3_CHMODE_DUALMONO:
 -         case AC3_CHMODE_STEREO:
 -             /* upmix mono to stereo */
 -             memcpy(s->delay[1], s->delay[0], channel_data_size);
 -             break;
 -         case AC3_CHMODE_2F2R:
 -             memset(s->delay[3], 0, channel_data_size);
 -         case AC3_CHMODE_2F1R:
 -             memset(s->delay[2], 0, channel_data_size);
 -             break;
 -         case AC3_CHMODE_3F2R:
 -             memset(s->delay[4], 0, channel_data_size);
 -         case AC3_CHMODE_3F1R:
 -             memset(s->delay[3], 0, channel_data_size);
 -         case AC3_CHMODE_3F:
 -             memcpy(s->delay[2], s->delay[1], channel_data_size);
 -             memset(s->delay[1], 0, channel_data_size);
 -             break;
 -     }
 - }
 - 
 - /**
 -  * Decode a single audio block from the AC-3 bitstream.
 -  */
 - static int decode_audio_block(AC3DecodeContext *s, int blk)
 - {
 -     int fbw_channels = s->fbw_channels;
 -     int channel_mode = s->channel_mode;
 -     int i, bnd, seg, ch;
 -     int different_transforms;
 -     int downmix_output;
 -     int cpl_in_use;
 -     GetBitContext *gbc = &s->gbc;
 -     uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
 - 
 -     memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
 - 
 -     /* block switch flags */
 -     different_transforms = 0;
 -     for (ch = 1; ch <= fbw_channels; ch++) {
 -         s->block_switch[ch] = get_bits1(gbc);
 -         if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
 -             different_transforms = 1;
 -     }
 - 
 -     /* dithering flags */
 -     s->dither_all = 1;
 -     for (ch = 1; ch <= fbw_channels; ch++) {
 -         s->dither_flag[ch] = get_bits1(gbc);
 -         if(!s->dither_flag[ch])
 -             s->dither_all = 0;
 -     }
 - 
 -     /* dynamic range */
 -     i = !(s->channel_mode);
 -     do {
 -         if(get_bits1(gbc)) {
 -             s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
 -                                   s->avctx->drc_scale)+1.0;
 -         } else if(blk == 0) {
 -             s->dynamic_range[i] = 1.0f;
 -         }
 -     } while(i--);
 - 
 -     /* coupling strategy */
 -     if (get_bits1(gbc)) {
 -         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 -         s->cpl_in_use[blk] = get_bits1(gbc);
 -         if (s->cpl_in_use[blk]) {
 -             /* coupling in use */
 -             int cpl_begin_freq, cpl_end_freq;
 - 
 -             if (channel_mode < AC3_CHMODE_STEREO) {
 -                 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
 -                 return -1;
 -             }
 - 
 -             /* determine which channels are coupled */
 -             for (ch = 1; ch <= fbw_channels; ch++)
 -                 s->channel_in_cpl[ch] = get_bits1(gbc);
 - 
 -             /* phase flags in use */
 -             if (channel_mode == AC3_CHMODE_STEREO)
 -                 s->phase_flags_in_use = get_bits1(gbc);
 - 
 -             /* coupling frequency range and band structure */
 -             cpl_begin_freq = get_bits(gbc, 4);
 -             cpl_end_freq = get_bits(gbc, 4);
 -             if (3 + cpl_end_freq - cpl_begin_freq < 0) {
 -                 av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
 -                 return -1;
 -             }
 -             s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
 -             s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
 -             s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
 -             for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
 -                 if (get_bits1(gbc)) {
 -                     s->cpl_band_struct[bnd] = 1;
 -                     s->num_cpl_bands--;
 -                 }
 -             }
 -             s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
 -         } else {
 -             /* coupling not in use */
 -             for (ch = 1; ch <= fbw_channels; ch++)
 -                 s->channel_in_cpl[ch] = 0;
 -         }
 -     } else if (!blk) {
 -         av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
 -         return -1;
 -     } else {
 -         s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
 -     }
 -     cpl_in_use = s->cpl_in_use[blk];
 - 
 -     /* coupling coordinates */
 -     if (cpl_in_use) {
 -         int cpl_coords_exist = 0;
 - 
 -         for (ch = 1; ch <= fbw_channels; ch++) {
 -             if (s->channel_in_cpl[ch]) {
 -                 if (get_bits1(gbc)) {
 -                     int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
 -                     cpl_coords_exist = 1;
 -                     master_cpl_coord = 3 * get_bits(gbc, 2);
 -                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 -                         cpl_coord_exp = get_bits(gbc, 4);
 -                         cpl_coord_mant = get_bits(gbc, 4);
 -                         if (cpl_coord_exp == 15)
 -                             s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
 -                         else
 -                             s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
 -                         s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
 -                     }
 -                 } else if (!blk) {
 -                     av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
 -                     return -1;
 -                 }
 -             }
 -         }
 -         /* phase flags */
 -         if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
 -             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 -                 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
 -             }
 -         }
 -     }
 - 
 -     /* stereo rematrixing strategy and band structure */
 -     if (channel_mode == AC3_CHMODE_STEREO) {
 -         if (get_bits1(gbc)) {
 -             s->num_rematrixing_bands = 4;
 -             if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
 -                 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
 -             for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
 -                 s->rematrixing_flags[bnd] = get_bits1(gbc);
 -         } else if (!blk) {
 -             av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
 -             return -1;
 -         }
 -     }
 - 
 -     /* exponent strategies for each channel */
 -     s->exp_strategy[blk][CPL_CH] = EXP_REUSE;
 -     s->exp_strategy[blk][s->lfe_ch] = EXP_REUSE;
 -     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 -         s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
 -         if(s->exp_strategy[blk][ch] != EXP_REUSE)
 -             bit_alloc_stages[ch] = 3;
 -     }
 - 
 -     /* channel bandwidth */
 -     for (ch = 1; ch <= fbw_channels; ch++) {
 -         s->start_freq[ch] = 0;
 -         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
 -             int group_size;
 -             int prev = s->end_freq[ch];
 -             if (s->channel_in_cpl[ch])
 -                 s->end_freq[ch] = s->start_freq[CPL_CH];
 -             else {
 -                 int bandwidth_code = get_bits(gbc, 6);
 -                 if (bandwidth_code > 60) {
 -                     av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
 -                     return -1;
 -                 }
 -                 s->end_freq[ch] = bandwidth_code * 3 + 73;
 -             }
 -             group_size = 3 << (s->exp_strategy[blk][ch] - 1);
 -             s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
 -             if(blk > 0 && s->end_freq[ch] != prev)
 -                 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 -         }
 -     }
 -     if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
 -         s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
 -                                     (3 << (s->exp_strategy[blk][CPL_CH] - 1));
 -     }
 - 
 -     /* decode exponents for each channel */
 -     for (ch = !cpl_in_use; ch <= s->channels; ch++) {
 -         if (s->exp_strategy[blk][ch] != EXP_REUSE) {
 -             s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
 -             decode_exponents(gbc, s->exp_strategy[blk][ch],
 -                              s->num_exp_groups[ch], s->dexps[ch][0],
 -                              &s->dexps[ch][s->start_freq[ch]+!!ch]);
 -             if(ch != CPL_CH && ch != s->lfe_ch)
 -                 skip_bits(gbc, 2); /* skip gainrng */
 -         }
 -     }
 - 
 -     /* bit allocation information */
 -     if (get_bits1(gbc)) {
 -         s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 -         s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 -         s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
 -         s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
 -         s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
 -         for(ch=!cpl_in_use; ch<=s->channels; ch++)
 -             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 -     } else if (!blk) {
 -         av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
 -         return -1;
 -     }
 - 
 -     /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
 -     if (get_bits1(gbc)) {
 -         int csnr;
 -         csnr = (get_bits(gbc, 6) - 15) << 4;
 -         for (ch = !cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
 -             s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
 -             s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
 -         }
 -         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 -     } else if (!blk) {
 -         av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
 -         return -1;
 -     }
 - 
 -     /* coupling leak information */
 -     if (cpl_in_use) {
 -         if (get_bits1(gbc)) {
 -             s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
 -             s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
 -             bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
 -         } else if (!blk) {
 -             av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
 -             return -1;
 -         }
 -     }
 - 
 -     /* delta bit allocation information */
 -     if (get_bits1(gbc)) {
 -         /* delta bit allocation exists (strategy) */
 -         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
 -             s->dba_mode[ch] = get_bits(gbc, 2);
 -             if (s->dba_mode[ch] == DBA_RESERVED) {
 -                 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
 -                 return -1;
 -             }
 -             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 -         }
 -         /* channel delta offset, len and bit allocation */
 -         for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
 -             if (s->dba_mode[ch] == DBA_NEW) {
 -                 s->dba_nsegs[ch] = get_bits(gbc, 3);
 -                 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
 -                     s->dba_offsets[ch][seg] = get_bits(gbc, 5);
 -                     s->dba_lengths[ch][seg] = get_bits(gbc, 4);
 -                     s->dba_values[ch][seg] = get_bits(gbc, 3);
 -                 }
 -                 /* run last 2 bit allocation stages if new dba values */
 -                 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 -             }
 -         }
 -     } else if(blk == 0) {
 -         for(ch=0; ch<=s->channels; ch++) {
 -             s->dba_mode[ch] = DBA_NONE;
 -         }
 -     }
 - 
 -     /* Bit allocation */
 -     for(ch=!cpl_in_use; ch<=s->channels; ch++) {
 -         if(bit_alloc_stages[ch] > 2) {
 -             /* Exponent mapping into PSD and PSD integration */
 -             ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
 -                                       s->start_freq[ch], s->end_freq[ch],
 -                                       s->psd[ch], s->band_psd[ch]);
 -         }
 -         if(bit_alloc_stages[ch] > 1) {
 -             /* Compute excitation function, Compute masking curve, and
 -                Apply delta bit allocation */
 -             ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
 -                                        s->start_freq[ch], s->end_freq[ch],
 -                                        s->fast_gain[ch], (ch == s->lfe_ch),
 -                                        s->dba_mode[ch], s->dba_nsegs[ch],
 -                                        s->dba_offsets[ch], s->dba_lengths[ch],
 -                                        s->dba_values[ch], s->mask[ch]);
 -         }
 -         if(bit_alloc_stages[ch] > 0) {
 -             /* Compute bit allocation */
 -             ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
 -                                       s->start_freq[ch], s->end_freq[ch],
 -                                       s->snr_offset[ch],
 -                                       s->bit_alloc_params.floor,
 -                                       ff_ac3_bap_tab, s->bap[ch]);
 -         }
 -     }
 - 
 -     /* unused dummy data */
 -     if (get_bits1(gbc)) {
 -         int skipl = get_bits(gbc, 9);
 -         while(skipl--)
 -             skip_bits(gbc, 8);
 -     }
 - 
 -     /* unpack the transform coefficients
 -        this also uncouples channels if coupling is in use. */
 -     get_transform_coeffs(s);
 - 
 -     /* recover coefficients if rematrixing is in use */
 -     if(s->channel_mode == AC3_CHMODE_STEREO)
 -         do_rematrixing(s);
 - 
 -     /* apply scaling to coefficients (headroom, dynrng) */
 -     for(ch=1; ch<=s->channels; ch++) {
 -         float gain = s->mul_bias / 4194304.0f;
 -         if(s->channel_mode == AC3_CHMODE_DUALMONO) {
 -             gain *= s->dynamic_range[ch-1];
 -         } else {
 -             gain *= s->dynamic_range[0];
 -         }
 -         for(i=0; i<256; i++) {
 -             s->transform_coeffs[ch][i] = s->fixed_coeffs[ch][i] * gain;
 -         }
 -     }
 - 
 -     /* downmix and MDCT. order depends on whether block switching is used for
 -        any channel in this block. this is because coefficients for the long
 -        and short transforms cannot be mixed. */
 -     downmix_output = s->channels != s->out_channels &&
 -                      !((s->output_mode & AC3_OUTPUT_LFEON) &&
 -                      s->fbw_channels == s->out_channels);
 -     if(different_transforms) {
 -         /* the delay samples have already been downmixed, so we upmix the delay
 -            samples in order to reconstruct all channels before downmixing. */
 -         if(s->downmixed) {
 -             s->downmixed = 0;
 -             ac3_upmix_delay(s);
 -         }
 - 
 -         do_imdct(s, s->channels);
 - 
 -         if(downmix_output) {
 -             ac3_downmix(s, s->output, 0);
 -         }
 -     } else {
 -         if(downmix_output) {
 -             ac3_downmix(s, s->transform_coeffs, 1);
 -         }
 - 
 -         if(!s->downmixed) {
 -             s->downmixed = 1;
 -             // FIXME delay[] is half the size of the other downmixes
 -             ac3_downmix(s, s->delay, 0);
 -         }
 - 
 -         do_imdct(s, s->out_channels);
 -     }
 - 
 -     return 0;
 - }
 - 
 - /**
 -  * Decode a single AC-3 frame.
 -  */
 - static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
 -                             const uint8_t *buf, int buf_size)
 - {
 -     AC3DecodeContext *s = avctx->priv_data;
 -     int16_t *out_samples = (int16_t *)data;
 -     int blk, ch, err;
 - 
 -     /* initialize the GetBitContext with the start of valid AC-3 Frame */
 -     if (s->input_buffer) {
 -         /* copy input buffer to decoder context to avoid reading past the end
 -            of the buffer, which can be caused by a damaged input stream. */
 -         memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_MAX_FRAME_SIZE));
 -         init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
 -     } else {
 -         init_get_bits(&s->gbc, buf, buf_size * 8);
 -     }
 - 
 -     /* parse the syncinfo */
 -     *data_size = 0;
 -     err = parse_frame_header(s);
 - 
 -     /* check that reported frame size fits in input buffer */
 -     if(s->frame_size > buf_size) {
 -         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 -         err = AC3_PARSE_ERROR_FRAME_SIZE;
 -     }
 - 
 -     /* check for crc mismatch */
 -     if(err != AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_resilience >= FF_ER_CAREFUL) {
 -         if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
 -             av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
 -             err = AC3_PARSE_ERROR_CRC;
 -         }
 -     }
 - 
 -     if(err && err != AC3_PARSE_ERROR_CRC) {
 -         switch(err) {
 -             case AC3_PARSE_ERROR_SYNC:
 -                 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
 -                 return -1;
 -             case AC3_PARSE_ERROR_BSID:
 -                 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
 -                 break;
 -             case AC3_PARSE_ERROR_SAMPLE_RATE:
 -                 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 -                 break;
 -             case AC3_PARSE_ERROR_FRAME_SIZE:
 -                 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
 -                 break;
 -             case AC3_PARSE_ERROR_FRAME_TYPE:
 -                 /* skip frame if CRC is ok. otherwise use error concealment. */
 -                 /* TODO: add support for substreams and dependent frames */
 -                 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
 -                     av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
 -                     return s->frame_size;
 -                 } else {
 -                     av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
 -                 }
 -                 break;
 -             default:
 -                 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
 -                 break;
 -         }
 -     }
 - 
 -     /* if frame is ok, set audio parameters */
 -     if (!err) {
 -         avctx->sample_rate = s->sample_rate;
 -         avctx->bit_rate = s->bit_rate;
 - 
 -         /* channel config */
 -         s->out_channels = s->channels;
 -         s->output_mode = s->channel_mode;
 -         if(s->lfe_on)
 -             s->output_mode |= AC3_OUTPUT_LFEON;
 -         if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
 -                 avctx->request_channels < s->channels) {
 -             s->out_channels = avctx->request_channels;
 -             s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
 -         }
 -         avctx->channels = s->out_channels;
 - 
 -         /* set downmixing coefficients if needed */
 -         if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
 -                 s->fbw_channels == s->out_channels)) {
 -             set_downmix_coeffs(s);
 -         }
 -     } else if (!s->out_channels) {
 -         s->out_channels = avctx->channels;
 -         if(s->out_channels < s->channels)
 -             s->output_mode  = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
 -     }
 - 
 -     /* decode the audio blocks */
 -     for (blk = 0; blk < s->num_blocks; blk++) {
 -         const float *output[s->out_channels];
 -         if (!err && decode_audio_block(s, blk)) {
 -             av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
 -         }
 -         for (ch = 0; ch < s->out_channels; ch++)
 -             output[ch] = s->output[ch];
 -         s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
 -         out_samples += 256 * s->out_channels;
 -     }
 -     *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
 -     return s->frame_size;
 - }
 - 
 - /**
 -  * Uninitialize the AC-3 decoder.
 -  */
 - static av_cold int ac3_decode_end(AVCodecContext *avctx)
 - {
 -     AC3DecodeContext *s = avctx->priv_data;
 -     ff_mdct_end(&s->imdct_512);
 -     ff_mdct_end(&s->imdct_256);
 - 
 -     av_freep(&s->input_buffer);
 - 
 -     return 0;
 - }
 - 
 - AVCodec ac3_decoder = {
 -     .name = "ac3",
 -     .type = CODEC_TYPE_AUDIO,
 -     .id = CODEC_ID_AC3,
 -     .priv_data_size = sizeof (AC3DecodeContext),
 -     .init = ac3_decode_init,
 -     .close = ac3_decode_end,
 -     .decode = ac3_decode_frame,
 -     .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52 / AC-3"),
 - };
 
 
  |