You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1592 lines
57KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  21. #include <inttypes.h>
  22. #include <string.h>
  23. #include <math.h>
  24. #include <stdio.h>
  25. #include "config.h"
  26. #include <assert.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "swscale.h"
  38. #include "swscale_internal.h"
  39. #include "rgb2rgb.h"
  40. #include "libavutil/intreadwrite.h"
  41. #include "libavutil/x86_cpu.h"
  42. #include "libavutil/avutil.h"
  43. #include "libavutil/bswap.h"
  44. #include "libavutil/pixdesc.h"
  45. unsigned swscale_version(void)
  46. {
  47. return LIBSWSCALE_VERSION_INT;
  48. }
  49. const char *swscale_configuration(void)
  50. {
  51. return FFMPEG_CONFIGURATION;
  52. }
  53. const char *swscale_license(void)
  54. {
  55. #define LICENSE_PREFIX "libswscale license: "
  56. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  57. }
  58. #define RET 0xC3 //near return opcode for x86
  59. #define isSupportedIn(x) ( \
  60. (x)==PIX_FMT_YUV420P \
  61. || (x)==PIX_FMT_YUVA420P \
  62. || (x)==PIX_FMT_YUYV422 \
  63. || (x)==PIX_FMT_UYVY422 \
  64. || (x)==PIX_FMT_RGB48BE \
  65. || (x)==PIX_FMT_RGB48LE \
  66. || (x)==PIX_FMT_RGB32 \
  67. || (x)==PIX_FMT_RGB32_1 \
  68. || (x)==PIX_FMT_BGR24 \
  69. || (x)==PIX_FMT_BGR565 \
  70. || (x)==PIX_FMT_BGR555 \
  71. || (x)==PIX_FMT_BGR32 \
  72. || (x)==PIX_FMT_BGR32_1 \
  73. || (x)==PIX_FMT_RGB24 \
  74. || (x)==PIX_FMT_RGB565 \
  75. || (x)==PIX_FMT_RGB555 \
  76. || (x)==PIX_FMT_GRAY8 \
  77. || (x)==PIX_FMT_YUV410P \
  78. || (x)==PIX_FMT_YUV440P \
  79. || (x)==PIX_FMT_NV12 \
  80. || (x)==PIX_FMT_NV21 \
  81. || (x)==PIX_FMT_GRAY16BE \
  82. || (x)==PIX_FMT_GRAY16LE \
  83. || (x)==PIX_FMT_YUV444P \
  84. || (x)==PIX_FMT_YUV422P \
  85. || (x)==PIX_FMT_YUV411P \
  86. || (x)==PIX_FMT_YUVJ420P \
  87. || (x)==PIX_FMT_YUVJ422P \
  88. || (x)==PIX_FMT_YUVJ440P \
  89. || (x)==PIX_FMT_YUVJ444P \
  90. || (x)==PIX_FMT_PAL8 \
  91. || (x)==PIX_FMT_BGR8 \
  92. || (x)==PIX_FMT_RGB8 \
  93. || (x)==PIX_FMT_BGR4_BYTE \
  94. || (x)==PIX_FMT_RGB4_BYTE \
  95. || (x)==PIX_FMT_YUV440P \
  96. || (x)==PIX_FMT_MONOWHITE \
  97. || (x)==PIX_FMT_MONOBLACK \
  98. || (x)==PIX_FMT_YUV420P16LE \
  99. || (x)==PIX_FMT_YUV422P16LE \
  100. || (x)==PIX_FMT_YUV444P16LE \
  101. || (x)==PIX_FMT_YUV420P16BE \
  102. || (x)==PIX_FMT_YUV422P16BE \
  103. || (x)==PIX_FMT_YUV444P16BE \
  104. )
  105. int sws_isSupportedInput(enum PixelFormat pix_fmt)
  106. {
  107. return isSupportedIn(pix_fmt);
  108. }
  109. #define isSupportedOut(x) ( \
  110. (x)==PIX_FMT_YUV420P \
  111. || (x)==PIX_FMT_YUVA420P \
  112. || (x)==PIX_FMT_YUYV422 \
  113. || (x)==PIX_FMT_UYVY422 \
  114. || (x)==PIX_FMT_YUV444P \
  115. || (x)==PIX_FMT_YUV422P \
  116. || (x)==PIX_FMT_YUV411P \
  117. || (x)==PIX_FMT_YUVJ420P \
  118. || (x)==PIX_FMT_YUVJ422P \
  119. || (x)==PIX_FMT_YUVJ440P \
  120. || (x)==PIX_FMT_YUVJ444P \
  121. || isAnyRGB(x) \
  122. || (x)==PIX_FMT_NV12 \
  123. || (x)==PIX_FMT_NV21 \
  124. || (x)==PIX_FMT_GRAY16BE \
  125. || (x)==PIX_FMT_GRAY16LE \
  126. || (x)==PIX_FMT_GRAY8 \
  127. || (x)==PIX_FMT_YUV410P \
  128. || (x)==PIX_FMT_YUV440P \
  129. || (x)==PIX_FMT_YUV420P16LE \
  130. || (x)==PIX_FMT_YUV422P16LE \
  131. || (x)==PIX_FMT_YUV444P16LE \
  132. || (x)==PIX_FMT_YUV420P16BE \
  133. || (x)==PIX_FMT_YUV422P16BE \
  134. || (x)==PIX_FMT_YUV444P16BE \
  135. )
  136. int sws_isSupportedOutput(enum PixelFormat pix_fmt)
  137. {
  138. return isSupportedOut(pix_fmt);
  139. }
  140. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  141. const char *sws_format_name(enum PixelFormat format)
  142. {
  143. if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
  144. return av_pix_fmt_descriptors[format].name;
  145. else
  146. return "Unknown format";
  147. }
  148. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  149. {
  150. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  151. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  152. else return getSplineCoeff( 0.0,
  153. b+ 2.0*c + 3.0*d,
  154. c + 3.0*d,
  155. -b- 3.0*c - 6.0*d,
  156. dist-1.0);
  157. }
  158. static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  159. int srcW, int dstW, int filterAlign, int one, int flags,
  160. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  161. {
  162. int i;
  163. int filterSize;
  164. int filter2Size;
  165. int minFilterSize;
  166. int64_t *filter=NULL;
  167. int64_t *filter2=NULL;
  168. const int64_t fone= 1LL<<54;
  169. int ret= -1;
  170. #if ARCH_X86
  171. if (flags & SWS_CPU_CAPS_MMX)
  172. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  173. #endif
  174. // NOTE: the +1 is for the MMX scaler which reads over the end
  175. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
  176. if (FFABS(xInc - 0x10000) <10) { // unscaled
  177. int i;
  178. filterSize= 1;
  179. FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  180. for (i=0; i<dstW; i++) {
  181. filter[i*filterSize]= fone;
  182. (*filterPos)[i]=i;
  183. }
  184. } else if (flags&SWS_POINT) { // lame looking point sampling mode
  185. int i;
  186. int xDstInSrc;
  187. filterSize= 1;
  188. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  189. xDstInSrc= xInc/2 - 0x8000;
  190. for (i=0; i<dstW; i++) {
  191. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  192. (*filterPos)[i]= xx;
  193. filter[i]= fone;
  194. xDstInSrc+= xInc;
  195. }
  196. } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
  197. int i;
  198. int xDstInSrc;
  199. filterSize= 2;
  200. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  201. xDstInSrc= xInc/2 - 0x8000;
  202. for (i=0; i<dstW; i++) {
  203. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  204. int j;
  205. (*filterPos)[i]= xx;
  206. //bilinear upscale / linear interpolate / area averaging
  207. for (j=0; j<filterSize; j++) {
  208. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  209. if (coeff<0) coeff=0;
  210. filter[i*filterSize + j]= coeff;
  211. xx++;
  212. }
  213. xDstInSrc+= xInc;
  214. }
  215. } else {
  216. int xDstInSrc;
  217. int sizeFactor;
  218. if (flags&SWS_BICUBIC) sizeFactor= 4;
  219. else if (flags&SWS_X) sizeFactor= 8;
  220. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  221. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  222. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  223. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  224. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  225. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  226. else {
  227. sizeFactor= 0; //GCC warning killer
  228. assert(0);
  229. }
  230. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  231. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  232. if (filterSize > srcW-2) filterSize=srcW-2;
  233. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  234. xDstInSrc= xInc - 0x10000;
  235. for (i=0; i<dstW; i++) {
  236. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  237. int j;
  238. (*filterPos)[i]= xx;
  239. for (j=0; j<filterSize; j++) {
  240. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  241. double floatd;
  242. int64_t coeff;
  243. if (xInc > 1<<16)
  244. d= d*dstW/srcW;
  245. floatd= d * (1.0/(1<<30));
  246. if (flags & SWS_BICUBIC) {
  247. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  248. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  249. int64_t dd = ( d*d)>>30;
  250. int64_t ddd= (dd*d)>>30;
  251. if (d < 1LL<<30)
  252. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  253. else if (d < 1LL<<31)
  254. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  255. else
  256. coeff=0.0;
  257. coeff *= fone>>(30+24);
  258. }
  259. /* else if (flags & SWS_X) {
  260. double p= param ? param*0.01 : 0.3;
  261. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  262. coeff*= pow(2.0, - p*d*d);
  263. }*/
  264. else if (flags & SWS_X) {
  265. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  266. double c;
  267. if (floatd<1.0)
  268. c = cos(floatd*M_PI);
  269. else
  270. c=-1.0;
  271. if (c<0.0) c= -pow(-c, A);
  272. else c= pow( c, A);
  273. coeff= (c*0.5 + 0.5)*fone;
  274. } else if (flags & SWS_AREA) {
  275. int64_t d2= d - (1<<29);
  276. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  277. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  278. else coeff=0.0;
  279. coeff *= fone>>(30+16);
  280. } else if (flags & SWS_GAUSS) {
  281. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  282. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  283. } else if (flags & SWS_SINC) {
  284. coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
  285. } else if (flags & SWS_LANCZOS) {
  286. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  287. coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
  288. if (floatd>p) coeff=0;
  289. } else if (flags & SWS_BILINEAR) {
  290. coeff= (1<<30) - d;
  291. if (coeff<0) coeff=0;
  292. coeff *= fone >> 30;
  293. } else if (flags & SWS_SPLINE) {
  294. double p=-2.196152422706632;
  295. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  296. } else {
  297. coeff= 0.0; //GCC warning killer
  298. assert(0);
  299. }
  300. filter[i*filterSize + j]= coeff;
  301. xx++;
  302. }
  303. xDstInSrc+= 2*xInc;
  304. }
  305. }
  306. /* apply src & dst Filter to filter -> filter2
  307. av_free(filter);
  308. */
  309. assert(filterSize>0);
  310. filter2Size= filterSize;
  311. if (srcFilter) filter2Size+= srcFilter->length - 1;
  312. if (dstFilter) filter2Size+= dstFilter->length - 1;
  313. assert(filter2Size>0);
  314. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
  315. for (i=0; i<dstW; i++) {
  316. int j, k;
  317. if(srcFilter) {
  318. for (k=0; k<srcFilter->length; k++) {
  319. for (j=0; j<filterSize; j++)
  320. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  321. }
  322. } else {
  323. for (j=0; j<filterSize; j++)
  324. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  325. }
  326. //FIXME dstFilter
  327. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  328. }
  329. av_freep(&filter);
  330. /* try to reduce the filter-size (step1 find size and shift left) */
  331. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  332. minFilterSize= 0;
  333. for (i=dstW-1; i>=0; i--) {
  334. int min= filter2Size;
  335. int j;
  336. int64_t cutOff=0.0;
  337. /* get rid of near zero elements on the left by shifting left */
  338. for (j=0; j<filter2Size; j++) {
  339. int k;
  340. cutOff += FFABS(filter2[i*filter2Size]);
  341. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  342. /* preserve monotonicity because the core can't handle the filter otherwise */
  343. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  344. // move filter coefficients left
  345. for (k=1; k<filter2Size; k++)
  346. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  347. filter2[i*filter2Size + k - 1]= 0;
  348. (*filterPos)[i]++;
  349. }
  350. cutOff=0;
  351. /* count near zeros on the right */
  352. for (j=filter2Size-1; j>0; j--) {
  353. cutOff += FFABS(filter2[i*filter2Size + j]);
  354. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  355. min--;
  356. }
  357. if (min>minFilterSize) minFilterSize= min;
  358. }
  359. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  360. // we can handle the special case 4,
  361. // so we don't want to go to the full 8
  362. if (minFilterSize < 5)
  363. filterAlign = 4;
  364. // We really don't want to waste our time
  365. // doing useless computation, so fall back on
  366. // the scalar C code for very small filters.
  367. // Vectorizing is worth it only if you have a
  368. // decent-sized vector.
  369. if (minFilterSize < 3)
  370. filterAlign = 1;
  371. }
  372. if (flags & SWS_CPU_CAPS_MMX) {
  373. // special case for unscaled vertical filtering
  374. if (minFilterSize == 1 && filterAlign == 2)
  375. filterAlign= 1;
  376. }
  377. assert(minFilterSize > 0);
  378. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  379. assert(filterSize > 0);
  380. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  381. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  382. goto fail;
  383. *outFilterSize= filterSize;
  384. if (flags&SWS_PRINT_INFO)
  385. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  386. /* try to reduce the filter-size (step2 reduce it) */
  387. for (i=0; i<dstW; i++) {
  388. int j;
  389. for (j=0; j<filterSize; j++) {
  390. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  391. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  392. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  393. filter[i*filterSize + j]= 0;
  394. }
  395. }
  396. //FIXME try to align filterPos if possible
  397. //fix borders
  398. for (i=0; i<dstW; i++) {
  399. int j;
  400. if ((*filterPos)[i] < 0) {
  401. // move filter coefficients left to compensate for filterPos
  402. for (j=1; j<filterSize; j++) {
  403. int left= FFMAX(j + (*filterPos)[i], 0);
  404. filter[i*filterSize + left] += filter[i*filterSize + j];
  405. filter[i*filterSize + j]=0;
  406. }
  407. (*filterPos)[i]= 0;
  408. }
  409. if ((*filterPos)[i] + filterSize > srcW) {
  410. int shift= (*filterPos)[i] + filterSize - srcW;
  411. // move filter coefficients right to compensate for filterPos
  412. for (j=filterSize-2; j>=0; j--) {
  413. int right= FFMIN(j + shift, filterSize-1);
  414. filter[i*filterSize +right] += filter[i*filterSize +j];
  415. filter[i*filterSize +j]=0;
  416. }
  417. (*filterPos)[i]= srcW - filterSize;
  418. }
  419. }
  420. // Note the +1 is for the MMX scaler which reads over the end
  421. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  422. FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
  423. /* normalize & store in outFilter */
  424. for (i=0; i<dstW; i++) {
  425. int j;
  426. int64_t error=0;
  427. int64_t sum=0;
  428. for (j=0; j<filterSize; j++) {
  429. sum+= filter[i*filterSize + j];
  430. }
  431. sum= (sum + one/2)/ one;
  432. for (j=0; j<*outFilterSize; j++) {
  433. int64_t v= filter[i*filterSize + j] + error;
  434. int intV= ROUNDED_DIV(v, sum);
  435. (*outFilter)[i*(*outFilterSize) + j]= intV;
  436. error= v - intV*sum;
  437. }
  438. }
  439. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  440. for (i=0; i<*outFilterSize; i++) {
  441. int j= dstW*(*outFilterSize);
  442. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  443. }
  444. ret=0;
  445. fail:
  446. av_free(filter);
  447. av_free(filter2);
  448. return ret;
  449. }
  450. #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
  451. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
  452. {
  453. uint8_t *fragmentA;
  454. x86_reg imm8OfPShufW1A;
  455. x86_reg imm8OfPShufW2A;
  456. x86_reg fragmentLengthA;
  457. uint8_t *fragmentB;
  458. x86_reg imm8OfPShufW1B;
  459. x86_reg imm8OfPShufW2B;
  460. x86_reg fragmentLengthB;
  461. int fragmentPos;
  462. int xpos, i;
  463. // create an optimized horizontal scaling routine
  464. /* This scaler is made of runtime-generated MMX2 code using specially
  465. * tuned pshufw instructions. For every four output pixels, if four
  466. * input pixels are enough for the fast bilinear scaling, then a chunk
  467. * of fragmentB is used. If five input pixels are needed, then a chunk
  468. * of fragmentA is used.
  469. */
  470. //code fragment
  471. __asm__ volatile(
  472. "jmp 9f \n\t"
  473. // Begin
  474. "0: \n\t"
  475. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  476. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  477. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  478. "punpcklbw %%mm7, %%mm1 \n\t"
  479. "punpcklbw %%mm7, %%mm0 \n\t"
  480. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  481. "1: \n\t"
  482. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  483. "2: \n\t"
  484. "psubw %%mm1, %%mm0 \n\t"
  485. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  486. "pmullw %%mm3, %%mm0 \n\t"
  487. "psllw $7, %%mm1 \n\t"
  488. "paddw %%mm1, %%mm0 \n\t"
  489. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  490. "add $8, %%"REG_a" \n\t"
  491. // End
  492. "9: \n\t"
  493. // "int $3 \n\t"
  494. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  495. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  496. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  497. "dec %1 \n\t"
  498. "dec %2 \n\t"
  499. "sub %0, %1 \n\t"
  500. "sub %0, %2 \n\t"
  501. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  502. "sub %0, %3 \n\t"
  503. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  504. "=r" (fragmentLengthA)
  505. );
  506. __asm__ volatile(
  507. "jmp 9f \n\t"
  508. // Begin
  509. "0: \n\t"
  510. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  511. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  512. "punpcklbw %%mm7, %%mm0 \n\t"
  513. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  514. "1: \n\t"
  515. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  516. "2: \n\t"
  517. "psubw %%mm1, %%mm0 \n\t"
  518. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  519. "pmullw %%mm3, %%mm0 \n\t"
  520. "psllw $7, %%mm1 \n\t"
  521. "paddw %%mm1, %%mm0 \n\t"
  522. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  523. "add $8, %%"REG_a" \n\t"
  524. // End
  525. "9: \n\t"
  526. // "int $3 \n\t"
  527. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  528. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  529. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  530. "dec %1 \n\t"
  531. "dec %2 \n\t"
  532. "sub %0, %1 \n\t"
  533. "sub %0, %2 \n\t"
  534. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  535. "sub %0, %3 \n\t"
  536. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  537. "=r" (fragmentLengthB)
  538. );
  539. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  540. fragmentPos=0;
  541. for (i=0; i<dstW/numSplits; i++) {
  542. int xx=xpos>>16;
  543. if ((i&3) == 0) {
  544. int a=0;
  545. int b=((xpos+xInc)>>16) - xx;
  546. int c=((xpos+xInc*2)>>16) - xx;
  547. int d=((xpos+xInc*3)>>16) - xx;
  548. int inc = (d+1<4);
  549. uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
  550. x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  551. x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  552. x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
  553. int maxShift= 3-(d+inc);
  554. int shift=0;
  555. if (filterCode) {
  556. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  557. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  558. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  559. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  560. filterPos[i/2]= xx;
  561. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  562. filterCode[fragmentPos + imm8OfPShufW1]=
  563. (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
  564. filterCode[fragmentPos + imm8OfPShufW2]=
  565. a | (b<<2) | (c<<4) | (d<<6);
  566. if (i+4-inc>=dstW) shift=maxShift; //avoid overread
  567. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  568. if (shift && i>=shift) {
  569. filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
  570. filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
  571. filterPos[i/2]-=shift;
  572. }
  573. }
  574. fragmentPos+= fragmentLength;
  575. if (filterCode)
  576. filterCode[fragmentPos]= RET;
  577. }
  578. xpos+=xInc;
  579. }
  580. if (filterCode)
  581. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  582. return fragmentPos + 1;
  583. }
  584. #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
  585. static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
  586. {
  587. *h = av_pix_fmt_descriptors[format].log2_chroma_w;
  588. *v = av_pix_fmt_descriptors[format].log2_chroma_h;
  589. }
  590. static uint16_t roundToInt16(int64_t f)
  591. {
  592. int r= (f + (1<<15))>>16;
  593. if (r<-0x7FFF) return 0x8000;
  594. else if (r> 0x7FFF) return 0x7FFF;
  595. else return r;
  596. }
  597. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
  598. {
  599. int64_t crv = inv_table[0];
  600. int64_t cbu = inv_table[1];
  601. int64_t cgu = -inv_table[2];
  602. int64_t cgv = -inv_table[3];
  603. int64_t cy = 1<<16;
  604. int64_t oy = 0;
  605. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  606. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  607. c->brightness= brightness;
  608. c->contrast = contrast;
  609. c->saturation= saturation;
  610. c->srcRange = srcRange;
  611. c->dstRange = dstRange;
  612. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  613. c->uOffset= 0x0400040004000400LL;
  614. c->vOffset= 0x0400040004000400LL;
  615. if (!srcRange) {
  616. cy= (cy*255) / 219;
  617. oy= 16<<16;
  618. } else {
  619. crv= (crv*224) / 255;
  620. cbu= (cbu*224) / 255;
  621. cgu= (cgu*224) / 255;
  622. cgv= (cgv*224) / 255;
  623. }
  624. cy = (cy *contrast )>>16;
  625. crv= (crv*contrast * saturation)>>32;
  626. cbu= (cbu*contrast * saturation)>>32;
  627. cgu= (cgu*contrast * saturation)>>32;
  628. cgv= (cgv*contrast * saturation)>>32;
  629. oy -= 256*brightness;
  630. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  631. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  632. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  633. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  634. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  635. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  636. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  637. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  638. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  639. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  640. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  641. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  642. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  643. //FIXME factorize
  644. #if HAVE_ALTIVEC
  645. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  646. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  647. #endif
  648. return 0;
  649. }
  650. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
  651. {
  652. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  653. *inv_table = c->srcColorspaceTable;
  654. *table = c->dstColorspaceTable;
  655. *srcRange = c->srcRange;
  656. *dstRange = c->dstRange;
  657. *brightness= c->brightness;
  658. *contrast = c->contrast;
  659. *saturation= c->saturation;
  660. return 0;
  661. }
  662. static int handle_jpeg(enum PixelFormat *format)
  663. {
  664. switch (*format) {
  665. case PIX_FMT_YUVJ420P:
  666. *format = PIX_FMT_YUV420P;
  667. return 1;
  668. case PIX_FMT_YUVJ422P:
  669. *format = PIX_FMT_YUV422P;
  670. return 1;
  671. case PIX_FMT_YUVJ444P:
  672. *format = PIX_FMT_YUV444P;
  673. return 1;
  674. case PIX_FMT_YUVJ440P:
  675. *format = PIX_FMT_YUV440P;
  676. return 1;
  677. default:
  678. return 0;
  679. }
  680. }
  681. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
  682. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  683. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  684. {
  685. SwsContext *c;
  686. int i;
  687. int usesVFilter, usesHFilter;
  688. int unscaled;
  689. int srcRange, dstRange;
  690. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  691. #if ARCH_X86
  692. if (flags & SWS_CPU_CAPS_MMX)
  693. __asm__ volatile("emms\n\t"::: "memory");
  694. #endif
  695. #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
  696. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  697. flags |= ff_hardcodedcpuflags();
  698. #endif /* CONFIG_RUNTIME_CPUDETECT */
  699. if (!rgb15to16) sws_rgb2rgb_init(flags);
  700. unscaled = (srcW == dstW && srcH == dstH);
  701. srcRange = handle_jpeg(&srcFormat);
  702. dstRange = handle_jpeg(&dstFormat);
  703. if (!isSupportedIn(srcFormat)) {
  704. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  705. return NULL;
  706. }
  707. if (!isSupportedOut(dstFormat)) {
  708. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  709. return NULL;
  710. }
  711. i= flags & ( SWS_POINT
  712. |SWS_AREA
  713. |SWS_BILINEAR
  714. |SWS_FAST_BILINEAR
  715. |SWS_BICUBIC
  716. |SWS_X
  717. |SWS_GAUSS
  718. |SWS_LANCZOS
  719. |SWS_SINC
  720. |SWS_SPLINE
  721. |SWS_BICUBLIN);
  722. if(!i || (i & (i-1))) {
  723. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  724. return NULL;
  725. }
  726. /* sanity check */
  727. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  728. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  729. srcW, srcH, dstW, dstH);
  730. return NULL;
  731. }
  732. if(srcW > VOFW || dstW > VOFW) {
  733. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  734. return NULL;
  735. }
  736. if (!dstFilter) dstFilter= &dummyFilter;
  737. if (!srcFilter) srcFilter= &dummyFilter;
  738. FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
  739. c->av_class = &sws_context_class;
  740. c->srcW= srcW;
  741. c->srcH= srcH;
  742. c->dstW= dstW;
  743. c->dstH= dstH;
  744. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  745. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  746. c->flags= flags;
  747. c->dstFormat= dstFormat;
  748. c->srcFormat= srcFormat;
  749. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
  750. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
  751. c->vRounder= 4* 0x0001000100010001ULL;
  752. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
  753. (srcFilter->chrV && srcFilter->chrV->length>1) ||
  754. (dstFilter->lumV && dstFilter->lumV->length>1) ||
  755. (dstFilter->chrV && dstFilter->chrV->length>1);
  756. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
  757. (srcFilter->chrH && srcFilter->chrH->length>1) ||
  758. (dstFilter->lumH && dstFilter->lumH->length>1) ||
  759. (dstFilter->chrH && dstFilter->chrH->length>1);
  760. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  761. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  762. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  763. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  764. // drop some chroma lines if the user wants it
  765. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  766. c->chrSrcVSubSample+= c->vChrDrop;
  767. // drop every other pixel for chroma calculation unless user wants full chroma
  768. if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
  769. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  770. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  771. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  772. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  773. c->chrSrcHSubSample=1;
  774. if (param) {
  775. c->param[0] = param[0];
  776. c->param[1] = param[1];
  777. } else {
  778. c->param[0] =
  779. c->param[1] = SWS_PARAM_DEFAULT;
  780. }
  781. // Note the -((-x)>>y) is so that we always round toward +inf.
  782. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  783. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  784. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  785. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  786. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  787. /* unscaled special cases */
  788. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isAnyRGB(dstFormat))) {
  789. ff_get_unscaled_swscale(c);
  790. if (c->swScale) {
  791. if (flags&SWS_PRINT_INFO)
  792. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  793. sws_format_name(srcFormat), sws_format_name(dstFormat));
  794. return c;
  795. }
  796. }
  797. if (flags & SWS_CPU_CAPS_MMX2) {
  798. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  799. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
  800. if (flags&SWS_PRINT_INFO)
  801. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  802. }
  803. if (usesHFilter) c->canMMX2BeUsed=0;
  804. }
  805. else
  806. c->canMMX2BeUsed=0;
  807. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  808. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  809. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  810. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  811. // n-2 is the last chrominance sample available
  812. // this is not perfect, but no one should notice the difference, the more correct variant
  813. // would be like the vertical one, but that would require some special code for the
  814. // first and last pixel
  815. if (flags&SWS_FAST_BILINEAR) {
  816. if (c->canMMX2BeUsed) {
  817. c->lumXInc+= 20;
  818. c->chrXInc+= 20;
  819. }
  820. //we don't use the x86 asm scaler if MMX is available
  821. else if (flags & SWS_CPU_CAPS_MMX) {
  822. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  823. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  824. }
  825. }
  826. /* precalculate horizontal scaler filter coefficients */
  827. {
  828. #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT)
  829. // can't downscale !!!
  830. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  831. c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
  832. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
  833. #ifdef MAP_ANONYMOUS
  834. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  835. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  836. #elif HAVE_VIRTUALALLOC
  837. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  838. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  839. #else
  840. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  841. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  842. #endif
  843. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  844. goto fail;
  845. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
  846. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
  847. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
  848. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
  849. initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
  850. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
  851. #ifdef MAP_ANONYMOUS
  852. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  853. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  854. #endif
  855. } else
  856. #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) */
  857. {
  858. const int filterAlign=
  859. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  860. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  861. 1;
  862. if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  863. srcW , dstW, filterAlign, 1<<14,
  864. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  865. srcFilter->lumH, dstFilter->lumH, c->param) < 0)
  866. goto fail;
  867. if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  868. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  869. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  870. srcFilter->chrH, dstFilter->chrH, c->param) < 0)
  871. goto fail;
  872. }
  873. } // initialize horizontal stuff
  874. /* precalculate vertical scaler filter coefficients */
  875. {
  876. const int filterAlign=
  877. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  878. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  879. 1;
  880. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  881. srcH , dstH, filterAlign, (1<<12),
  882. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  883. srcFilter->lumV, dstFilter->lumV, c->param) < 0)
  884. goto fail;
  885. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  886. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  887. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  888. srcFilter->chrV, dstFilter->chrV, c->param) < 0)
  889. goto fail;
  890. #if HAVE_ALTIVEC
  891. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
  892. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
  893. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  894. int j;
  895. short *p = (short *)&c->vYCoeffsBank[i];
  896. for (j=0;j<8;j++)
  897. p[j] = c->vLumFilter[i];
  898. }
  899. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  900. int j;
  901. short *p = (short *)&c->vCCoeffsBank[i];
  902. for (j=0;j<8;j++)
  903. p[j] = c->vChrFilter[i];
  904. }
  905. #endif
  906. }
  907. // calculate buffer sizes so that they won't run out while handling these damn slices
  908. c->vLumBufSize= c->vLumFilterSize;
  909. c->vChrBufSize= c->vChrFilterSize;
  910. for (i=0; i<dstH; i++) {
  911. int chrI= i*c->chrDstH / dstH;
  912. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  913. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  914. nextSlice>>= c->chrSrcVSubSample;
  915. nextSlice<<= c->chrSrcVSubSample;
  916. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  917. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  918. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  919. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  920. }
  921. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  922. // allocate several megabytes to handle all possible cases)
  923. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  924. FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  925. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  926. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  927. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  928. /* align at 16 bytes for AltiVec */
  929. for (i=0; i<c->vLumBufSize; i++) {
  930. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
  931. c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
  932. }
  933. for (i=0; i<c->vChrBufSize; i++) {
  934. FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
  935. c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
  936. }
  937. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  938. for (i=0; i<c->vLumBufSize; i++) {
  939. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
  940. c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
  941. }
  942. //try to avoid drawing green stuff between the right end and the stride end
  943. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  944. assert(2*VOFW == VOF);
  945. assert(c->chrDstH <= dstH);
  946. if (flags&SWS_PRINT_INFO) {
  947. if (flags&SWS_FAST_BILINEAR)
  948. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  949. else if (flags&SWS_BILINEAR)
  950. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  951. else if (flags&SWS_BICUBIC)
  952. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  953. else if (flags&SWS_X)
  954. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  955. else if (flags&SWS_POINT)
  956. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  957. else if (flags&SWS_AREA)
  958. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  959. else if (flags&SWS_BICUBLIN)
  960. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  961. else if (flags&SWS_GAUSS)
  962. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  963. else if (flags&SWS_SINC)
  964. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  965. else if (flags&SWS_LANCZOS)
  966. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  967. else if (flags&SWS_SPLINE)
  968. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  969. else
  970. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  971. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  972. sws_format_name(srcFormat),
  973. #ifdef DITHER1XBPP
  974. dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
  975. dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  976. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
  977. #else
  978. "",
  979. #endif
  980. sws_format_name(dstFormat));
  981. if (flags & SWS_CPU_CAPS_MMX2)
  982. av_log(c, AV_LOG_INFO, "using MMX2\n");
  983. else if (flags & SWS_CPU_CAPS_3DNOW)
  984. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  985. else if (flags & SWS_CPU_CAPS_MMX)
  986. av_log(c, AV_LOG_INFO, "using MMX\n");
  987. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  988. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  989. else
  990. av_log(c, AV_LOG_INFO, "using C\n");
  991. if (flags & SWS_CPU_CAPS_MMX) {
  992. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  993. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  994. else {
  995. if (c->hLumFilterSize==4)
  996. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  997. else if (c->hLumFilterSize==8)
  998. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  999. else
  1000. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  1001. if (c->hChrFilterSize==4)
  1002. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  1003. else if (c->hChrFilterSize==8)
  1004. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  1005. else
  1006. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  1007. }
  1008. } else {
  1009. #if ARCH_X86
  1010. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  1011. #else
  1012. if (flags & SWS_FAST_BILINEAR)
  1013. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  1014. else
  1015. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  1016. #endif
  1017. }
  1018. if (isPlanarYUV(dstFormat)) {
  1019. if (c->vLumFilterSize==1)
  1020. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1021. else
  1022. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1023. } else {
  1024. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  1025. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  1026. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1027. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  1028. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1029. else
  1030. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1031. }
  1032. if (dstFormat==PIX_FMT_BGR24)
  1033. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  1034. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  1035. else if (dstFormat==PIX_FMT_RGB32)
  1036. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1037. else if (dstFormat==PIX_FMT_BGR565)
  1038. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1039. else if (dstFormat==PIX_FMT_BGR555)
  1040. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1041. else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  1042. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
  1043. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  1044. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1045. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1046. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1047. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1048. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  1049. }
  1050. c->swScale= ff_getSwsFunc(c);
  1051. return c;
  1052. fail:
  1053. sws_freeContext(c);
  1054. return NULL;
  1055. }
  1056. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1057. float lumaSharpen, float chromaSharpen,
  1058. float chromaHShift, float chromaVShift,
  1059. int verbose)
  1060. {
  1061. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  1062. if (!filter)
  1063. return NULL;
  1064. if (lumaGBlur!=0.0) {
  1065. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  1066. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  1067. } else {
  1068. filter->lumH= sws_getIdentityVec();
  1069. filter->lumV= sws_getIdentityVec();
  1070. }
  1071. if (chromaGBlur!=0.0) {
  1072. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  1073. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  1074. } else {
  1075. filter->chrH= sws_getIdentityVec();
  1076. filter->chrV= sws_getIdentityVec();
  1077. }
  1078. if (chromaSharpen!=0.0) {
  1079. SwsVector *id= sws_getIdentityVec();
  1080. sws_scaleVec(filter->chrH, -chromaSharpen);
  1081. sws_scaleVec(filter->chrV, -chromaSharpen);
  1082. sws_addVec(filter->chrH, id);
  1083. sws_addVec(filter->chrV, id);
  1084. sws_freeVec(id);
  1085. }
  1086. if (lumaSharpen!=0.0) {
  1087. SwsVector *id= sws_getIdentityVec();
  1088. sws_scaleVec(filter->lumH, -lumaSharpen);
  1089. sws_scaleVec(filter->lumV, -lumaSharpen);
  1090. sws_addVec(filter->lumH, id);
  1091. sws_addVec(filter->lumV, id);
  1092. sws_freeVec(id);
  1093. }
  1094. if (chromaHShift != 0.0)
  1095. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  1096. if (chromaVShift != 0.0)
  1097. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  1098. sws_normalizeVec(filter->chrH, 1.0);
  1099. sws_normalizeVec(filter->chrV, 1.0);
  1100. sws_normalizeVec(filter->lumH, 1.0);
  1101. sws_normalizeVec(filter->lumV, 1.0);
  1102. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1103. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1104. return filter;
  1105. }
  1106. SwsVector *sws_allocVec(int length)
  1107. {
  1108. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1109. if (!vec)
  1110. return NULL;
  1111. vec->length = length;
  1112. vec->coeff = av_malloc(sizeof(double) * length);
  1113. if (!vec->coeff)
  1114. av_freep(&vec);
  1115. return vec;
  1116. }
  1117. SwsVector *sws_getGaussianVec(double variance, double quality)
  1118. {
  1119. const int length= (int)(variance*quality + 0.5) | 1;
  1120. int i;
  1121. double middle= (length-1)*0.5;
  1122. SwsVector *vec= sws_allocVec(length);
  1123. if (!vec)
  1124. return NULL;
  1125. for (i=0; i<length; i++) {
  1126. double dist= i-middle;
  1127. vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
  1128. }
  1129. sws_normalizeVec(vec, 1.0);
  1130. return vec;
  1131. }
  1132. SwsVector *sws_getConstVec(double c, int length)
  1133. {
  1134. int i;
  1135. SwsVector *vec= sws_allocVec(length);
  1136. if (!vec)
  1137. return NULL;
  1138. for (i=0; i<length; i++)
  1139. vec->coeff[i]= c;
  1140. return vec;
  1141. }
  1142. SwsVector *sws_getIdentityVec(void)
  1143. {
  1144. return sws_getConstVec(1.0, 1);
  1145. }
  1146. static double sws_dcVec(SwsVector *a)
  1147. {
  1148. int i;
  1149. double sum=0;
  1150. for (i=0; i<a->length; i++)
  1151. sum+= a->coeff[i];
  1152. return sum;
  1153. }
  1154. void sws_scaleVec(SwsVector *a, double scalar)
  1155. {
  1156. int i;
  1157. for (i=0; i<a->length; i++)
  1158. a->coeff[i]*= scalar;
  1159. }
  1160. void sws_normalizeVec(SwsVector *a, double height)
  1161. {
  1162. sws_scaleVec(a, height/sws_dcVec(a));
  1163. }
  1164. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1165. {
  1166. int length= a->length + b->length - 1;
  1167. int i, j;
  1168. SwsVector *vec= sws_getConstVec(0.0, length);
  1169. if (!vec)
  1170. return NULL;
  1171. for (i=0; i<a->length; i++) {
  1172. for (j=0; j<b->length; j++) {
  1173. vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
  1174. }
  1175. }
  1176. return vec;
  1177. }
  1178. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1179. {
  1180. int length= FFMAX(a->length, b->length);
  1181. int i;
  1182. SwsVector *vec= sws_getConstVec(0.0, length);
  1183. if (!vec)
  1184. return NULL;
  1185. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1186. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  1187. return vec;
  1188. }
  1189. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1190. {
  1191. int length= FFMAX(a->length, b->length);
  1192. int i;
  1193. SwsVector *vec= sws_getConstVec(0.0, length);
  1194. if (!vec)
  1195. return NULL;
  1196. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1197. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  1198. return vec;
  1199. }
  1200. /* shift left / or right if "shift" is negative */
  1201. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1202. {
  1203. int length= a->length + FFABS(shift)*2;
  1204. int i;
  1205. SwsVector *vec= sws_getConstVec(0.0, length);
  1206. if (!vec)
  1207. return NULL;
  1208. for (i=0; i<a->length; i++) {
  1209. vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  1210. }
  1211. return vec;
  1212. }
  1213. void sws_shiftVec(SwsVector *a, int shift)
  1214. {
  1215. SwsVector *shifted= sws_getShiftedVec(a, shift);
  1216. av_free(a->coeff);
  1217. a->coeff= shifted->coeff;
  1218. a->length= shifted->length;
  1219. av_free(shifted);
  1220. }
  1221. void sws_addVec(SwsVector *a, SwsVector *b)
  1222. {
  1223. SwsVector *sum= sws_sumVec(a, b);
  1224. av_free(a->coeff);
  1225. a->coeff= sum->coeff;
  1226. a->length= sum->length;
  1227. av_free(sum);
  1228. }
  1229. void sws_subVec(SwsVector *a, SwsVector *b)
  1230. {
  1231. SwsVector *diff= sws_diffVec(a, b);
  1232. av_free(a->coeff);
  1233. a->coeff= diff->coeff;
  1234. a->length= diff->length;
  1235. av_free(diff);
  1236. }
  1237. void sws_convVec(SwsVector *a, SwsVector *b)
  1238. {
  1239. SwsVector *conv= sws_getConvVec(a, b);
  1240. av_free(a->coeff);
  1241. a->coeff= conv->coeff;
  1242. a->length= conv->length;
  1243. av_free(conv);
  1244. }
  1245. SwsVector *sws_cloneVec(SwsVector *a)
  1246. {
  1247. int i;
  1248. SwsVector *vec= sws_allocVec(a->length);
  1249. if (!vec)
  1250. return NULL;
  1251. for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
  1252. return vec;
  1253. }
  1254. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1255. {
  1256. int i;
  1257. double max=0;
  1258. double min=0;
  1259. double range;
  1260. for (i=0; i<a->length; i++)
  1261. if (a->coeff[i]>max) max= a->coeff[i];
  1262. for (i=0; i<a->length; i++)
  1263. if (a->coeff[i]<min) min= a->coeff[i];
  1264. range= max - min;
  1265. for (i=0; i<a->length; i++) {
  1266. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  1267. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1268. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  1269. av_log(log_ctx, log_level, "|\n");
  1270. }
  1271. }
  1272. #if LIBSWSCALE_VERSION_MAJOR < 1
  1273. void sws_printVec(SwsVector *a)
  1274. {
  1275. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  1276. }
  1277. #endif
  1278. void sws_freeVec(SwsVector *a)
  1279. {
  1280. if (!a) return;
  1281. av_freep(&a->coeff);
  1282. a->length=0;
  1283. av_free(a);
  1284. }
  1285. void sws_freeFilter(SwsFilter *filter)
  1286. {
  1287. if (!filter) return;
  1288. if (filter->lumH) sws_freeVec(filter->lumH);
  1289. if (filter->lumV) sws_freeVec(filter->lumV);
  1290. if (filter->chrH) sws_freeVec(filter->chrH);
  1291. if (filter->chrV) sws_freeVec(filter->chrV);
  1292. av_free(filter);
  1293. }
  1294. void sws_freeContext(SwsContext *c)
  1295. {
  1296. int i;
  1297. if (!c) return;
  1298. if (c->lumPixBuf) {
  1299. for (i=0; i<c->vLumBufSize; i++)
  1300. av_freep(&c->lumPixBuf[i]);
  1301. av_freep(&c->lumPixBuf);
  1302. }
  1303. if (c->chrPixBuf) {
  1304. for (i=0; i<c->vChrBufSize; i++)
  1305. av_freep(&c->chrPixBuf[i]);
  1306. av_freep(&c->chrPixBuf);
  1307. }
  1308. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1309. for (i=0; i<c->vLumBufSize; i++)
  1310. av_freep(&c->alpPixBuf[i]);
  1311. av_freep(&c->alpPixBuf);
  1312. }
  1313. av_freep(&c->vLumFilter);
  1314. av_freep(&c->vChrFilter);
  1315. av_freep(&c->hLumFilter);
  1316. av_freep(&c->hChrFilter);
  1317. #if HAVE_ALTIVEC
  1318. av_freep(&c->vYCoeffsBank);
  1319. av_freep(&c->vCCoeffsBank);
  1320. #endif
  1321. av_freep(&c->vLumFilterPos);
  1322. av_freep(&c->vChrFilterPos);
  1323. av_freep(&c->hLumFilterPos);
  1324. av_freep(&c->hChrFilterPos);
  1325. #if ARCH_X86
  1326. #ifdef MAP_ANONYMOUS
  1327. if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1328. if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1329. #elif HAVE_VIRTUALALLOC
  1330. if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1331. if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1332. #else
  1333. av_free(c->lumMmx2FilterCode);
  1334. av_free(c->chrMmx2FilterCode);
  1335. #endif
  1336. c->lumMmx2FilterCode=NULL;
  1337. c->chrMmx2FilterCode=NULL;
  1338. #endif /* ARCH_X86 */
  1339. av_freep(&c->yuvTable);
  1340. av_free(c);
  1341. }
  1342. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  1343. int srcW, int srcH, enum PixelFormat srcFormat,
  1344. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1345. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1346. {
  1347. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  1348. if (!param)
  1349. param = default_param;
  1350. if (context &&
  1351. (context->srcW != srcW ||
  1352. context->srcH != srcH ||
  1353. context->srcFormat != srcFormat ||
  1354. context->dstW != dstW ||
  1355. context->dstH != dstH ||
  1356. context->dstFormat != dstFormat ||
  1357. context->flags != flags ||
  1358. context->param[0] != param[0] ||
  1359. context->param[1] != param[1])) {
  1360. sws_freeContext(context);
  1361. context = NULL;
  1362. }
  1363. if (!context) {
  1364. return sws_getContext(srcW, srcH, srcFormat,
  1365. dstW, dstH, dstFormat, flags,
  1366. srcFilter, dstFilter, param);
  1367. }
  1368. return context;
  1369. }